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Basic Differentiation Rules

Basic Integration Formulas

1. 
d
dx

[cu] = cu′

4. 
d
dx[

u
v] =

vu′ − uv′
v2

7. 
d
dx

[x] = 1

10. 
d
dx

[eu] = euu′

13. 
d
dx

[sin u] = (cos u)u′

16. 
d
dx

[cot u] = −(csc2 u)u′

19. 
d
dx

[arcsin u] = u′
√1 − u2

22. 
d
dx

[arccot u] = −u′
1 + u2

25. 
d
dx

[sinh u] = (cosh u)u′

28. 
d
dx

[coth u] = −(csch2 u)u′

31. 
d
dx

[sinh−1 u] = u′
√u2 + 1

34. 
d
dx

[coth−1 u] = u′
1 − u2

2. 
d
dx

[u ± v] = u′ ± v′

5. 
d
dx

[c] = 0

8. 
d
dx

[∣u∣] = u

∣u∣(u′), u ≠ 0

11. 
d
dx

[loga u] =
u′

(ln a)u

14. 
d
dx

[cos u] = −(sin u)u′

17. 
d
dx

[sec u] = (sec u tan u)u′

20. 
d
dx

[arccos u] = −u′
√1 − u2

23. 
d
dx

[arcsec u] = u′

∣u∣√u2 − 1

26. 
d
dx

[cosh u] = (sinh u)u′

29. 
d
dx

[sech u] = −(sech u tanh u)u′

32. 
d
dx

[cosh−1 u] = u′
√u2 − 1

35. 
d
dx

[sech−1 u] = −u′
u√1 − u2

3. 
d
dx

[uv] = uv′ + vu′

6. 
d
dx

[un] = nun−1u′

9. 
d
dx

[ln u] = u′
u

12. 
d
dx

[au] = (ln a)auu′

15. 
d
dx

[tan u] = (sec2 u)u′

18. 
d
dx

[csc u] = −(csc u cot u)u′

21. 
d
dx

[arctan u] = u′
1 + u2

24. 
d
dx

[arccsc u] = −u′

∣u∣√u2 − 1

27. 
d
dx

[tanh u] = (sech2 u)u′

30. 
d
dx

[csch u] = −(csch u coth u)u′

33. 
d
dx

[tanh−1 u] = u′
1 − u2

36. 
d
dx

[csch−1 u] = −u′

∣u∣√1 + u2

1. ∫kf(u) du = k∫f(u) du

3. ∫du = u + C

5. ∫du
u

= ln∣u∣ + C

7. ∫au du = ( 1
ln a)au + C

 9. ∫cos u du = sin u + C

11. ∫cot u du = ln∣sin u∣ + C

13. ∫csc u du = −ln∣csc u + cot u∣ + C

15. ∫csc2 u du = −cot u + C

17. ∫csc u cot u du = −csc u + C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a
+ C

2. ∫[ f(u) ± g(u)] du = ∫f(u) du ± ∫g(u) du

4. ∫un du =
un+1

n + 1
+ C, n ≠ −1

6. ∫eu du = eu + C

8. ∫sin u du = −cos u + C

10. ∫tan u du = −ln∣cos u∣ + C

12. ∫sec u du = ln∣sec u + tan u∣ + C

14. ∫sec2 u du = tan u + C

16. ∫sec u tan u du = sec u + C

18. ∫ du

√a2 − u2
= arcsin 

u
a
+ C

20. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C
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TRIGONOMETRY

Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < θ < π
2. 
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    sin θ =
opp
hyp

 csc θ =
hyp
opp

    cos θ =
adj
hyp

 sec θ =
hyp
adj

    tan θ =
opp
adj

 cot θ =
adj
opp

Circular function definitions, where θ is any angle.

θ
x

y

x

r

(x, y)
r = x2 + y2

y
    sin θ =

y
r
   csc θ =

r
y

    cos θ =
x
r
   sec θ =

r
x

    tan θ =
y
x
   cot θ =

x
y

Reciprocal Identities

sin x =
1

csc x
 sec x =

1
cos x

 tan x =
1

cot x

csc x =
1

sin x
 cos x =

1
sec x

 cot x =
1

tan x

Quotient Identities

tan x =
sin x
cos x

 cot x =
cos x
sin x

Pythagorean Identities
sin2 x + cos2 x = 1

1 + tan2 x = sec2 x    1 + cot2 x = csc2 x

Cofunction Identities

sin(π2 − x) = cos x  cos(π2 − x) = sin x

csc(π2 − x) = sec x  tan(π2 − x) = cot x

sec(π2 − x) = csc x  cot(π2 − x) = tan x

Even/Odd Identities
sin(−x) = −sin x cos(−x) = cos x

csc(−x) = −csc x tan(−x) = −tan x

sec(−x) = sec x cot(−x) = −cot x

Sum and Difference Formulas
sin(u ± v) = sin u cos v ± cos u sin v

cos(u ± v) = cos u cos v ∓ sin u sin v

tan(u ± v) = tan u ± tan v
1 ∓ tan u tan v

Double-Angle Formulas
sin 2u = 2 sin u cos u
cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u

tan 2u =
2 tan u

1 − tan2 u

Power-Reducing Formulas

sin2 u =
1 − cos 2u

2

cos2 u =
1 + cos 2u

2

tan2 u =
1 − cos 2u
1 + cos 2u

Sum-to-Product Formulas

sin u + sin v = 2 sin(u + v
2 ) cos(u − v

2 )
sin u − sin v = 2 cos(u + v

2 ) sin(u − v
2 )

cos u + cos v = 2 cos(u + v
2 ) cos(u − v

2 )
cos u − cos v = −2 sin(u + v

2 ) sin(u − v
2 )

Product-to-Sum Formulas

sin u sin v =
1
2
[cos(u − v) − cos(u + v)]

cos u cos v =
1
2
[cos(u − v) + cos(u + v)]

sin u cos v =
1
2
[sin(u + v) + sin(u − v)]

cos u sin v =
1
2
[sin(u + v) − sin(u − v)]

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Ron Larson
The Pennsylvania State University
The Behrend College

Bruce Edwards
University of Florida

11e

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Calculus of a Single Variable, Eleventh Edition
Ron Larson, Bruce Edwards

Product Director: Terry Boyle

Product Manager: Gary Whalen

Senior Content Developer: Stacy Green

Associate Content Developer: Samantha Lugtu

Product Assistant: Katharine Werring

Media Developer: Lynh Pham

Marketing Manager: Ryan Ahern

Content Project Manager: Jennifer Risden

Manufacturing Planner: Doug Bertke

Production Service: Larson Texts, Inc.

Photo Researcher: Lumina Datamatics

Text Researcher: Lumina Datamatics

Illustrator: Larson Texts, Inc.

Text Designer: Larson Texts, Inc.

Compositor: Larson Texts, Inc.

Cover Designer: Larson Texts, Inc.

Cover photograph by  Caryn B. Davis | carynbdavis.com

Cover background: iStockphoto.com/briddy_

Umbilic Torus by Helaman Ferguson, donated to Stony Brook 
University

The cover image is the Umbilic Torus statue created in 2012 by 
the famed sculptor and mathematician Dr. Helaman Ferguson. 
This statue weighs 10 tons and has a height of 24 feet. It is 
located at Stony Brook University in Stony Brook, New York.

© 2018, 2014 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright 
herein may be reproduced or distributed in any form or by any means, 
except as permitted by U.S. copyright law, without the prior written 
permission of the copyright owner.

For product information and technology assistance, contact us at 
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, 
submit all requests online at www.cengage.com/permissions. 

Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2016944974

Student Edition:

ISBN: 978-1-337-27536-1

Loose-leaf Edition:

ISBN: 978-1-337-27558-3

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions 
with employees residing in nearly 40 different countries and sales in 
more than 125 countries around the world. Find your local representative 
at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson 
Education, Ltd. 

To learn more about Cengage Learning Solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our  
preferred online store www.cengagebrain.com.

QR Code is a registered trademark of Denso Wave Incorporated

Printed in the United States of America
Print Number: 01 Print Year: 2016

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



iii

Contents

P Preparation for Calculus 1
P.1 Graphs and Models 2
P.2 Linear Models and Rates of Change 10
P.3 Functions and Their Graphs 19
P.4 Review of Trigonometric Functions 31
 Review Exercises 41
 P.S. Problem Solving 43

1 Limits and Their Properties 45
1.1 A Preview of Calculus 46
1.2 Finding Limits Graphically and Numerically 52
1.3 Evaluating Limits Analytically 63
1.4 Continuity and One-Sided Limits 74
1.5 Infinite Limits 87
  Section Project: Graphs and Limits of  

 Trigonometric Functions 94
 Review Exercises 95
 P.S. Problem Solving 97

2 Differentiation 99
2.1 The Derivative and the Tangent Line Problem 100
2.2 Basic Differentiation Rules and Rates of Change 110
2.3  Product and Quotient Rules and Higher-Order  

 Derivatives 122
2.4 The Chain Rule 133
2.5 Implicit Differentiation 144
 Section Project: Optical Illusions 151
2.6 Related Rates 152
 Review Exercises 161
 P.S. Problem Solving 163

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



iv Contents

3 Applications of Differentiation 165
3.1 Extrema on an Interval 166
3.2 Rolle’s Theorem and the Mean Value Theorem 174
3.3 Increasing and Decreasing Functions and 

the First Derivative Test 181
Section Project: Even Fourth-Degree Polynomials 190

3.4 Concavity and the Second Derivative Test 191
3.5 Limits at Infinity 199
3.6 A Summary of Curve Sketching 209
3.7 Optimization Problems 219

Section Project: Minimum Time 228
3.8 Newton’s Method 229
3.9 Differentials 235

Review Exercises 242
P.S. Problem Solving 245

4 Integration 247
4.1 Antiderivatives and Indefinite Integration 248
4.2 Area 258
4.3 Riemann Sums and Definite Integrals 270
4.4 The Fundamental Theorem of Calculus 281
  Section Project: Demonstrating the  

 Fundamental Theorem 295
4.5 Integration by Substitution 296
 Review Exercises 309
 P.S. Problem Solving 311

5 Logarithmic, Exponential, and  
Other Transcendental Functions 313
5.1 The Natural Logarithmic Function: Differentiation 314
5.2 The Natural Logarithmic Function: Integration 324
5.3 Inverse Functions 333
5.4 Exponential Functions: Differentiation and Integration 342
5.5 Bases Other than e and Applications 352
  Section Project: Using Graphing Utilities to  

 Estimate Slope 361
5.6 Indeterminate Forms and L’Hôpital’s Rule 362
5.7 Inverse Trigonometric Functions: Differentiation 373
5.8 Inverse Trigonometric Functions: Integration 382
5.9 Hyperbolic Functions 390
 Section Project: Mercator Map 399
 Review Exercises 400
 P.S. Problem Solving 403

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Contents v

6 Differential Equations 405
6.1 Slope Fields and Euler’s Method 406
6.2 Growth and Decay 415
6.3 Separation of Variables and the Logistic Equation 423
6.4 First-Order Linear Differential Equations 432

Section Project: Weight Loss 438
Review Exercises 439
P.S. Problem Solving 441

7 Applications of Integration 443
7.1 Area of a Region Between Two Curves 444
7.2 Volume: The Disk Method 454
7.3 Volume: The Shell Method 465

Section Project: Saturn 473
7.4 Arc Length and Surfaces of Revolution 474
7.5 Work 485

Section Project: Pyramid of Khufu 493
7.6 Moments, Centers of Mass, and Centroids 494
7.7 Fluid Pressure and Fluid Force 505

Review Exercises 511
P.S. Problem Solving 513

8 Integration Techniques and Improper Integrals 515
8.1 Basic Integration Rules 516
8.2 Integration by Parts 523
8.3 Trigonometric Integrals 532
 Section Project: The Wallis Product 540
8.4 Trigonometric Substitution 541
8.5 Partial Fractions 550
8.6 Numerical Integration 559
8.7 Integration by Tables and Other Integration Techniques 566
8.8 Improper Integrals 572
 Review Exercises 583
 P.S. Problem Solving 585

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



vi Contents

9 Infinite Series 587
9.1 Sequences 588
9.2 Series and Convergence 599

Section Project: Cantor’s Disappearing Table 608
9.3 The Integral Test and p-Series 609

Section Project: The Harmonic Series 615
9.4 Comparisons of Series 616
9.5 Alternating Series 623
9.6 The Ratio and Root Tests 631
9.7 Taylor Polynomials and Approximations 640
9.8 Power Series 651
9.9 Representation of Functions by Power Series 661
9.10 Taylor and Maclaurin Series 668

Review Exercises 680
P.S. Problem Solving 683

10 Conics, Parametric Equations, and 
Polar Coordinates 685
10.1 Conics and Calculus 686
10.2 Plane Curves and Parametric Equations 700

Section Project: Cycloids 709
10.3 Parametric Equations and Calculus 710
10.4 Polar Coordinates and Polar Graphs 719

Section Project: Cassini Oval 728
10.5 Area and Arc Length in Polar Coordinates 729
10.6 Polar Equations of Conics and Kepler’s Laws 738

Review Exercises 746
P.S. Problem Solving 749

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Contents vii

Appendices
Appendix A: Proofs of Selected Theorems A2

Appendix B: Integration Tables A3

Appendix C: Precalculus Review (Online)*

Appendix D: Rotation and the General Second-Degree
Equation (Online)*

Appendix E: Complex Numbers (Online)*

Appendix F: Business and Economic Applications (Online)*

Appendix G: Fitting Models to Data (Online)*

Answers to All Odd-Numbered Exercises A7
Index A89

*Available at the text-specific website www.cengagebrain.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Welcome to Calculus, Eleventh Edition. We are excited to offer you a new edition with even more 
resources that will help you understand and master calculus. This textbook includes features and 
resources that continue to make Calculus a valuable learning tool for students and a trustworthy 
teaching tool for instructors.

Calculus provides the clear instruction, precise mathematics, and thorough coverage that you expect 
for your course. Additionally, this new edition provides you with free access to three companion websites:

• CalcView.com––video solutions to selected exercises

• CalcChat.com––worked-out solutions to odd-numbered exercises and access to online tutors

• LarsonCalculus.com––companion website with resources to supplement your learning

These websites will help enhance and reinforce your understanding of the material presented in 
this text and prepare you for future mathematics courses. CalcView® and CalcChat® are also 
available as free mobile apps.

Features

NEW ®

The website CalcView.com contains video 
solutions of selected exercises. Watch  
instructors progress step-by-step through  
solutions, providing guidance to help you  
solve the exercises. The CalcView mobile app 
is available for free at the Apple® App Store® 

or Google Play™ store. The app features an 
embedded QR Code® reader that can be used  
to scan the on-page codes  and go directly 
to the videos. You can also access the videos 
at CalcView.com.

UPDATED ®

In each exercise set, be sure to notice the reference to 
CalcChat.com. This website provides free step-by-step 
solutions to all odd-numbered exercises in many of 
our textbooks. Additionally, you can chat with a tutor, 
at no charge, during the hours posted at the site. For 
over 14 years, hundreds of thousands of students have 
visited this site for help. The CalcChat mobile app is 
also available as a free download at the Apple® App 
Store® or Google Play™ store and features an  
embedded QR Code® reader.

viii

Preface

App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc. 
QR Code is a registered trademark of Denso Wave Incorporated.
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Preface ix

REVISED LarsonCalculus.com
All companion website features have been updated based on this revision. Watch videos explaining 
concepts or proofs from the book, explore examples, view three-dimensional graphs, download articles 
from math journals, and much more.

NEW Conceptual Exercises
The Concept Check exercises and Exploring Concepts exercises appear in each section. These 
exercises will help you develop a deeper and clearer knowledge of calculus. Work through these 
exercises to build and strengthen your understanding of the calculus concepts and to prepare you for 
the rest of the section exercises.

REVISED Exercise Sets
The exercise sets have been carefully and extensively examined to ensure they are rigorous and  
relevant and to include topics our users have suggested. The exercises are organized and titled  
so you can better see the connections between examples and exercises. Multi-step, real-life exercises 
reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the 
concepts in real-life situations.

REVISED Section Projects
Projects appear in selected sections and encourage you to explore applications related to the topics 
you are studying. We have added new projects, revised others, and kept some of our favorites.  
All of these projects provide an interesting and engaging way for you and other students to work  
and investigate ideas collaboratively.

Table of Contents Changes
Based on market research and feedback from users, we have made several changes to the table  
of contents.

•  We added a review of trigonometric functions (Section P.4) to Chapter P.

•  To cut back on the length of the text, we moved previous Section P.4 Fitting Models to Data 
(now Appendix G in the Eleventh Edition) to the text-specific website at CengageBrain.com.

•  To provide more flexibility to the order of coverage of calculus topics, Section 3.5 Limits at 
Infinity was revised so that it can be covered after Section 1.5 Infinite Limits. As a result of this 
revision, some exercises moved from Section 3.5 to Section 3.6 A Summary of Curve Sketching.

•  We moved Section 4.6 Numerical Integration to Section 8.6.

•  We moved Section 8.7 Indeterminate Forms and L’Hôpital’s Rule to Section 5.6.

Chapter Opener
Each Chapter Opener highlights real-life applications used in the examples and exercises.
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x Preface

Section Objectives
A bulleted list of learning objectives provides  
you with the opportunity to preview what will  
be presented in the upcoming section.

Theorems
Theorems provide the conceptual framework  
for calculus. Theorems are clearly stated and 
separated from the rest of the text by boxes  
for quick visual reference. Key proofs often 
follow the theorem and can be found at 
LarsonCalculus.com.

Definitions
As with theorems, definitions are clearly stated 
using precise, formal wording and are separated 
from the text by boxes for quick visual reference.

Explorations
Explorations provide unique challenges to 
study concepts that have not yet been formally 
covered in the text. They allow you to learn by 
discovery and introduce topics related to ones 
presently being studied. Exploring topics in this 
way encourages you to think outside the box.

Remarks
These hints and tips reinforce or expand upon 
concepts, help you learn how to study  
mathematics, caution you about common errors, 
address special cases, or show alternative or 
additional steps to a solution of an example. 

How Do You See It? Exercise
The How Do You See It? exercise in each section presents a problem that you will solve 
by visual inspection using the concepts learned in the lesson. This exercise is excellent for 
classroom discussion or test preparation.

Applications
Carefully chosen applied exercises and examples are included throughout to address the 
question, “When will I use this?” These applications are pulled from diverse sources, such 
as current events, world data, industry trends, and more, and relate to a wide range of interests. 
Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Historical Notes and Biographies
Historical Notes provide you with background information on the foundations of calculus.  
The Biographies introduce you to the people who created and contributed to calculus.

Technology
Throughout the book, technology boxes show you how to use technology to solve problems  
and explore concepts of calculus. These tips also point out some pitfalls of using technology.

Putnam Exam Challenges
Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will 
challenge you and push the limits of your understanding of calculus.

166 Chapter 3 Applications of Differentiation

3.1 Extrema on an Interval

 Understand the definition of extrema of a function on an interval.
 Understand the definition of relative extrema of a function on an open interval.
 Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function f  on an 
interval I. Does f  have a maximum value on I? Does it have a minimum value? Where 
is the function increasing? Where is it decreasing? In this chapter, you will learn 
how derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

Definition of Extrema

Let f  be defined on an interval I containing c.

1. f (c) is the minimum of f  on I when f (c) ≤ f (x) for all x in I.

2. f (c) is the maximum of f  on I when f (c) ≥ f (x) for all x in I.

The minimum and maximum of a function on an interval are the extreme 
values, or extrema (the singular form of extrema is extremum), of the function 
on the interval. The minimum and maximum of a function on an interval are 
also called the absolute minimum and absolute maximum, or the global 
minimum and global maximum, on the interval. Extrema can occur at interior 
points or endpoints of an interval (see Figure 3.1). Extrema that occur at the 
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in 
Figures 3.1(a) and (b), you can see that the function f (x) = x2 + 1 has both a minimum 
and a maximum on the closed interval [−1, 2] but does not have a maximum on the 
open interval (−1, 2). Moreover, in Figure 3.1(c), you can see that continuity (or the 
lack of it) can affect the existence of an extremum on the interval. This suggests the 
theorem below. (Although the Extreme Value Theorem is   intuitively plausible, a proof 
of this theorem is not within the scope of this text.)

THEOREM 3.1 The Extreme Value Theorem

If f  is continuous on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

Exploration
Finding Minimum and Maximum Values The Extreme Value Theorem (like 
the Intermediate Value Theorem) is an existence theorem because it tells of the 
existence of minimum and maximum values but does not show how to find 
these values. Use the minimum and maximum features of a graphing utility to 
find the extrema of each function. In each case, do you think the x-values are 
exact or approximate? Explain your reasoning.

a. f (x) = x2 − 4x + 5 on the closed interval [−1, 3]
b. f (x) = x3 − 2x2 − 3x − 2 on the closed interval [−1, 3]

x

1−1 2

2

3

3

4

5 (2, 5)

(0, 1)

Maximum

Minimum

y

f(x) = x2 + 1

(a) f  is continuous, [−1, 2] is closed.

x

1−1 2

2

3

3

4

5

(0, 1)

Not a
maximum

Minimum

y

f(x) = x2 + 1

(b) f  is continuous, (−1, 2) is open.

x

1−1 2

2

3

3

4

5 (2, 5)

Not a
minimum

Maximum

g(x) = x2 + 1,  x ≠ 0
2,          x = 0

y

(c) g is not continuous, [−1, 2] is closed.

Figure 3.1
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Student Solutions Manual for Calculus of a Single Variable 
ISBN-13: 978-1-337-27538-5

Need a leg up on your homework or help to prepare for an exam? The Student 
Solutions Manual contains worked-out solutions for all odd-numbered exercises in the 
text. This manual is a great resource to help you understand how to solve those tough 
problems.

CengageBrain.com 
To access additional course materials, please visit www.cengagebrain.com. At the 
CengageBrain.com home page, search for the ISBN of your title (from the back cover 
of your book) using the search box at the top of the page. This will take you to the 
product page where these resources can be found.

MindTap for Mathematics 
MindTap® provides you with the tools you need to better manage your limited  
time––you can complete assignments whenever and wherever you are ready to learn 
with course material specifically customized for you by your instructor and  
streamlined in one proven, easy-to-use interface. With an array of tools and  
apps––from note taking to flashcards––you’ll get a true understanding of course  
concepts, helping you to achieve better grades and setting the groundwork for your 
future courses. This access code entitles you to 3 terms of usage.

Enhanced WebAssign® 

Enhanced WebAssign (assigned by the instructor) provides you with instant feedback 
on homework assignments. This online homework system is easy to use and includes 
helpful links to textbook sections, video examples, and problem-specific tutorials.

Student Resources
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Complete Solutions Manual for Calculus of a Single Variable, Vol. 1 
ISBN-13: 978-1-337-27540-8

Complete Solutions Manual for Calculus of a Single Variable, Vol. 2 
ISBN-13: 978-1-337-27541-5

The Complete Solutions Manuals contain worked-out solutions to all exercises  
in the text. They are posted on the instructor companion website.

Instructor’s Resource Guide (on instructor companion site) 
This robust manual contains an abundance of instructor resources keyed to the 
textbook at the section and chapter level, including section objectives, teaching 
tips, and chapter projects.

Cengage Learning Testing Powered by Cognero (login.cengage.com) 
CLT is a flexible online system that allows you to author, edit, and manage test  
bank content; create multiple test versions in an instant; and deliver tests from your 
LMS, your classroom, or wherever you want. This is available online via  
www.cengage.com/login.

Instructor Companion Site 
Everything you need for your course in one place! This collection of book-specific 
lecture and class tools is available online via www.cengage.com/login. Access and 
download PowerPoint® presentations, images, instructor’s manual, and more.

Test Bank (on instructor companion site) 
The Test Bank contains text-specific multiple-choice and free-response test forms.

MindTap for Mathematics 
MindTap® is the digital learning solution that helps you engage and transform  
today’s students into critical thinkers. Through paths of dynamic assignments and  
applications that you can personalize, real-time course analytics, and an  
accessible reader, MindTap helps you turn cookie cutter into cutting edge,  
apathy into engagement, and memorizers into higher-level thinkers.

Enhanced WebAssign® 

Exclusively from Cengage Learning, Enhanced WebAssign combines the  
exceptional mathematics content that you know and love with the most powerful 
online homework solution, WebAssign. Enhanced WebAssign engages students  
with immediate feedback, rich tutorial content, and interactive, fully customizable 
e-books (YouBook), helping students to develop a deeper conceptual understanding 
of their subject matter. Quick Prep and Just In Time exercises provide opportunities 
for students to review prerequisite skills and content, both at the start of the course 
and at the beginning of each section. Flexible assignment options give instructors 
the ability to release assignments conditionally on the basis of students’ prerequisite 
assignment scores. Visit us at www.cengage.com/ewa to learn more.

Instructor Resources
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Preparation for Calculus
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2 Chapter P Preparation for Calculus

P.1 Graphs and Models

 Sketch the graph of an equation.
 Find the intercepts of a graph.
 Test a graph for symmetry with respect to an axis and the origin.
 Find the points of intersection of two graphs.
 Interpret mathematical models for real-life data.

The Graph of an Equation
In 1637, the French mathematician René Descartes revolutionized the study of 
mathematics by combining its two major fields—algebra and geometry. With 
Descartes’s coordinate  plane, geometric concepts could be formulated analytically and 
algebraic concepts could be viewed graphically. The power of this approach was such 
that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by  viewing 
calculus from multiple perspectives—graphically, analytically, and numerically—you 
will increase your understanding of core concepts.

Consider the equation 3x + y = 7. The point (2, 1) is a solution point of the 
 equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is 
 substituted for y. This equation has many other solutions, such as (1, 4) and (0, 7). To  
find other solutions systematically, solve the original equation for y.

y = 7 − 3x Analytic approach

Then construct a table of values by substituting several values of x.

 Numerical approach

From the table, you can see that (0, 7), (1, 4), (2, 1),  
(3, −2), and (4, −5) are solutions of the original  
equation 3x + y = 7. Like many equations, this  
equation has an infinite number of solutions. The set 
of all solution points is the graph of the equation, as 
shown in Figure P.1. Note that the sketch shown in 
Figure P.1 is referred to as the graph of 3x + y = 7, 
even though it really represents only a portion of the 
graph. The entire graph would extend beyond the page.

In this course, you will study many sketching  
techniques. The simplest is point plotting—that is,  
you plot points until the basic shape of the graph  
seems apparent.

 Sketching a Graph by Point Plotting

To sketch the graph of y = x2 − 2, first construct a table of values. Next, plot the points 
shown in the table. Then connect the points with a smooth curve, as shown in Figure 
P.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

 
x −2 −1 0 1 2 3

y 2 −1 −2 −1 2 7

 

x 0 1 2 3 4

y 7 4 1 −2 −5

The parabola y = x2 − 2
Figure P.2

x
−4 −3 −2 2 3 4

7

6

5

4

3

2

1

y

y = x2 − 2

Graphical approach: 3x + y = 7
Figure P.1

864

8

6

4

2

−4

−6

−2
2

x

(3, −2)

(4, −5)

(2, 1)

(1, 4)

(0, 7)

3x + y = 7

y

RENÉ DESCARTES (1596–1650)

Descartes made many 
contributions to  philosophy, 
science, and mathematics. The 
idea of representing points in the 
plane by pairs of real numbers 
and representing curves in the 
plane by equations was described 
by Descartes in his book La 
Géométrie, published in 1637.
See LarsonCalculus.com to read 
more of this biography.

Granger, NYC
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P.1 Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of 
a graph, you may need to plot many points. With only a few points, you could badly 
misrepresent the graph. For instance, to sketch the graph of

y =
1
30

x(39 − 10x2 + x4)

you plot five points: 

(−3, −3), (−1, −1), (0, 0), (1, 1), and (3, 3)

as shown in Figure P.3(a). From these five points, you might conclude that the graph is 
a line. This, however, is not correct. By plotting several more points, you can see that 
the graph is more complicated, as shown in Figure P.3(b).

x
−3 −2 −1 1 2 3

3

2

1

−1

−2

−3

(0, 0)
(1, 1)

(3, 3)

(−3, −3)

(−1, −1) Plotting only a
few points can
misrepresent a
graph.

y   
y

x
−3 −2 −1 1 2 3

3

2

1

−1

−2

−3

y = x (39 − 10x2 + x4)1
30

 (a) (b)

 Figure P.3

TECHNOLOGY Graphing an equation has been made easier by technology. Even 
with technology, however, it is possible to misrepresent a graph badly. For instance, 
each of the graphing utility* screens in Figure P.4 shows a portion of the graph of

y = x3 − x2 − 25.

From the screen on the left, you might assume that the graph is a line. From the 
screen on the right, however, you can see that the graph is not a line. So, whether 
you are sketching a graph by hand or using a graphing utility, you must realize that 
different “viewing windows” can produce very different views of a graph. In choosing 
a viewing window, your goal is to show a view of the graph that fits well in the 
context of the problem.

10

−10

−10

10   

5

−35

−5

5

 Graphing utility screens of y = x3 − x2 − 25
 Figure P.4

*In this text, the term graphing utility means either a graphing calculator, such as the  
TI-Nspire, or computer graphing software, such as Maple or Mathematica.

Exploration
Comparing Graphical and 
Analytic Approaches 
Use a graphing utility to 
graph each equation. In each 
case, find a viewing window 
that shows the important 
characteristics of the graph.

a. y = x3 − 3x2 + 2x + 5

b. y = x3 − 3x2 + 2x + 25

c. y = −x3 − 3x2 + 20x + 5

d. y = 3x3 − 40x2 + 50x − 45

e. y = −(x + 12)3

f. y = (x − 2)(x − 4)(x − 6)

A purely graphical approach 
to this problem would involve 
a simple “guess, check, and 
revise” strategy. What types of 
things do you think an analytic 
approach might involve? For 
instance, does the graph have 
symmetry? Does the graph 
have turns? If so, where are 
they? As you proceed through 
Chapters 1, 2, and 3 of this 
text, you will study many new 
analytic tools that will help you 
analyze graphs of equations 
such as these.
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4 Chapter P Preparation for Calculus

Intercepts of a Graph
Two types of solution points that are especially useful in graphing an equation are 
those having zero as their x- or y-coordinate. Such points are called intercepts because 
they are the points at which the graph intersects the x- or y-axis. The point (a, 0) is an 
x-intercept of the graph of an equation when it is a solution point of the equation. To 
find the x-intercepts of a graph, let y be zero and solve the equation for x. The point 
(0, b) is a y-intercept of the graph of an equation when it is a solution point of the 
equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For 
instance, consider the four graphs shown in Figure P.5.

 Finding x- and y-Intercepts

Find the x- and y-intercepts of the graph of y = x3 − 4x.

Solution To find the x-intercepts, let y be zero and solve for x.

 x3 − 4x = 0 Let y be zero.

 x(x − 2)(x + 2) = 0 Factor.

 x = 0, 2, or −2 Solve for x.

Because this equation has three solutions, you can conclude that the graph has three  
x-intercepts:

(0, 0), (2, 0), and (−2, 0). x-intercepts

To find the y-intercepts, let x be zero. Doing this produces y = 0. So, the y-intercept is

(0, 0). y-intercept

(See Figure P.6.)

−4 −3 −1 1 3 4

−4

−3

−2

−1

3

4

x
(2, 0)(0, 0)(−2, 0)

y

y = x3 − 4x

 Intercepts of a graph
 Figure P.6 

REMARK Some texts  
denote the x-intercept as the  
x-coordinate of the point (a, 0) 
rather than the point itself. 
Unless it is necessary to make  
a distinction, when the term 
intercept is used in this text, it 
will mean either the point or  
the coordinate.

TECHNOLOGY Example 2 
uses an analytic approach 
to finding intercepts. When 
an analytic approach is not 
possible, you can use a graphical 
approach by finding the points 
at which the graph intersects the 
axes. Use the trace feature of a 
graphing utility to approximate 
the intercepts of the graph of 
the equation in Example 2. Note 
that your utility may have a 
built-in program that can find 
the x-intercepts of a graph. 
(Your utility may call this the 
root or zero feature.) If so, use 
the program to find the  
x-intercepts of the graph of the 
equation in Example 2.

No x-intercepts 
One y-intercept
Figure P.5

Three x-intercepts 
One y-intercept

One x-intercept 
Two y-intercepts

No intercepts

x

y

x

y

x

y

x

y
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P.1 Graphs and Models 5

Symmetry of a Graph
Knowing the symmetry of a graph before attempting to sketch it is useful because you 
need only half as many points to sketch the graph. The three types of symmetry listed 
below can be used to help sketch the graphs of equations (see Figure P.7).

1.  A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on the 
graph, then (−x, y) is also a point on the graph. This means that the portion of the 
graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.

2.  A graph is symmetric with respect to the x-axis if, whenever (x, y) is a point on the 
graph, then (x, −y) is also a point on the graph. This means that the portion of the 
graph below the x-axis is a mirror image of the portion above the x-axis.

3.  A graph is symmetric with respect to the origin if, whenever (x, y) is a point on 
the graph, then (−x, −y) is also a point on the graph. This means that the graph is 
unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1.  The graph of an equation in x and y is symmetric with respect to the y-axis 
when replacing x by −x yields an equivalent equation.

2.  The graph of an equation in x and y is symmetric with respect to the x-axis 
when replacing y by −y yields an equivalent equation.

3.  The graph of an equation in x and y is symmetric with respect to the origin 
when replacing x by −x and y by −y yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term 
has an even exponent (or is a constant). For instance, the graph of

y = 2x4 − x2 + 2

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has 
 symmetry with respect to the origin when each term has an odd exponent, as illustrated 
in Example 3.

 Testing for Symmetry

Test the graph of y = 2x3 − x for symmetry with respect to (a) the y-axis and (b) the 
origin.

Solution

a. y = 2x3 − x Write original equation.

 y = 2(−x)3 − (−x) Replace x by −x.

 y = −2x3 + x Simplify. The result is not an equivalent equation.

  Because replacing x by −x does not yield an equivalent equation, you can conclude 
that the graph of y = 2x3 − x is not symmetric with respect to the y-axis.

b.  y = 2x3 − x Write original equation.

  −y = 2(−x)3 − (−x) Replace x by −x and y by −y.

  −y = −2x3 + x Simplify.

  y = 2x3 − x Equivalent equation

  Because replacing x by −x and y by −y yields an equivalent equation, you can 
conclude that the graph of y = 2x3 − x is symmetric with respect to the origin, as 
shown in Figure P.8. 

P.1 Graphs and Models 5

Figure P.7

x

(x, y)(−x, y)

y-axis
symmetry

y

x

(x, y)

(x, −y)x-axis
symmetry

y

x

(−x, −y)

(x, y)

Origin
symmetry

y

Origin symmetry
Figure P.8
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y = 2x3 − xy
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6 Chapter P Preparation for Calculus

 Using Intercepts and Symmetry to Sketch a Graph

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of x − y2 = 1.

Solution The graph is symmetric with respect to the x-axis because replacing y by 
−y yields an equivalent equation.

 x − y2 = 1 Write original equation.

 x − (−y)2 = 1 Replace y by −y.

 x − y2 = 1 Equivalent equation

This means that the portion of the graph below the x-axis is a mirror image of the 
portion above the x-axis. To sketch the graph, first plot the x-intercept and the points  
above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in 
Figure P.9. 

Points of Intersection
A point of intersection of the graphs of two equations is a point that satisfies both 
equations. You can find the point(s) of intersection of two graphs by solving their 
 equations simultaneously.

 Finding Points of Intersection

Find all points of intersection of the graphs of

x2 − y = 3 and x − y = 1.

Solution Begin by sketching the graphs of both equations in the same rectangular 
coordinate system, as shown in Figure P.10. From the figure, it appears that the graphs 
have two points of intersection. You can find these two points as follows.

 y = x2 − 3 Solve first equation for y.

 y = x − 1 Solve second equation for y.

 x2 − 3 = x − 1 Equate y-values.

 x2 − x − 2 = 0 Write in general form.

 (x − 2)(x + 1) = 0 Factor.

 x = 2 or −1 Solve for x.

The corresponding values of y are obtained by substituting x = 2 and x = −1 into 
either of the original equations. Doing this produces two points of intersection:

(2, 1) and (−1, −2). Points of intersection 

You can check the points of intersection in Example 5 by substituting into both of 
the original equations or by using the intersect  feature of a graphing utility.

TECHNOLOGY Graphing utilities are designed so that they most easily graph 
equations in which y is a function of x (see Section P.3 for a definition of function). 
To graph other types of equations, you need to split the graph into two or more parts 
or you need to use a different graphing mode. For instance, to graph the equation in 
Example 4, you can split it into two parts.

y1 = √x − 1 Top portion of graph

y2 = −√x − 1 Bottom portion of graph

Figure P.9

5432

2

1

−1

−2

x
(1, 0)

(2, 1)

(5, 2)x − y2 = 1

x-intercept

y

Two points of intersection
Figure P.10

x − y = 1

x
−2 −1 1 2

2

1

−1

−2(−1, −2)

(2, 1)

x2 − y = 3

y
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P.1 Graphs and Models 7

Mathematical Models
Real-life applications of mathematics often use equations as mathematical models. In 
developing a mathematical model to represent actual data, you should strive for two 
(often conflicting) goals––accuracy and simplicity. That is, you want the model to be 
simple enough to be workable, yet accurate enough to produce meaningful results. 
Appendix G explores these goals more completely.

 Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in 
parts per million) in Earth’s atmosphere. The January readings for various years are 
shown in Figure P.11. In the July 1990 issue of Scientific American, these data were 
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using 
the quadratic model

y = 0.018t2 + 0.70t + 316.2 Quadratic model for 1960–1990 data

where t = 0 represents 1960, as shown in Figure P.11(a). The data shown in  
Figure P.11(b) represent the years 1980 through 2014 and can be modeled by

y = 0.014t2 + 0.66t + 320.3 Quadratic model for 1980–2014 data

where t = 0 represents 1960. What was the prediction given in the Scientific American 
article in 1990? Given the second model for 1980 through 2014, does this prediction  
for the year 2035 seem accurate?

t

y

310

320

330

340

350

360

370

380

5 10 15 20 25 40 5550453530

Year (0 ↔ 1960)

C
O

2 (
in

 p
ar

ts
 p

er
 m

ill
io

n)

400

390

  

t

y

310

320

330

340

350

360

370

390

380

5 10 15 20 25 40 5550453530

Year (0 ↔ 1960)

C
O

2 (
in

 p
ar

ts
 p

er
 m

ill
io

n)

400

 (a) (b)

 Figure P.11

Solution To answer the first question, substitute t = 75 (for 2035) into the first 
model.

y = 0.018(75)2 + 0.70(75) + 316.2 = 469.95 Model for 1960–1990 data

So, the prediction in the Scientific American article was that the carbon dioxide 
concentration in Earth’s atmosphere would reach about 470 parts per million in the year 
2035. Using the model for the 1980–2014 data, the prediction for the year 2035 is

y = 0.014(75)2 + 0.66(75) + 320.3 = 448.55. Model for 1980–2014 data

So, based on the model for 1980–2014, it appears that the 1990 prediction was too high.
 

The models in Example 6 were developed using a procedure called least squares 
regression (see Section 13.9). The older model has a correlation of r2 ≈ 0.997, and for 
the newer model it is r2 ≈ 0.999. The closer r2 is to 1, the “better” the model.

The Mauna Loa Observatory  
in Hawaii has been measuring 
the increasing  concentration  
of carbon dioxide in Earth’s 
atmosphere since 1958.

Gavriel Jecan/Terra/Corbis
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8 Chapter P Preparation for Calculus

P.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Finding Intercepts Describe how to find the x- and 

y-intercepts of the graph of an equation.

2.  Verifying Points of Intersection How can you 
check that an ordered pair is a point of intersection of 
two graphs?

Matching In Exercises 3–6, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
−1 1−1

1

2

y  (b) 

x

y

−1 1 2 3
−1

1

2

3

(c) 

21

2

1

−1

−2

−2
x

y  (d) 

x
2−2

−2

2

4

y

 3. y = −3
2 x + 3  4. y = √9 − x2

 5. y = 3 − x2  6. y = x3 − x

 Sketching a Graph by Point Plotting In 
Exercises 7–16, sketch the graph of the equation 
by point plotting.

 7. y = 1
2 x + 2  8. y = 5 − 2x

 9. y = 4 − x2 10. y = (x − 3)2

11. y = ∣x + 1∣ 12. y = ∣x∣ − 1

13. y = √x − 6 14. y = √x + 2

15. y =
3
x
 16. y =

1
x + 2

Approximating Solution Points Using Technology In 
Exercises 17 and 18, use a graphing utility to graph the 
equation. Move the cursor along the curve to approximate the 
unknown coordinate of each solution point accurate to two 
decimal places.

17. y = √5 − x 18. y = x5 − 5x

 (a) (2, y)  (a) (−0.5, y)
 (b) (x, 3)  (b) (x, −4)

 Finding Intercepts In Exercises 19–28, find 
any intercepts.

19. y = 2x − 5 20. y = 4x2 + 3

21. y = x2 + x − 2 22. y2 = x3 − 4x

23. y = x√16 − x2 24. y = (x − 1)√x2 + 1

25. y =
2 − √x
5x + 1

 26. y =
x2 + 3x
(3x + 1)2

27. x2y − x2 + 4y = 0 28. y = 2x − √x2 + 1

 Testing for Symmetry In Exercises 29–40, 
test for symmetry with respect to each axis and to 
the origin.

29. y = x2 − 6 30. y = 9x − x2

31. y2 = x3 − 8x 32. y = x3 + x

33. xy = 4 34. xy2 = −10

35. y = 4 − √x + 3 36. xy − √4 − x2 = 0

37. y =
x

x2 + 1
 38. y =

x5

4 − x2

39. y = ∣x3 + x∣ 40. ∣y∣ − x = 3

 Using Intercepts and Symmetry to Sketch 
a Graph In Exercises 41–56, find any intercepts 
and test for symmetry. Then sketch the graph of 
the equation. 

41. y = 2 − 3x 42. y = 2
3 x + 1

43. y = 9 − x2 44. y = 2x2 + x

45. y = x3 + 2 46. y = x3 − 4x

47. y = x√x + 5 48. y = √25 − x2

49. x = y3 50. x = y4 − 16

51. y =
8
x
 52. y =

10
x2 + 1

53. y = 6 − ∣x∣ 54. y = ∣6 − x∣
55. 3y2 − x = 9 56. x2 + 4y2 = 4

 Finding Points of Intersection In Exercises 
57–62, find the points of intersection of the graphs 
of the equations. 

57.  x + y = 8 58.  3x − 2y =  −4

  4x − y = 7   4x + 2y =  −10

59.  x2 + y = 15 60. x = 3 − y2

  −3x + y = 11  y = x − 1

The symbol  indicates an exercise in which you are instructed to use graphing 
technology or a symbolic computer algebra system. The solutions of other exercises may 
also be facilitated by the use of appropriate technology.

The symbol  and a red exercise number indicates that a video solution can be seen 
at CalcView.com.
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P.1 Graphs and Models 9

61.  x2 + y2 = 5 62.  x2 + y2 = 16

  x − y = 1   x + 2y = 4

Finding Points of Intersection Using Technology In 
Exercises 63–66, use a graphing utility to find the points of 
intersection of the graphs of the equations. Check your results 
analytically.

63. y = x3 − 2x2 + x − 1 64. y = x4 − 2x2 + 1

 y = −x2 + 3x − 1  y = 1 − x2

65. y = √x + 6 66. y = −∣2x − 3∣ + 6

 y = √−x2 − 4x  y = 6 − x

67.  Modeling Data The table shows the Gross Domestic 
Product, or GDP (in trillions of dollars), for 2009 through 
2014. (Source: U.S. Bureau of Economic Analysis)

 
Year 2009 2010 2011 2012 2013 2014

GDP 14.4 15.0 15.5 16.2 16.7 17.3

  (a)  Use the regression capabilities of a graphing utility to find 
a mathematical model of the form y = at + b for the data. 
In the model, y represents the GDP (in trillions of dollars) 
and t represents the year, with t = 9 corresponding to 2009.

 (b)  Use a graphing utility to plot the data and graph the model. 
Compare the data with the model.

 (c) Use the model to predict the GDP in the year 2024.

69.  Break-Even Point Find the sales necessary to break 
even (R = C) when the cost C of producing x units is 
C = 2.04x + 5600 and the revenue R from selling x units is 
R = 3.29x.

70.  Using Solution Points For what values of k does the 
graph of y2 = 4kx pass through the point?

 (a) (1, 1) (b) (2, 4)
 (c) (0, 0) (d) (3, 3)

EXPLORING CONCEPTS
71.  Using Intercepts Write an equation whose graph 

has intercepts at x = −3
2, x = 4, and x = 5

2. (There is 
more than one correct answer.)

72.  Symmetry A graph is symmetric with respect to the 
x-axis and to the y-axis. Is the graph also symmetric with 
respect to the origin? Explain.

73.  Symmetry A graph is symmetric with respect to one 
axis and to the origin. Is the graph also symmetric with 
respect to the other axis? Explain.

 74.  HOW DO YOU SEE IT? Use the graphs of 
the two equations to answer the questions below.

−2 2 4
x

−4

2

4

6

y

y = x3 − x

4

2y = x2 + 2

(a) What are the intercepts for each equation?

(b) Determine the symmetry for each equation.

(c)  Determine the point of intersection of the two  
equations.

74.  

True or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the x-axis, then (4, −5) is also a point on the graph.

76.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the y-axis, then (4, −5) is also a point on the graph.

77.  If b2 − 4ac > 0 and a ≠ 0, then the graph of

 y = ax2 + bx + c

 has two x-intercepts.

78.   If b2 − 4ac = 0 and a ≠ 0, then the graph of 

 y = ax2 + bx + c

 has only one x-intercept.

 The table shows the numbers of cell phone subscribers  
(in millions) in the United States for selected years.  
(Source: CTIA-The Wireless Association)

 
Year 2000 2002 2004 2006

Number 109 141 182 233

 
Year 2008 2010 2012 2014

Number 270 296 326 355

(a)  Use the regression capabilities of a graphing utility to 
find a mathematical model of the form y = at2 + bt + c 
for the data. In the model, y represents the number of 
subscribers (in millions) and t represents the year, with 
t = 0 corresponding to 2000.

(b)  Use a graphing  
utility to plot the  
data and graph the  
model. Compare  
the data with the  
model.

(c)  Use the model to  
predict the number  
of cell phone  
subscribers in the United States in the year 2024.

68. Modeling Data

ChrisMilesPhoto/Shutterstock.com
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10 Chapter P Preparation for Calculus

P.2 Linear Models and Rates of Change

 Find the slope of a line passing through two points.
 Write the equation of a line with a given point and slope.
 Interpret slope as a ratio or as a rate in a real-life application.
 Sketch the graph of a linear equation in slope-intercept form.
 Write equations of lines that are parallel or perpendicular to a given line.

The Slope of a Line
The slope of a nonvertical line is a measure of the number of units the line rises (or 
falls) vertically for each unit of horizontal change from left to right. Consider the two 
points (x1, y1) and (x2, y2) on the line in Figure P.12. As you move from left to right 
along this line, a vertical change of

∆y = y2 − y1 Change in y

units corresponds to a horizontal change of

∆x = x2 − x1 Change in x

units. (The symbol ∆ is the uppercase Greek letter delta, and the symbols ∆y and ∆x 
are read “delta y” and “delta x.”)

Definition of the Slope of a Line

The slope m of the nonvertical line passing through (x1, y1) and (x2, y2) is

m =
∆y
∆x

=
y2 − y1

x2 − x1
, x1 ≠ x2.

Slope is not defined for vertical lines.

When using the formula for slope, note that

y2 − y1

x2 − x1
=

−(y1 − y2)
−(x1 − x2)

=
y1 − y2

x1 − x2
.

So, it does not matter in which order you subtract as long as you are consistent and both 
“subtracted coordinates” come from the same point.

Figure P.13 shows four lines: one has a positive slope, one has a slope of zero, 
one has a negative slope, and one has an “undefined” slope. In general, the greater the 
absolute value of the slope of a line, the steeper the line. For instance, in Figure P.13, 
the line with a slope of −5 is steeper than the line with a slope of 15.

∆y = y2 − y1 = change in y
∆x = x2 − x1 = change in x
Figure P.12

x
x2

y2

x1

y1

Δx = x2 − x1

Δy = y2 − y1

(x2, y2)

(x1, y1)

y

If m is positive, then the line  
rises from left to right.
Figure P.13

If m is zero, then the line  
is horizontal.

If m is negative, then the line  
falls from left to right.

If m is undefined, then the 
line is vertical.

x
−2 −1

−1
1 2 3
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3

2

1
(−2, 0)

(3, 1)

m1 = 1
5

y

x
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4

3

1

m2 = 0

(2, 2)(−1, 2)

y

x
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−1
2 3 4
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2

1

(1, −1)

(0, 4)
m3 = −5

y

x
−1

−1
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3

2

1 (3, 1)
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y

m4 is 
unde�ned.
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P.2 Linear Models and Rates of Change 11

Equations of Lines
Any two points on a nonvertical line can be used to calculate its slope. This can be 
 verified from the similar triangles shown in Figure P.14. (Recall that the ratios of 
 corresponding sides of similar triangles are equal.)

x

m = =
y2* − y1*
x2* − x1*

y2 − y1
x2 − x1

(x1*, y1*)

(x2*, y2*)

(x1, y1)

(x2, y2)

y

  Any two points on a nonvertical line  
can be used to determine its slope.

 Figure P.14

If (x1, y1) is a point on a nonvertical line that has a slope of m and (x, y) is any other 
point on the line, then

y − y1

x − x1
= m.

This equation in the variables x and y can be rewritten in the form 

y − y1 = m(x − x1)

which is the point-slope form of the equation of a line.

Point-Slope Form of the Equation of a Line

The point-slope form of the equation of the line that passes through the point 
(x1, y1) and has a slope of m is

y − y1 = m(x − x1).

REMARK Remember that only nonvertical lines have a slope. Consequently, 
vertical lines cannot be written in point-slope form. For instance, the equation of the 
vertical line passing through the point (1, −2) is x = 1.

 Finding an Equation of a Line

Find an equation of the line that has a slope of 3 and passes through the point (1, −2). 
Then sketch the line.

Solution

 y − y1 = m(x − x1) Point-slope form

 y − (−2) = 3(x − 1) Substitute −2 for y1, 1 for x1, and 3 for m.

 y + 2 = 3x − 3 Simplify.

 y = 3x − 5 Solve for y.

To sketch the line, first plot the point (1, −2). Then, because the slope is m = 3, you 
can locate a second point on the line by moving one unit to the right and three units 
upward, as shown in Figure P.15. 

The line with a slope of 3 passing 
through the point (1, −2)
Figure P.15

y = 3x − 5

x

1

−1

−2

−3

−4

−5

1 3 4

(1, −2)

Δy = 3

Δx = 1

y

Exploration
Investigating Equations of 
Lines Use a graphing utility 
to graph each of the linear 
equations. Which point is 
common  to all seven lines? 
Which value in the equation 
determines the slope of each 
line?

a. y − 4 = −2(x + 1)
b. y − 4 = −1(x + 1)
c. y − 4 = −1

2 (x + 1)
d. y − 4 = 0(x + 1)
e. y − 4 = 1

2(x + 1)
f. y − 4 = 1(x + 1)
g. y − 4 = 2(x + 1)

Use your results to write an 
equation of a line passing 
through (−1, 4) with a slope 
of m.
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12 Chapter P Preparation for Calculus

Ratios and Rates of Change
The slope of a line can be interpreted as either a ratio or a rate. If the x- and y-axes have 
the same unit of measure, then the slope has no units and is a ratio. If the x- and y-axes 
have different units of measure, then the slope is a rate or rate of change. In your study 
of calculus, you will encounter applications involving both interpretations of slope.

 Using Slope as a Ratio

The maximum recommended slope of a wheelchair ramp is 1
12. A business installs a 

wheelchair ramp that rises to a height of 22 inches over a length of 24 feet, as shown 
in Figure P.16. Is the ramp steeper than recommended? (Source: ADA Standards for 
Accessible Design)

y

22 in.

24 ft

x

 Figure P.16

Solution The length of the ramp is 24 feet or 12(24) = 288 inches. The slope of the 
ramp is the ratio of its height (the rise) to its length (the run).

 Slope of ramp =
rise
run

 =
22 in.
288 in.

 ≈ 0.076

Because the slope of the ramp is less than 1
12 ≈ 0.083, the ramp is not steeper than  

recommended. Note that the slope is a ratio and has no units.

 Using Slope as a Rate of Change

The population of Oregon was about 3,831,000 in 2010 and about 3,970,000 in 2014. 
Find the average rate of change of the population over this four-year period. What will 
the population of Oregon be in 2024? (Source: U.S. Census Bureau)

Solution Over this four-year period, the average rate of change of the population of 
Oregon was

 Rate of change =
change in population

change in years

 =
3,970,000 − 3,831,000

2014 − 2010

 = 34,750 people per year.

Assuming that Oregon’s population continues to increase at this same rate for the next 
10 years, it will have a 2024 population of about 4,318,000. (See Figure P.17.) 

The rate of change found in Example 3 is an average rate of change. An 
 average rate of change is always calculated over an interval. In this case, the interval 
is [2010, 2014]. In Chapter 2, you will study another type of rate of change called an 
instantaneous rate of change.

Population of Oregon
Figure P.17
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P.2 Linear Models and Rates of Change 13

Graphing Linear Models
Many problems in coordinate geometry can be classified into two basic categories.

1. Given a graph (or parts of it), find its equation.

2. Given an equation, sketch its graph.

For lines, problems in the first category can be solved by using the point-slope form. 
The point-slope form, however, is not especially useful for solving problems in the 
second category. The form that is better suited to sketching the graph of a line is the 
slope-intercept form of the equation of a line.

The Slope-Intercept Form of the Equation of a Line

The graph of the linear equation

y = mx + b Slope-intercept form

is a line whose slope is m and whose y-intercept is (0, b).

 Sketching Lines in the Plane

Sketch the graph of each equation.

a. y = 2x + 1

b. y = 2

c. 3y + x − 6 = 0

Solution

a.  Because b = 1, the y-intercept is (0, 1). Because the slope is m = 2, you know that 
the line rises two units for each unit it moves to the right, as shown in Figure P.18(a).

b. By writing the equation y = 2 in slope-intercept form

y = (0)x + 2

  you can see that the slope is m = 0 and the y-intercept is (0, 2). Because the slope 
is zero, you know that the line is horizontal, as shown in Figure P.18(b).

c. Begin by writing the equation in slope-intercept form.

 3y + x − 6 = 0 Write original equation.

 3y = −x + 6 Isolate y-term on the left.

 y = −1
3 x + 2 Slope-intercept form

  In this form, you can see that the y-intercept is (0, 2) and the slope is m = −1
3. This 

means that the line falls one unit for every three units it moves to the right, as shown 
in Figure P.18(c).

(a) m = 2; line rises

Figure P.18
(b) m = 0; line is horizontal (c) m = −1

3; line falls
 

x
321

2

3

(0, 1)

Δx = 1

Δy = 2

y = 2x + 1

y

x

y = 2

321

1

3

(0, 2)

y

x
3 4 5 621

1

3

(0, 2)

Δx = 3

Δy = −1

x + 2y = − 1
3

y
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14 Chapter P Preparation for Calculus

Because the slope of a vertical line is not defined, its equation cannot be written in 
slope-intercept form. However, the equation of any line can be written in the general 
form

Ax + By + C = 0    General form of the equation of a line

where A and B are not both zero. For instance, the vertical line

x = a Vertical line

can be represented by the general form

x − a = 0. General form

SUMMARY OF EQUATIONS OF LINES

1. General form: Ax + By + C = 0

2. Vertical line: x = a

3. Horizontal line: y = b

4. Slope-intercept form: y = mx + b

5. Point-slope form: y − y1 = m(x − x1)

Parallel and Perpendicular Lines
The slope of a line is a convenient tool for determining whether two lines are parallel 
or perpendicular, as shown in Figure P.19. Specifically, nonvertical lines with the 
same slope are parallel, and nonvertical lines whose slopes are negative reciprocals are 
perpendicular.

x

m1

m2

m1 = m2

y   

x

m1

m2

m1 = − 1
m2

y

 Parallel lines Perpendicular lines
 Figure P.19

Parallel and Perpendicular Lines

1.  Two distinct nonvertical lines are parallel if and only if their slopes are 
equal—that is, if and only if 

m1 = m2. Parallel  Slopes are equal.

2.  Two nonvertical lines are perpendicular if and only if their slopes are  
negative reciprocals of each other—that is, if and only if

m1 = −
1

m2
. Perpendicular  Slopes are negative reciprocals.

REMARK In mathematics, 
the phrase “if and only if” is a 
way of stating two implications 
in one statement. For instance, 
the first statement at the right 
could be rewritten as the  
following two implications.

a.  If two distinct nonvertical 
lines are parallel, then their 
slopes are equal.

b.  If two distinct nonvertical 
lines have equal slopes,  
then they are parallel.
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 Finding Parallel and Perpendicular Lines

See LarsonCalculus.com for an interactive version of this type of example.

Find the general forms of the equations of the lines that pass through the point (2, −1) 
and are (a) parallel to and (b) perpendicular to the line 2x − 3y = 5.

Solution Begin by writing the linear equation 2x − 3y = 5 in slope-intercept form. 

 2x − 3y = 5 Write original equation.

 y = 2
3 x − 5

3 Slope-intercept form

So, the given line has a slope of m = 2
3. (See Figure P.20.)

a. The line through (2, −1) that is parallel to the given line also has a slope of 23.

 y − y1 = m(x − x1) Point-slope form

 y − (−1) = 2
3(x − 2) Substitute.

 3( y + 1) = 2(x − 2) Simplify.

 3y + 3 = 2x − 4 Distributive Property

 2x − 3y − 7 = 0 General form

 Note the similarity to the equation of the given line, 2x − 3y = 5.

b.  Using the negative reciprocal of the slope of the given line, you can determine that 
the slope of a line perpendicular to the given line is −3

2. 

 y − y1 = m(x − x1) Point-slope form

 y − (−1) = −3
2(x − 2) Substitute.

 2(y + 1) = −3(x − 2) Simplify.

 2y + 2 = −3x + 6 Distributive Property

 3x + 2y − 4 = 0 General form 

TECHNOLOGY PITFALL The slope of a line will appear distorted if you use 
different tick-mark spacing on the x- and y-axes. For instance, the graphing utility 
screens in Figures P.21(a) and P.21(b) both show the lines

y = 2x and y = −1
2x + 3.

Because these lines have slopes that are negative reciprocals, they must be 
perpendicular. In Figure P.21(a), however, the lines do not appear to be perpendicular 
because the tick-mark spacing on the x-axis is not the same as that on the y-axis. In 
Figure P.21(b), the lines appear perpendicular because the  tick-mark spacing on the 
x-axis is the same as on the y-axis. This type of viewing window is said to have a 
square setting.

10

−10

−10

10    

9

−6

−9

6

 (a) Tick-mark spacing on the x-axis is not the (b) Tick-mark spacing on the x-axis is the 
  same as tick-mark spacing on the y-axis.  same as tick-mark spacing on the y-axis.

 Figure P.21

Lines parallel and perpendicular to 
2x − 3y = 5
Figure P.20

x

−1

2

1

1 4

(2, −1)

2x − 3y = 7

3x + 2y = 4
2x − 3y = 5

y
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P.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Slope-Intercept Form In the form y = mx + b,

what does m represent? What does b represent?

2.  Perpendicular Lines Is it possible for two lines with 
positive slopes to be perpendicular? Why or why not?

Estimating Slope In Exercises 3–6, estimate the slope of 
the line from its graph. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 3. 

x
1 2 3 4 5 6 7

7
6
5
4
3
2
1

y   4. 

x
1 2 3 4 5 6 7

7
6
5

3
2
1

y

 5. 

x
1 2 3 4 5 6

6
5
4
3
2
1

y   6. 

x
1 2 3 5 6 7

24
28

20
16
12
8
4

y

 Finding the Slope of a Line In Exercises 
7–12, plot the pair of points and find the slope of 
the line passing through them.

 7. (3, −4), (5, 2)  8. (0, 0), (−2, 3)
 9. (4, 6), (4, 1) 10. (3, −5), (5, −5)
11. (−1

2, 23), (−3
4, 16) 12. (7

8, 34), (5
4, −1

4)

 Sketching Lines In Exercises 13 and 14, sketch 
the lines through the point with the indicated 
slopes. Make the sketches on the same set of 
coordinate axes.

 Point Slopes

13. (3, 4) (a) 1  (b) −2  (c) −3
2  (d) Undefined

14. (−2, 5) (a) 3  (b) −3  (c) 1
3   (d) 0

 Finding Points on a Line In Exercises 15–18, 
use the point on the line and the slope of the line 
to find three additional points that the line passes 
through. (There is more than one correct answer.)

 Point Slope Point Slope

15. (6, 2)  m = 0 16. (−4, 3) m is undefined.

17. (1, 7)  m = −3 18. (−2, −2) m = 2

 Finding an Equation of a Line In Exercises 
19–24, find an equation of the line that passes 
through the point and has the indicated slope. 
Then sketch the line.

 Point Slope

19. (0, 3) m = 3
4

20. (−5, −2) m = 6
5

21. (1, 2) m is undefined.

22. (0, 4) m = 0

23. (3, −2) m = 3

24. (−2, 4) m = −3
5

25.  Road Grade You are driving on a road that has a 6% 
uphill grade. This means that the slope of the road is 6

100. 
Approximate the amount of vertical change in your position 
when you drive 200 feet.

27.  Modeling Data The table shows the populations y (in 
millions) of the United States for 2009 through 2014. The 
variable t represents the time in years, with t = 9 corresponding 
to 2009. (Source: U.S. Census Bureau)

t 9 10 11 12 13 14

y 307.0 309.3 311.7 314.1 316.5 318.9

 (a)  Plot the data by hand and connect adjacent points with 
a line segment. Use the slope of each line segment to 
determine the year when the population increased least 
rapidly.

 (b)  Find the average rate of change of the population of the 
United States from 2009 through 2014.

 (c)  Use the average rate of change of the population to predict 
the population of the United States in 2025.

A moving conveyor is built to rise 1 meter for each 
3 meters of horizontal change.

(a)  Find the slope of  
the conveyor.

(b)  Suppose the  
conveyor runs  
between two floors  
in a factory. Find  
the length of the  
conveyor when the  
vertical distance  
between floors is 10 feet.

26. Conveyor Design

wandee007/Shutterstock.com
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P.2 Linear Models and Rates of Change 17

28.  Biodiesel Production The table shows the biodiesel 
productions y (in thousands of barrels per day) for the United 
States for 2007 through 2012. The variable t represents the time 
in years, with t = 7 corresponding to 2007. (Source: U.S. 
Energy Information Administration)

t 7 8 9 10 11 12

y 32 44 34 22 63 64

 (a)  Plot the data by hand and connect adjacent points with 
a line segment. Use the slope of each line segment to 
determine the year when biodiesel production increased 
most rapidly.

 (b)  Find the average rate of change of biodiesel production for 
the United States from 2007 through 2012.

 (c)  Should the average rate of change be used to predict future 
biodiesel production? Explain.

  Finding the Slope and y -Intercept In 
Exercises 29–34, find the slope and the y-intercept 
(if possible) of the line.

29. y = 4x − 3 30. −x + y = 1

31. 5x + y = 20 32. 6x − 5y = 15

33. x = 4 34. y = −1

 Sketching a Line in the Plane In Exercises 
35–42, sketch the graph of the equation.

35. y = −3 36. x = 4

37. y = −2x + 1 38. y = 1
3x − 1

39. y − 2 = 3
2 (x − 1) 40. y − 1 = 3(x + 4)

41. 3x − 3y + 1 = 0 42. x + 2y + 6 = 0

 Finding an Equation of a Line In Exercises 
43–50, find an equation of the line that passes 
through the points. Then sketch the line.

43. (4, 3), (0, −5) 44. (−2, −2), (1, 7)
45. (2, 8), (5, 0) 46. (−3, 6), (1, 2)
47. (6, 3), (6, 8) 48. (1, −2), (3, −2)
49. (3, 1), (5, 1) 50. (2, 5), (2, 7)

51.  Writing an Equation Write an equation for the line that 
passes through the points (0, b) and (3, 1).

52.  Using Intercepts Show that the line with intercepts (a, 0) 
and (0, b) has the following equation.

 
x
a
+

y
b
= 1, a ≠ 0, b ≠ 0

Writing an Equation in General Form In Exercises 
53–56, use the result of Exercise 52 to write an equation of the 
line with the given characteristics in general form.

53. x-intercept: (2, 0) 54. x-intercept: (−2
3, 0)

 y-intercept: (0, 3)  y-intercept: (0, −2)

55. Point on line: (9, −2) 56. Point on line: (−2
3, −2)

 x-intercept: (2a, 0)  x-intercept: (a, 0)
 y-intercept: (0, a)  y-intercept: (0, −a)
 (a ≠ 0)  (a ≠ 0)

 Finding Parallel and Perpendicular Lines In 
Exercises 57–62, write the general forms of the 
equations of the lines that pass through the point 
and are (a) parallel to the given line and (b) 
perpendicular to the given line.

 Point Line

57. (−7, −2) x = 1

58. (−1, 0) y = −3

59. (−3, 2) x + y = 7

60. (2, 5) x − y = −2

61. (3
4, 78) 5x − 3y = 0

62. (5
6, −1

2) 7x + 4y = 8

Rate of Change In Exercises 63 and 64, you are given the 
dollar value of a product in 2016 and the rate at which the 
value of the product is expected to change during the next  
5 years. Write a linear equation that gives the dollar value V of 
the product in terms of the year t. (Let t = 0 represent 2010.)

 2016 Value Rate

63. $1850 $250 increase per year

64. $17,200 $1600 decrease per year

Collinear Points In Exercises 65 and 66, determine whether 
the points are collinear. (Three points are collinear if they lie 
on the same line.)

65. (−2, 1), (−1, 0), (2, −2)
66. (0, 4), (7, −6), (−5, 11)

EXPLORING CONCEPTS
67.  Square Show that the points (−1, 0), (3, 0), (1, 2), 

and (1, −2) are vertices of a square.

68.  Analyzing a Line A line is represented by the 
equation ax + by = 4.

 (a) When is the line parallel to the x-axis?

 (b) When is the line parallel to the y-axis?

 (c)  Give values for a and b such that the line has a slope 
of 58.

 (d)  Give values for a and b such that the line is 
perpendicular to y = 2

5x + 3.

 (e)  Give values for a and b such that the line coincides 
with the graph of 5x + 6y = 8.

69.  Tangent Line Find an equation of the line tangent to the 
circle x2 + y2 = 169 at the point (5, 12).

70.  Tangent Line Find an equation of the line tangent to the 
circle (x − 1)2 + ( y − 1)2 = 25 at the point (4, −3).
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18 Chapter P Preparation for Calculus

71.  Finding Points of Intersection Find the coordinates of 
the point of intersection of the given segments. Explain your 
reasoning.

 (a) Perpendicular bisectors  (b) Medians

  

(−a, 0) (a, 0)

(b, c)  

(−a, 0) (a, 0)

(b, c)

72.  HOW DO YOU SEE IT? Several lines are 
shown in the figure below. (The lines are labeled 
a–f.)

(a)  Which lines have a 

x

a

c

d

e

f

b

−3 1 3

−4
−5

−7
−8

1

3

5
6
7
8

y

 
positive slope?

(b)  Which lines have a 
 negative slope?

(c)  Which lines appear 
parallel?

(d)  Which lines appear 
perpendicular?

72.  

73.  Temperature Conversion Find a linear equation that 
expresses the relationship between the temperature in degrees 
Celsius C and degrees Fahrenheit F. Use the fact that water 
freezes at 0°C (32°F) and boils at 100°C (212°F). Use the 
equation to convert 72°F to degrees Celsius.

74.  Choosing a Job As a salesperson, you receive a monthly 
salary of $2000, plus a commission of 7% of sales. You are 
offered a new job at $2300 per month, plus a commission of 
5% of sales.

 (a)  Write linear equations for your monthly wage W in terms of 
your monthly sales s for your current job and your job offer.

 (b)  Use a graphing utility to graph each equation and find the 
point of intersection. What does it signify?

 (c)  You think you can sell $20,000 worth of a product per 
month. Should you change jobs? Explain.

75.  Apartment Rental A real estate office manages an 
apartment complex with 50 units. When the rent is $780 per 
month, all 50 units are occupied. However, when the rent 
is $825, the average number of occupied units drops to 47. 
Assume that the relationship between the monthly rent p and 
the demand x is linear. (Note: The term demand refers to the 
number of occupied units.)

 (a)  Write a linear equation giving the demand x in terms of the 
rent p.

 (b)  Linear extrapolation Use a graphing utility to graph the 
demand equation and use the trace feature to predict the 
number of units occupied when the rent is raised to $855.

 (c)  Linear interpolation Predict the number of units occupied 
when the rent is lowered to $795. Verify graphically.

76.  Modeling Data An instructor gives regular 20-point 
quizzes and 100-point exams in a mathematics course. Average 
scores for six students, given as ordered pairs (x, y), where x 
is the average quiz score and y is the average exam score, are 
(18, 87), (10, 55), (19, 96), (16, 79), (13, 76), and (15, 82).

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use a graphing utility to plot the points and graph the 
regression line in the same viewing window.

 (c)  Use the regression line to predict the average exam score 
for a student with an average quiz score of 17.

 (d) Interpret the meaning of the slope of the regression line.

 (e)  The instructor adds 4 points to the average exam score of 
everyone in the class. Describe the changes in the positions 
of the plotted points and the change in the equation of the 
line.

77.  Distance Show that the distance between the point (x1, y1) 
and the line Ax + By + C = 0 is

 Distance = ∣Ax1 + By1 + C∣
√A2 + B2

.

78.  Distance Write the distance d between the point (3, 1) and 
the line y = mx + 4 in terms of m. Use a graphing utility to 
graph the equation. When is the distance 0? Explain the result 
geometrically.

Distance In Exercises 79 and 80, use the result of Exercise 77 
to find the distance between the point and line.

79. Point: (−2, 1) 80. Point: (2, 3)
 Line: x − y − 2 = 0  Line: 4x + 3y = 10

81.  Proof Prove that the diagonals of a rhombus intersect at 
right angles. (A rhombus is a quadrilateral with sides of equal 
lengths.)

82.  Proof Prove that the figure formed by connecting consecutive 
midpoints of the sides of any quadrilateral is a parallelogram.

83.  Proof Prove that if the points (x1, y1) and (x2, y2) lie on the 
same line as (x ∗

1 , y ∗
1 ) and (x ∗

2 , y ∗
2 ), then

 
y2
∗ − y1

∗

x2
∗ − x1

∗
=

y2 − y1

x2 − x1
.

 Assume x1 ≠ x2 and x1
∗ ≠ x2

∗.

84.  Proof Prove that if the slopes of two nonvertical lines  
are negative reciprocals  of each other, then the lines are  
perpendicular.

True or False? In Exercises 85 and 86, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

85.  The lines represented by 

 ax + by = c1 and bx − ay = c2

 are perpendicular. Assume a ≠ 0 and b ≠ 0.

86.  If a line contains points in both the first and third quadrants, 
then its slope must be positive.
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P.3 Functions and Their Graphs

 Use function notation to represent and evaluate a function.
 Find the domain and range of a function.
 Sketch the graph of a function.
 Identify different types of transformations of functions.
 Classify functions and recognize combinations of functions.

Functions and Function Notation
A relation between two sets X and Y  is a set of ordered pairs, each of the form (x, y), 
where x is a member of X and y is a member of Y. A function from X to Y  is a relation 
between X and Y  that has the property that any two ordered pairs with the same  
x-value also have the same y-value. The variable x is the independent variable, and 
the variable y is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area A of 
a circle is a function of the circle’s radius r.

A = πr2 A is a function of r.

In this case, r is the independent variable and A is the dependent variable.

Definition of a Real-Valued Function of a Real Variable

Let X and Y  be sets of real numbers. A real-valued function f  of a real 
variable x from X to Y  is a correspondence that assigns to each number x in 
X exactly one number y in Y.

The domain of f  is the set X. The number y is the image of x under f  
and is denoted by f (x), which is called the value of f  at x. The range of f  is 
a subset of Y  and consists of all images of  numbers in X. (See Figure P.22.)

Functions can be specified in a variety of ways. In this text, however, you will  
concentrate primarily on functions that are given by equations involving the dependent 
and independent variables. For instance, the equation

x2 + 2y = 1 Equation in implicit form

defines y, the dependent variable, as a function of x, the independent variable. To 
 evaluate this function (that is, to find the y-value that corresponds to a given x-value), 
it is convenient to isolate y on the left side of the equation.

y = 1
2 (1 − x2) Equation in explicit form

Using f  as the name of the function, you can write this equation as

f (x) = 1
2(1 − x2). Function notation

The original equation

x2 + 2y = 1

implicitly defines y as a function of x. When you solve the equation for y, you are  
writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable 
as f (x) while at the same time telling you that x is the independent variable and that the 
function itself is “ f.” The symbol f (x) is read “ f  of x.” Function notation allows you to 
be less wordy. Instead of asking “What is the value of y that corresponds to x = 3?” you 
can ask “What is f (3)?”

A real-valued function f  of a real  
variable
Figure P.22

Range

x

f

Domain

y = f (x)

Y

X

FUNCTION NOTATION

The word function was first 
used by Gottfried Wilhelm 
Leibniz in 1694 as a term to 
denote any quantity connected 
with a curve, such as the 
coordinates of a point on a 
curve or the slope of a curve. 
Forty years later, Leonhard 
Euler used the word “function” 
to describe any expression 
made up of a variable and some 
constants. He introduced the 
notation y = f (x). (To read 
more about Euler, see the 
biography on the next page.)
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In an equation that defines a function of x, the role of the variable x is simply that 
of a placeholder. For instance, the function

f (x) = 2x2 − 4x + 1

can be described by the form

f (■) = 2(■)2 − 4(■) + 1

where rectangles are used instead of x. To evaluate f (−2), replace each rectangle  
with −2.

 f (−2) = 2(−2)2 − 4(−2) + 1 Substitute −2 for x.

 = 2(4) + 8 + 1 Simplify.

 = 17 Simplify.

Although f  is often used as a convenient function name with x as the independent 
 variable, you can use other symbols. For instance, these three equations all define the 
same function.

 f (x) = x2 − 4x + 7 Function name is f, independent variable is x.

 f (t) = t2 − 4t + 7  Function name is f, independent variable is t.

 g(s) = s2 − 4s + 7 Function name is g, independent variable is s.

 Evaluating a Function

For the function f  defined by f (x) = x2 + 7, evaluate each expression.

a. f (3a)  b. f (b − 1)  c. 
f (x + ∆x) − f (x)

∆x

Solution

a.  f (3a) = (3a)2 + 7 Substitute 3a for x.

  = 9a2 + 7 Simplify.

b.  f (b − 1) = (b − 1)2 + 7 Substitute b − 1 for x.

  = b2 − 2b + 1 + 7 Expand binomial.

  = b2 − 2b + 8 Simplify.

c.  
f (x + ∆x) − f (x)

∆x
=

[(x + ∆x)2 + 7] − (x2 + 7)
∆x

  =
x2 + 2x∆x + (∆x)2 + 7 − x2 − 7

∆x

  =
2x∆x + (∆x)2

∆x

  =
∆x(2x + ∆x)

∆x

  = 2x + ∆x, ∆x ≠ 0 

In calculus, it is important to specify the domain of a function or expression clearly. 
For instance, in Example 1(c), the two expressions

f (x + ∆x) − f (x)
∆x

 and 2x + ∆x, ∆x ≠ 0

are equivalent because ∆x = 0 is excluded from the domain of each expression. 
Without a stated domain restriction, the two expressions would not be equivalent.

LEONHARD EULER (1707–1783)

In addition to making major 
contributions to almost every 
branch of mathematics, Euler 
was one of the first to apply 
calculus to real-life problems in 
physics. His extensive published 
writings include such topics as 
 shipbuilding, acoustics, optics, 
astronomy, mechanics, and 
magnetism.
See LarsonCalculus.com to read 
more of this biography.

REMARK The expression  
in Example 1(c) is called a  
difference quotient and has a 
special significance in calculus. 
You will learn more about this 
in Chapter 2.

North Wind Picture Archives / Alamy Stock Photo
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The Domain and Range of a Function
The domain of a function can be described explicitly, or it may be described implicitly 
by an equation used to define the function. The implied domain is the set of all real 
numbers for which the equation is defined, whereas an explicitly defined domain is one 
that is given along with the function. For example, the function

f (x) = 1
x2 − 4

, 4 ≤ x ≤ 5

has an explicitly defined domain given by {x: 4 ≤ x ≤ 5}. On the other hand, the 
function

g(x) = 1
x2 − 4

has an implied domain that is the set {x: x ≠ ±2}.

 Finding the Domain and Range of a Function

Find the domain and range of each function.

a. f (x) = √x − 1   b. g(x) = √4 − x2

Solution

a. The domain of the function

f (x) = √x − 1

  is the set of all x-values for which x − 1 ≥ 0, which is the interval [1, ∞). To 
find the range, observe that f (x) = √x − 1 is never negative. So, the range is the 
interval [0, ∞), as shown in Figure P.23(a).

b. The domain of the function

g(x) = √4 − x2

  is the set of all values for which 4 − x2 ≥ 0, or x2 ≤ 4. So, the domain of g is the 
interval [−2, 2]. To find the range, observe that g(x) = √4 − x2 is never negative 
and is at most 2. So, the range is the interval [0, 2], as shown in Figure P.23(b). 
Note that the graph of g is a semicircle of radius 2.

 A Function Defined by More than One Equation

For the piecewise-defined function

f (x) = {1 − x,
√x − 1,

   x < 1
   x ≥ 1

f  is defined for x < 1 and x ≥ 1. So, the  
domain is the set of all real numbers. On the  
portion of the domain for which x ≥ 1, the  
function behaves as in Example 2(a). For  
x < 1, the values of 1 − x are positive. So,  
the range of the function is the interval  
[0, ∞). (See Figure P.24.)

  

A function from X to Y  is one-to-one when to each y-value in the range there 
corresponds exactly one x-value in the domain. For instance, the function in Example 2(a) 
is one-to-one, whereas the functions in Examples 2(b) and 3 are not one-to-one.  
A function from X to Y  is onto when its range consists of all of Y.

The domain of f  is (−∞, ∞), and 
the range is [0, ∞).
Figure P.24

43

2

1

21
x

y

R
an

ge
: y

 ≥
 0

Domain: all real x

x − 1, x ≥ 1
f (x) =

1 − x, x < 1

THE SQUARE ROOT SYMBOL

The first use of a symbol to 
denote the square root can 
be traced to the sixteenth 
century. Mathematicians first 
used the symbol √ , which 
had only two strokes. The 
symbol was chosen because it 
resembled a lowercase r, to 
stand for the Latin word radix, 
meaning root.

(a)  The domain of f  is [1, ∞), and the 
range is [0, ∞).

(b)  The domain of g is [−2, 2], and the 
range is [0, 2].

Figure P.23
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g (x) =     4 − x2
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The Graph of a Function
The graph of the function y = f (x) consists of all points (x, f (x)), where x is in the 
domain of f. In Figure P.25, note that

x = the directed distance from the y-axis

and

f (x) = the directed distance from the x-axis.

A vertical line can intersect the graph of a function of x at most once. This 
observation provides a convenient visual test, called the Vertical Line Test, for 
functions of x. That is, a graph in the coordinate plane is the graph of a function of x if 
and only if no vertical line intersects the graph at more than one point. For example, in 
Figure P.26(a), you can see that the graph does not define y as a function of x because 
a vertical line intersects the graph twice, whereas in Figures P.26(b) and (c), the graphs 
do define y as a function of x.

x
−3 −2 1

4

2

y    

x

3

2

1

−2

1 2 4

y    

x
−1 1 2 3

4

1

3

y

 (a) Not a function of x (b) A function of x (c) A function of x

 Figure P.26

Figure P.27 shows the graphs of six basic functions. You should be able to 
recognize these graphs. (The graphs of the six basic trigonometric functions are shown 
in Section P.4.)

The graph of a function
Figure P.25

x

x

f (x)

(x, f (x))
y = f (x)y

Identity function Squaring function Cubing function

Square root function

The graphs of six basic functions
Figure P.27

Absolute value function Rational function
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f (x) = x2y

x
−2 −1 1 2

2
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y

x
1 2 3 4

2

3

4

1

f (x) =     x

y

x
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2

3

4

1

x| |f (x) =  

y

x
−1 1 2

2

1

−1

f (x) =

y
1
x
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Transformations of Functions
Some families of graphs have the same basic shape. For example, compare the graph 
of y = x2 with the graphs of the four other quadratic functions shown in Figure P.28.

 

x
−2 −1 1 2

3

4

1

y = x2 + 2

y = x2

y  

x
−2−3 −1 1

3

4

1

y

y = x2
y = (x + 2)2

 (a) Vertical shift upward (b) Horizontal shift to the left

 

y = x2

x
−2 −1 1 2

1

2

y = −x2

y

−1

−2

 

x
−5 −3 −1 1 2

−2

1

2

3

4

y = 1 − (x + 3)2

y

y = x2

 (c) Reflection (d) Shift left, reflect, and shift upward

 Figure P.28

Each of the graphs in Figure P.28 is a transformation of the graph of y = x2. 
The three basic types of transformations illustrated by these graphs are vertical shifts, 
horizontal shifts, and reflections. Function notation lends itself well to describing 
transformations of graphs in the plane. For instance, using

f (x) = x2 Original function

as the original function, the transformations shown in Figure P.28 can be represented 
by these equations.

a. y = f (x) + 2 Vertical shift up two units

b. y = f (x + 2) Horizontal shift to the left two units

c. y = −f (x) Reflection about the x-axis

d. y = −f (x + 3) + 1 Shift left three units, reflect about the x-axis, and shift up one unit

Basic Types of Transformations (c > 0)
Original graph: y = f (x)
Horizontal shift c units to the right: y = f (x − c)
Horizontal shift c units to the left: y = f (x + c)
Vertical shift c units downward: y = f (x) − c

Vertical shift c units upward: y = f (x) + c

Reflection (about the x-axis): y = −f (x)
Reflection (about the y-axis): y = f (−x)
Reflection (about the origin): y = −f (−x)
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24 Chapter P Preparation for Calculus

Classifications and Combinations of Functions
The modern notion of a function is derived from the efforts of many seventeenth- 
and eighteenth-century mathematicians. Of particular note was Leonhard Euler, who 
introduced the function notation y = f (x). By the end of the eighteenth century, 
mathematicians and scientists had concluded that many real-world phenom ena could 
be represented by mathematical models taken from a collection of functions called 
elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)

2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic functions

You will review the trigonometric functions in the next section. The other nonalgebraic 
functions, such as the inverse trigonometric functions and the exponential and logarithmic 
functions, are introduced in Chapter 5.

The most common type of algebraic function is a polynomial function

f (x) = anx
n + an−1x

n−1 + .  .  . + a2x
2 + a1x + a0

where n is a nonnegative integer. The numbers ai are coefficients, with an the leading 
coefficient and a0 the constant term of the  polynomial function. If an ≠ 0, then n is 
the degree of the polynomial function. The zero polynomial f (x) = 0 is not assigned 
a degree. It is common practice to use subscript notation for coefficients of general 
polynomial functions, but for polynomial functions of low degree, these simpler forms 
are often used. (Note that a ≠ 0.)

Zeroth degree: f (x) = a Constant function

First degree: f (x) = ax + b Linear function

Second degree: f (x) = ax2 + bx + c Quadratic function

Third degree: f (x) = ax3 + bx2 + cx + d Cubic function

Although the graph of a nonconstant polynomial function can have several turns, 
eventually the graph will rise or fall without bound as x moves to the right or left. 
Whether the graph of

f (x) = anx
n + an−1x

n−1 + .  .  . + a2x
2 + a1x + a0

eventually rises or falls can be determined by the function’s degree (odd or even) and 
by the leading coefficient an, as indicated in Figure P.29. Note that the dashed portions 
of the graphs indicate that the Leading Coefficient Test determines only the right and 
left behavior of the graph.

 FOR FURTHER INFORMATION
For more on the history of the 
concept of a function, see the 
article “Evolution of the Function 
Concept: A Brief Survey” by 
Israel Kleiner in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

Graphs of polynomial functions of even degree

The Leading Coefficient Test for polynomial functions
Figure P.29

Graphs of polynomial functions of odd degree
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Just as a rational number can be written as the quotient of two integers, a rational 
function can be written as the quotient of two polynomials. Specifically, a function f  
is rational when it has the form

f (x) = p(x)
q(x),   q(x) ≠ 0

where p(x) and q(x) are polynomials.
Polynomial functions and rational functions are examples of algebraic functions. 

An algebraic function of x is one that can be expressed as a finite number of 
sums, differences, multiples, quotients, and radicals involving xn. For example, 
f (x) = √x + 1 is algebraic. Functions that are not algebraic are transcendental. For 
instance, the trigonometric functions (see Section P.4) are transcendental.

Two functions can be combined in various ways to create new functions. For 
example, given f (x) = 2x − 3 and g(x) = x2 + 1, you can form the  functions shown.

( f + g)(x) = f (x) + g(x) = (2x − 3) + (x2 + 1) Sum

( f − g)(x) = f (x) − g(x) = (2x − 3) − (x2 + 1) Difference

( fg)(x) = f (x)g(x) = (2x − 3)(x2 + 1) Product

( f	g)(x) = f (x)
g(x) =

2x − 3
x2 + 1

 Quotient

You can combine two functions in yet another way, called composition. The 
resulting function is called a composite function.

Definition of Composite Function

Let f  and g be functions. The function ( f ∘ g)(x) = f (g(x)) is the composite 
of f  with g. The domain of f ∘ g is the set of all x in the domain of g such that 
g(x) is in the domain of f  (see Figure P.30).

The composite of f  with g is generally not the same as the composite of g with f. 
This is shown in the next example.

 Finding Composite Functions

See LarsonCalculus.com for an interactive version of this type of example.

For f (x) = 2x − 3 and g(x) = x2 + 1, find each composite function.

a. f ∘ g  b. g ∘ f

Solution

a.  ( f ∘ g)(x) = f (g(x)) Definition of f ∘ g

  = f (x2 + 1) Substitute x2 + 1 for g(x).

  = 2(x2 + 1) − 3 Definition of f (x)

  = 2x2 − 1 Simplify.

b.  (g ∘ f )x = g( f (x))  Definition of g ∘ f

  = g(2x − 3)  Substitute 2x − 3 for f (x).

  = (2x − 3)2 + 1  Definition of g(x)

  = 4x2 − 12x + 10 Simplify.

Note that ( f ∘ g)(x) ≠ (g ∘ f )(x). 

The domain of the composite function 
f ∘ g
Figure P.30

Domain of g

Domain of f

f
g

x

f (g(x))

g(x)

f   g
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In Section P.1, an x-intercept of a graph was defined to be a point (a, 0) at which 
the graph crosses the x-axis. If the graph represents a function f, then the number a is 
a zero of f. In other words, the zeros of a function f  are the solutions of the equation 
f (x) = 0. For example, the function

f (x) = x − 4

has a zero at x = 4 because f (4) = 0.
In Section P.1, you also studied different types of symmetry. In the terminology of 

functions, a function y = f (x) is even when its graph is symmetric with respect to the 
y-axis, and is odd when its graph is symmetric with respect to the origin. The symmetry 
tests in Section P.1 yield the following test for even and odd functions.

Test for Even and Odd Functions

The function y = f (x) is even when

f (−x) = f (x).

The function y = f (x) is odd when

f (−x) = −f (x).

 Even and Odd Functions and Zeros of Functions

Determine whether each function is even, odd, or neither. Then find the zeros of the 
function.

a. f (x) = x3 − x  b. g(x) = 1
x2  c. h(x) = −x2 − x − 1

Solution

a. This function is odd because

f (−x) = (−x)3 − (−x) = −x3 + x = −(x3 − x) = −f (x).
 The zeros of f  are

 x3 − x = 0 Let f (x) = 0.

 x(x2 − 1) = 0 Factor.

 x(x − 1)(x + 1) = 0 Factor.

 x = 0, 1, −1. Zeros of f

 See Figure P.31(a).

b. This function is even because

g(−x) = 1
(−x)2 =

1
x2 = g(x).

  This function does not have zeros because 1	x2 is positive for all x in the domain, 
as shown in Figure P.31(b).

c. Substituting −x for x produces

h(−x) = −(−x)2 − (−x) − 1 = −x2 + x − 1.

 Because h(x) = −x2 − x − 1 and −h(x) = x2 + x + 1, you can conclude that

h(−x) ≠ h(x) Function is not even.

 and

h(−x) ≠ −h(x). Function is not odd.

  So, the function is neither even nor odd. This function does not have zeros because 
−x2 − x − 1 is negative for all x, as shown in Figure P.31(c). 

(a) Odd function

x
−2 1 2

−2

−1

1

2

(1, 0)

(0, 0)

(−1, 0)
f (x) = x3 − x

y

(b) Even function

x

1
x2g(x) =

y

−1−2−3 1 2 3

1

2

3

(c) Neither even nor odd

Figure P.31

x

y

−1−2−3 1 2

−1

−2

−3

−4

−5

h(x) = −x2 − x − 1
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P.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Writing Describe how a relation and a function are 

different.

2.  Domain and Range In your own words, explain the 
meanings of domain and range.

3.  Transformations What are the three basic types of 
function transformations?

4.  Right and Left Behavior Describe the four cases of 
the Leading Coefficient Test.

 Evaluating a Function In Exercises 5–12, 
evaluate the function at the given value(s) of the 
independent variable. Simplify the results.

 5. f (x) = 3x − 2

(a) f (0) (b) f (5) (c) f (b) (d) f (x − 1)
6. f (x) = 7x − 4

(a) f (0) (b) f (−3) (c) f (b) (d) f (x + 2)
7. f (x) = √x2 + 4

(a) f (−2)   (b) f (3) (c) f (2) (d) f (x + bx)
8. f (x) = √x + 5

(a) f (−4) (b) f (11) (c) f (4) (d) f (x + ∆x)
9. g(x) = 5 − x2

(a) g(0) (b) g(√5)   (c) g(−2)   (d) g(t − 1)
10. g(x) = x2(x − 4)

(a) g(4) (b) g(3
2) (c) g(c) (d) g(t + 4)

11. f (x) = x3 12. f (x) = 3x − 1

f (x + ∆x) − f (x)
∆x

  
f (x) − f (1)

x − 1

 Finding the Domain and Range of a 
Function In Exercises 13–22, find the domain 
and range of the function.

13. f (x) = 4x2 14. g(x) = x2 − 5

15. f (x) = x3 16. h(x) = 4 − x2

17. g(x) = √6x 18. h(x) = −√x + 3

19. f (x) = √16 − x2 20. f (x) = ∣x − 3∣
21. f (x) = 3

x
 22. f (x) = x − 2

x + 4

Finding the Domain of a Function In Exercises 23–26, 
find the domain of the function.

23. f (x) = √x + √1 − x 24. f (x) = √x2 − 3x + 2

25. f (x) = 1

∣x + 3∣ 26. g(x) = 1

∣x2 − 4∣

 Finding the Domain and Range of a 
Piecewise Function In Exercises 27–30, 
evaluate the function at the given value(s) of the 
independent variable. Then find the domain and 
range.

27. f (x) = {2x + 1,
2x + 2,

   x < 0
   x ≥ 0

(a) f (−1)  (b) f (0)  (c) f (2)  (d) f (t2 + 1)

28. f (x) = {x2 + 2,
2x2 + 2,

   x ≤ 1
   x > 1

(a) f (−2)  (b) f (0)  (c) f (1)  (d) f (s2 + 2)

29. f (x) = { ∣x∣ + 1,
−x + 1,

x < 1
x ≥ 1

(a) f (−3)  (b) f (1)  (c) f (3)  (d) f (b2 + 1)

30. f (x) = {√x + 4,
(x − 5)2,

x ≤ 5
x > 5

(a) f (−3)  (b) f (0)  (c) f (5)  (d) f (10)

Sketching a Graph of a Function In Exercises 31–38, 
sketch a graph of the function and find its domain and range. 
Use a graphing utility to verify your graph.

31. f (x) = 4 − x 32. f (x) = x2 + 5

33. g(x) = 1
x2 + 2

 34. f (t) = 2
7 + t

35. h(x) = √x − 6 36. f (x) = 1
4 x3 + 3

37. f (x) = √9 − x2 38. f (x) = x + √4 − x2

Using the Vertical Line Test In Exercises 39–42, use the 
Vertical Line Test to determine whether y is a function of x. 
To print an enlarged copy of the graph, go to MathGraphs.com.

39. x − y2 = 0 40. √x2 − 4 − y = 0

 

3 4

2

1 2

1

−1

−2

x

y   

x
−1

−2

−2−3

1

1

2

2

3

3

4

y

41. y = { x + 1,
−x + 2,

x ≤ 0
x > 0

 42. x2 + y2 = 4

2

1 2

1

−1

−2

−2
x

y   

1

1

−1
−1

x

y
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 Deciding Whether an Equation Is a 
Function In Exercises 43–46, determine whether 
y is a function of x.

43. x2 + y2 = 16 44. x2 + y = 16

45. y2 = x2 − 1 46. x2y − x2 + 4y = 0

 Transformation of a Function In Exercises 
47–50, the graph shows one of the six basic 
functions on page 22 and a transformation of 
the function. Describe the transformation. Then 
use your description to write an equation for the 
transformation.

47. 

1 2
x

3 4 5−1

1

2

3

4

5

y  48. 

x

y

−2−3 1 2 3−1

2

4

5

49. 

x

y

−1−2 1 3 4

−2

1

2

3

4

 50. 

x

y

−3 1 2 3

1

3

4

5

Matching In Exercises 51–56, use the graph of y = f (x) to 
match the function with its graph.

y

x
1 2−1

−2

2
3

5
6

−3

−5

3−3 −2 4 5 7 9 10−4−6 −5

y = f(x)

g
e

d

c

b a

51. y = f (x + 5) 52. y = f (x) − 5

53. y = −f (−x) − 2 54. y = −f (x − 4)
55. y = f (x + 6) + 2 56. y = f (x − 1) + 3

57.  Sketching Transformations Use the graph of f  shown 
in the figure to sketch the graph of each function. To print an 
enlarged copy of the graph, go to MathGraphs.com.

 (a) f (x + 3) (b) f (x − 1)
 (c) f (x) + 2 (d) f (x) − 4

 (e) 3f (x) (f ) 1
4 f (x)

 (g) −f (x) (h) −f (−x)

 

x

y

−2−4 4
−2

−4

2

f

 

x

y

f
−2−4 2

−2

−4

2 (2, 1)

(−4, −3)

 Figure for 57 Figure for 58

58.  Sketching Transformations Use the graph of f  shown 
in the figure to sketch the graph of each function. To print an 
enlarged copy of the graph, go to MathGraphs.com.

 (a) f (x − 4) (b) f (x + 2)
 (c) f (x) + 4 (d) f (x) − 1

 (e) 2f (x) (f ) 1
2 f (x)

 (g) f (−x) (h) −f (x)

 Combinations of Functions In Exercises 
59 and 60, find (a) f (x) + g(x), (b) f (x) − g(x),  
(c) f (x) ∙ g(x), and (d) f (x)	g(x).

59. f (x) = 2x − 5 60. f (x) = x2 + 5x + 4

 g(x) = 4 − 3x  g(x) = x + 1

61.  Evaluating Composite Functions Given f (x) = √x 
and g(x) = x2 − 1, evaluate each expression.

 (a) f (g(1)) (b) g( f (1)) (c) g( f (0))
 (d) f (g(−4)) (e) f (g(x)) (f ) g( f (x))

62.  Evaluating Composite Functions Given f (x) = 2x3 
and g(x) = 4x + 3, evaluate each expression.

 (a) f (g(0)) (b) f (g(1
2)) (c) g( f (0))

 (d) g( f (−1
4)) (e) f (g(x)) (f ) g( f (x))

 Finding Composite Functions In Exercises 
63–66, find the composite functions f ∘ g and g ∘ f. 
Find the domain of each composite function. Are 
the two composite functions equal?

63. f (x) = x2  64. f (x) = x2 − 1 

 g(x) = √x  g(x) = −x

65. f (x) = 3
x
  66. f (x) = 1

x

 g(x) = x2 − 1  g(x) = √x + 2

67.  Evaluating Composite Functions Use the graphs of 
f  and g to evaluate each expression. If the result is undefined, 
explain why.

 (a) ( f ∘ g)(3) y

x
2

−2

2

4−2

g
f

 (b) g( f (2))
 (c) g( f (5))
 (d) ( f ∘ g)(−3)
 (e) (g ∘ f )(−1)
 (f ) f (g(−1))
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68.  Ripples A pebble is dropped into a calm pond, causing 
ripples in the form of concentric circles. The radius (in feet) 
of the outer ripple is given by r(t) = 0.6t, where t is the time 
in seconds after the pebble strikes the water. The area of the 
circle is given by the function A(r) = πr2. Find and interpret 
(A ∘ r)(t).

Think About It In Exercises 69 and 70, F(x) = f ∘ g ∘ h. 
Identify functions for f, g, and h. (There are many correct 
answers.)

69. F(x) = √2x − 2 70. F(x) = 1
4x6

Think About It In Exercises 71 and 72, find the coordinates 
of a second point on the graph of a function f  when the given 
point is on the graph and the function is (a) even and (b) odd.

71. (−3
2, 4) 72. (4, 9)

73.  Even and Odd Functions The graphs of f, g, and h are 
shown in the figure. Decide whether each function is even, 
odd, or neither.

g
h

f

y

x

2

4

4−4

  

f

y

x
2

−4

−6

2

4

6

4 6−2−4−6

 Figure for 73 Figure for 74

74.  Even and Odd Functions The domain of the function f  
shown in the figure is −6 ≤ x ≤ 6.

 (a) Complete the graph of f  given that f  is even.

 (b) Complete the graph of f  given that f  is odd.

 Even and Odd Functions and Zeros of 
Functions In Exercises 75–78, determine 
whether the function is even, odd, or neither. Then 
find the zeros of the function. Use a graphing 
utility to verify your result.

75. f (x) = x2(4 − x2) 76. f (x) = 3√x

77. f (x) = 2 6√x 78. f (x) = 4x4 − 3x2

Writing Functions In Exercises 79–82, write an equation 
for a function that has the given graph.

79. Line segment connecting (−2, 4) and (0, −6)
80. Line segment connecting (3, 1) and (5, 8)
81. The bottom half of the parabola x + y2 = 0

82. The bottom half of the circle x2 + y2 = 36

Sketching a Graph In Exercises 83–86, sketch a possible 
graph of the situation.

83.  The speed of an airplane as a function of time during a 5-hour 
flight

84.  The height of a baseball as a function of horizontal distance 
during a home run

85.  A student commutes 15 miles to attend college. After driving 
for a few minutes, she remembers that a term paper that is 
due has been forgotten. Driving faster than usual, she returns 
home, picks up the paper, and once again starts toward school. 
Consider the student’s distance from home as a function of 
time.

86.  A person buys a new car and keeps it for 6 years. During year 4, 
he buys several expensive upgrades. Consider the value of the 
car as a function of time.

87.  Domain Find the value of c such that the domain of

 f (x) = √c − x2

 is [−5, 5].
88. Domain Find all values of c such that the domain of

 f (x) = x + 3
x2 + 3cx + 6

 is the set of all real numbers.

EXPLORING CONCEPTS
89.  One-to-One Functions Can the graph of a  

one-to-one function intersect a horizontal line more than 
once? Explain.

90.  Composite Functions Give an example of 
functions f  and g such that f ∘ g = g ∘ f  and f (x) ≠ g(x).

91.  Polynomial Functions Does the degree of a 
polynomial function determine whether the function is 
even or odd? Explain.

92.  Think About It Determine whether the function 
f (x) = 0 is even, odd, both, or neither. Explain.

93.  Graphical Reasoning An electronically controlled 
thermostat is programmed to lower the temperature during the 
night automatically (see figure). The temperature T in degrees 
Celsius is given in terms of t, the time in hours on a 24-hour 
clock.

t
3 6 9 12 15 18 21 24

12

16

20

24

T

 (a) Approximate T(4) and T(15).
 (b)  The thermostat is reprogrammed to produce a temperature 

H(t) = T(t − 1). How does this change the temperature? 
Explain.

 (c)  The thermostat is reprogrammed to produce a temperature 
H(t) = T(t) − 1. How does this change the temperature? 
Explain.
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 94.  HOW DO YOU SEE IT? Water runs into 
a vase of height 30 centimeters at a constant 
rate. The vase is full after 5 seconds. Use this 
information and the shape of the vase shown to 
answer the questions when d is the depth of the 
water in centimeters and t is the time in seconds 
(see figure).

30 cm

d

(a) Explain why d is a function of t.

(b) Determine the domain and range of the function.

(c) Sketch a possible graph of the function.

(d)  Use the graph in part (c) to approximate d(4). What 
does this represent?

94.  

 96.  Writing Use a graphing utility to graph the polynomial  
functions

  p1(x) = x3 − x + 1 and p2(x) = x3 − x.

   How many zeros does each function have? Is there a cubic 
polynomial that has no zeros? Explain.

 97. Proof Prove that the function is odd.

  f (x) = a2n+1x
2n+1 + .  .  . + a3x

3 + a1x

 98. Proof Prove that the function is even.

  f (x) = a2nx
2n + a2n−2x

2n−2 + .  .  . + a2x
2 + a0

 99.  Proof Prove that the product of two even (or two odd) 
functions is even.

100.  Proof Prove that the product of an odd function and an 
even function is odd.

101.  Length A right triangle is formed in the first quadrant 
by the x- and y-axes and a line through the point (3, 2) (see 
figure). Write the length L of the hypotenuse as a function of x.

 

1 2 3 5 6 74

1

2

3

4

(3, 2)

x
(x, 0)

(0, y)

y

102.  Volume An open box of maximum volume is to be made 
from a square piece of material 24 centimeters on a side by 
cutting equal squares from the corners and turning up the 
sides (see figure).

 

24 − 2x xx

x

24 − 2x

 (a)  Write the volume V as a function of x, the length of the 
 corner squares. What is the domain of the function?

 (b)  Use a graphing utility to graph the volume function 
and approximate the dimensions of the box that yield a  
maximum volume.

True or False? In Exercises 103–108, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

103. If f (a) = f (b), then a = b.

104.  A vertical line can intersect the graph of a function at most 
once.

105.  If f (x) = f (−x) for all x in the domain of f, then the graph 
of f  is symmetric with respect to the y-axis.

106. If f  is a function, then f (ax) = af (x).
107.  The graph of a function of x cannot have symmetry with 

respect to the x-axis.

108.  If the domain of a function consists of a single number, then 
its range must also consist of only one number.

PUTNAM EXAM CHALLENGE
109.  Let R be the region consisting of the points (x, y) of 

the Cartesian plane satisfying both ∣x∣ − ∣y∣ ≤ 1 and 

∣y∣ ≤ 1. Sketch the region R and find its area.

110.  Consider a polynomial f (x) with real coefficients 
having the property f (g(x)) = g( f (x)) for every 
polynomial g(x) with real coefficients. Determine and 
prove the nature of f (x).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The horsepower H required to overcome wind drag on a  
certain automobile is

H(x) = 0.00004636x3

where x is the speed  
of the car in miles  
per hour.

(a)  Use a graphing  
utility to graph H.

(b)  Rewrite H so that x 
represents the speed 
in kilometers  
per hour. [Hint:  
Find H(x	1.6).]

95. Automobile Aerodynamics

iStockphoto.com/EdStock
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 Describe angles and use degree measure.
 Use radian measure.
 Understand the definitions of the six trigonometric functions.
 Evaluate trigonometric functions.
 Solve trigonometric equations.
 Graph trigonometric functions.

Angles and Degree Measure
An angle has three parts: an initial ray (or side), a terminal ray, and a vertex (the 
point of intersection of the two rays), as shown in Figure P.32(a). An angle is in 
standard position when its initial ray coincides with the positive x-axis and its vertex 
is at the origin, as shown in Figure P.32(b).

Vertex

Initial ray

Terminal ra
y

θ

    

x
Initial ray

Term
inal ray

y

θ

 (a) Angle (b) Angle in standard position
 Figure P.32

It is assumed that you are familiar with the degree measure of an angle.* It is common 
practice to use θ (the lowercase Greek letter theta) to represent both an angle and its measure. 
Angles between 0° and 90° are acute, and angles between 90° and 180° are obtuse.

Positive angles are measured counterclockwise, and negative angles are measured 
clockwise. For instance, Figure P.33 shows an angle whose measure is −45°. You 
cannot assign a measure to an angle by simply knowing where its initial and terminal 
rays are located. To measure an angle, you must also know how the terminal ray was 
revolved. For example, Figure P.33 shows that the angle measuring −45° has the same 
terminal ray as the angle measuring 315°. Such angles are coterminal. In general, if θ 
is any angle, then θ + n(360), n is a nonzero integer, is coterminal with θ.

An angle that is larger than 360° is one whose terminal ray has been revolved more 
than one full revolution counterclockwise, as shown in Figure P.34(a). You can form 
an angle whose measure is less than −360° by revolving a terminal ray more than one 
full revolution clockwise, as shown in Figure P.34(b).

θ = 720°

    θ = −405°

 (a) An angle whose measure (b) An angle whose measure
  is greater than 360° is less than −360°
 Figure P.34

*For a more complete review of trigonometry, see Precalculus, 10th edition, or Precalculus: Real Mathematics, 
Real People, 7th edition, both by Ron Larson (Boston, Massachusetts: Brooks/Cole, Cengage Learning, 2018 
and 2016, respectively).

Coterminal angles
Figure P.33

θ

θ

= −45°

= 315°
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Radian Measure
To assign a radian measure to an angle θ, consider θ to be a central angle of a circle 
of radius 1, as shown in Figure P.35. The radian measure of θ is then defined to be 
the length of the arc of the sector. Because the circumference of a circle is 2πr, the 
circumference of a unit circle (of radius 1) is 2π. This implies that the radian measure 
of an angle measuring 360° is 2π. In other words, 360° = 2π  radians.

Using radian measure for θ, the length s of a circular arc of radius r is s = rθ, as 
shown in Figure P.36.

r = 1
θ

θ

The arc
length of the
sector is the
radian measure
of   .

    

θ
r

θArc length is = .s r

 Unit circle Circle of radius r
 Figure P.35 Figure P.36

You should know the conversions of the common angles shown in Figure P.37. For 
other angles, use the fact that 180° is equal to π  radians.

 Conversions Between Degrees and Radians

a. 40° = (40 deg)( π rad
180 deg) =

2π
9

 radian

b. 540° = (540 deg)( π rad
180 deg) = 3π radians

c. −270° = (−270 deg)( π rad
180 deg) = −

3π
2

 radians

d. −
π
2

 radians = (−π
2

 rad)(180 deg
π rad ) = −90°

e. 2 radians = (2 rad)(180 deg
π rad ) = (

360
π )

°
≈ 114.59°

f. 
9π
2

 radians = (9π2  rad)(180 deg
π rad ) = 810° 

Radian and degree measures for several common angles
Figure P.37

45° = π
4

60° = π
3

90° = π
2

180° = π

360 = 2° π

30° = π
6

TECHNOLOGY Most graphing utilities have both degree and radian modes. 
You should learn how to use your graphing utility to convert from degrees to radians, 
and vice versa. Use a graphing utility to verify the results of Example 1.
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The Trigonometric Functions
There are two common approaches to the study of trigonometry. In one, the trigonometric 
functions are defined as ratios of two sides of a right triangle. In the other, these 
functions are defined in terms of a point on the terminal ray of an angle in standard 
position. The six trigonometric functions, sine, cosine, tangent, cotangent, secant, 
and cosecant (abbreviated as sin, cos, tan, cot, sec, and csc, respectively), are defined 
below from both viewpoints.

Definition of the Six Trigonometric Functions

Right triangle definitions, where 0 < θ <
π
2

 (see Figure P.38)

sin θ =
opposite

hypotenuse
   cos θ =

adjacent
hypotenuse

   tan θ =
opposite
adjacent

csc θ =
hypotenuse

opposite
   sec θ =

hypotenuse
adjacent

   cot θ =
adjacent
opposite

Circular function definitions, where θ is any angle (see Figure P.39)

sin θ =
y
r
 cos θ =

x
r
 tan θ =

y
x
, x ≠ 0

csc θ =
r
y
, y ≠ 0 sec θ =

r
x
, x ≠ 0 cot θ =

x
y
, y ≠ 0

The trigonometric identities listed below are direct consequences of the definitions.  
[Note that ϕ is the lowercase Greek letter phi and sin2 θ is used to represent (sin θ)2.]

TRIGONOMETRIC IDENTITIES

Pythagorean Identities Even/Odd Identities

sin2 θ + cos2 θ = 1 sin(−θ) = −sin θ csc(−θ) = −csc θ
1 + tan2 θ = sec2 θ cos(−θ) = cos θ sec(−θ) = sec θ
1 + cot2 θ = csc2 θ tan(−θ) = −tan θ cot(−θ) = −cot θ

Sum and Difference Formulas Power-Reducing Formulas Double-Angle Formulas

sin(θ ± ϕ) = sin θ cos ϕ ± cos θ sin ϕ sin2 θ =
1 − cos 2θ

2
 sin 2θ = 2 sin θ cos θ

cos(θ ± ϕ) = cos θ cos ϕ ∓ sin θ sin ϕ cos2 θ =
1 + cos 2θ

2
 

 cos 2θ = 2 cos2 θ − 1
 = 1 − 2 sin2 θ
 = cos2 θ − sin2 θ

tan(θ ± ϕ) = tan θ ± tan ϕ
1 ∓ tan θ tan ϕ tan2 θ =

1 − cos 2θ
1 + cos 2θ  tan 2θ =

2 tan θ
1 − tan2 θ

Law of Cosines Reciprocal Identities Quotient Identities

a2 = b2 + c2 − 2bc cos A csc θ =
1

sin θ  tan θ =
sin θ
cos θ

ab

c

A
 sec θ =

1
cos θ  cot θ =

cos θ
sin θ

cot θ =
1

tan θ

Sides of a right triangle
Figure P.38

Adjacent

O
pp
os
ite

Hy
po
ten
use

θ

An angle in standard position
Figure P.39

x

( , )x  y

x

y
r

θ

r x y= +2        2

y
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Evaluating Trigonometric Functions
There are two ways to evaluate trigonometric functions: (1) decimal approximations 
with a graphing utility and (2) exact evaluations using trigonometric identities and 
formulas from geometry. When using a graphing utility to evaluate a trigonometric 
function, remember to set the graphing utility to the appropriate mode—degree mode 
or radian mode.

 Exact Evaluation of Trigonometric Functions

Evaluate the sine, cosine, and tangent of π�3.

Solution Because 60° = π�3 radians, you can draw an equilateral triangle with 
sides of length 1 and θ as one of its angles, as shown in Figure P.40. Because the 
altitude of this triangle bisects its base, you know that x = 1

2. Using the Pythagorean 
Theorem, you obtain

y = √r2 − x2 =√1 − (12)
2

=√3
4
=
√3
2

.

Now, knowing the values of x, y, and r, you can write the following.

sin 
π
3
=

y
r
=
√3�2

1
=
√3
2

cos 
π
3
=

x
r
=

1�2
1

=
1
2

tan 
π
3
=

y
x
=
√3�2
1�2

= √3 

Note that all angles in this text are measured in radians unless stated otherwise. 
For example, when sin 3 is written, the sine of 3 radians is meant, and when sin 3° is 
written, the sine of 3 degrees is meant.

The degree and radian measures of several common angles are shown in the 
table below, along with the corresponding values of the sine, cosine, and tangent (see  
Figure P.41).

 Trigonometric Values of Common Angles

θ (degrees) 0° 30° 45° 60° 90° 180° 270°

θ (radians) 0
π
6

π
4

π
3

π
2

π 3π
2

sin θ 0
1
2

√2
2

√3
2

1 0 −1

cos θ 1
√3
2

√2
2

1
2

0 −1 0

tan θ 0
√3
3

1 √3 Undefined 0 Undefined

 Using Trigonometric Identities

a. sin(−π
3) = −sin 

π
3
= −
√3
2

 sin(−θ) = −sin θ

b. sec 60° =
1

cos 60°
=

1
1�2

= 2 sec θ =
1

cos θ  

Figure P.40

r = 1

x

( , )x  y

y

θ

r = 1 y

x = 1
2

60°

Common angles
Figure P.41

45°

45°

1

12

60°

30° 2

1

3
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The quadrant signs for the sine, cosine, and tangent functions are shown in Figure 
P.42. To extend the use of the table on the preceding page to angles in quadrants other 
than the first quadrant, you can use the concept of a reference angle (see Figure P.43), 
with the appropriate quadrant sign. For instance, the reference angle for 3π�4 is π�4, 
and because the sine is positive in Quadrant II, you can write

sin 
3π
4

= sin 
π
4
=
√2
2

.

Similarly, because the reference angle for 330° is 30°, and the tangent is negative in 
Quadrant IV, you can write

tan 330° = −tan 30° = −
√3
3

.

θ ′
Reference
angle:

θ

Quadrant II
= −θ

θ θ
θ′

′
(radians)

= 180° (degrees)−
π

  

θ

θ ′
Reference
angle:

Quadrant III
= −θ

θ θ
π′

′
(radians)

= − 180° (degrees) 
θ

  

θ

θ ′
Reference
angle:

Quadrant IV
= 2 −θ

θ θ
θ′

′
(radians)

= 360° (degrees)−
π

 Figure P.43

Solving Trigonometric Equations
How would you solve the equation sin θ = 0? You know that θ = 0 is one solution, 
but this is not the only solution. Any one of the following values of θ is also a solution.

.  .  . , −3π, −2π, −π, 0, π, 2π, 3π, .  .  .

You can write this infinite solution set as {nπ: n is an integer}.

 Solving a Trigonometric Equation

Solve the equation sin θ = −
√3
2

.

Solution To solve the equation, you should consider that the sine function is 
negative in Quadrants III and IV and that

sin 
π
3
=
√3
2

.

So, you are seeking values of θ in the third and fourth quadrants that have a reference 
angle of π�3. In the interval [0, 2π], the two angles fitting these criteria are

θ = π +
π
3
=

4π
3

 and θ = 2π −
π
3
=

5π
3

.

By adding integer multiples of 2π  to each of these solutions, you obtain the following 
general solution.

θ =
4π
3

+ 2nπ  or θ =
5π
3

+ 2nπ, where n is an integer.

See Figure P.44.

Quadrant signs for trigonometric  
functions
Figure P.42

x

Quadrant IQuadrant II

Quadrant III Quadrant IV

θ
θ
θ

sin   : +
cos   : +
tan   : +

θ
θ
θ

sin   : +
cos   : −
tan   : −

θ
θ
θ

sin   : −
cos   : −
tan   : +

θ
θ
θ

sin   : −
cos   : +
tan   : −

y

Solution points of sin θ = −
√3
2

Figure P.44

x

y = sin θ

y =
2
3−

π

1

−
3

−

π
2

− π3
2

π
2

2π

π

3
π

4
3
π2

3
π5

y
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 Solving a Trigonometric Equation

Solve

cos 2θ = 2 − 3 sin θ

where 0 ≤ θ ≤ 2π.

Solution Using the double-angle formula cos 2θ = 1 − 2 sin2 θ, you can rewrite 
the equation as follows.

 cos 2θ = 2 − 3 sin θ  Write original equation.

 1 − 2 sin2 θ = 2 − 3 sin θ  Double-angle formula

 0 = 2 sin2 θ − 3 sin θ + 1  Quadratic form

 0 = (2 sin θ − 1)(sin θ − 1) Factor.

If 2 sin θ − 1 = 0, then sin θ = 1�2 and θ = π�6 or θ = 5π�6. If sin θ − 1 = 0, 
then sin θ = 1 and θ = π�2. So, for 0 ≤ θ ≤ 2π, the solutions are

θ =
π
6

, 
5π
6

, or 
π
2

. 

Graphs of Trigonometric Functions
A function f  is periodic when there exists a positive real number p such that 
f (x + p) = f (x) for all x in the domain of f. The least such positive value of p is the 
period of f. The sine, cosine, secant, and cosecant functions each have a period of 2π, 
and the other two trigonometric functions, tangent and cotangent, have a period of π, 
as shown in Figure P.45.

36 Chapter P Preparation for Calculus

The graphs of the six trigonometric functions
Figure P.45

x

y

y = sin x

Domain: (−∞, ∞)
Range: [−1, 1]
Period: 2π

−1

−2

−3

1

2

3

2
π π

x

y

y = cos x

Domain: (−∞, ∞)
Range: [−1, 1]
Period: 2π

−1
−

−2

−3

2

3

2
π

2
π

2
3ππ

x

Domain: all x ≠     + n

π π2

1

2

3

4

5

−3

Range: (−∞, ∞) 
Period:

y = tan x
π

π
2
πy

1

2

3

4

2

x

y

y x= csc = 1
sin x

π

Domain: all x ≠ n
Range: (−∞, −1] and [1, ∞)
Period: 2π

π

−1

2

3

4

x

y

y x= sec =
1

cos x

π π2

−2

−3

Domain: all x ≠     + n
Range: (−∞, −1] and [1, ∞)
Period: 2π

π
2
π

x

1

2

3

4

5

y x= cot = 1
tan x

π 2π

Range: (−∞, ∞)
Period: π

Domain: all x ≠ nπ
y

REMARK Be sure you 
understand the mathematical 
conventions regarding 
parentheses and trigonometric 
functions. For instance, in 
Example 5, cos 2θ means 
cos(2θ).
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Note in Figure P.45 that the maximum value of sin x and cos x is 1 and the  
minimum value is −1. The graphs of the functions y = a sin bx and y = a cos bx 
oscillate between −a and a, and so have an amplitude of ∣a∣. Furthermore, because 
bx = 0 when x = 0 and bx = 2π  when x = 2π�b, it follows that the functions 
y = a sin bx and y = a cos bx each have a period of 2π�∣b∣. The table below 
summarizes the amplitudes and periods of some types of trigonometric functions.

Function Period Amplitude

y = a sin bx or y = a cos bx
2π
∣b∣ ∣a∣

y = a tan bx or y = a cot bx
π
∣b∣ Not applicable

y = a sec bx or y = a csc bx
2π
∣b∣ Not applicable

 Sketching the Graph of a Trigonometric Function

Sketch the graph of f (x) = 3 cos 2x.

Solution The graph of f (x) = 3 cos 2x has an amplitude of 3 and a period of 
2π�2 = π. Using the basic shape of the graph of the cosine function, sketch one period 
of the function on the interval [0, π], using the following pattern.

Maximum: (0, 3)

Minimum: (π2, −3)
Maximum: (π, 3)

By continuing this pattern, you can sketch several cycles of the graph, as shown in 
Figure P.46.

 Shifts of Graphs of Trigonometric Functions

a.  To sketch the graph of f (x) = sin(x + π�2), shift the graph of y = sin x to the left 
π�2 units, as shown in Figure P.47(a).

b.  To sketch the graph of f (x) = 2 + sin x, shift the graph of y = sin x upward two 
units, as shown in Figure P.47(b).

c.  To sketch the graph of f (x) = 2 + sin(x − π�4), shift the graph of y = sin x 
upward two units and to the right π�4 units, as shown in Figure P.47(c).

x

f (x) = sin  x +

−2

2
3
4
5
6

2
π

2
π

π

()

y

y = sin x

  

x
π

2

f (x) = 2 + sin x

−2

2

4
5
6

3

y

y = sin x

  

x

−2

2

4
5
6

π

2
3

y

4
π

f (x) = 2 + sin  x −
4
π ()

y = sin x

 (a) Horizontal shift to the left (b) Vertical shift upward (c) Horizontal and vertical shifts

 Transformations of the graph of y = sin x
 Figure P.47 

Figure P.46

x

y

−1

−2

−3

3

f (x) = 3 cos 2x
(0, 3)

Amplitude = 3

Period = π

π3 π2
2

π π
2

TECHNOLOGY To 
produce the graphs shown in 
Figure P.45 with a graphing 
utility, make sure you set the 
graphing utility to radian mode.
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CONCEPT CHECK
1.  Coterminal Angles Explain how to find coterminal 

angles in degrees.

2.  Degrees to Radians Explain how to convert from 
degrees to radians.

3.  Trigonometric Functions 

24

25
7

θ

 
Find sin θ, cos θ, and tan θ.

4.  Characteristics of a Graph In your own words, 
describe the meaning of amplitude and period.

 Coterminal Angles in Degrees In Exercises 
5 and 6, determine two coterminal angles in degree 
measure (one positive and one negative) for each 
angle.

 5. (a) 

= 36°θ

 (b) 

= −120°θ

6. (a) = 300°θ  (b) = −420°θ

 Coterminal Angles in Radians In Exercises 
7 and 8, determine two coterminal angles in radian 
measure (one positive and one negative) for each 
angle.

 7. (a) =θ
9
π  (b) =θ

3
π4

8. (a) = −θ
4
π9  (b) 

=θ
9
π8

 Degrees to Radians In Exercises 9 and 10, 
convert the degree measure to radian measure as 
a multiple of π and as a decimal accurate to three 
decimal places.

 9. (a) 30° (b) 150° (c) 315° (d) 120°

10. (a) −20° (b) −240° (c) −270° (d) 144°

 Radians to Degrees In Exercises 11 and 12, 
convert the radian measure to degree measure.

11. (a) 
3π
2

 (b) 
7π
6

 (c) −
7π
12

 (d) −2.367

12. (a) 
7π
3

 (b) −
11π
30

 (c) 
11π

6
 (d) 0.438

13.  Completing a Table Let r represent the radius of a 
circle, θ the central angle (measured in radians), and s the 
length of the arc subtended by the angle. Use the relationship 
s = rθ to complete the table.

r 8 ft 15 in. 85 cm

s 12 ft 96 in. 8642 mi

θ 1.6
3π
4

4
2π
3

14.  Angular Speed A car is moving at the rate of 50 miles per 
hour, and the diameter of its wheels is 2.5 feet.

 (a)  Find the number of revolutions per minute that the wheels 
are rotating.

 (b) Find the angular speed of the wheels in radians per minute.

 Evaluating Trigonometric Functions In 
Exercises 15 and 16, evaluate the six trigonometric 
functions of the angle θ.

15. (a) y

x

(3, 4)

θ

  (b) y

x

(−12, −5)

θ

16. (a) y

x

(8, −15)

θ

  (b) y

x

(1, −1)

θ

Evaluating Trigonometric Functions In Exercises 17–20, 
sketch a right triangle corresponding to the trigonometric 
function of the acute angle θ. Then evaluate the other five 
trigonometric functions of θ.

17. sin θ = 1
2 18. sin θ = 1

3

19. cos θ = 4
5 20. sec θ = 13

5
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 Evaluating Trigonometric Functions In 
Exercises 21–24, evaluate the sine, cosine, and 
tangent of each angle. Do not use a calculator.

21. (a) 60° (b) 120° (c) 
π
4

 (d) 
5π
4

22. (a) −30° (b) 150° (c) −
π
6

 (d) 
π
2

23. (a) 225° (b) −225° (c) 
5π
3

 (d) 
11π

6

24. (a) 750° (b) 510° (c) 
10π

3
 (d) 

17π
3

Evaluating Trigonometric Functions Using Technology
In Exercises 25–28, use a calculator to evaluate each 
trigonometric function. Round your answers to four decimal 
places.

25. (a) sin 10° 26. (a) sec 225°

(b) csc 10°  (b) sec 135°

27. (a) tan 
π
9

 28. (a) cot(1.35)

(b) tan 
10π

9
  (b) tan(1.35)

Determining a Quadrant In Exercises 29 and 30, 
determine the quadrant in which θ lies.

29. (a) sin θ < 0 and cos θ < 0

(b) sec θ > 0 and cot θ < 0

30. (a) sin θ > 0 and cos θ < 0

(b) csc θ < 0 and tan θ > 0

Solving a Trigonometric Equation In Exercises 31–34, 
find two solutions of each equation. Give your answers in  
radians (0 ≤ θ ≤ 2π). Do not use a calculator.

31. (a) cos θ =
√2
2

 32. (a) sec θ = 2

 (b) cos θ = −
√2
2

  (b) sec θ = −2

33. (a) tan θ = 1 34. (a) sin θ =
√3
2

 (b) cot θ = −√3  (b) sin θ = −
√3
2

 Solving a Trigonometric Equation In 
Exercises 35–42, solve the equation for θ, where 
0 ≤ θ ≤ 2π.

35. 2 sin2 θ = 1 36. tan2 θ = 3

37. tan2 θ − tan θ = 0 38. 2 cos2 θ − cos θ = 1

39. sec θ csc θ = 2 csc θ 40. sin θ = cos θ

41. cos2 θ + sin θ = 1

42. cos 
θ
2
− cos θ = 1

43.  Airplane Ascent An airplane leaves the runway climbing 
at an angle of 18° with a speed of 275 feet per second (see 
figure). Find the altitude a of the plane after 1 minute.

18°

a

44.  Height of a Mountain While traveling across flat land, 
you notice a mountain directly in front of you. Its angle of 
elevation (to the peak) is 3.5°. After you drive 13 miles closer 
to the mountain, the angle of elevation is 9°. Approximate the 
height of the mountain.

3.5° 9°

Not drawn to scale
13 mi

Period and Amplitude In Exercises 45–48, determine the 
period and amplitude of each function.

45. y = 2 sin 2x 46. y =
3
2

 cos 
x
2

 y

x

−3

3

2

1

π3
4

π5
4

π
4

π π
2

 

x

3

2

−1
−2
−3

ππ 3π
2

y

47. y = −3 sin 4πx 48. y =
2
3

 cos 
πx
10

Period In Exercises 49–52, find the period of the function.

49. y = 5 tan 2x

50. y = 7 tan 2πx

51. y = sec 5x

52. y = csc 4x

Writing In Exercises 53 and 54, use a graphing utility to 
graph each function f  in the same viewing window for c = −2, 
c = −1, c = 1, and c = 2. Give a written description of the 
change in the graph caused by changing c.

53. (a) f (x) = c sin x

 (b) f (x) = cos(cx)
 (c) f (x) = cos(πx − c)
54. (a) f (x) = sin x + c

 (b) f (x) = −sin(2πx − c)
 (c) f (x) = c cos x
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 Sketching the Graph of a Trigonometric 
Function In Exercises 55–66, sketch the graph 
of the function.

55. y = sin 
x
2

 56. y = 2 cos 2x

57. y = −sin 
2πx

3
 58. y = 2 tan x

59. y = csc 
x
2

 60. y = tan 2x

61. y = 2 sec 2x 62. y = csc 2πx

63. y = sin(x + π) 64. y = cos(x −
π
3)

65. y = 1 + cos(x −
π
2) 66. y = 1 + sin(x +

π
2)

Graphical Reasoning In Exercises 67 and 68, find a, b,
and c such that the graph of the function matches the graph 
in the figure.

67. y = a cos(bx − c) 68. y = a sin(bx − c)

x
π π3

4

2

−4

y   

x

1

−1

1
2

−
π π3
4

π
2

y

EXPLORING CONCEPTS
69.  Think About It You are given the value of tan θ. 

Is it possible to find the value of sec θ without finding 
the measure of θ? Explain.

70.  Restricted Domain Explain how to restrict the 
domain of the sine function so that it becomes a  
one-to-one function.

71.  Think About It How do the ranges of the cosine 
function and the secant function compare?

72.  HOW DO YOU SEE IT? Consider an angle 
in standard position with r = 12 centimeters, 
as shown in the figure. Describe the changes in 
the values of x, y, sin θ, cos θ, and tan θ as θ 
increases continually from 0° to 90°.

12 cm

θ

y

x

(x, y)

72.  

73.  Think About It Sketch the graphs of

 f (x) = sin x, g(x) = ∣sin x∣, and h(x) = sin(∣x∣). 
  In general, how are the graphs of ∣ f (x)∣ and f (∣x∣) related to 

the graph of f ?

75.  Sales The monthly sales S (in thousands of units) of a 
seasonal product are modeled by

 S = 58.3 + 32.5 cos 
πt
6

where t is the time (in months), with t = 1 corresponding to 
January. Use a graphing utility to graph the model for S and 
determine the months when sales exceed 75,000 units.

76.  Pattern Recognition Use a graphing utility to compare 
the graph of

 f (x) = 4
π (sin πx +

1
3

 sin 3πx)
with the given graph. Try to improve the approximation by 
adding a term to f (x). Use a graphing utility to verify that 
your new approximation is better than the original. Can you 
find other terms to add to make the approximation even better? 
What is the pattern? (Hint: Use sine terms.)

 

x
3

2

1

−2

y

True or False? In Exercises 77–80, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

77.  A measurement of 4 radians corresponds to two complete 
revolutions from the initial side to the terminal side of an angle.

78.  Amplitude is always positive.

79.  The function y = 1
2 sin 2x has an amplitude that is twice that of 

the function y = sin x.

80.  The function y = 3 cos(x�3) has a period that is three times 
that of the function y = cos x.

The model for the height h of a Ferris wheel car is

h = 51 + 50 sin 8πt

 where t is measured in 
minutes. (The Ferris  
wheel has a radius of 
50 feet.) This model 
yields a height of  
51 feet when t = 0.  
Alter the model so that 
the height of the car  
is 1 foot when t = 0.

74. Ferris Wheel

DR-Media/Shutterstock.com
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 Review Exercises 41

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Intercepts In Exercises 1–4, find any intercepts.

 1. y = 5x − 8  2. y = x2 − 8x + 12

 3. y =
x − 3
x − 4

  4. y = (x − 3)√x + 4

Testing for Symmetry In Exercises 5–8, test for symmetry 
with respect to each axis and to the origin.

 5. y = x2 + 4x  6. y = x4 − x2 + 3

 7. y2 = x2 − 5  8. xy = −2

Using Intercepts and Symmetry to Sketch a Graph In 
Exercises 9–14, find any intercepts and test for symmetry. 
Then sketch the graph of the equation.

 9. y = −1
2x + 3 10. y = −x2 + 4

11. y = 9x − x3 12. y2 = 9 − x

13. y = 2√4 − x 14. y = ∣x − 4∣ − 4

Finding Points of Intersection In Exercises 15–18, find 
the points of intersection of the graphs of the equations.

15.  5x + 3y = −1 16.  2x + 4y = 9

  x − y = −5   6x − 4y = 7

17.  x − y = −5 18.  x2 + y2 = 1

  x2 − y = 1   −x + y = 1

Finding the Slope of a Line In Exercises 19 and 20, plot 
the pair of points and find the slope of the line passing through 
them.

19. (3
2, 1), (5, 52) 20. (−7, 8), (−1, 8)

Finding an Equation of a Line In Exercises 21–24, find 
an equation of the line that passes through the point and has 
the indicated slope. Then sketch the line.

 Point Slope Point Slope

21. (3, −5) m = 7
4 22. (−8, 1) m is undefined.

23. (−3, 0) m = −2
3 24. (5, 4) m = 0

Finding the Slope and y-Intercept In Exercises 25 and 
26, find the slope and the y-intercept (if possible) of the line.

25. y − 3x = 5 26. 9 − y = x

Sketching a Line in the Plane In Exercises 27–30, sketch 
the graph of the equation.

27. y = 6 28. x = −3

29. y = 4x − 2 30. 3x + 2y = 12

Finding an Equation of a Line In Exercises 31 and 32, 
find an equation of the line that passes through the points. 
Then sketch the line.

31. (0, 0), (8, 2) 32. (−5, 5), (10, −1)

33.  Finding Equations of Lines Find equations of the lines 
passing through (−3, 5) and having the following characteristics.

 (a) Slope of 7
16

 (b) Parallel to the line 5x − 3y = 3

 (c) Perpendicular to the line 3x + 4y = 8

 (d) Parallel to the y-axis

34.  Finding Equations of Lines Find equations of the lines 
passing through (2, 4) and  having the following characteristics.

 (a) Slope of −2
3

 (b) Perpendicular to the line x + y = 0

 (c) Parallel to the line 3x − y = 0

 (d) Parallel to the x-axis

35.  Rate of Change The purchase price of a new machine is 
$12,500, and its value will decrease by $850 per year. Use this 
information to write a linear equation that gives the value V of 
the machine t years after it is purchased. Find its value at the 
end of 3 years.

36.  Break-Even Analysis A contractor purchases a piece 
of equipment for $36,500 that costs an average of $9.25 per 
hour for fuel and maintenance. The equipment operator is paid 
$13.50 per hour, and customers are charged $30 per hour.

 (a)  Write a linear equation for the cost C of operating this 
equipment for t hours.

 (b)  Write a linear equation for the revenue R derived from t 
hours of use.

 (c)  Find the break-even point for this equipment by finding 
the time at which R = C.

Evaluating a Function In Exercises 37–40, evaluate the 
function at the given value(s) of the independent variable. 
Simplify the results.

37. f (x) = 5x + 4 38. f (x) = x3 − 2x

 (a) f (0)  (a) f (−3)
 (b) f (5)  (b) f (2)
 (c) f (−3)  (c) f (−1)
 (d) f (t + 1)  (d) f (c − 1)
39. f (x) = 4x2 40. f (x) = 2x − 6

 
f (x + ∆x) − f (x)

∆x
  

f (x) − f (1)
x − 1

Finding the Domain and Range of a Function In 
Exercises 41–44, find the domain and range of the function.

41. f (x) = x2 + 3

42. g(x) = √6 − x

43. f (x) = −∣x + 1∣
44. h(x) = 2

x + 1
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Sketching a Graph of a Function In Exercises 45 and 
46, sketch a graph of the function and find its domain and 
range. Use a graphing utility to verify your graph.

45. f (x) = 4
2x − 1

 46. g(x) = √x + 1

Using the Vertical Line Test In Exercises 47 and 48, use 
the Vertical Line Test to determine whether y is a function of x.  
To print an enlarged copy of the graph, go to MathGraphs.com.

47. x + y2 = 2 48. x2 − y = 0

 

x

y

−1−2−3 2 3

−3

1

3

  

x

y

−1−2−3 1 2 3

2
3
4
5

Deciding Whether an Equation is a Function In 
Exercises 49 and 50, determine whether y is a function of x.

49. xy + x3 − 2y = 0 50. x = 9 − y2

51.  Transformations of Functions Use a graphing utility 
to graph f (x) = x3 − 3x2. Use the graph to write a formula for 
the function g shown in the figure.

 (a)

4−2

−1

(2, 5)

(0, 1)

g

6  (b)

6−1

−4

(2, 1)

(4, −3)

g

2

52.  Think About It What is the minimum degree of the 
polynomial function whose graph approximates the given 
graph? What sign must the leading coefficient have?

 (a) 

x
−4 −2 2 4

4

−2

−4

y  (b) 

x
−4 2

2

4

−6

y

 (c) 

x
−2 2

2

4

−4

−2

y  (d) 

x
−4 2 4

4

2

−4

y

Finding Composite Functions In Exercises 53 and 54, 
find the composite functions f ∘ g and g ∘ f. Find the domain of 
each composite function. Are the two composite functions equal?

53. f (x) = 3x + 1 54. f (x) = √x − 2

 g(x) = −x  g(x) = x2

Even and Odd Functions and Zeros of Functions In 
Exercises 55 and 56, determine whether the function is even, 
odd, or neither. Then find the zeros of the function. Use a 
graphing utility to verify your result.

55. f (x) = x4 − x2 56. f (x) = √x3 + 1

Degrees to Radians In Exercises 57–60, convert the 
degree measure to radian measure as a multiple of π and as a 
decimal accurate to three decimal places.

57. 340° 58. 300°

59. −480° 60. −900°

Radians to Degrees In Exercises 61–64, convert the 
radian measure to degree measure.

61. 
π
6

 62. 
11π

4

63. −
2π
3

 64. −
13π

6

Evaluating Trigonometric Functions In Exercises 
65–70, evaluate the sine, cosine, and tangent of the angle. Do 
not use a calculator.

65. −45° 66. 240°

67. 
13π

6
 68. −

4π
3

69. 405° 70. 180°

Evaluating Trigonometric Functions Using Technology  
In Exercises 71–76, use a calculator to evaluate the trigonometric 
function. Round your answers to four decimal places.

71. tan 33° 72. cot 401°

73. sec 
12π

5
 74. csc 

2π
9

75. sin(−π
9) 76. cos(−3π

7 )
Solving a Trigonometric Equation In Exercises 77–82, 
solve the equation for θ, where 0 ≤ θ ≤ 2π.

77. 2 cos θ + 1 = 0

78. 2 cos2 θ = 1

79. 2 sin2 θ + 3 sin θ + 1 = 0 

80. cos3 θ = cos θ

81. sec2 θ − sec θ − 2 = 0

82. 2 sec2 θ + tan2 θ − 5 = 0

Sketching the Graph of a Trigonometric Function In 
Exercises 83–90, sketch the graph of the function.

83. y = 9 cos x 84. y = sin πx

85. y = 3 sin 
2x
5

 86. y = 8 cos 
x
4

87. y =
1
3

 tan x 88. y = cot 
x
2

89. y = −sec 2πx 90. y = −4 csc 3x
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Finding Tangent Lines Consider the circle 

 x2 + y2 − 6x − 8y = 0

 as shown in the figure.

 (a) Find the center and radius of the circle.

 (b)  Find an equation of the tangent line to the circle at the point 
(0, 0).

 (c)  Find an equation of the tangent line to the circle at the point 
(6, 0).

 (d) Where do the two tangent lines intersect?

x
86

−2
−2

2

4

6

8

y   

x
32−3

−3

−2

−4

1

2

y

 Figure for 1 Figure for 2

2.  Finding Tangent Lines There are two tangent lines from 
the point (0, 1) to the circle x2 + ( y + 1)2 = 1 (see figure). 
Find equations of these two lines by using the fact that each 
tangent line intersects the circle at exactly one point.

3.  Heaviside Function The Heaviside function H(x) is widely 
used in engineering applications.

 H(x) = {1,
0,

   x ≥ 0
   x < 0

  Sketch the graph of the Heaviside function and the graphs of the 
following functions by hand.

 (a) H(x) − 2  (b) H(x − 2)  (c) −H(x)
 (d) H(−x) (e) 1

2H(x) (f ) −H(x − 2) + 2

OLIVER HEAVISIDE (1850–1925)

Heaviside was a British mathematician and physicist who contributed 
to the field of applied mathematics, especially applications of 
mathematics to electrical engineering. The Heaviside function is a 
classic type of “on-off” function that has applications to electricity 
and computer science.

4.  Sketching Transformations Consider the graph of the 
function f  shown below. Use this graph to sketch the graphs of 
the following functions. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 (a) f (x + 1)  (b) f (x) + 1 

x

y

f

2 4

−2

−4

2

4 (c) 2 f (x) (d) f (−x)
 (e) −f (x) (f ) ∣ f (x)∣
 (g) f (∣x∣)

5.  Maximum Area A rancher plans to fence a rectangular 
pasture adjacent to a river. The rancher has 100 meters of 
fencing, and no fencing is needed along the river (see figure).

 (a)  Write the area A of the pasture as a function of x, the length 
of the side parallel to the river. What is the domain of A?

 (b)  Graph the area function and estimate the dimensions that 
yield the maximum amount of area for the pasture.

 (c)  Find the dimensions that yield the maximum amount of area 
for the pasture by completing the square.

y

x

y

  

xxx

yy

 Figure for 5 Figure for 6

6.  Maximum Area A rancher has 300 feet of fencing to 
enclose two adjacent pastures (see figure).

 (a)  Write the total area A of the two pastures as a function of x. 
What is the domain of A?

 (b)  Graph the area function and estimate the dimensions that 
yield the maximum amount of area for the pastures.

 (c)  Find the dimensions that yield the maximum amount of area 
for the pastures by completing the square.

7.  Writing a Function You are in a boat 2 miles from the 
nearest point on the coast. You will travel to a point Q located 
3 miles down the coast and 1 mile inland (see figure). You can 
row at 2 miles per hour and walk at 4 miles per hour. Write the 
total time T of the trip as a function of x.

Q

2 mi

x

3 mi

1 mi

Science and Society/SuperStock
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  8.	 �Average Speed  You drive to the beach at a rate of  
120 kilometers per hour. On the return trip, you drive at a rate 
of 60 kilometers per hour. What is your average speed for the 
entire trip? Explain your reasoning.

  9.	 �Slope of a Tangent Line  One of the fundamental 
themes of calculus is to find the slope of the tangent line to 
a curve at a point. To see how this can be done, consider the 
point (2, 4) on the graph of f (x) = x2 (see figure).

x
62 4−6 −2−4

4

6

8

10

(2, 4)

y

	 (a) � Find the slope of the line joining (2, 4) and (3, 9). Is the 
slope of the tangent line at (2, 4) greater than or less than 
this number?

	 (b) � Find the slope of the line joining (2, 4) and (1, 1). Is the 
slope of the tangent line at (2, 4) greater than or less than 
this number?

	 (c) � Find the slope of the line joining (2, 4) and (2.1, 4.41). Is 
the slope of the tangent line at (2, 4) greater than or less 
than this number?

	 (d) � Find the slope of the line joining (2, 4) and (2 + h, f (2 + h)) 
in terms of the nonzero number h. Verify that h = 1, −1, 
and 0.1 yield the solutions to parts (a)–(c) above.

	 (e) � What is the slope of the tangent line at (2, 4)? Explain how 
you arrived at your answer.

10. � Slope of a Tangent Line  Sketch the graph of the 
function f (x) = √x and label the point (4, 2) on the graph.

	 (a) � Find the slope of the line joining (4, 2) and (9, 3). Is the 
slope of the tangent line at (4, 2) greater than or less than 
this number?

	 (b) � Find the slope of the line joining (4, 2) and (1, 1). Is the 
slope of the tangent line at (4, 2) greater than or less than 
this number?

	 (c) � Find the slope of the line joining (4, 2) and (4.41, 2.1). Is 
the slope of the tangent line at (4, 2) greater than or less 
than this number?

	 (d) �� Find the slope of the line joining (4, 2) and (4 + h, f (4 + h)) 
in terms of the nonzero number h.

	 (e) � What is the slope of the tangent line at (4, 2)? Explain how 
you arrived at your answer.

11.	 Composite Functions  Let f (x) = 1
1 − x

.

	 (a) � What are the domain and range of f ?

	 (b) � Find the composition f ( f (x)). What is the domain of this 
function?

	 (c)  Find f ( f ( f (x))). What is the domain of this function?

	 (d)  Graph  f ( f ( f (x))). Is the graph a line? Why or why not?

12.	 �Graphing an Equation  Explain how you would graph 
the equation

	 y + ∣y∣ = x + ∣x∣.
	 Then sketch the graph.

13. � Sound Intensity  A large room contains two speakers 
that are 3 meters apart. The sound intensity I of one speaker 
is twice that of the other, as shown in the figure. (To print 
an enlarged copy of the graph, go to MathGraphs.com.) 
Suppose the listener is free to move about the room to find 
those positions that receive equal amounts of sound from both 
speakers. Such a location satisfies two conditions: (1) the sound 
intensity at the listener’s position is directly proportional to the 
sound level of a source, and (2) the sound intensity is inversely 
proportional to the square of the distance from the source.

	 (a) � Find the points on the x-axis that receive equal amounts of 
sound from both speakers.

	 (b) � Find and graph the equation of all locations (x, y) where 
one could stand and receive equal amounts of sound from 
both speakers.

	

x
31 2

I 2I

1

2

3

y �

x
431 2

I kI
1

2

3

4

y

	 Figure for 13	 Figure for 14

14.	 �Sound Intensity  Suppose the speakers in Exercise 13 are 
4 meters apart and the sound intensity of one speaker is k times 
that of the other, as shown in the figure. To print an enlarged 
copy of the graph, go to MathGraphs.com.

	 (a) � Find the equation of all locations (x, y) where one could 
stand and receive equal amounts of sound from both 
speakers.

	 (b)  Graph the equation for the case k = 3.

	 (c) � Describe the set of locations of equal sound as k becomes 
very large.

15.	 �Lemniscate  Let d1 and d2 be the distances from the point 
(x, y) to the points (−1, 0) and (1, 0), respectively, as shown 
in the figure. Show that the equation of the graph of all points 
(x, y) satisfying d1d2 = 1 is

	 (x2 + y2)2 = 2(x2 − y2).

	� This curve is called a lemniscate. Graph the lemniscate and 
identify three points on the graph.

1

1

−1

−1
x

d2
d1

(x, y)

y
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 1.1 A Preview of Calculus
 1.2 Finding Limits Graphically and Numerically
 1.3 Evaluating Limits Analytically
 1.4 Continuity and One-Sided Limits
 1.5 Infinite Limits

Average Speed (Exercise 62, p. 93)

45

 1

Sports (Exercise 68, p. 61)

Charles’s Law and Absolute Zero (Example 5, p. 78)

Free-Falling Object (Exercises 101 and 102, p. 73)

Bicyclist (Exercise 5, p. 51)

Limits and Their Properties

Clockwise from top left, FABRICE COFFRINI/AFP/Getty Images; iStockphoto.com/WendellandCarolyn; 
Rayjunk/Shutterstock.com; Raphael Christinat/Shutterstock.com; Kevin Fleming/Documentary Value/Corbis
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46 Chapter 1 Limits and Their Properties

1.1 A Preview of Calculus
 Understand what calculus is and how it compares with precalculus.
 Understand that the tangent line problem is basic to calculus.
 Understand that the area problem is also basic to calculus.

What Is Calculus?
Calculus is the mathematics of change. For instance, calculus is the mathematics of 
velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids, 
curvatures,  and a variety of other concepts that have enabled scientists, engineers, and 
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations, 
tangent lines, slopes, and so on, there is a fundamental difference between precalculus 
mathematics and calculus. Precalculus mathematics is more static, whereas calculus is 
more dynamic. Here are some examples.

•  An object traveling at a constant velocity can be analyzed with precalculus 
 mathematics. To analyze the velocity of an accelerating object, you need calculus.

•  The slope of a line can be analyzed with precalculus mathematics. To analyze the 
slope of a curve, you need calculus.

•  The curvature of a circle is constant and can be analyzed with precalculus mathematics. 
To analyze the variable curvature of a general curve, you need calculus.

•  The area of a rectangle can be analyzed with precalculus mathematics. To analyze the 
area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of 
precalculus mathematics through the use of a limit process. So, one way to answer the 
question “What is calculus?” is to say that calculus is a “limit machine” that involves 
three stages. The first stage is precalculus mathematics, such as the slope of a line or 
the area of a rectangle. The second stage is the limit process, and the third stage is a 
new calculus formulation, such as a derivative or integral.

Precalculus
mathematics

  
Limit

process   Calculus

Some students try to learn calculus as if it were simply a collection of new 
formulas. This is unfortunate. If you reduce calculus to the memorization of 
differentiation and integration formulas, you will miss a great deal of understanding,  
self- confidence, and satisfaction.

On the next two pages are listed some familiar precalculus concepts coupled with 
their calculus counterparts. Throughout the text, your goal should be to learn how 
precalculus formulas and techniques are used as building blocks to produce the more 
general calculus formulas and techniques. Do not worry if you are unfamiliar with some 
of the “old formulas” listed on the next two pages—you will be reviewing all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to 
keep track of where you are relative to the three stages involved in the study of calculus. 
For instance, note how these chapters relate to the three stages.

Chapter P: Preparation for Calculus Precalculus

Chapter 1: Limits and Their Properties Limit process

Chapter 2: Differentiation Calculus

This cycle is repeated many times on a smaller scale throughout the text.

REMARK As you progress 
through this course, remember 
that learning calculus is just 
one of your goals. Your most 
important goal is to learn how to 
use calculus to model and solve 
real-life problems. Here are a 
few problem-solving strategies 
that may help you.

•  Be sure you understand the 
question. What is given? What 
are you asked to find?

•  Outline a plan. There are 
many approaches you could 
use: look for a pattern, solve 
a simpler problem, work 
backwards, draw a diagram, 
use technology, or any of 
many other approaches.

•  Complete your plan. Be 
sure to answer the question. 
Verbalize your answer. For 
example, rather than writing 
the answer as x = 4.6, it 
would be better to write the 
answer as, “The area of the 
region is 4.6 square meters.”

•  Look back at your work.  
Does your answer make  
sense? Is there a way you can 
check the reasonableness of 
your answer?
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Without Calculus With Differential Calculus

Value of f (x)
when x = c 

x

y = f (x)

c

y

Limit of f (x) as 
x approaches c 

y = f (x)

xc

y

Slope of a line 

Δx

Δy Slope of a curve 

dx

dy

Secant line to 
a curve 

Tangent line to 
a curve 

Average rate of 
change between 
t = a and t = b t = a t = b

Instantaneous 
rate of change 
at t = c t = c

Curvature 
of a circle 

Curvature 
of a curve 

Height of a 
curve when 
x = c xc

y

Maximum height 
of a curve on 
an interval x

a b

y

Tangent plane 
to a sphere 

Tangent plane 
to a surface 

Direction of 
motion along 
a line 

Direction of 
motion along 
a curve 
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Without Calculus With Integral Calculus

Area of 
a rectangle 

Area under 
a curve 

x

y

Work done by a  
constant force

 

Work done by a
variable force

Center of a 
rectangle 

Centroid of 
a region 

Length of a 
line segment

Length of 
an arc

Surface area 
of a cylinder

Surface area of a 
solid of revolution

Mass of a solid 
of constant 
density 

Mass of a solid 
of variable 
density

Volume of a  
rectangular 
solid

Volume of a 
region under 
a surface

Sum of a 
finite number a1 + a2 + .  .  . + an = S 
of terms

Sum of an 
infinite number a1 + a2 + a3 + .  .  . = S 
of terms

x

y
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The Tangent Line Problem
The notion of a limit is fundamental to the study of calculus. The following brief 
descriptions of two classic problems in calculus—the tangent line problem and the area 
problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function f  and a point P on its graph 
and are asked to find an equation of the tangent line to the graph at point P, as shown 
in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the 
tangent line at a point P is equivalent to finding the slope of the tangent line at P. You 
can approximate this slope by using a line through the point of tangency and a  second 
point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If 
P(c, f (c)) is the point of tangency and 

Q(c + ∆x, f(c + ∆x))

is a second point on the graph of f, then the slope of the secant line through these two 
points can be found using precalculus and is

 msec =
f (c + ∆x) − f (c)

c + ∆x − c
=

f (c + ∆x) − f (c)
∆x

.

x

Δx

f (c + Δx) − f (c)

Q (c + Δx,  f (c + Δx))

P(c, f (c))

y   

x

P

Q

Tangent line

Secant
lines

y

 (a)  The secant line through (c, f (c)) and  (b) As Q approaches P, the secant lines 
(c + ∆x, f (c + ∆x))  approach the tangent line.

 Figure 1.2

As point Q approaches point P, the slopes of the secant lines approach the slope of 
the tangent line, as shown in Figure 1.2(b). When such a “limiting position” exists, the 
slope of the tangent line is said to be the limit of the slopes of the secant lines. (Much 
more will be said about this important calculus concept in Chapter 2.)

Exploration
The following points lie on the graph of f (x) = x2.

Q1(1.5, f(1.5)), Q2(1.1, f(1.1)), Q3(1.01, f (1.01)), 
Q4(1.001, f(1.001)), Q5(1.0001, f(1.0001))

Each successive point gets closer to the point P(1, 1). Find the slopes of the 
secant lines through Q1 and P, Q2 and P, and so on. Graph these secant lines  
on a graphing utility. Then use your results to estimate the slope of the tangent 
line to the graph of f  at the point P.

The tangent line to the graph of f  at P
Figure 1.1

x

Tangent line
P

y = f(x)

y

GRACE CHISHOLM YOUNG 
(1868–1944)

Grace Chisholm Young 
received her degree in 
mathematics from Girton 
College in Cambridge, England. 
Her early work was published 
under the name of William 
Young, her husband. Between 
1914 and 1916, Grace Young 
published work on the 
foundations of calculus that 
won her the Gamble Prize 
from Girton College.

The Mistress and Fellows, Girton College, Cambridge
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The Area Problem
In the tangent line problem, you saw how the limit process can be applied to the slope 
of a line to find the slope of a general curve. A second classic problem in calculus 
is finding the area of a plane region that is bounded by the graphs of functions. This 
problem can also be solved with a limit process. In this case, the limit process is applied 
to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function 
y = f(x), the x-axis, and the vertical lines x = a and x = b, as shown in Figure 1.3. 
You can approximate the area of the region with several rectangular regions, as shown 
in Figure 1.4. As you increase the number of rectangles, the approximation tends 
to become better and better because the amount of area missed by the rectangles 
decreases. Your goal is to determine the limit of the sum of the areas of the  rectangles 
as the number of rectangles increases without bound.

x
a b

y

y = f (x)

  
y = f (x)

x
a b

y

 Approximation using four rectangles Approximation using eight rectangles
 Figure 1.4

Area under a curve
Figure 1.3

x
a b

y

y = f (x)

HISTORICAL NOTE

In one of the most astounding 
events ever to occur in  
mathematics, it was discovered 
that the tangent line problem 
and the area problem are 
closely related. This discovery 
led to the birth of calculus. 
You will learn about the 
relationship between these 
two problems when you study 
the Fundamental Theorem of 
Calculus in Chapter 4.

Exploration
Consider the region bounded by the graphs of

f(x) = x2, y = 0, and x = 1

as shown in part (a) of the figure. The area of the region can be approximated 
by two sets of rectangles—one set inscribed within the region and the other 
set circumscribed over the region, as shown in parts (b) and (c). Find the sum 
of the areas of each set of rectangles. Then use your results to approximate the 
area of the region.

f (x) = x2

x
1

1

y  

f (x) = x2

x
1

1

y  

f (x) = x2

x
1

1

y

(a) Bounded region (b) Inscribed rectangles (c) Circumscribed rectangles
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1.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Precalculus and Calculus Describe the relationship 

between precalculus and calculus. List three precalculus 
concepts and their corresponding calculus counterparts.

2.  Secant and Tangent Lines Discuss the 
relationship between secant lines through a fixed point 
and a corresponding tangent line at that fixed point.

 Precalculus or Calculus In Exercises 3–6, 
decide whether the problem can be solved using 
precalculus or whether calculus is required. If the 
problem can be solved using precalculus, solve it. 
If the problem seems to require calculus, explain 
your reasoning and use a graphical or numerical 
approach to estimate the solution.

3.  Find the distance traveled in 15 seconds by an object traveling 
at a constant velocity of 20 feet per second.

4.  Find the distance traveled in 15 seconds by an object moving 
with a velocity of v(t) = 20 + 7 cos t  feet per second.

6.  A bicyclist is riding on a  

x
1 2 3 4 5 6

1

−1

2

3

y

f (x) = 0.08x

 
path modeled by the function 
f (x) = 0.08x, where x and f (x) 
are measured in miles (see  
figure). Find the rate of change  
of elevation at x = 2.

7.  Secant Lines Consider the function  f (x) = √x and the 
point P(4, 2) on the graph of f.

 (a)  Graph f  and the secant lines passing through P(4, 2) and 
Q (x, f (x)) for x-values of 1, 3, and 5.

 (b) Find the slope of each secant line.

 (c)  Use the results of part (b) to estimate the slope of the 
tangent line to the graph of f  at P(4, 2). Describe how to 
improve your approximation of the slope.

8.  Secant Lines Consider the function f (x) = 6x − x2 and 
the point P(2, 8) on the graph of f.

 (a)  Graph f  and the secant lines passing through P(2, 8) and 
Q(x, f (x)) for x-values of 3, 2.5, and 1.5.

 (b) Find the slope of each secant line.

 (c)  Use the results of part (b) to estimate the slope of the 
tangent line to the graph of f  at P(2, 8). Describe how to 
improve your approximation of the slope.

9.  Approximating Area Use the rectangles in each graph to 
approximate the area of the region bounded by y = 5�x, y = 0, 
x = 1, and x = 5. Describe how you could continue this process 
to obtain a more accurate approximation of the area.

1

1

2

2

3

3

4

4

5

5

x

y   

x
1

1

2

2

3

3

4

4

5

5

y

 10.  HOW DO YOU SEE IT? How would you 
describe the instantaneous rate of change of an 
automobile’s position on a highway?

10.  

EXPLORING CONCEPTS
11.  Length of a Curve Consider the length of the graph 

of f (x) = 5�x from (1, 5) to (5, 1).

x
1

1

2

2

3

3

4

4

5

5
(1, 5)

(5, 1)

y  

x

(1, 5)

(5, 1)

y

1

1

2

2

3

3

4

4

5

5

(a)  Approximate the length of the curve by finding the 
 distance between its two endpoints, as shown in the 
first figure.

(b)  Approximate the length of the curve by finding the 
sum of the lengths of four line segments, as shown 
in the second figure.

(c)  Describe how you could continue this process to 
obtain a more accurate approximation of the length 
of the curve.

A bicyclist is riding on a path modeled by the function 
f (x) = 0.04(8x − x2), where x and f (x) are measured in  
miles (see figure). Find the rate of change of elevation  
at x = 2.

x
1 2 3 4 5 6

1

−1

2

3

f (x) = 0.04 8x − x2

y

(            )

5. Rate of Change

The symbol  and a red exercise number indicates that a video solution can be 
seen at CalcView.com.

Raphael Christinat/Shutterstock.com
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52 Chapter 1 Limits and Their Properties

1.2 Finding Limits Graphically and Numerically

 Estimate a limit using a numerical or graphical approach.
 Learn different ways that a limit can fail to exist.
 Study and use a formal definition of limit.

An Introduction to Limits
To sketch the graph of the function

f(x) = x3 − 1
x − 1

for values other than x = 1, you can use standard curve-sketching techniques. At 
x = 1, however, it is not clear what to expect. To get an idea of the behavior of the 
graph of f  near x = 1, you can use two sets of x-values—one set that approaches 1 
from the left and one set that approaches 1 from the right, as shown in the table.

 

x approaches 1 from the left. x approaches 1 from the right.

x 0.75 0.9 0.99 0.999 1 1.001 1.01 1.1 1.25

f(x) 2.313 2.710 2.970 2.997 ? 3.003 3.030 3.310 3.813

 
f (x) approaches 3. f (x) approaches 3.

The graph of f  is a parabola that has a hole at the point (1, 3), as shown in  
Figure 1.5. Although x cannot equal 1, you can move arbitrarily close to 1, and as a 
result f(x) moves arbitrarily close to 3. Using limit notation, you can write

lim
x→1

 f(x) = 3. This is read as “the limit of f (x) as x approaches 1 is 3.”

This discussion leads to an informal definition of limit. If f(x) becomes arbitrarily 
close to a single number L as x approaches c from either side, then the limit of f(x) as 
x approaches c is L. This limit is written as

lim
x→c

 f(x) = L.

Exploration
The discussion above gives an example of how you can estimate a limit 
numerically by constructing a table and graphically by drawing a graph. 
Estimate the following limit numerically by completing the table.

lim
x→2

 
x2 − 3x + 2

x − 2

x 1.75 1.9 1.99 1.999 2 2.001 2.01 2.1 2.25

f(x) ? ? ? ? ? ? ? ? ?

Then use a graphing utility to estimate the limit graphically.

The limit of f (x) as x approaches 1 is 3.
Figure 1.5

x

y

−2 −1 1

2

3

f (x) = x
3 − 1
x  − 1

lim f (x) = 3
x→1 (1, 3)
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 Estimating a Limit Numerically

Evaluate the function f(x) = x�(√x + 1 − 1) at several x-values near 0 and use the 
results to estimate the limit

lim
x→0

 
x

√x + 1 − 1
.

Solution The table lists the values of f (x) for several x-values near 0.

 

x approaches 0 from the left. x approaches 0 from the right.

x −0.01 −0.001 −0.0001 0 0.0001 0.001 0.01

f(x) 1.99499 1.99950 1.99995 ? 2.00005 2.00050 2.00499

 
f (x) approaches 2. f (x) approaches 2.

From the results shown in the table, you can estimate the limit to be 2. This limit is 
reinforced by the graph of f  shown in Figure 1.6. 

In Example 1, note that the function is undefined at x = 0, and yet f (x) appears 
to be approaching a limit as x approaches 0. This often happens, and it is important 
to realize that the existence or nonexistence of f (x) at x = c has no bearing on the 
existence of the limit of f (x) as x approaches c.

 Finding a Limit

Find the limit of f(x) as x approaches 2, where

f (x) = {1,

0,

    x ≠ 2

    x = 2
.

Solution Because f(x) = 1 for all x other than x = 2, you can estimate that the limit 
is 1, as shown in Figure 1.7. So, you can write

lim
x→2

 f(x) = 1.

The fact that f (2) = 0 has no bearing on the existence or value of the limit as x 
approaches 2. For instance, as x approaches 2, the function

g(x) = {1,

2,

    x ≠ 2

    x = 2

has the same limit as f. 

So far in this section, you have been estimating limits numerically and graphically. 
Each of these approaches produces an estimate of the limit. In Section 1.3, you will 
study analytic techniques for evaluating limits. Throughout the course, try to develop a 
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.

2. Graphical approach Draw a graph by hand or using technology.

3. Analytic approach Use algebra or calculus.

The limit of f (x) as x approaches 0 is 2.
Figure 1.6

−1 1

1

x

x

f is unde�ned
at x = 0.

f (x) = 
x + 1 − 1

y

The limit of f (x) as x approaches 2 is 1.
Figure 1.7

32

2

1

 

x

1, x ≠ 2

0, x = 2
f (x) =

y
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Limits That Fail to Exist
In the next three examples, you will examine some limits that fail to exist.

 Different Right and Left Behavior

Show that the limit lim
x→0

 
∣x∣
x  does not exist.

Solution Consider the graph of the function

 f(x) = ∣x∣
x

.

In Figure 1.8 and from the definition of absolute value,

∣x∣ = { x,
−x,

 x ≥ 0
    x < 0

 Definition of absolute value

you can see that 

∣x∣
x

= { 1,
−1,

 x > 0
   x < 0

.

So, no matter how close x gets to 0, there will be both positive and negative x-values 
that yield f (x) = 1 or f (x) = −1. Specifically, if δ (the lowercase Greek letter delta) 
is a positive number, then for x-values satisfying the inequality 0 < ∣x∣ < δ, you can 
classify the values of ∣x∣�x as −1 or 1 on the intervals

 (−δ, 0) or (0, δ).

Because ∣x∣�x approaches a different number from the right side of 0 than it approaches 
from the left side, the limit lim

x→0
 (∣x∣�x) does not exist.

 Unbounded Behavior

Discuss the existence of the limit lim
x→0

 
1
x2.

Solution Consider the graph of the function

 f(x) = 1
x2.

In Figure 1.9, you can see that as x approaches 0 from either the right or the left, f (x) 
increases without bound. This means that by choosing x close enough to 0, you can 
force f (x) to be as large as you want. For instance, f (x) will be greater than 100 when 
you choose x within 1

10 of 0. That is,

0 < ∣x∣ <
1

10
  f (x) =

1

x2
> 100.

Similarly, you can force f (x) to be greater than 1,000,000, as shown.

0 < ∣x∣ <
1

1000
  f (x) = 1

x2 > 1,000,000

Because f (x) does not become arbitrarily close to a single number L as x approaches 0, 
you can conclude that the limit does not exist. 

Negative x-values 
yield ∣x∣�x = −1.

Positive x-values  
yield ∣x∣�x = 1.

lim
x→0

 f (x) does not exist.

Figure 1.8

x

| x |
x

−1 1

1

δδ−

f (x) = −1

f (x) = 1

f (x) = 
y

lim
x→0

 f (x) does not exist.

Figure 1.9

x2

1

21−1−2

2

3

4

x

1
f (x) = 

y
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 Oscillating Behavior

See LarsonCalculus.com for an interactive version of this type of example.

Discuss the existence of the limit lim
x→0

 sin 
1
x
.

Solution Let f (x) = sin(1�x). In Figure 1.10, you can see that as x approaches 0, 
f (x) oscillates between −1 and 1. So, the limit does not exist because no matter how 
small you choose δ, it is possible to choose x1 and x2 within δ units of 0 such that 
sin(1�x1) = 1 and sin(1�x2) = −1, as shown in the table.

x
2
π

2
3π

2
5π

2
7π

2
9π

2
11π x→0

sin 
1
x

1 −1 1 −1 1 −1 Limit does not exist.

 

Common Types of Behavior Associated with Nonexistence  
of a Limit

1.  f(x) approaches a different number from the right side of c than it 
approaches from the left side.

2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two fixed values as x approaches c.

In addition to f (x) = sin(1�x), there are many other interesting functions that have 
unusual limit behavior. An often cited one is the Dirichlet function

f (x) = {0,

1,

 if x is rational

 if x is irrational
.

Because this function has no limit at any real number c, it is not continuous at any real 
number c. You will study continuity more closely in Section 1.4.

TECHNOLOGY PITFALL When you use a graphing utility to investigate 
the behavior of a function near the x-value at which you are trying to evaluate a 
limit, remember that you cannot always trust the graphs that graphing utilities draw. 
When you use a graphing utility to graph the function in Example 5 over an interval 
containing 0, you will most likely obtain an incorrect graph such as that shown in 
Figure 1.11. The reason that a graphing utility cannot show the correct graph is that 
the graph has infinitely many oscillations over any interval that contains 0.

0.25

−1.2

−0.25

1.2

 Incorrect graph of f (x) = sin(1�x)
 Figure 1.11

Interfoto/Alamy Stock Photo

lim
x→0

 f (x) does not exist.

Figure 1.10

−1

1

1−1
x

f (x) = sin 1
x

y

PETER GUSTAV DIRICHLET 
(1805–1859)

In the early development 
of calculus, the definition of 
a function was much more 
restricted than it is today, 
and “functions” such as the 
Dirichlet function would not 
have been considered . The 
modern definition of function  
is attributed to the German 
mathematician  Peter Gustav 
Dirichlet.  
See LarsonCalculus.com to read  
more of this biography.
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A Formal Definition of Limit
Consider again the informal definition of limit. If f (x) becomes  arbitrarily close to a  
single number L as x approaches c from either side, then the limit of f (x) as x approaches c 
is L, written as

lim
x→c

 f(x) = L.

At first glance, this definition looks fairly technical. Even so, it is informal because 
exact meanings have not yet been given to the two phrases

“ f (x) becomes arbitrarily close to L”

and

“x approaches c.”

The first person to assign mathematically rigorous meanings to these two phrases was 
Augustin-Louis Cauchy. His ε-δ definition of limit is the standard used today.

In Figure 1.12, let ε (the lowercase Greek letter epsilon) represent a (small) 
positive number. Then the phrase “f (x) becomes arbitrarily close to L” means that f (x) 
lies in the interval (L − ε, L + ε). Using absolute value, you can write this as

∣ f(x) − L∣ < ε.

Similarly, the phrase “x approaches c” means that there exists a positive number δ such 
that x lies in either the interval (c − δ, c) or the interval (c, c + δ). This fact can be  
concisely expressed by the double inequality

0 < ∣x − c∣ < δ.

The first inequality

0 < ∣x − c∣ The distance between x and c is more than 0.

expresses the fact that x ≠ c. The second inequality

∣x − c∣ < δ x is within δ units of c.

says that x is within a distance δ of c.

Definition of Limit

Let f  be a function defined on an open interval containing c (except possibly  
at c), and let L be a real number. The statement

lim
x→c

 f(x) = L

means that for each ε > 0 there exists a δ > 0 such that if

0 < ∣x − c∣ < δ

then

∣ f(x) − L∣ < ε.

Some functions do not have limits as x approaches c, but those that do cannot have 
two different limits as x approaches c. That is, if the limit of a function exists, then the 
limit is unique (see Exercise 81).

 FOR FURTHER INFORMATION
For more on the introduction of 
rigor to  calculus, see “Who Gave 
You the Epsilon? Cauchy and the 
Origins of Rigorous Calculus”  
by Judith V. Grabiner in The 
American Mathematical Monthly. 
To view this article, go to 
MathArticles.com.

REMARK Throughout this text, the expression

lim
x→c

 f(x) = L

implies two statements—the limit exists and the limit is L.

The ε-δ definition of the limit of f (x) 
as x approaches c
Figure 1.12

c + 

c − 
c

L

L + 

L − 

(c, L)

ε

ε

δ

δ
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The next three examples should help you develop a better understanding of the  
ε-δ definition of limit.

 Finding a δ for a Given ε

Given the limit

lim
x→3

 (2x − 5) = 1

find δ such that

∣(2x − 5) − 1∣ < 0.01

whenever

0 < ∣x − 3∣ < δ.

Solution In this problem, you are working with a given value of ε—namely, 
ε = 0.01. To find an appropriate δ, try to establish a connection between the absolute 
values

∣(2x − 5) − 1∣ and ∣x − 3∣.
Notice that

∣(2x − 5) − 1∣ = ∣2x − 6∣ = 2∣x − 3∣.
Because the inequality ∣(2x − 5) − 1∣ < 0.01 is equivalent to 2∣x − 3∣ < 0.01,
you can choose

δ = 1
2(0.01) = 0.005.

This choice works because

0 < ∣x − 3∣ < 0.005

implies that

∣(2x − 5) − 1∣ = 2∣x − 3∣ < 2(0.005) = 0.01.

As you can see in Figure 1.13, for x-values within 0.005 of 3 (x ≠ 3), the values of 
f (x) are within 0.01 of 1.

x

y

2

1

−1

−2

1 2 3 4

f (x) = 2x − 5

2.995

3.005
3

1.01

0.99
1

 The limit of f(x) as x approaches 3 is 1.
 Figure 1.13 

REMARK In Example 6, 
note that 0.005 is the largest 
value of δ that will guarantee

∣(2x − 5) − 1∣ < 0.01

whenever

0 < ∣x − 3∣ < δ.

Any smaller positive value  
of δ would also work.
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In Example 6, you found a δ-value for a given ε. This does not prove the existence 
of the limit. To do that, you must prove that you can find a δ for any ε, as shown in 
the next example.

 Using the ε-δ Definition of Limit 

Use the ε-δ definition of limit to prove that

lim
x→2

 (3x − 2) = 4.

Solution You must show that for each ε > 0, there exists a δ > 0 such that

∣(3x − 2) − 4∣ < ε

whenever

0 < ∣x − 2∣ < δ.

Because your choice of δ depends on ε, you need to establish a connection between the 
absolute values ∣(3x − 2) − 4∣ and ∣x − 2∣.

∣(3x − 2) − 4∣ = ∣3x − 6∣ = 3∣x − 2∣
So, for a given ε > 0, you can choose δ = ε�3. This choice works because

0 < ∣x − 2∣ < δ =
ε
3

implies that

∣(3x − 2) − 4∣ = 3∣x − 2∣ < 3(ε3) = ε.

As you can see in Figure 1.14, for x-values within δ of 2 (x ≠ 2), the values of  f(x) are 
within ε of 4.

 Using the ε-δ Definition of Limit

Use the ε-δ definition of limit to prove that lim
x→2

 x2 = 4.

Solution You must show that for each ε > 0, there exists a δ > 0 such that

∣x2 − 4∣ < ε

whenever

0 < ∣x − 2∣ < δ.

To find an appropriate δ, begin by writing ∣x2 − 4∣ = ∣x − 2∣∣x + 2∣. You are 
interested in values of x close to 2, so choose x in the interval (1, 3). To satisfy this 
restriction, let δ < 1. Furthermore, for all x in the interval (1, 3), x + 2 < 5 and thus 

∣x + 2∣ < 5. So, letting δ be the minimum of ε�5 and 1, it follows that, whenever 
0 < ∣x − 2∣ < δ, you have

∣x2 − 4∣ = ∣x − 2∣∣x + 2∣ < (ε5)(5) = ε.

As you can see in Figure 1.15, for x-values within δ of 2 (x ≠ 2), the values of  f(x) are
within ε of 4. 

Throughout this chapter, you will use the ε-δ definition of limit primarily to prove 
theorems about limits and to establish the existence or nonexistence of particular types 
of limits. For finding limits, you will learn techniques that are easier to use than the ε-δ 
definition of limit.

The limit of f (x) as x approaches 2 is 4.
Figure 1.14

x

y

2

3

4

1

1 2 3 4

δ

δ

ε

ε

f (x) = 3x − 2

2 + 
2
2 − 

4 + 

4

4 − 

The limit of f (x) as x approaches 2 is 4.
Figure 1.15

f (x) = x2

(2 +   )2

(2 −   )2

2 +

2 −

4 −

4 +

2

4

δ

δ

δ

δ

ε

ε
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1.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Describing Notation Write a brief description of 

the meaning of the notation lim
x→8

 f (x) = 25.

2.  Limits That Fail to Exist Identify three types of 
behavior associated with the nonexistence of a limit. 
Illustrate each type with a graph of a function.

3.  Formal Definition of Limit Given the limit

 lim
x→2

 (2x + 1) = 5

  use a sketch to show the meaning of the phrase  
“ 0 < ∣x − 2∣ < 0.25 implies ∣(2x + 1) − 5∣ < 0.5.”

4.  Functions and Limits Is the limit of f (x) as x
approaches c always equal to f (c)? Why or why not?

 Estimating a Limit Numerically In Exercises 
5–10, complete the table and use the result to 
estimate the limit. Use a graphing utility to graph 
the function to confirm your result.

5. lim
x→4

 
x − 4

x 2 − 5x + 4

 x 3.9 3.99 3.999 4 4.001 4.01 4.1

f (x) ?

6. lim
x→3

 
x − 3
x 2 − 9

 
x 2.9 2.99 2.999 3 3.001 3.01 3.1

f (x) ?

7. lim
x→0

 
√x + 1 − 1

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

8. lim
x→3

 
[1�(x + 1)] − (1�4)

x − 3

 
x 2.9 2.99 2.999 3 3.001 3.01 3.1

f (x) ?

9. lim
x→0

 
sin x

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

10. lim
x→0

 
cos x − 1

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

Estimating a Limit Numerically In Exercises 11–18, 
create a table of values for the function and use the result to 
estimate the limit. Use a graphing utility to graph the function 
to confirm your result.

11. lim
x→1

 
x − 2

x2 + x − 6
 12. lim

x→−4
 

x + 4
x2 + 9x + 20

13. lim
x→1

 
x4 − 1
x6 − 1

 14. lim
x→−3

 
x3 + 27
x + 3

15. lim
x→−6

 
√10 − x − 4

x + 6
 16. lim

x→2
 
[x�(x + 1)] − (2�3)

x − 2

17. lim
x→0

 
sin 2x

x
 18. lim

x→0
 

tan x
tan 2x

Limits That Fail to Exist In Exercises 19 and 20, create 
a table of values for the function and use the result to explain 
why the limit does not exist.

19. lim
x→0

 
2
x3 20. lim

x→0
 
3∣x∣
x2

 Finding a Limit Graphically In Exercises 
21–28, use the graph to find the limit (if it exists). 
If the limit does not exist, explain why.

21. lim
x→3

 (4 − x) 22. lim
x→0

 sec x

 

x
1 2 3 4

4

3

2

1

y   

x

−π
2

π
2

2

y

23. lim
x→2

 f (x) 24. lim
x→1

 f (x)

 f (x) = {4 − x,
0,

   x ≠ 2
   x = 2

  f (x) = {x2 + 3,
2,

   x ≠ 1
   x = 1

 

x
1 2 3 4

4

3

2

1

y   

−2 2 4

2

6

x

y
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25. lim
x→2

 
∣x − 2∣
x − 2

 26. lim
x→5

 
2

x − 5

 

x

y

3 4 5

−2
−3

1

2

3

  

x

y

6 8 10−2
−4
−6

2

4

6

27. lim
x→0

 cos 
1
x
 28. lim

x→π�2
 tan x

 

x
−1

−1

1

1

y   

x

2

1

π− π
2
3

y

π
2

π
2

 Graphical Reasoning In Exercises 29 and 30, 
use the graph of the function f  to decide whether 
the value of the given quantity exists. If it does, find 
it. If not, explain why.

29. (a) f (1) y

x
1−1 2 3 4 5 6

1
2
3

5
6 (b) lim

x→1
 f (x)

 (c) f (4)
 (d) lim

x→4
 f (x)

30. (a) f (−2) y

x
1−1

−2

2 3 4 5

2

3

4

−2

 (b) lim
x→−2

 f (x)

 (c) f (0)
 (d) lim

x→0
 f (x)

 (e) f (2)
 (f ) lim

x→2
 f (x)

 (g) f (4)
 (h) lim

x→4
 f (x)

 Limits of a Piecewise Function In Exercises 
31 and 32, sketch the graph of f. Then identify the 
values of c for which lim

x→c
 f (x) exists.

31. f (x) = {x2,
8 − 2x,
4,

x ≤ 2
2 < x < 4
x ≥ 4

32. f (x) = {sin x,
1 − cos x,
cos x,

x < 0
0 ≤ x ≤ π
x > π

Sketching a Graph In Exercises 33 and 34, sketch a graph 
of a function f  that satisfies the given values. (There are many 
correct answers.)

33. f (0) is undefined. 34. f (−2) = 0

 lim
x→0

 f (x) = 4  f (2) = 0

 f (2) = 6  lim
x→−2

 f (x) = 0

 lim
x→2

 f (x) = 3  lim
x→2

 f (x) does not exist.

35.  Finding a δ for a Given ε The graph of f (x) = x + 1 is 
shown in the figure. Find δ such that if 0 < ∣x − 2∣ < δ, then 

∣ f (x) − 3∣ < 0.4.

y

x
2.5 3.02.01.51.00.5

5

4

3

2

3.4

2.6

f

36. Finding a δ for a Given ε The graph of

 f (x) = 1
x − 1

  is shown in the figure. Find δ such that if 0 < ∣x − 2∣ < δ, 
then ∣ f (x) − 1∣ < 0.01.

y

x
4321

2.0

1.5

1.0

0.5

1.01

0.99
1.00

2

f

37. Finding a δ for a Given ε The graph of

 f (x) = 2 −
1
x

  is shown in the figure. Find δ such that if 0 < ∣x − 1∣ < δ, 
then ∣ f (x) − 1∣ < 0.1.

x
1 2

1

0.9
1

1.1

2

f

y

38.  Finding a δ for a Given ε Repeat Exercise 37 for 
ε = 0.05, 0.01, and 0.005. What happens to the value of δ as 
the value of ε gets smaller?
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 Finding a δ for a Given ε In Exercises 
39–44, find the limit L. Then find δ such that 

∣ f (x) − L∣ < ε whenever 0 < ∣x − c∣ < δ for (a) 
ε = 0.01 and (b) ε = 0.005.  

39. lim
x→2

 (3x + 2) 40. lim
x→6

 (6 −
x
3)

41. lim
x→2

 (x 2 − 3) 42. lim
x→4

 (x 2 + 6)

43. lim
x→4

 (x2 − x) 44. lim
x→3

 x2

 Using the ε-δ Definition of Limit In Exercises 
45–56, find the limit L. Then use the ε-δ definition 
to prove that the limit is L.

45. lim
x→4

 (x + 2) 46. lim
x→−2

 (4x + 5)

47. lim
x→−4

 (1
2 x − 1) 48. lim

x→3
 (3

4 x + 1)
49. lim

x→6
 3 50. lim

x→2
 (−1)

51. lim
x→0 

 3√x 52. lim
x→4

 √x

53. lim
x→−5

 ∣x − 5∣ 54. lim
x→3

 ∣x − 3∣
55. lim

x→1
 (x 2 + 1) 56. lim

x→−4
 (x 2 + 4x)

57.  Finding a Limit What is the limit of f (x) = 4 as x
approaches π?

58.  Finding a Limit What is the limit of g(x) = x as x
approaches π?

Writing In Exercises 59 and 60, use a graphing utility to 
graph the function and estimate the limit (if it exists). What is 
the domain of the function? Can you detect a possible error in 
determining the domain of a function solely by analyzing the 
graph generated by a graphing utility? Write a short paragraph 
about the importance of examining a function analytically as 
well as graphically.

59. f (x) =
√x + 5 − 3

x − 4
 60. f (x) =

x − 3

x 2 − 4x + 3

lim
x→4

 f (x)  lim
x→3

 f (x)

61.  Modeling Data For a long-distance phone call, a hotel 
charges $9.99 for the first minute and $0.79 for each additional 
minute or fraction thereof. A formula for the cost is given by

 C(t) = 9.99 − 0.79⟨1 − t⟩, t > 0

where t is the time in minutes.

  (Note: ⟨x⟩ = greatest integer n such that n ≤ x. For example, 
⟨3.2⟩ = 3 and ⟨−1.6⟩ = −2.)
(a) Evaluate C(10.75). What does C(10.75) represent?

 (b)  Use a graphing utility to graph the cost function for 
0 < t ≤ 6. Does the limit of C(t) as t approaches 3 exist? 
Explain.

62. Modeling Data Repeat Exercise 61 for

 C(t) = 5.79 − 0.99⟨1 − t⟩, t > 0.

EXPLORING CONCEPTS
63.  Finding δ When using the definition of limit to prove 

that L is the limit of f (x) as x approaches c, you find the 
largest satisfactory value of δ. Why would any smaller 
positive value of δ also work?

64.  Using the Definition of Limit The definition of 
limit on page 56 requires that f  is a function defined on 
an open interval containing c, except  possibly at c. Why 
is this requirement necessary?

65.  Comparing Functions and Limits If f (2) = 4, 
can you conclude anything about the limit of f (x) as x 
approaches 2? Explain your reasoning.

66.  Comparing Functions and Limits If the limit of 
f (x) as x approaches 2 is 4, can you conclude anything 
about f (2)? Explain your reasoning.

67.  Jewelry A jeweler resizes a ring so that its inner 
circumference is 6 centimeters.

 (a) What is the radius of the ring?

 (b)  The inner circumference of the ring varies between  
5.5 centimeters and 6.5 centimeters. How does the radius 
vary?

 (c)  Use the ε-δ definition of limit to describe this situation. 
Identify ε and δ.

69. Estimating a Limit Consider the function

 f (x) = (1 + x)1�x.

Estimate

lim
x→0

 (1 + x)1�x

by evaluating f  at x-values near 0. Sketch the graph of f.

A sporting goods manufacturer designs a golf ball having a 
volume of 2.48 cubic inches.

(a)  What is the radius  
of the golf ball?

(b)  The volume of the  
golf ball varies  
between 2.45 cubic  
inches and 2.51 cubic  
inches. How does the  
radius vary?

(c)  Use the ε-δ definition of limit to describe this situation. 
Identify ε and δ.

68. Sports

The symbol  indicates an exercise in which you are instructed to use graphing technology or a symbolic 
computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate 
technology.

Rayjunk/Shutterstock.com
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70. Estimating a Limit Consider the function

 f (x) = ∣x + 1∣ − ∣x − 1∣
x

.

 Estimate

 lim
x→0

 
∣x + 1∣ − ∣x − 1∣

x

 by evaluating f  at x-values near 0. Sketch the graph of f.

71. Graphical Reasoning The statement

 lim
x→2

 
x 2 − 4
x − 2

= 4

  means that for each ε > 0 there corresponds a δ > 0 such that 
if 0 < ∣x − 2∣ < δ, then

 ∣x2 − 4

x − 2
− 4∣ < ε.

 If ε = 0.001, then

 ∣x2 − 4

x − 2
− 4∣ < 0.001.

  Use a graphing utility to graph each side of this inequality. Use 
the zoom feature to find an interval (2 − δ, 2 + δ) such that 
the inequality is true.

 72.  HOW DO YOU SEE IT? Use the graph of f  
to identify the values of c for which lim

x→c
 f (x) exists.

(a) y

x
2 4−2

−2

4

6

(b) y

x
2−4 4 6

2

4

6

72.  

True or False? In Exercises 73–76, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73.  If f  is undefined at x = c, then the limit of f (x) as x approaches 
c does not exist.

74.  If the limit of f (x) as x approaches c is 0, then there must exist 
a number k such that f (k) < 0.001.

75. If f (c) = L, then lim
x→c

 f (x) = L.

76. If lim
x→c

 f (x) = L, then f (c) = L.

Determining a Limit In Exercises 77 and 78, consider the 
function f (x) = √x.

77. Is lim
x→0.25

 √x = 0.5 a true statement? Explain.

78. Is lim
x→0

 √x = 0 a true statement? Explain.

79. Evaluating Limits Use a graphing utility to evaluate

 lim
x→0

 
sin nx

x

 for several values of n. What do you notice?

80. Evaluating Limits Use a graphing utility to evaluate

 lim
x→0

 
tan nx

x

 for several values of n. What do you notice?

81.  Proof Prove that if the limit of f (x) as x approaches c exists, 
then the limit must be unique. [Hint: Let lim

x→c
 f (x) = L1 and 

lim
x→c

 f (x) = L 2 and prove that L1 = L2.]

82.  Proof Consider the line f (x) = mx + b, where m ≠ 0. Use 
the ε-δ definition of limit to prove that lim

x→c
 f (x) = mc + b.

83. Proof Prove that

 lim
x→c

 f (x) = L

 is equivalent to

 lim
x→c

 [ f (x) − L] = 0.

84. Proof

 (a) Given that

  lim
x→0

 (3x + 1)(3x − 1)x2 + 0.01 = 0.01

   prove that there exists an open interval (a, b) containing 0 
such that (3x + 1)(3x − 1)x2 + 0.01 > 0 for all x ≠ 0 in 
(a, b).

 (b)  Given that lim
x→c

 g(x) = L, where L > 0, prove that there

   exists an open interval (a, b) containing c such that 
g(x) > 0 for all x ≠ c in (a, b).

PUTNAM EXAM CHALLENGE
85.  Inscribe a rectangle of base b and height h in a circle of 

radius one, and inscribe an isosceles triangle in a region 
of the circle cut off by one base of the rectangle (with 
that side as the base of the triangle). For what value of h 
do the rectangle and triangle have the same area?

h

b

86.  A right circular cone has base of radius 1 and height 3. 
A cube is inscribed in the cone so that one face of the 
cube is contained in the base of the cone. What is the 
side-length of the cube?

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1.3 Evaluating Limits Analytically 63

1.3 Evaluating Limits Analytically

 Evaluate a limit using properties of limits.
 Develop and use a strategy for finding limits.
 Evaluate a limit using the dividing out technique.
 Evaluate a limit using the rationalizing technique.
 Evaluate a limit using the Squeeze Theorem.

Properties of Limits
In Section 1.2, you learned that the limit of f(x) as x approaches c does not depend on 
the value of f  at x = c. It may happen, however, that the limit is precisely f(c). In such 
cases, you can evaluate the limit by direct substitution. That is,

lim
x→c

 f(x) = f(c). Substitute c for x.

Such well-behaved functions are continuous at c. You will examine this concept more 
closely in Section 1.4.

THEOREM 1.1 Some Basic Limits

Let b and c be real numbers, and let n be a positive integer.

1. lim
x→c

 b = b  2. lim
x→c

 x = c  3. lim
x→c

 xn = cn

Proof The proofs of Properties 1 and 3 of Theorem 1.1 are left as exercises (see 
Exercises 107 and 108). To prove Property 2, you need to show that for each ε > 0 
there exists a δ > 0 such that ∣x − c∣ < ε whenever 0 < ∣x − c∣ < δ. To do this, 
choose δ = ε. The second inequality then implies the first, as shown in Figure 1.16.
 

 Evaluating Basic Limits

a. lim
x→2

 3 = 3  b. lim
x→−4

 x = −4  c. lim
x→2

 x2 = 22 = 4 

THEOREM 1.2 Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f  and g be 
functions with the limits

lim
x→c

 f (x) = L and lim
x→c

 g(x) = K.

1. Scalar multiple: lim
x→c

 [b f(x)] = bL

2. Sum or difference: lim
x→c

 [ f(x) ± g(x)] = L ± K

3. Product: lim
x→c

 [ f(x)g(x)] = LK

4. Quotient: lim
x→c

 
f(x)
g(x) =

L
K

, K ≠ 0

5. Power: lim
x→c

 [ f(x)]n = Ln

The proof of Property 1 is left as an exercise (see Exercise 109). 
The proofs of the other properties are given in Appendix A.

The symbol  indicates that a video of this proof is available at LarsonCalculus.com.

Figure 1.16

f (x) = x

x

=

=

c +

c +

c −

c −

c

ε

ε

δ δ

δ

δ

ε

ε

f (c) = c

y
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 The Limit of a Polynomial

Find the limit: lim
x→2

 (4x2 + 3).

Solution

 lim
x→2

 (4x2 + 3) = lim
x→2

 4x2 + lim
x→2

 3 Property 2, Theorem 1.2

 = 4 (limx→2
 x2) + lim

x→2
 3 Property 1, Theorem 1.2

 = 4(22) + 3 Properties 1 and 3, Theorem 1.1

 = 19 Simplify.

This limit is reinforced by the graph of f (x) = 4x2 + 3 shown in Figure 1.17. 

In Example 2, note that the limit (as x approaches 2) of the polynomial function  
p(x) = 4x2 + 3 is simply the value of p at x = 2.

lim
x→2

 p(x) = p(2) = 4(22) + 3 = 19

This direct substitution property is valid for all polynomial and rational functions with 
nonzero denominators.

THEOREM 1.3 Limits of Polynomial and Rational Functions

If p is a polynomial function and c is a real number, then

lim
x→c

 p(x) = p(c).

If r is a rational function given by r(x) = p(x)�q(x) and c is a real number such 
that q(c) ≠ 0, then

lim
x→c

 r(x) = r(c) = p(c)
q(c).

 The Limit of a Rational Function

Find the limit: lim
x→1

 
x2 + x + 2

x + 1
.

Solution Because the denominator is not 0 when x = 1, you can apply Theorem 1.3 
to obtain

lim
x→1

 
x2 + x + 2

x + 1
=

12 + 1 + 2
1 + 1

=
4
2
= 2. See Figure 1.18. 

Polynomial functions and rational functions are two of the three basic types of 
algebraic functions. The next theorem deals with the limit of the third type of algebraic 
function—one that involves a radical.

THEOREM 1.4 The Limit of a Function Involving a Radical

Let n be a positive integer. The limit below is valid for all c when n is odd,  
and is valid for c > 0 when n is even.

lim
x→c

 n√x = n√c

A proof of this theorem is given in Appendix A.

The limit of f (x) as x approaches 2 is 19.
Figure 1.17

x

f(x) = 4x2 + 3

y

−2−4−6−8−10 2 4 6 8 10

2

(2, 19)

4

The limit of f (x) as x approaches 1 is 2.
Figure 1.18

x

f(x) = x
2 + x + 2
x + 1

y

(1, 2)

1 2 3 4

1

2

3

4
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The next theorem greatly expands your ability to evaluate limits because it shows 
how to analyze the limit of a composite function.

THEOREM 1.5 The Limit of a Composite Function

If f  and g are functions such that lim
x→c

 g(x) = L and lim
x→L

 f(x) = f(L), then

lim
x→c

 f(g(x)) = f( lim
x→c

 g(x)) = f(L).

A proof of this theorem is given in Appendix A.

 The Limit of a Composite Function

See LarsonCalculus.com for an interactive version of this type of example.

Find the limit.

a. lim
x→0

 √x2 + 4  b. lim
x→3

 3√2x2 − 10

Solution

a. Because

lim
x→0

 (x2 + 4) = 02 + 4 = 4 and lim
x→4

 √x = √4 = 2

 you can conclude that

lim
x→0

 √x2 + 4 = √4 = 2.

b. Because

lim
x→3

 (2x2 − 10) = 2(32) − 10 = 8 and lim
x→8

 3√x = 3√8 = 2

 you can conclude that

lim
x→3

 3√2x2 − 10 = 3√8 = 2. 

You have seen that the limits of many algebraic functions can be evaluated by 
direct substitution. The six basic trigonometric functions also exhibit this desirable 
quality, as shown in the next theorem (presented without proof).

THEOREM 1.6 Limits of Trigonometric Functions

Let c be a real number in the domain of the given trigonometric function.

1. lim
x→c

 sin x = sin c 2. lim
x→c

 cos x = cos c 3. lim
x→c

 tan x = tan c

4. lim
x→c

 cot x = cot c 5. lim
x→c

 sec x = sec c 6. lim
x→c

 csc x = csc c

 Limits of Trigonometric Functions

a. lim
x→0

 tan x = tan(0) = 0

b. lim
x→π

 (x cos x) = (lim
x→π

 x)(lim
x→π

 cos x) = π cos(π) = −π

c. lim
x→0

 sin2 x = lim
x→0

 (sin x)2 = 02 = 0 
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A Strategy for Finding Limits
On the previous three pages, you studied several types of functions whose limits can be 
evaluated by direct substitution. This knowledge, together with the next theorem, can 
be used to develop a strategy for finding limits.

THEOREM 1.7 Functions That Agree at All but One Point

Let c be a real number, and let f(x) = g(x) for all x ≠ c in an open interval 
containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x) 
also exists and

lim
x→c

 f(x) = lim
x→c

 g(x).

A proof of this theorem is given in Appendix A.

 Finding the Limit of a Function

Find the limit.

lim
x→1

 
x3 − 1
x − 1

Solution Let f(x) = (x3 − 1)�(x − 1). By factoring and dividing out common 
factors, you can rewrite f  as

f(x) = (x − 1)(x2 + x + 1)
(x − 1) = x2 + x + 1 = g(x), x ≠ 1.

So, for all x-values other than x = 1, the functions f  and g agree, as shown in Figure 1.19. 
Because lim

x→1
 g(x) exists, you can apply Theorem 1.7 to conclude that f  and g have the

same limit at x = 1.

 lim
x→1

 
x3 − 1
x − 1

= lim
x→1

 
(x − 1)(x2 + x + 1)

x − 1
 Factor.

 = lim
x→1

 
(x − 1)(x2 + x + 1)

(x − 1)  Divide out common factor.

 = lim
x→1

(x2 + x + 1) Apply Theorem 1.7.

 = 12 + 1 + 1 Use direct substitution.

 = 3 Simplify. 

A Strategy for Finding Limits

1.  Learn to recognize which limits can be evaluated by direct substitution. 
(These limits are listed in Theorems 1.1 through 1.6.)

2.  When the limit of f (x) as x approaches c cannot be evaluated by direct 
substitution, try to find a function g that agrees with f  for all x other than 
x = c. [Choose g such that the limit of g(x) can be evaluated by direct 
substitution.] Then apply Theorem 1.7 to conclude analytically that

lim
x→c

 f (x) = lim
x→c

 g(x) = g(c).

3.  Use a graph or table to reinforce your conclusion.

REMARK When applying 
this strategy for finding a limit, 
remember that some functions 
do not have a limit (as x 
approaches c). For instance,  
the limit below does not exist.

lim
x→1

 
x3 + 1
x − 1

f  and g agree at all but one point.
Figure 1.19

x
−2 −1 1

2

3

y
f (x) = x3 − 1

x − 1

x
−2 −1 1

2

3

g(x) = x2 + x + 1

y
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Dividing Out Technique
Another procedure for finding a limit analytically is the dividing out technique. This 
technique involves dividing out common factors, as shown in Example 7.

 Dividing Out Technique

See LarsonCalculus.com for an interactive version of this type of example.

Find the limit: lim
x→−3

 
x2 + x − 6

x + 3
.

Solution Although you are taking the limit of a rational function, you cannot apply 
Theorem 1.3 because the limit of the denominator is 0.

 lim
x→−3

 (x2 + x − 6) = 0

lim
x→−3

 
x2 + x − 6

x + 3
 Direct substitution fails.

 lim
x→−3

 (x + 3) = 0

Because the limit of the numerator is also 0, the numerator and denominator have a 
common factor of (x + 3). So, for all x ≠ −3, you can divide out this factor to obtain 

f(x) = x2 + x − 6
x + 3

=
(x + 3)(x − 2)

x + 3
= x − 2 = g(x), x ≠ −3.

Using Theorem 1.7, it follows that

 lim
x→−3

 
x2 + x − 6

x + 3
= lim

x→−3
 (x − 2) Apply Theorem 1.7.

 = −5. Use direct substitution.

This result is shown graphically in Figure 1.20. Note that the graph of the function f  
coincides with the graph of the function g(x) = x − 2, except that the graph of f  has
a hole at the point (−3, −5). 

In Example 7, direct substitution produced the meaningless fractional form 0�0. 
An expression such as 0�0 is called an indeterminate form because you cannot (from 
the form alone) determine the limit. When you try to evaluate a limit and encounter this 
form, remember that you must rewrite the fraction so that the new denominator does not 
have 0 as its limit. One way to do this is to divide out common factors. Another way is 
to use the rationalizing technique shown on the next page.

TECHNOLOGY PITFALL A graphing utility can give misleading information 
about the graph of a function. For instance, try graphing the function from  
Example 7

f(x) = x2 + x − 6
x + 3

on a graphing utility. On some graphing utilities, 
the graph may appear to be defined at every 
real number, as shown in the figure at the right. 
However, because f  is undefined when x = −3, 
you know that the graph of f  has a hole at 
x = −3. You can verify this on a graphing 
utility using the trace or table feature. Misleading graph of f

6

−9

−12

3

f is unde�ned
when x = −3.

REMARK In the solution  
to Example 7, be sure you see 
the usefulness of the Factor 
Theorem of Algebra. This 
theorem  states that if c is a  
zero of a polynomial function, 
then (x − c) is a factor of the 
polynomial. So, when you  
apply direct substitution to a 
rational function and obtain

r (c) = p(c)
q(c) =

0
0

you can conclude that (x − c) 
must be a common factor of 
both p(x) and q(x).

f  is undefined when x = −3. The limit 
of f (x) as x approaches −3 is −5.
Figure 1.20

21

−1

−1 −2

−2

−4

−3

−5

x

(−3, −5)

f (x) = x
2 + x − 6
x + 3

y
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Rationalizing Technique
Another way to find a limit analytically is the rationalizing technique, which involves 
rationalizing either the numerator or denominator of a fractional expression. Recall 
that rationalizing the numerator (denominator) means multiplying the numerator 
and denominator by the conjugate of the numerator (denominator). For instance, to 
rationalize the numerator of

√x + 4
x

multiply the numerator and denominator by the conjugate of √x + 4, which is

√x − 4.

 Rationalizing Technique

Find the limit: lim
x→0

 
√x + 1 − 1

x
.

Solution By direct substitution, you obtain the indeterminate form 0�0.

 lim
x→0

 (√x + 1 − 1) = 0

lim
x→0

 
√x + 1 − 1

x
 Direct substitution fails.

 lim
x→0

 x = 0

In this case, you can rewrite the fraction by rationalizing the numerator.

 
√x + 1 − 1

x
= (√x + 1 − 1

x )(√x + 1 + 1

√x + 1 + 1)
 =

(x + 1) − 1

x(√x + 1 + 1)
 =

x

x(√x + 1 + 1)
 =

1

√x + 1 + 1
, x ≠ 0

Now, using Theorem 1.7, you can evaluate the limit as shown.

 lim
x→0

 
√x + 1 − 1

x
= lim

x→0
 

1

√x + 1 + 1

 =
1

1 + 1

 =
1
2

A table or a graph can reinforce your conclusion that the limit is 12. (See Figure 1.21.)

 
x approaches 0 from the left. x approaches 0 from the right. 

x −0.25 −0.1 −0.01 −0.001 0 0.001 0.01 0.1 0.25

f (x) 0.5359 0.5132 0.5013 0.5001 ? 0.4999 0.4988 0.4881 0.4721

 f (x) approaches 0.5. f (x) approaches 0.5.

 

REMARK The rationalizing 
technique for evaluating limits 
is based on multiplication by  
a convenient form of 1. In 
Example 8, the convenient  
form is

1 =
√x + 1 + 1

√x + 1 + 1
.

The limit of f (x) as x approaches 0 is 12.  
Figure 1.21

x
−1

−1

1

1
f (x) = x  + 1 − 1

x

y
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The Squeeze Theorem
The next theorem concerns the limit of a function that is squeezed between two other 
functions, each of which has the same limit at a given x-value, as shown in Figure 1.22.

THEOREM 1.8 The Squeeze Theorem

If h(x) ≤ f(x) ≤ g(x) for all x in an open interval containing c, except possibly 
at c itself, and if

lim
x→c

 h(x) = L = lim
x→c

 g(x)

then lim
x→c

 f(x) exists and is equal to L.

A proof of this theorem is given in Appendix A.

You can see the usefulness of the Squeeze Theorem (also called the Sandwich 
Theorem or the Pinching Theorem) in the proof of Theorem 1.9.

THEOREM 1.9 Two Special Trigonometric Limits

1. lim
x→0

 
sin x

x
= 1  2. lim

x→0
 
1 − cos x

x
= 0

Proof The proof of the second limit is left as an exercise (see Exercise 121). To avoid 
the confusion of two different uses of x, the proof of the first limit is presented using the 
variable θ, where θ is an acute positive angle measured in radians. Figure 1.23 shows 
a circular sector that is squeezed between two triangles.

θ

θ

tan

1

   

θ

1

   

θ
θ

1

sin

 Area of triangle ≥  Area of sector ≥  Area of triangle

 
tan θ

2
 ≥  

θ
2

 ≥  
sin θ

2

Multiplying each expression by 2�sin θ produces

1
cos θ ≥

θ
sin θ ≥ 1

and taking reciprocals and reversing the inequalities yields

cos θ ≤
sin θ
θ ≤ 1.

Because cos θ = cos(−θ) and (sin θ)�θ = [sin(−θ)]�(−θ), you can conclude that this 
inequality is valid for all nonzero θ in the open interval (−π�2, π�2). Finally, because 
lim
θ→0

 cos θ = 1 and lim
θ→0

 1 = 1, you can apply the Squeeze Theorem to conclude that

lim
θ→0

 
sin θ
θ = 1.  

The Squeeze Theorem
Figure 1.22

y

x

g
g

f

h

c

f

h

f lies in here.

h(x) ≤ f (x) ≤ g(x)

A circular sector is used to prove 
Theorem 1.9.
Figure 1.23

x

1

θ

θ
θ θ

(1, 0)

(1, tan   )

(cos   , sin   )

y
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 A Limit Involving a Trigonometric Function

Find the limit: lim
x→0

 
tan x

x
.

Solution Direct substitution yields the indeterminate form 0�0. To solve this  
problem, you can write tan x as (sin x)�(cos x) and obtain

lim
x→0

 
tan x

x
= lim

x→0
 (sin x

x )(
1

cos x).
Now, because

lim
x→0

 
sin x

x
= 1

and

lim
x→0

 
1

cos x
= 1

you can obtain

 lim
x→0

 
tan x

x
= (limx→0

 
sin x

x )(limx→0
 

1
cos x)

 = (1)(1)
 = 1.

(See Figure 1.24.)

 A Limit Involving a Trigonometric Function

Find the limit: lim
x→0

 
sin 4x

x
.

Solution Direct substitution yields the indeterminate form 0�0. To solve this 
problem, you can rewrite the limit as

lim
x→0

 
sin 4x

x
= 4(limx→0

 
sin 4x

4x ). Multiply and divide by 4.

Now, by letting y = 4x and observing that x approaches 0 if and only if y approaches 
0, you can write

 lim
x→0

 
sin 4x

x
= 4(limx→0

 
sin 4x

4x )
  = 4(limy→0

 
sin y

y ) Let y = 4x.  

 = 4(1) Apply Theorem 1.9(1).

 = 4.
(See Figure 1.25.) 

TECHNOLOGY Use a graphing utility to confirm the limits in the examples and 
in the exercise set. For instance, Figures 1.24 and 1.25 show the graphs of

f(x) = tan x
x

 and g(x) = sin 4x
x

.

Note that the first graph appears to contain the point (0, 1) and the second graph 
appears to contain the point (0, 4), which lends support to the conclusions obtained 
in Examples 9 and 10.

REMARK Be sure you 
understand the mathematical 
conventions regarding parentheses 
and trigonometric functions. For 
instance, in Example 10, sin 4x 
means sin(4x).

The limit of f (x) as x approaches 0 is 1.
Figure 1.24

−
2
π

2
π

−2

4
f (x) = tan x

x

The limit of g(x) as x approaches 0 
is 4.
Figure 1.25

−
2
π

2
π

−2

6
g(x) = sin 4x

x
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1.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Polynomial Function Describe how to find the limit 

of a polynomial function p(x) as x approaches c.

2.  Indeterminate Form What is meant by an 
indeterminate form?

3.  Squeeze Theorem In your own words, explain the 
Squeeze Theorem.

4.  Special Limits List the two special trigonometric 
limits.

 Finding a Limit In Exercises 5–22, find the 
limit.

 5. lim
x→2

 x3  6. lim
x→−3

 x4

 7. lim
x→−3

 (2x + 5)  8. lim
x→9

 (4x − 1)

 9. lim
x→−3

 (x2 + 3x) 10. lim
x→2

 (−x3 + 1)

11. lim
x→−3

 (2x2 + 4x + 1) 12. lim
x→1

 (2x3 − 6x + 5)

13. lim
x→3

 √x + 8 14. lim
x→2

 3√12x + 3

15. lim
x→−4

 (1 − x)3 16. lim
x→0

  (3x − 2)4

17. lim
x→2

 
3

2x + 1
 18. lim

x→−5
 

5
x + 3

19. lim
x→1

 
x

x2 + 4
 20. lim

x→1
 
3x + 5
x + 1

21. lim
x→7

 
3x

√x + 2
 22. lim

x→3
 
√x + 6
x + 2

 Finding Limits In Exercises 23–26, find the 
limits.

23. f (x) = 5 − x, g(x) = x3

 (a) lim
x→1

 f (x)  (b) lim
x→4

 g(x)  (c) lim
x→1

 g( f (x))

24. f (x) = x + 7, g(x) = x2

 (a) lim
x→−3

 f (x)  (b) lim
x→4

 g(x)  (c) lim
x→−3

  g( f (x))

25. f (x) = 4 − x2, g(x) = √x + 1

 (a) lim
x→1

 f (x)  (b) lim
x→3

 g(x)  (c) lim
x→1

 g( f (x))

26. f (x) = 2x2 − 3x + 1, g(x) = 3√x + 6

 (a) lim
x→4

 f (x)  (b) lim
x→21

 g(x)  (c) lim
x→4

 g( f (x))

 Finding a Limit of a Trigonometric 
Function In Exercises 27–36, find the limit of 
the trigonometric function.

27. lim
x→π�2

 sin x 28. lim
x→π

 tan x

29. lim
x→1

 cos 
πx
3

 30. lim
x→2

 sin 
π x
12

31. lim
x→0

 sec 2x 32. lim
x→π

 cos 3x

33. lim
x→5π�6

 sin x 34. lim
x→5π�3

 cos x

35. lim
x→3

 tan 
πx
4

 36. lim
x→7

 sec 
πx
6

 Evaluating Limits In Exercises 37–40, use the 
information to evaluate the limits.

37. lim
x→c

 f (x) = 2
5 38. lim

x→c
 f (x) = 2

 lim
x→c

 g(x) = 2  lim
x→c

 g(x) = 3
4

 (a) lim
x→c

 [5g(x)]  (a) lim
x→c

 [4 f (x)]

 (b) lim
x→c

 [ f (x) + g(x)]  (b) lim
x→c

 [ f (x) + g(x)]

 (c) lim
x→c

 [ f (x)g(x)]  (c) lim
x→c

 [ f (x)g(x)]

 (d) lim
x→c

 
f (x)
g(x)   (d) lim

x→c
 
f (x)
g(x)

39. lim
x→c

 f (x) = 16 40. lim
x→c

 f (x) = 27

 (a) lim
x→c

 [ f (x)]2  (a) lim
x→c

 3√f (x)

 (b) lim
x→c

 √f (x)  (b) lim
x→c

 
f (x)
18

 (c) lim
x→c

 [3 f (x)]  (c) lim
x→c

 [ f (x)] 2

 (d) lim
x→c

 [ f (x)]3�2  (d) lim
x→c

 [ f (x)] 2�3

 Finding a Limit In Exercises 41–46, write a 
simpler function that agrees with the given function at 
all but one point. Then find the limit of the function. 
Use a graphing utility to confirm your result.

41. lim
x→0

 
x2 + 3x

x
 42. lim

x→0
 
x4 − 5x2

x2

43. lim
x→−1

 
x 2 − 1
x + 1

 44. lim
x→−2

 
3x2 + 5x − 2

x + 2

45. lim
x→2

 
x3 − 8
x − 2

 46. lim
x→−1

 
x3 + 1
x + 1

 Finding a Limit In Exercises 47–62, find the 
limit.

47. lim
x→0

 
x

x2 − x
 48. lim

x→0
 
7x3 − x2

x

49. lim
x→4

 
x − 4

x2 − 16
 50. lim

x→5
 

5 − x
x2 − 25

51. lim
x→−3

 
x2 + x − 6

x2 − 9
 52. lim

x→2
 
x2 + 2x − 8
x2 − x − 2

53. lim
x→4

 
√x + 5 − 3

x − 4
 54. lim

x→3
 
√x + 1 − 2

x − 3

55. lim
x→0

 
√x + 5 − √5

x
 56. lim

x→0
 
√2 + x − √2

x
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57. lim
x→0

 
[1�(3 + x)] − (1�3)

x

58. lim
x→0

 
[1�(x + 4)] − (1�4)

x

59. lim
∆x→0

 
2(x + ∆x) − 2x

∆x

60. lim
∆x→0

 
(x + ∆x)2 − x 2

∆x

61. lim
∆x→0

 
(x + ∆x)2 − 2(x + ∆x) + 1 − (x2 − 2x + 1)

∆x

62. lim
∆x→0

 
(x + ∆x)3 − x3

∆x

 Finding a Limit of a Trigonometric 
Function In Exercises 63–74, find the limit of 
the trigonometric function.

63. lim
x→0

 
sin x
5x

 64. lim
x→0

 
3(1 − cos x)

x

65. lim
x→0

 
(sin x)(1 − cos x)

x2  66. lim
θ→0

 
cos θ tan θ

θ

67. lim
x→0

 
sin2 x

x
 68. lim

x→0
 
tan2 x

x

69. lim
h→0

 
(1 − cos h)2

h
 70. lim

ϕ→π
 ϕ sec ϕ

71. lim
x→0

 
6 − 6 cos x

3
 72. lim

x→0
 
cos x − sin x − 1

2x

73. lim
t→0

 
sin 3t

2t

74. lim
x→0

 
sin 2x
sin 3x

  [Hint: Find lim
x→0

 (2 sin 2x
2x )( 3x

3 sin 3x) .]
 Graphical, Numerical, and Analytic 
Analysis In Exercises 75–82, use a graphing 
utility to graph the function and estimate the limit. 
Use a table to reinforce your conclusion. Then find 
the limit by analytic methods.

75. lim
x→0

 
√x + 2 − √2

x
 76. lim

x→16
 
4 − √x
x − 16

77. lim
x→0

 
[1�(2 + x)] − (1�2)

x
  78. lim

x→2
  

x5 − 32
x − 2

79. lim
t→0

 
sin 3t

t
 80. lim

x→0
 
cos x − 1

2x2

81. lim
x→0

 
sin x2

x
 82. lim

x→0
 
sin x

3√x

 Finding a Limit In Exercises 83–90, find

 lim
Δx→0

 
f (x + Δx) − f (x)

Δx .

83. f (x) = 3x − 2 84.  f (x) = −6x + 3

85. f (x) = x2 − 4x 86. f (x) = 3x2 + 1

87. f (x) = 2√x 88. f (x) = √x − 5

89. f (x) = 1
x + 3

 90.  f (x) = 1
x2

Using the Squeeze Theorem In Exercises 91 and 92, use 
the Squeeze Theorem to find lim

x→c
 f (x).

 91. c = 0

  4 − x2 ≤ f (x) ≤ 4 + x2

 92. c = a

  b − ∣x − a∣ ≤ f (x) ≤ b + ∣x − a∣
Using the Squeeze Theorem In Exercises 93–96, use a 
graphing utility to graph the given function and the equations 
y = ∣x∣ and y = −∣x∣ in the same viewing window. Using the 
graphs to observe the Squeeze Theorem visually, find lim

x→0
 f(x).

 93. f (x) = ∣x∣ sin x 94. f (x) = ∣x∣ cos x

 95. f (x) = x sin 
1
x
 96. f (x) = x cos 

1
x

EXPLORING CONCEPTS
 97. Functions That Agree at All but One Point

 (a)  In the context of finding limits, discuss what is meant 
by two functions that agree at all but one point.

 (b)  Give an example of two functions that agree at all 
but one point.

 98.  Writing Functions Write a function of each 
specified type that has a limit of 4 as x approaches 8.

  (a) linear (b) polynomial of degree 2

  (c) rational (d) radical

  (e) cosine (f ) sine

 99. Writing Use a graphing utility to graph

   f (x) = x, g(x) = sin x, and h(x) = sin x
x

   in the same viewing window. Compare the magnitudes of 
f (x) and g(x) when x is close to 0. Use the comparison to 
write a short paragraph explaining why

  lim
x→0

 h(x) = 1.

 100.    HOW DO YOU SEE IT? Would you use 
the dividing out technique or the rationalizing 
technique to find the limit of the function? 
Explain your reasoning.

(a) lim
x→−2

 
x2 + x − 2

x + 2
    (b) lim

x→0
 
√x + 4 − 2

x

 

x

y

−1−2−3 1 2 3

−3
−4

1

2

 

x

y

−2 −1 1−3−4

1.00

0.75

0.50

100.    
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Free-Falling Object In Exercises 103 and 104, use the 
position function s(t) = −4.9t2 + 200, which gives the height 
(in meters) of an object that has fallen for t seconds from a 
height of 200 meters. The velocity at time t = a seconds is 
given by

lim
t→a

 
s(a) − s(t)

a − t
.

103. Find the velocity of the object when t = 3.

104. At what velocity will the object impact the ground?

105.   Finding Functions Find two functions f  and g such that 
lim
x→0

 f (x) and lim
x→0

 g(x) do not exist, but

  lim
x→0

 [ f (x) + g(x)]

  does exist.

106. Proof Prove that if lim
x→c

 f (x) exists and lim
x→c

 [ f (x) + g(x)]
  does not exist, then lim

x→c
 g(x) does not exist.

107. Proof Prove Property 1 of Theorem 1.1.

108.  Proof Prove Property 3 of Theorem 1.1. (You may use 
Property 3 of Theorem 1.2.)

109. Proof Prove Property 1 of Theorem 1.2.

110. Proof Prove that if lim
x→c

 f (x) = 0, then lim
x→c

 ∣ f (x)∣ = 0.

111. Proof Prove that if lim
x→c

 f (x) = 0 and ∣g(x)∣ ≤ M for a

  fixed number M and all x ≠ c, then lim
x→c

 [ f(x)g(x)] = 0.

112. Proof

  (a) Prove that if lim
x→c

 ∣ f (x)∣ = 0, then lim
x→c

 f (x) = 0.

   (Note: This is the converse of Exercise 110.)

  (b) Prove that if lim
x→c

f (x) = L, then lim
x→c

 ∣ f (x)∣ = ∣L∣.
   [Hint: Use the inequality � f (x)∣ − ∣L� ≤ ∣ f (x) − L∣.]

113.  Think About It Find a function f  to show that the  
converse of Exercise 112(b) is not true. [Hint: Find a function f  
such that lim

x→c
 ∣ f (x)∣ = ∣L∣ but lim

x→c
 f (x) does not exist.]

114.  Think About It When using a graphing utility to generate 
a table to approximate

  lim
x→0

 
sin x

x

   a student concluded that the limit was 0.01745 rather than 1. 
Determine the probable cause of the error.

True or False? In Exercises 115–120, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

115. lim
x→0

 
∣x∣
x

= 1 116. lim
x→π

 
sin x

x
= 1

117.  If f (x) = g(x) for all real numbers other than x = 0 and 
lim
x→0

 f (x) = L, then lim
x→0

 g(x) = L.

118. If lim
x→c

 f (x) = L, then f (c) = L.

119. lim
x→2

 f (x) = 3, where f (x) = {3,
0,

     x ≤ 2
     x > 2

120. If f (x) < g(x) for all x ≠ a, then lim
x→a

 f (x) < lim
x→a

 g(x).

121. Proof Prove the second part of Theorem 1.9.

  lim
x→0

 
1 − cos x

x
= 0

122. Piecewise Functions Let

  f (x) = {0,
1,

     if x is rational
     if x is irrational

  and

  g(x) = {0,
x,

     if x is rational
     if x is irrational

.

  Find (if possible) lim
x→0

 f (x) and lim
x→0

 g(x).

123. Graphical Reasoning Consider f (x) = sec x − 1
x2 .

  (a) Find the domain of f.

  (b)  Use a graphing utility to graph f. Is the domain of f  
 obvious from the graph? If not, explain.

  (c) Use the graph of f  to approximate lim
x→0

 f (x).

  (d) Confirm your answer to part (c) analytically.

124. Approximation

  (a) Find lim
x→0

 
1 − cos x

x2 .

  (b)  Use your answer to part (a) to derive the approximation 
cos x ≈ 1 − 1

2x2 for x near 0.

  (c) Use your answer to part (b) to approximate cos(0.1).
  (d)  Use a calculator to approximate cos(0.1) to four decimal 

places. Compare the result with part (c).

Kevin Fleming/Documentary Value/Corbis

In Exercises 101 and 102, use the position function 
s(t) = −16t2 + 500, which gives the height (in feet) of  
an object that has fallen for t seconds from a height of  
500 feet. The velocity at time t = a seconds is given by

lim
t→a

 
s(a) − s(t)

a − t
.

101.  A construction worker drops a full paint can from a 
height of 500 feet. How fast will the paint can be  
falling after 2 seconds?

102.  A construction  
worker drops a  
full paint can  
from a height of 
500 feet. When  
will the paint can 
hit the ground?  
At what velocity  
will the paint can  
impact the ground?

Free-Falling Object
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1.4 Continuity and One-Sided Limits

 Determine continuity at a point and continuity on an open interval.
 Determine one-sided limits and continuity on a closed interval.
 Use properties of continuity.
 Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval
In mathematics, the term continuous has much the same meaning as it has in everyday 
usage. Informally, to say that a function f  is continuous at x = c means that there is no 
interruption in the graph of f  at c. That is, its graph is unbroken at c, and there are no 
holes, jumps, or gaps. Figure 1.26 identifies three values of x at which the graph of f  is 
not continuous. At all other points in the interval (a, b), the graph of f  is uninterrupted 
and continuous.

x

a bc

f (c) is
not de�ned.

y  

x

a bc

lim f (x)
x→c
does not exist.

y  

x

a bc

x→c
lim f (x) ≠ f (c)

y

 Three conditions exist for which the graph of f  is not continuous at x = c.
 Figure 1.26

In Figure 1.26, it appears that continuity at x = c can be destroyed by any one of 
three conditions.

1. The function is not defined at x = c.

2. The limit of f(x) does not exist at x = c.

3. The limit of f(x) exists at x = c, but it is not equal to f(c).

If none of the three conditions is true, then the function f  is called continuous at c, as 
indicated in the important definition below.

Definition of Continuity

Continuity at a Point
A function f  is continuous at c when these three conditions are met.

1. f(c) is defined.

2. lim
x→c

 f (x) exists.

3. lim
x→c

 f (x) = f (c)

Continuity on an Open Interval
A function is continuous on an open interval (a, b) when the function is 
continuous at each point in the interval. A function that is  continuous on the 
entire real number line (−∞, ∞) is everywhere continuous.

 FOR FURTHER INFORMATION
For more information on the  
concept of  continuity, see the  
article “Leibniz and the Spell of 
the Continuous” by Hardy Grant  
in The College Mathematics 
Journal. To view this article,  
go to MathArticles.com.

Exploration
Informally, you might say 
that a function is continuous 
on an open interval when 
its graph can be drawn with 
a pencil without lifting the 
pencil from the paper. Use 
a graphing utility to graph 
each function on the given 
interval. From the graphs, 
which functions would 
you say are continuous on 
the interval? Do you think 
you can trust the results 
you obtained graphically? 
Explain your reasoning.

 Function Interval

a. y = x2 + 1 (−3, 3)

b. y =
1

x − 2
 (−3, 3)

c. y =
sin x

x
 (−π, π)

d. y =
x2 − 4
x + 2

 (−3, 3)
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1.4 Continuity and One-Sided Limits 75

Consider an open interval I that contains a real number c. If a function f  is 
defined on I (except possibly at c), and f  is not continuous at c, then f  is said to 
have a discontinuity at c. Discontinuities fall into two categories: removable and  
non removable. A discontinuity at c is called removable when f  can be made 
continuous by appropriately defining (or redefining) f(c). For instance, the functions 
shown in Figures 1.27(a) and (c) have removable discontinuities at c and the function 
shown in Figure 1.27(b) has a nonremovable discontinuity at c.

 Continuity of a Function

Discuss the continuity of each function.

a. f(x) = 1
x
  b. g(x) = x2 − 1

x − 1
  c. h(x) = {x + 1,

x2 + 1,
 
   x ≤ 0

   x > 0
  d. y = sin x

Solution

a.  The domain of f  is all nonzero real numbers. From Theorem 1.3, you can conclude 
that f  is continuous at every x-value in its domain. At x = 0, f  has a  nonremovable 
discontinuity, as shown in Figure 1.28(a). In other words, there is no way to define 
f(0) so as to make the function continuous at x = 0.

b.  The domain of g is all real numbers except x = 1. From Theorem 1.3, you can 
conclude that g is continuous at every x-value in its domain. At x = 1, the function 
has a removable discontinuity, as shown in Figure 1.28(b). By defining g(1) as 2, 
the “redefined” function is continuous for all real numbers.

c.  The domain of h is all real numbers. The function h is continuous on (−∞, 0) and 
(0, ∞), and because

lim
x→0

 h(x) = 1

 h is continuous on the entire real number line, as shown in Figure 1.28(c).

d.  The domain of y is all real numbers. From Theorem 1.6, you can conclude that the 
function is continuous on its entire domain, (−∞, ∞), as shown in Figure 1.28(d).

 

x

1

1

2

2

3

3

−1

−1

y

f (x) = 1
x

 

x

1

1

2

2

3

3

(1, 2)

−1

−1

g(x) = x
2 − 1
x  − 1

y

 (a) Nonremovable discontinuity at x = 0 (b) Removable discontinuity at x = 1

 

x

1

1

2

2

3

3

−1

−1

h(x) = 
x + 1,

x2 + 1, x > 0

y

x ≤ 0

 

1

−1

x

y = sin x

y

π
2

3π
2

 (c) Continuous on entire real number line (d) Continuous on entire real number line

 Figure 1.28 

REMARK Some people may 
refer to the function in Example 
1(a) as “discontinuous,” but this 
terminology can be confusing. 
Rather than saying that the 
function is discontinuous, it 
is more precise to say that the 
function has a discontinuity  
at x = 0.

(a) Removable discontinuity

(b) Nonremovable discontinuity

(c) Removable discontinuity

Figure 1.27

x

a bc

y

x

a bc

y

x

a bc

y
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One-Sided Limits and Continuity on a Closed Interval
To understand continuity on a closed interval, you first need to look at a different type 
of limit called a one-sided limit. For instance, the limit from the right (or right-hand 
limit) means that x approaches c from values greater than c [see Figure 1.29(a)]. This 
limit is denoted as

lim
x→c+

 f(x) = L.    Limit from the right

Similarly, the limit from the left (or left-hand limit) means that x approaches c from 
values less than c [see Figure 1.29(b)]. This limit is denoted as 

 lim
x→c−

 f(x) = L.    Limit from the left

One-sided limits are useful in taking limits of functions involving radicals. For instance, 
if n is an even integer, then

 lim
x→0+

 n√x = 0.

 A One-Sided Limit

Find the limit of f(x) = √4 − x2 as x approaches −2 from the right.

Solution As shown in Figure 1.30, the limit as x approaches −2 from the right is

lim
x→−2+

 √4 − x2 = 0. 

One-sided limits can be used to investigate the behavior of step functions. One 
common type of step function is the greatest integer function ⟨x⟩, defined as

  ⟨x⟩ = greatest integer n such that n ≤ x.     Greatest integer function

For instance, ⟨2.5⟩ = 2 and ⟨−2.5⟩ = −3.

 The Greatest Integer Function

Find the limit of the greatest integer function f(x) = ⟨x⟩ as x approaches 0 from the left 
and from the right.

Solution As shown in Figure 1.31, the limit  
as x approaches 0 from the left is

lim
x→0−

 ⟨x⟩ = −1

and the limit as x approaches 0 from the right is

lim
x→0+

 ⟨x⟩ = 0.

So, f  has a discontinuity at zero because the  
left- and right-hand limits at zero are different. 
By similar reasoning, you can see that the  
greatest integer function has a discontinuity at 
any integer n.

x
1

1

2

2

3−1−2

−2

x[[ ]]f (x) =
y

Greatest integer function
Figure 1.31 

(b) Limit as x approaches c from the left.

Figure 1.29

(a) Limit as x approaches c from the right.

x

y

c < x
xc

f (x)L

x

y

c > x
x c

f (x)
L

The limit of f (x) as x approaches −2 
from the right is 0.
Figure 1.30

x
1

1

2

3

−1−2

−1

f (x) =     4 − x2

y
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1.4 Continuity and One-Sided Limits 77

When the limit from the left is not equal to the limit from the right, the (two-sided) 
limit does not exist. The next theorem makes this more explicit. The proof of this 
theorem follows directly from the definition of a one-sided limit.

THEOREM 1.10 The Existence of a Limit

Let f  be a function, and let c and L be real numbers. The limit of f(x) as x 
approaches c is L if and only if

lim
x→c−

 f(x) = L and lim
x→c+

 f(x) = L.

The concept of a one-sided limit allows you to extend the definition of continuity 
to closed intervals. Basically, a function is continuous on a closed interval when it 
is continuous in the interior of the interval and exhibits one-sided continuity at the 
endpoints. This is stated formally in the next definition.

Definition of Continuity on a Closed Interval

A function f  is continuous on the closed interval [a, b] when f  is continuous 
on the open interval (a, b) and

lim
x→a+

 f(x) = f(a)

and

lim
x→b−

 f(x) = f(b).

The function f  is continuous from the right at a and continuous from the 
left at b (see Figure 1.32).

Similar definitions can be made to cover continuity on intervals of the form (a, b] 
and [a, b) that are neither open nor closed, or on infinite intervals. For example,

f(x) = √x

is continuous on the infinite interval [0, ∞), and the function

g(x) = √2 − x

is continuous on the infinite interval (−∞, 2].

 Continuity on a Closed Interval

Discuss the continuity of

f(x) = √1 − x2.

Solution The domain of f  is the closed interval [−1, 1]. At all points in the open 
interval (−1, 1), the continuity of f  follows from Theorems 1.4 and 1.5. Moreover, 
because

lim
x→−1+

 √1 − x2 = 0 = f(−1) Continuous from the right

and

lim
x→1−

 √1 − x2 = 0 = f(1) Continuous from the left

you can conclude that f  is continuous on the closed interval [−1, 1], as shown in  
Figure 1.33. 

Continuous function on a closed interval
Figure 1.32

x

a b

y

f  is continuous on [−1, 1].
Figure 1.33

x

1

1−1

f (x) =     1 − x2

y
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The next example shows how a one-sided limit can be used to determine the value 
of absolute zero on the Kelvin scale.

 Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very 
close to 0 K have been produced in laboratories, absolute zero has never been attained. 
In fact, evidence suggests that absolute zero cannot be attained. How did scientists 
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute 
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French 
physicist Jacques Charles (1746–1823). Charles discovered that the volume of gas at a 
constant pressure increases linearly with the temperature of the gas. The table  illustrates 
this relationship between volume and temperature. To generate the values in the table, 
one mole of hydrogen is held at a constant pressure of one atmosphere. The volume V 
is approximated and is measured in liters, and the temperature T  is measured in degrees 
Celsius.

T −40 −20 0 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

The points represented by the table are shown  
in the figure at the right. Moreover, by using the 
points in the table, you can determine that T  and 
V are related by the linear equation

V = 0.08213T + 22.4334.

Solving for T, you get an equation for the  
temperature of the gas.

T =
V − 22.4334

0.08213

By reasoning that the volume of the gas  
can approach 0 (but can never equal or  
go below 0), you can determine that the  
“least possible temperature” is

 lim
V→0+

 T = lim
V→0+

 
V − 22.4334

0.08213

 =
0 − 22.4334

0.08213
 Use direct substitution.

 ≈ −273.15.

So, absolute zero on the Kelvin scale (0 K) is approximately −273.15° on the Celsius 
scale. 

The table below shows the temperatures in Example 5 converted to the Fahrenheit 
scale. Try repeating the solution shown in Example 5 using these temperatures and  
volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

T −40 −4 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

REMARK Charles’s Law  
for gases (assuming constant 
pressure) can be stated as

V = kT

where V is volume, k is a  
constant, and T  is temperature. 

T
−100−200−300

5

10

15

25

30

100

V = 0.08213T + 22.4334

(−273.15, 0)

V

The volume of hydrogen gas depends 
on its temperature.

Liquid helium is used to cool 
superconducting magnets, 
such as those used in magnetic 
resonance imaging (MRI) 
machines or in the Large 
Hadron Collider (see above). 
The magnets are made with 
materials that only superconduct 
at temperatures a few degrees 
above absolute zero. These 
temperatures are possible with 
liquid helium because helium 
becomes a liquid at −269°C, or 
4.15 K.

FABRICE COFFRINI/AFP/Getty Images
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Properties of Continuity
In Section 1.3, you studied several properties of limits. Each of those properties yields 
a corresponding property pertaining to the continuity of a function. For instance, 
Theorem 1.11 follows directly from Theorem 1.2.

THEOREM 1.11 Properties of Continuity

If b is a real number and f  and g are continuous at x = c, then the functions  
listed below are also continuous at c.

1. Scalar multiple: bf  2. Sum or difference: f ± g

3. Product: fg 4. Quotient: 
f
g

, g(c) ≠ 0

A proof of this theorem is given in Appendix A. 

It is important for you to be able to recognize functions that are continuous at every 
point in their domains. The list below summarizes the functions you have studied so far 
that are continuous at every point in their domains.

1. Polynomial: p(x) = anxn + an−1x
n−1 + . . . + a1x + a0

2. Rational: r(x) = p(x)
q(x), q(x) ≠ 0

3. Radical: f(x) = n√x

4. Trigonometric: sin x, cos x, tan x, cot x, sec x, csc x

By combining Theorem 1.11 with this list, you can conclude that a wide variety of 
elementary functions are continuous at every point in their domains.

 Applying Properties of Continuity

See LarsonCalculus.com for an interactive version of this type of example.

By Theorem 1.11, it follows that each of the functions below is continuous at every 
point in its domain.

f(x) = x + sin x, f(x) = 3 tan x, f(x) = x2 + 1
cos x

 

The next theorem, which is a consequence of Theorem 1.5, allows you to determine 
the continuity of composite functions such as

f(x) = sin 3x, f(x) = √x2 + 1, and f(x) = tan 
1
x
.

THEOREM 1.12 Continuity of a Composite Function

If g is continuous at c and f  is continuous at g(c), then the  
composite function given by ( f ∘ g)(x) = f (g(x)) is continuous at c. 

Proof By the definition of continuity, lim
x→c

 g(x) = g(c) and lim
x→g(c)

 f (x) = f (g(c)).

Apply Theorem 1.5 with L = g(c) to obtain lim
x→c

 f(g(x)) = f (limx→c
 g(x)) = f(g(c)). So,

( f ∘ g)(x) = f (g(x)) is continuous at c. 

REMARK One consequence 
of Theorem 1.12 is that when  
f  and g satisfy the given  
conditions, you can determine 
the limit of f(g(x)) as x 
approaches c to be

lim
x→c

 f(g(x)) = f(g(c)).

AUGUSTIN-LOUIS CAUCHY 
(1789–1857)

The concept of a continuous 
function was first introduced 
by Augustin-Louis Cauchy in 
1821. The definition given in 
his text Cours d’Analyse stated 
that indefinite small changes in 
y were the result of indefinite 
small changes in x. “… f (x) will 
be called a continuous function 
if … the numerical values of 
the difference f (x + α) − f (x) 
decrease indefinitely with those 
of α….”  
See LarsonCalculus.com to read 
more of this biography.

AS400 DB/Bettmann/Corbis
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 Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. f(x) = tan x  b. g(x) = { sin
 1
x
,

0,

x ≠ 0

x = 0
  c. h(x) = { x sin

 1
x
,

0,

x ≠ 0

x = 0

Solution

a. The tangent function f(x) = tan x is undefined at

x =
π
2
+ nπ, n is an integer.

    At all other points, f  is continuous. So, f(x) = tan x is continuous on the open 
 intervals

. . . , (−3π
2

, −
π
2), (−

π
2

, 
π
2), (

π
2

, 
3π
2 ), . . .

 as shown in Figure 1.34(a).

b.  Because y = 1�x is continuous except at x = 0 and the sine function is continuous 
for all real values of x, it follows from Theorem 1.12 that

y = sin 
1
x

  is continuous at all real values except x = 0. At x = 0, the limit of g(x) does not 
exist (see Example 5, Section 1.2). So, g is continuous on the intervals (−∞, 0) and 
(0, ∞), as shown in Figure 1.34(b).

c.  This function is similar to the function in part (b) except that the oscillations are 
damped by the factor x. Using the Squeeze Theorem, you obtain

−∣x∣ ≤ x sin 
1
x

≤ ∣x∣, x ≠ 0

 and you can conclude that

lim
x→0

 h(x) = 0.

 So, h is continuous on the entire real number line, as shown in Figure 1.34(c).

  

(a) f  is continuous on each open interval in 
its domain.

Figure 1.34

x

4

3

2

1

−3

−4

−π π

f (x) = tan x

y

(b) g is continuous on (−∞, 0) and (0, ∞).

x

1

−1

−1 1

y

g(x) = 
sin    , x ≠ 0

0,

1
x

x = 0

(c) h is continuous on the entire real number line.

x

1

−1

−1 1

y = | x |
y

h(x) = 
x = 00,

x sin    , x ≠ 01
x

y = −| x |
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The Intermediate Value Theorem
Theorem 1.13 is an important theorem concerning the behavior of functions that are 
continuous on a closed interval.

THEOREM 1.13 Intermediate Value Theorem

If f  is continuous on the closed interval [a, b], f (a) ≠ f (b), and k is any 
number between f(a) and f(b), then there is at least one number c in [a, b] 
such that

f(c) = k.

As an example of the application of the Intermediate Value Theorem, consider a 
person’s height. A girl is 5 feet tall on her thirteenth birthday and 5 feet 2 inches tall 
on her fourteenth birthday. Then, for any height h between 5 feet and 5 feet 2 inches, 
there must have been a time t when her height was exactly h. This seems reasonable 
because human growth is continuous and a person’s height does not abruptly change 
from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number c 
in the closed interval [a, b]. There may, of course, be more than one number c such that

f(c) = k

as shown in Figure 1.35. A function that is not continuous does not necessarily exhibit 
the intermediate value property. For example, the graph of the function shown in  
Figure 1.36 jumps over the horizontal line

y = k

and for this function there is no value of c in [a, b] such that f(c) = k.

x

k

b
c3c2a

c1

f (a)

f (b)

y      

x

b

k

a

f (a)

f (b)

y

 f  is continuous on [a, b]. f  is not continuous on [a, b].
 [There exist three c’s such that f (c) = k.] [There are no c’s such that f (c) = k.]
 Figure 1.35 Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a  function 
that is continuous on a closed interval. Specifically, if f  is continuous on [a, b] and f(a) 
and f(b) differ in sign, then the Intermediate Value Theorem guarantees the existence 
of at least one zero of f  in the closed interval [a, b].

REMARK The Intermediate Value Theorem tells you that at least one number c 
exists, but it does not provide a method for finding c. Such theorems are called 
existence theorems. By referring to a text on advanced calculus, you will find that a 
proof of this theorem is based on a property of real numbers called completeness. The 
Intermediate Value Theorem states that for a continuous function f, if x takes on all 
values between a and b, then f(x) must take on all values between f(a) and f(b).
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 An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function

f(x) = x3 + 2x − 1

has a zero in the interval [0, 1].

Solution Note that f  is continuous on the closed interval [0, 1]. Because

f(0) = 03 + 2(0) − 1 = −1 and f(1) = 13 + 2(1) − 1 = 2

it follows that f(0) < 0 and f(1) > 0. You can therefore apply the Intermediate Value 
Theorem to conclude that there must be some c in [0, 1] such that

f(c) = 0 f  has a zero in the closed interval [0, 1].

as shown in Figure 1.37.

x

1

1

2

−1

−1
(c, 0)

(1, 2)

(0, −1)

y f (x) = x3 + 2x − 1

 f  is continuous on [0, 1] with f (0) < 0 and f (1) > 0.
 Figure 1.37 

The bisection method for approximating the real zeros of a continuous function is 
similar to the method used in Example 8. If you know that a zero exists in the closed 
interval [a, b], then the zero must lie in the interval [a, (a + b)�2] or [(a + b)�2, b]. 
From the sign of f([a + b]�2), you can determine which interval contains the zero. By 
repeatedly bisecting the interval, you can “close in” on the zero of the function.

TECHNOLOGY You can use the root or zero feature of a graphing utility to 
approximate the real zeros of a continuous function. Using this feature, the zero of 
the function in Example 8, f(x) = x3 + 2x − 1, is approximately 0.453, as shown 
in the figure.

−3 3

−2

2

Zero
X=.45339765 Y=0

 Zero of f (x) = x3 + 2x − 1
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1.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Continuity In your own words, describe what it 

means for a function to be continuous at a point.

2.  One-Sided Limits What is the value of c?

 lim
x→c+

 2√x + 1 = 0

3.  Existence of a Limit Determine whether lim
x→3

 f (x)
exists. Explain.

 lim
x→3−

 f (x) = 1 and lim
x→3+

 f (x) = 1

4.  Intermediate Value Theorem In your own words, 
explain the Intermediate Value Theorem.

 Limits and Continuity In Exercises 5–10, use 
the graph to determine each limit, and discuss the 
continuity of the function.

(a) lim
x→c+

 f(x)  (b) lim
x→c−

 f(x)  (c) lim
x→c

 f(x)

 5. 

c = 4

(4, 3)

1 2 3 4 5−1

1

2

3

4

5

x

y   6. 

c = −2

(−2, −2)

x

y

−2
−1

−2

1

2

 7. 

x

y

2 4 6

4

c = 3

(3, 1)

(3, 0)

  8. 

x

y

(−3, 4)

(−3, 3)

−1−2−3−4−5

2

3

4

5
c = −3

 9. 

x
1

1

2

2 3 4 5 6−1
−2
−3

(2, 3)

(2, −3)

c = 2

y  10. 

x
1

2

3

4
c = −1

(−1, 2)

(−1, 0)−3

y

 Finding a Limit In Exercises 11–30, find the 
limit (if it exists). If it does not exist, explain why.

11. lim
x→8+

 
1

x + 8
 12. lim

x→3+
 

2
x + 3

13. lim
x→5+

 
x − 5

x2 − 25
 14. lim

x→4+
 

4 − x
x2 − 16

15. lim
x→−3−

 
x

√x2 − 9
 16. lim

x→4−
 
√x − 2
x − 4

17. lim
x→0−

 
∣x∣
x

 18. lim
x→10+

 
∣x − 10∣
x − 10

19. lim
∆x→0−

 

1
x + ∆x

−
1
x

∆x

20. lim
∆x→0+

 
(x + ∆x)2 + x + ∆x − (x2 + x)

∆x

21. lim
x→3−

 f (x), where f (x) = {
x + 2

2
,

12 − 2x
3

,

   x < 3

   x > 3

22. lim
x→3

 f (x), where f (x) = {x2 − 4x + 6,
−x2 + 4x − 2,

   x < 3
   x ≥ 3

23. lim
x→1

 f (x), where f (x) = {x3 + 1,
x + 1,

   x < 1
   x ≥ 1

24. lim
x→1+

 f (x), where f (x) = {x,
1 − x,

   x ≤ 1
   x > 1

25. lim
x→π

 cot x 26. lim
x→π�2

 sec x

27. lim
x→4−

(5⟨x⟩ − 7) 28. lim
x→2+

(2x − ⟨x⟩)

29. lim
x→−1

 (⟨ x
3 ⟩ + 3) 30. lim

x→1 (1 − ⟨−x
2⟩)

 Continuity of a Function In Exercises 31–34, 
discuss the continuity of the function.

31. f (x) = 1
x2 − 4

 32. f (x) = x2 − 1
x + 1

 

x

−1
−2
−3

−3

1

1

2

3

3

y   

x
−1−2

−3

−3

1

1

2

2

3

3

y

33. f (x) = 1
2⟨x⟩ + x 34. f (x) = {x,

2,
2x − 1,

    x < 1
    x = 1
    x > 1

 

x
−1−2

−3

−3

1

1

2

2

3

3

y   

x

−2

−2

−3

−3

1

1

2

2

3

3

y
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 Continuity on a Closed Interval In Exercises 
35–38, discuss the continuity of the function on the 
closed interval.

 Function Interval

35. g(x) = √49 − x2 [−7, 7]
36. f (t) = 3 − √9 − t2 [−3, 3]

37. f (x) = {3 − x,

3 + 1
2 x,

 
   x ≤ 0

   x > 0
 [−1, 4]

38. g(x) = 1
x2 − 4

 [−1, 2]

 Removable and Nonremovable Discontinuities 
In  Exercises 39–58, find the x-values (if any)  
at which f  is not continuous. Which of the 
discontinuities are removable?

39. f (x) = 6
x
 40. f (x) = 4

x − 6

41. f (x) = 1
4 − x2 42. f (x) = 1

x2 + 1

43. f (x) = 3x − cos x 44. f (x) = sin x − 8x

45. f (x) = x
x2 − x

 46. f (x) = x
x2 − 4

47. f (x) = x + 2
x2 − 3x − 10

 48. f (x) = x + 2
x2 − x − 6

49. f (x) = ∣x + 7∣
x + 7

 50. f (x) =
2∣x − 3∣

x − 3

51. f (x) = {1
2 x + 1,

3 − x,

x ≤ 2

x > 2

52. f (x) = {−2x,
x2 − 4x + 1,

x ≤ 2
x > 2

53. f (x) = {tan 
πx
4

,

x,

∣x∣ < 1

∣x∣ ≥ 1

54. f (x) = {csc 
πx
6

,

2,

∣x − 3∣ ≤ 2

∣x − 3∣ > 2

55. f (x) = csc 2x 56. f (x) = tan 
π x
2

57. f (x) = ⟨x − 8⟩ 58. f (x) = 5 − ⟨x⟩

 Making a Function Continuous In Exercises 
59–64, find the constant a, or the constants a and b, 
such that the function is continuous on the entire 
real number line.

59. f (x) = {3x2,
ax − 4,

    x ≥ 1
    x < 1

 60. f (x) = {3x3,
ax + 5,

    x ≤ 1
    x > 1

61. f (x) = {x3,
ax2,

x ≤ 2
x > 2

 62. g (x) = {4 sin x
x

,

a − 2x,

x < 0

x ≥ 0

63. f (x) = {2,
ax + b,
−2,

x ≤ −1
−1 < x < 3
x ≥ 3

64. g (x) = {x2 − a2

x − a
,

8,

x ≠ a

x = a

 Continuity of a Composite Function In 
Exercises 65–70, discuss the continuity of the 
composite function h(x) = f (g(x)).

65.  f (x) = x2 66.  f (x) = 5x + 1

 g(x) = x − 1  g(x) = x3

67.  f (x) = 1
x − 6

 68.  f (x) = 1

√x

 g(x) = x2 + 5  g(x) = x − 1

69.  f (x) = tan x 70.  f (x) = sin x

 g(x) = x
2

  g(x) = x2

Finding Discontinuities Using Technology In Exercises 
71–74, use a graphing utility to graph the function. Use the 
graph to determine any x-values at which the function is not 
continuous.

71. f (x) = ⟨x⟩ − x 72. h(x) = 1
x2 + 2x − 15

73. g(x) = {x2 − 3x,

2x − 5,

x > 4

x ≤ 4

74. f (x) = {cos x − 1
x

,

5x,

x < 0

x ≥ 0

Testing for Continuity In Exercises 75–82, describe the 
interval(s) on which the function is continuous.

75. f (x) = x
x2 + x + 2

 76. f (x) = x + 1

√x

77. f (x) = 3 − √x 78. f (x) = x√x + 3

79. f (x) = sec 
π x
4

 80. f (x) = cos 
1
x

81. f (x) = {x2 − 1
x − 1

,

2,

x ≠ 1

x = 1
 82. f (x) = {2x − 4,

1,

x ≠ 3

x = 3

Existence of a Zero In Exercises 83–86, explain why the 
function has at least one zero in the given interval.

 Function Interval

83. f (x) = 1
12 x 4 − x3 + 4 [1, 2]

84. f (x) = x3 + 5x − 3 [0, 1]
85. f (x) = x2 − 2 − cos x [0, π]

86. f (x) = −
5
x
+ tan 

π x
10

 [1, 4]

Existence of Multiple Zeros In Exercises 87 and 88, 
explain why the function has at least two zeros in the interval 
[1, 5].

87. f (x) = (x − 3)2 − 2 88. f (x) = 2 cos x
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Using the Intermediate Value Theorem In Exercises 
89–94, use the Intermediate Value Theorem and a graphing 
utility to approximate the zero of the function in the interval 
[0, 1]. Repeatedly “zoom in” on the graph of the function to 
approximate the zero accurate to two decimal places. Use the 
zero or root feature of the graphing utility to approximate the 
zero accurate to four decimal places.

 89. f (x) = x3 + x − 1

 90. f (x) = x4 − x2 + 3x − 1

 91. f (x) = √x2 + 17x + 19 − 6

 92. f (x) = √x4 + 39x + 13 − 4

 93. g(t) = 2 cos t − 3t

 94. h(θ) = tan θ + 3θ − 4

 Using the Intermediate Value Theorem In 
Exercises 95–100, verify that the Intermediate 
Value Theorem applies to the indicated interval 
and find the value of c guaranteed by the theorem.

 95. f (x) = x2 + x − 1, [0, 5], f (c) = 11

 96. f (x) = x2 − 6x + 8, [0, 3], f (c) = 0

 97. f (x) = √x + 7 − 2, [0, 5], f (c) = 1

 98. f (x) = 3√x + 8, [−9, −6], f (c) = 6

 99. f (x) = x − x3

x − 4
, [1, 3], f (c) = 3

100. f (x) = x2 + x
x − 1

, [52, 4], f (c) = 6

EXPLORING CONCEPTS
101.  Writing a Function Write a function that is 

continuous on (a, b) but not continuous on [a, b].
102.  Sketching a Graph Sketch the graph of any  

function f  such that

  lim
x→3+

 f (x) = 1 and lim
x→3−

 f (x) = 0.

  Is the function continuous at x = 3? Explain.

103.  Continuity of Combinations of Functions If 
the functions f  and g are continuous for all real x, is 
f + g always continuous for all real x? Is f�g always 
continuous for all real x? If either is not continuous, 
give an example to verify your conclusion.

104.  Removable and Nonremovable 
Discontinuities Describe the difference between a 
discontinuity that is removable and a discontinuity that 
is nonremovable. Then give an example of a function 
that satisfies each description.

  (a)  A function with a nonremovable discontinuity at 
x = 4

  (b)  A function with a removable discontinuity at 
x = −4

  (c)  A function that has both of the characteristics 
described in parts (a) and (b)

True or False? In Exercises 105–110, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

105. If lim
x→c

 f (x) = L and f (c) = L, then f  is continuous at c.

106.  If f (x) = g(x) for x ≠ c and f (c) ≠ g(c), then either f  or g 
is not continuous at c.

107.  The Intermediate Value Theorem guarantees that f (a) and 
f (b) differ in sign when a continuous function f  has at least 
one zero on [a, b].

108.  The limit of the greatest integer function as x approaches 0 
from the left is −1.

109.  A rational function can have infinitely many x-values at 
which it is not continuous.

110. The function  f (x) = ∣x − 1∣
x − 1

 is continuous on (−∞, ∞).

111.  Think About It Describe how the functions

   f (x) = 3 + ⟨x⟩ and g(x) = 3 − ⟨−x⟩

  differ.

 112.    HOW DO YOU SEE IT? Every day you 
dissolve 28 ounces of  chlorine in a swimming 
pool. The graph shows the amount of chlorine 
f (t) in the pool after t days. Estimate and 
interpret lim

t→4−
 f (t) and lim

t→4+
 f (t).

y

t
6 754321

140

112

84

56

28

112.    

113.  Data Plan A cell phone service charges $10 for the first 
gigabyte (GB) of data used per month and $7.50 for each 
additional gigabyte or fraction thereof. The cost of the data 
plan is given by

  C(t) = 10 − 7.5 ⟨1 − t⟩, t > 0

   where t is the amount of data used (in GB). Sketch the graph 
of this function and discuss its continuity.

114.  Inventory Management The number of units in 
inventory in a small company is given by

 N(t) = 25(2⟨t + 2
2 ⟩ − t)

   where t is the time in months. Sketch the graph of this 
function and discuss its continuity. How often must this 
company replenish its inventory?
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115.  Déjà Vu At 8:00 a.m. on Saturday, a man begins running 
up the side of a mountain to his weekend campsite (see 
figure). On Sunday morning at 8:00 a.m., he runs back down 
the mountain. It takes him 20 minutes to run up but only  
10 minutes to run down. At some point on the way down, 
he realizes that he passed the same place at exactly the same 
time on Saturday. Prove that he is correct. [Hint: Let s(t) 
and r(t) be the position functions for the runs up and down, 
and apply the Intermediate Value Theorem to the function 
f (t) = s(t) − r(t).]

Saturday 8:00 A.M. Sunday 8:00 A.M.
Not drawn to scale

116.  Volume Use the Intermediate Value Theorem to show 
that for all spheres with radii in the interval [5, 8], there is 
one with a volume of 1500 cubic centimeters.

117.  Proof Prove that if f  is continuous and has no zeros on 
[a, b], then either

  f (x) > 0 for all x in [a, b] or f (x) < 0 for all x in [a, b].

118. Dirichlet Function Show that the Dirichlet function

  f (x) = {0,
1,

    if x is rational
    if x is irrational

  is not continuous at any real number.

119. Continuity of a Function Show that the function

  f (x) = {0,
kx,

    if x is rational
    if x is irrational

   is continuous only at x = 0. (Assume that k is any nonzero 
real number.)

120. Signum Function The signum function is defined by

  sgn(x) = {−1,
0,
1,

x < 0
x = 0
x > 0

.

   Sketch a graph of sgn(x) and find the following (if possible).

  (a) lim
x→0−

 sgn(x)  (b) lim
x→0+

 sgn(x)  (c) lim
x→0

 sgn(x)

121.  Modeling Data The table lists the frequency F (in Hertz) 
of a musical note at various times t (in seconds).

  
t 0 1 2 3 4 5

F 436 444 434 446 433 444

  (a) Plot the data and connect the points with a curve.

  (b)  Does there appear to be a limiting frequency of the note? 
Explain.

122.  Creating Models A swimmer crosses a pool of width b 
by swimming in a straight line from (0, 0) to (2b, b). (See 
figure.)

x
(0, 0)

(2b, b)

b

y

  (a)  Let f  be a function defined as the y-coordinate of the 
point on the long side of the pool that is nearest the 
swimmer at any given time during the swimmer’s 
crossing of the pool. Determine the function f  and sketch 
its graph. Is f   continuous? Explain.

  (b)  Let g be the minimum distance between the swimmer 
and the long sides of the pool. Determine the function g 
and sketch its graph. Is g continuous? Explain.

123.  Making a Function Continuous Find all values of c 
such that f  is continuous on (−∞, ∞).

   f (x) = {1 − x2,
x,

x ≤ c
x > c

124.  Proof Prove that for any real number y there exists x in 
(−π�2, π�2) such that tan x = y.

125. Making a Function Continuous Let

   f (x) = √x + c2 − c
x

, c > 0.

   What is the domain of f ? How can you define f  at x = 0 in 
order for f  to be  continuous there?

126. Proof Prove that if

  lim
∆x→0

 f (c + ∆x) = f (c)

  then f  is continuous at c.

127.  Continuity of a Function Discuss the continuity of the 
function h(x) = x ⟨x⟩.

128. Proof

  (a)  Let f1(x) and f2(x) be continuous on the closed interval 
[a, b]. If f1(a) <  f2(a) and f1(b) > f2(b), prove that there 
exists c between a and b such that f1(c) = f2(c).

  (b)  Show that there exists c in [0, 
π
2] such that cos x = x.

   Use a graphing utility to approximate c to three decimal 
places.

PUTNAM EXAM CHALLENGE
129.  Prove or disprove: If x and y are real numbers with 

y ≥ 0 and y( y + 1) ≤ (x + 1)2, then y( y − 1) ≤ x2.

130. Determine all polynomials P(x) such that

  P(x2 + 1) = (P(x))2 + 1 and P(0) = 0.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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1.5 Infinite Limits

 Determine infinite limits from the left and from the right.
 Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits
Consider the function  f(x) = 3�(x − 2). From Figure 1.38 and the table, you can see 
that f(x) decreases without bound as x approaches 2 from the left, and f(x) increases 
without bound as x approaches 2 from the right.

 

x approaches 2 from the left. x approaches 2 from the right.

x 1.5 1.9 1.99 1.999 2 2.001 2.01 2.1 2.5

f(x) −6 −30 −300 −3000 ? 3000 300 30 6

 
f (x) decreases without bound. f (x) increases without bound.

This behavior is denoted as

lim
x→2−

 
3

x − 2
= −∞ f (x) decreases without bound as x approaches 2 from the left.

and

lim
x→2+

 
3

x − 2
= ∞. f (x) increases without bound as x approaches 2 from the right.

The symbols ∞ and −∞ refer to positive infinity and negative infinity, respectively. 
These symbols do not represent real numbers. They are convenient symbols used to 
describe unbounded conditions more concisely. A limit in which f(x) increases or 
decreases without bound as x approaches c is called an infinite limit.

Definition of Infinite Limits

Let f  be a function that is defined at every real number in some open interval 
containing c (except possibly at c itself). The statement

lim
x→c  

f(x) = ∞
means that for each M > 0 there exists a δ > 0 such that  f (x) > M whenever
0 < ∣x − c∣ < δ (see Figure 1.39). Similarly, the statement

lim
x→c  

f(x) = −∞
means that for each N < 0 there exists a δ > 0 such that  f (x) < N whenever

0 < ∣x − c∣ < δ.

To define the infinite limit from the left, replace 0 < ∣x − c∣ < δ by 
c − δ < x < c. To define the infinite limit from the right, replace 
0 < ∣x − c∣ < δ by c < x < c + δ.

Be sure you see that the equal sign in the statement lim f (x) = ∞ does not mean 
that the limit exists! On the contrary, it tells you how the limit fails to exist by  denoting 
the unbounded behavior of f(x) as x approaches c.

f (x) increases and decreases without 
bound as x approaches 2.
Figure 1.38

x

−2

−4

−4

−6

−6

2

4

4

6

6

→ −∞

f (x) = 3
x − 2

3
x − 2
as x → 2−

→ ∞3
x − 2
as x → 2+

y

Infinite limits
Figure 1.39

x

M

lim f (x) = ∞
x→c

δδ

c

y
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 Determining Infinite Limits from a Graph

Determine the limit of each function shown in Figure 1.40 as x approaches 1 from the 
left and from the right.

x

−1
−1

−2

−2

1

2

2

3

3

y

f (x) = 1
(x − 1)2

    

x

−1
−1

−2

−2

−3

2

2

y

f (x) = −1
x − 1

 (a) (b)
 Each graph has an asymptote at x = 1.
 Figure 1.40

Solution

a.  When x approaches 1 from the left or the right, (x − 1)2 is a small positive number. 
Thus, the quotient 1�(x − 1)2 is a large positive number, and f (x) approaches 
infinity from each side of x = 1. So, you can conclude that

lim
x→1

 
1

(x − 1)2 = ∞. Limit from each side is infinity.

 Figure 1.40(a) confirms this analysis.

b.  When x approaches 1 from the left, x − 1 is a small negative number. Thus, the 
quotient −1�(x − 1) is a large positive number, and f (x) approaches infinity from 
the left of x = 1. So, you can conclude that 

lim
x→1−

 
−1

x − 1
= ∞. Limit from the left side is infinity.

  When x approaches 1 from the right, x − 1 is a small positive number. Thus, the 
quotient −1�(x − 1) is a large negative number, and f (x) approaches negative 
infinity from the right of x = 1. So, you can conclude that 

lim
x→1+

 
−1

x − 1
= −∞. Limit from the right side is negative infinity.

 Figure 1.40(b) confirms this analysis. 

TECHNOLOGY Remember that you can use a numerical approach to analyze  
a limit. For instance, you can use a graphing utility to create a table of values to  
analyze the limit in Example 1(a), as shown in the figure below.

X Y1

X=1

100
10000
1E6
ERROR
1E6
10000
100

.99

.9

.999

1.001
1.01
1.1

1

As x approaches 1 from the left, f (x)
increases without bound.

Enter x-values using ask mode.

As x approaches 1 from the right, f (x)
increases without bound.

Use a graphing utility to make a table of values to analyze the limit in Example 1(b).

Exploration
Use a graphing utility to 
graph each function. For 
each function, analytically 
find the single real number 
c that is not in the domain. 
Then graphically find the 
limit (if it exists) of f(x) as 
x approaches c from the left 
and from the right.

a. f(x) = 3
x − 4

b. f(x) = 1
2 − x

c. f(x) = 2
(x − 3)2

d. f(x) = −3
(x + 2)2
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Vertical Asymptotes
If it were possible to extend the graphs in Figure 1.40 toward positive and negative 
infinity, you would see that each graph becomes arbitrarily close to the vertical line 
x = 1. This line is a vertical asymptote of the graph of f. (You will study other types 
of asymptotes in Sections 3.5 and 3.6.)

Definition of Vertical Asymptote

If f(x) approaches infinity (or negative infinity) as x approaches c from the right
or the left, then the line x = c is a vertical asymptote of the graph of f.

In Example 1, note that each of the functions is a quotient and that the vertical 
asymptote occurs at a number at which the denominator is 0 (and the numerator is not 
0). The next theorem generalizes this observation.

THEOREM 1.14 Vertical Asymptotes

Let f  and g be continuous on an open interval containing c. If f(c) ≠ 0, 
g(c) = 0, and there exists an open interval containing c such that g(x) ≠ 0 for 
all x ≠ c in the interval, then the graph of the function

h(x) =
f (x)
g(x)

has a vertical asymptote at x = c.

A proof of this theorem is given in Appendix A. 

 Finding Vertical Asymptotes

See LarsonCalculus.com for an interactive version of this type of example.

a. When x = −1, the denominator of

h(x) = 1
2(x + 1)

   is 0 and the numerator is not 0. So, by Theorem 1.14, you can conclude that x = −1 
is a vertical asymptote, as shown in Figure 1.41(a).

b. By factoring the denominator as

h(x) = x2 + 1
x2 − 1

=
x2 + 1

(x − 1)(x + 1)

   you can see that the denominator is 0 at x = −1 and x = 1. Also, because the 
numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude that 
the graph of f  has two vertical asymptotes, as shown in Figure 1.41(b).

c. By writing the cotangent function in the form

h(x) = cot x =
cos x
sin x

   you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all  values 
of x such that sin x = 0 and cos x ≠ 0, as shown in Figure 1.41(c). So, the graph 
of this function has infinitely many vertical asymptotes. These asymptotes occur at
x = nπ, where n is an integer. 

REMARK If the graph of  
a function f  has a vertical  
asymptote at x = c, then f  is  
not continuous at c.

(a)

(b)

x
1

2

−1

−2

h(x) = 1
2(x + 1)

y

−1

x

2

2

4

4−2−4

h(x) = x2 + 1
x2 − 1

y

(c)
Functions with vertical asymptotes
Figure 1.41

x
ππ−2 π2

2

4

6

−6

−4

y
h(x) = cot x
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Theorem 1.14 requires that the value of the numerator at x = c be nonzero. When 
both the numerator and the denominator are 0 at x = c, you obtain the indeterminate 
form 0�0, and you cannot determine the limit behavior at x = c without further 
investigation, as illustrated in Example 3.

 A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

h(x) = x2 + 2x − 8
x2 − 4

.

Solution Begin by simplifying the expression, as shown.

 h(x) = x2 + 2x − 8
x2 − 4

 =
(x + 4)(x − 2)
(x + 2)(x − 2)

 =
x + 4
x + 2

, x ≠ 2

At all x-values other than x = 2, the graph of h coincides with the graph of 
k(x) = (x + 4)�(x + 2). So, you can apply Theorem 1.14 to k to conclude that there 
is a vertical asymptote at x = −2, as shown in Figure 1.42. From the graph, you can 
see that

lim
x→−2−

 
x2 + 2x − 8

x2 − 4
= −∞ and lim

x→−2+
 
x2 + 2x − 8

x2 − 4
= ∞.

Note that x = 2 is not a vertical asymptote.

 Determining Infinite Limits

Find each limit.

lim
x→1−

 
x2 − 3x
x − 1

 and lim
x→1+

 
x2 − 3x
x − 1

Solution Because the denominator is 0 when x = 1 (and the numerator is not 0), 
you know that the graph of

h(x) = x2 − 3x
x − 1

has a vertical asymptote at x = 1. This means that each of the given limits is either ∞ 
or −∞. You can determine the result by analyzing h at values of x close to 1 or by 
using a graphing utility. From the graph of h shown in Figure 1.43, you can see that 
the graph approaches ∞ from the left of x = 1 and approaches −∞ from the right of 
x = 1. So, you can conclude that

lim
x→1−

 
x2 − 3x
x − 1

= ∞ The limit from the left is infinity.

and

lim
x→1+

 
x2 − 3x
x − 1

= −∞. The limit from the right is negative infinity. 

TECHNOLOGY PITFALL When using a graphing utility, be careful to 
interpret correctly the graph of a function with a vertical asymptote—some graphing 
utilities have difficulty drawing this type of graph.

h (x) increases and decreases without 
bound as x approaches −2.
Figure 1.42

4

2

−2

2−4

y

x

Unde�ned
when x = 2

Vertical
asymptote
at x = −2

h(x) = x
2 + 2x − 8
x2 − 4

The graph of h has a vertical asymptote 
at x = 1.
Figure 1.43

−4 6

−6

6
h(x) = x2 − 3x

x − 1
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THEOREM 1.15 Properties of Infinite Limits

Let c and L be real numbers, and let f  and g be functions such that

lim
x→c

 f(x) = ∞ and lim
x→c 

g(x) = L.

1. Sum or difference: lim
x→c

 [ f(x) ± g(x)] = ∞
2. Product: lim

x→c
 [ f(x)g(x)] = ∞, L > 0

  lim
x→c

 [ f(x)g(x)] = −∞, L < 0

3. Quotient: lim
x→c

 
g(x)
f(x)

= 0

Similar properties hold for one-sided limits and for functions 
for which the limit of f(x) as x approaches c is −∞ [see 
Example 5(d)].

Proof Here is a proof of the sum property. (The proofs of the remaining properties 
are left as an exercise [see Exercise 70].) To show that the limit of f(x) + g(x) is 
infinite, choose M > 0. You then need to find δ > 0 such that [ f (x) + g(x)] > M 
whenever 0 < ∣x − c∣ < δ. For simplicity’s sake, you can assume L is positive. Let 
M1 = M + 1. Because the limit of f(x) is infinite, there exists δ1 such that f(x) > M1 
whenever 0 < ∣x − c∣ < δ1. Also, because the limit of g(x) is L, there exists δ2 such 
that ∣g(x) − L∣ < 1 whenever 0 < ∣x − c∣ < δ2. By letting δ be the smaller of δ1 and 
δ2, you can conclude that 0 < ∣x − c∣ < δ implies f(x) > M + 1 and ∣g(x) − L∣ < 1. 
The second of these two inequalities implies that g(x) > L − 1, and adding this to the 
first inequality, you can write

f(x) + g(x) > (M + 1) + (L − 1) = M + L > M.

So, you can conclude that

lim
x→c

 [ f(x) + g(x)] = ∞. 

 Determining Limits

a. Because lim
x→0

 1 = 1 and lim
x→0

 
1
x2 = ∞, you can write

lim
x→0

 (1 +
1
x2) = ∞. Property 1, Theorem 1.15

b. Because lim
x→1−

 (x2 + 1) = 2 and lim
x→1−

 (cot π x) = −∞, you can write

lim
x→1−

   
x2 + 1
cot π x

= 0. Property 3, Theorem 1.15

c. Because lim
x→0+

 3 = 3 and lim
x→0+

 cot x = ∞, you can write

lim
x→0+

 3 cot x = ∞. Property 2, Theorem 1.15

d. Because lim
x→0−

 x2 = 0 and lim
x→0−

 
1
x
= −∞, you can write

lim
x→0−

 (x2 +
1
x) = −∞. Property 1, Theorem 1.15 

REMARK Note that the 
solution to Example 5(d) uses 
Property 1 from Theorem 1.15 
for which the limit of f(x) as x 
approaches c is −∞.

REMARK Be sure you 
understand that Property 2 of 
Theorem 1.15 is not valid when 
lim
x→c

 g(x) = 0.
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1.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Infinite Limit In your own words, describe the 

meaning of an infinite limit. What does ∞ represent?

2.  Vertical Asymptote In your own words, describe 
what is meant by a vertical asymptote of a graph.

 Determining Infinite Limits from a 
Graph In Exercises 3–6, determine whether 
f(x) approaches ∞  or −∞ as x approaches −2 
from the left and from the right.

 3. f (x) = 2∣ x
x2 − 4∣  4. f (x) = 1

x + 2

x
−2 2 4

2

−2

4

6

y  

x
−1 1

3

2

−2
−3

y

 5. f (x) = tan 
πx
4

  6. f (x) = sec 
πx
4

x
−6 −2 2 6

3

2

1

y  

x
−6 −2 2 6

1

y

 Determining Infinite Limits In Exercises 
7–10, determine whether f(x) approaches ∞   
or −∞ as x approaches 4 from the left and from 
the right.

 7. f (x) = 1
x − 4

  8. f (x) = −1
x − 4

 9. f (x) = 1
(x − 4)2 10. f (x) = −1

(x − 4)2

Numerical and Graphical Analysis In Exercises 11–16, 
create a table of values for the function and use the result to 
determine whether f (x) approaches ∞  or −∞ as x approaches 
−3 from the left and from the right. Use a graphing utility to 
graph the function to confirm your answer.

11. f (x) =
1

x2 − 9
 12. f (x) = x

x2 − 9

13. f (x) = x2

x2 − 9
 14. f (x) = −

1
3 + x

15. f (x) = cot 
π x
3

 16. f (x) = tan 
πx
6

 Finding Vertical Asymptotes In Exercises 
17–32, find the vertical asymptotes (if any) of the 
graph of the function.

17. f (x) = 1
x2 18. f (x) = 2

(x − 3)3

19. f (x) = x2

x2 − 4
 20. f (x) = 3x

x2 + 9

21. g(t) = t − 1
t 2 + 1

 22. h(s) = 3s + 4
s2 − 16

23. f (x) = 3
x2 + x − 2

 24. g(x) = x2 − 5x + 25
x3 + 125

25. f (x) = 4x2 + 4x − 24
x4 − 2x3 − 9x2 + 18x

26. h(x) = x2 − 9
x3 + 3x2 − x − 3

27. f (x) = x2 − 2x − 15
x3 − 5x2 + x − 5

28. h(t) = t 2 − 2t
t 4 − 16

29. f (x) = csc πx 30. f (x) = tan πx

31. s(t) = t
sin t

 32. g(θ) = tan θ
θ

 Vertical Asymptote or Removable 
Discontinuity In Exercises 33 –36, determine 
whether the graph of the function has a vertical 
asymptote or a removable discontinuity at x = −1. 
Graph the function using a graphing utility to 
confirm your answer.

33. f (x) =
x2 − 1

x + 1
 34. f (x) = x2 − 2x − 8

x + 1

35. f (x) = cos(x2 − 1)
x + 1

 36. f (x) = sin(x + 1)
x + 1

 Finding a One-Sided Limit In Exercises 
37–50, find the one-sided limit (if it exists).

37. lim
x→2+

 
x

x − 2
 38. lim

x→2−
 

x2

x2 + 4

39. lim
x→−3−

 
x + 3

x2 + x − 6
 40. lim

x→(−1�2)+
 

6x2 + x − 1
4x2 − 4x − 3

41. lim
x→0−

 (1 +
1
x) 42. lim

x→0+
 (6 −

1
x3)

43. lim
x→−4−

 (x2 +
2

x + 4) 44. lim
x→0+

 (x −
1
x
+ 3)

45. lim
x→0+

 (sin x +
1
x) 46. lim

x→(π�2)+
 
−2

cos x
 

47. lim
x→π+

 
√x

csc x
 48. lim

x→0−
 
x + 2
cot x

49. lim
x→(1�2)−

 x sec π x 50. lim
x→(1�2)+

 x2 tan π x
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Finding a One-Sided Limit Using Technology In 
Exercises 51 and 52, use a graphing utility to graph the 
function and determine the one-sided limit.

51. lim
x→1+

 
x2 + x + 1

x3 − 1
 52. lim

x→1−
 

x3 − 1
x2 + x + 1

 Determining Limits In Exercises 53 and 54, 
use the information to determine the limits.

53. lim
x→c

 f (x) = ∞ 54. lim
x→c

 f (x) = −∞
 lim

x→c
 g(x) = −2  lim

x→c
 g(x) = 3

 (a) lim
x→c

 [ f (x) + g(x)]  (a) lim
x→c

 [ f (x) + g(x)]

 (b) lim
x→c

 [ f (x)g(x)]  (b) lim
x→c

 [ f (x)g(x)]

 (c) lim
x→c

 
g(x)
f (x)  (c) lim

x→c
 
g(x)
f (x)

EXPLORING CONCEPTS
55.  Writing a Rational Function Write a rational  

function with vertical asymptotes at x = 6 and x = −2,
and with a zero at x = 3.

56.  Rational Function Does the graph of every rational 
function have a vertical asymptote? Explain.

57.  Sketching a Graph Use the graph of the function 
f  (see figure) to sketch the graph of g(x) = 1�f (x) on the 
interval [−2, 3]. To print an enlarged copy of the graph, 
go to MathGraphs.com.

321
−1

−1−2

2

x

f

y

58.  Relativity According to the theory of relativity, the 
mass m of a particle depends on its velocity v. That is,

  m =
m0

√1 − (v2�c2)
, where m0 is the mass when the particle is

  at rest and c is the speed of light. Find the limit of the mass as 
v approaches c from the left.

59.  Numerical and Graphical Reasoning Use a graphing 
utility to complete the table for each function and graph each 
function to estimate the limit. What is the value of the limit 
when the power of x in the denominator is greater than 3?

 
x 1 0.5 0.2 0.1 0.01 0.001 0.0001

f (x)

 (a) lim
x→0+

 
x − sin x

x
 (b) lim

x→0+
 
x − sin x

x2

 (c) lim
x→0+

 
x − sin x

x3  (d) lim
x→0+

 
x − sin x

x4

 60.  HOW DO YOU SEE IT? For a quantity of gas 
at a constant temperature, the pressure P is inversely 
proportional to the volume V. What is the limit of P 
as V approaches 0 from the right? Explain what this 
means in the context of the problem.

Volume

Pr
es
su
re

V

P

60.  

61.  Rate of Change A 25-foot ladder is leaning against a 
house (see figure). If the base of the ladder is pulled away from 
the house at a rate of 2 feet per second, then the top will move 
down the wall at a rate of

 r =
2x

√625 − x2
 ft�sec

  where x is the distance between the base of the ladder and the 
house, and r is the rate in feet per second.

2

25 ftr
ft

sec

x

 (a) Find the rate r when x is 7 feet.

 (b) Find the rate r when x is 15 feet.

 (c) Find the limit of r as x approaches 25 from the left.

On a trip of d miles to another city, a truck driver’s average 
speed was x miles per hour. On the return trip,  
the average speed was y miles per hour. The average  
speed for the round trip was 50 miles per hour.

(a) Verify that

 y =
25x

x − 25
.

 What is the domain?

(b) Complete the table.

 
x 30 40 50 60

y

  Are the values of y different than you expected? Explain.

(c)  Find the limit of y as x approaches 25 from the right 
and interpret its meaning.

62. Average Speed

iStockphoto.com/WendellandCarolyn
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63.  Numerical and Graphical Analysis Consider the 
shaded region outside the sector of a circle of radius 10 meters 
and inside a right triangle (see figure).

10 m
θ

 (a)  Write the area A = f (θ ) of the region as a function of θ. 
Determine the domain of the function.

 (b)  Use a graphing utility to complete the table and graph the 
function over the appropriate domain.

  
θ 0.3 0.6 0.9 1.2 1.5

f (θ)

 (c) Find the limit of A as θ approaches π�2 from the left.

64.  Numerical and Graphical Reasoning A crossed belt 
connects a 20-centimeter pulley (10-cm radius) on an electric 
motor with a 40-centimeter pulley (20-cm radius) on a saw 
arbor (see  figure). The electric motor runs at 1700 revolutions 
per minute.

10 cm 20 cm

ϕ

 (a) Determine the number of revolutions per minute of the saw.

 (b)  How does crossing the belt affect the saw in relation to the 
motor?

 (c)  Let L be the total length of the belt. Write L as a function 
of ϕ, where ϕ is measured in radians. What is the domain of 
the function? (Hint: Add the lengths of the straight sections 
of the belt and the length of the belt around each pulley.)

 (d) Use a graphing utility to complete the table.

  
ϕ 0.3 0.6 0.9 1.2 1.5

L

 (e)  Use a graphing utility to graph the function over the  
appropriate domain.

 (f) Find lim
ϕ→(π�2)− 

 L. 

 (g)  Use a geometric argument as the basis of a second method 
of finding the limit in part (f ).

 (h) Find lim
ϕ→0+

 L.

True or False? In Exercises 65–68, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

65.  The graph of a function cannot cross a vertical asymptote.

66.  The graphs of polynomial functions have no vertical 
asymptotes.

67.  The graphs of trigonometric functions have no vertical  
asymptotes.

68.  If f  has a vertical asymptote at x = 0, then f  is undefined at 
x = 0.

69.  Finding Functions Find functions f  and g such that 
lim
x→c

 f (x) = ∞ and lim
x→c

 g(x) = ∞, but lim
x→c

 [ f (x) − g(x)] ≠ 0.

70.  Proof Prove the difference, product, and quotient properties 
in Theorem 1.15.

71. Proof Prove that if lim
x→c

 f (x) = ∞, then lim
x→c

 
1

f (x) = 0.

72. Proof Prove that if

 lim
x→c

 
1

f (x) = 0

 then lim
x→c

 f (x) does not exist.

Infinite Limits In Exercises 73–76, use the ε–δ definition of 
infinite limits to prove the statement.

73. lim
x→3+

 
1

x − 3
= ∞ 74. lim

x→5−
 

1
x − 5

= −∞

75. lim
x→8+

 
3

8 − x
= −∞ 76. lim

x→9−
 

6
9 − x

= ∞

Recall from Theorem 1.9 that the limit of

f (x) = sin x
x

as x approaches 0 is 1.

(a)  Use a graphing utility to graph the function f  on the interval 
−π ≤ x ≤ π. Explain how the graph helps confirm this theorem.

(b)  Explain how you could use a table of values to confirm the 
value of this limit numerically.

(c)  Graph g(x) = sin x by hand. Sketch a tangent line at the point 
(0, 0) and visually estimate the slope of this tangent line.

(d)  Let (x, sin x) be a point on the graph of g near (0, 0), and write 
a formula for the slope of the secant line joining (x, sin x) and 
(0, 0). Evaluate this formula at x = 0.1 and x = 0.01. Then 
find the exact slope of the tangent line to g at the point (0, 0).

(e)  Sketch the graph of the cosine function h(x) = cos x. What is 
the slope of the tangent line at the point (0, 1)? Use limits to 
find this slope analytically.

(f )  Find the slope of the tangent line to k(x) = tan x at (0, 0).

Graphs and Limits of Trigonometric Functions
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Precalculus or Calculus In Exercises 1 and 2, decide 
whether the problem can be solved using precalculus or 
whether calculus is required. If the problem can be solved using 
precalculus, solve it. If the problem seems to require calculus, 
explain your reasoning and use a graphical or numerical 
approach to estimate the solution.

 1.  Find the distance between the points (1, 1) and (3, 9) along the 
curve y = x2.

 2.  Find the distance between the points (1, 1) and (3, 9) along the 
line y = 4x − 3.

Estimating a Limit Numerically In Exercises 3 and 4, 
complete the table and use the result to estimate the limit. Use 
a graphing utility to graph the function to confirm your result.

 3. lim
x→3

 
x − 3

x2 − 7x + 12

 x 2.9 2.99 2.999 3 3.001 3.01 3.1

f (x) ?

 4. lim
x→0

 
√x + 4 − 2

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

Finding a Limit Graphically In Exercises 5 and 6, use the 
graph to find the limit (if it exists). If the limit does not exist, 
explain why.

 5. h(x) = ⟨−x
2⟩ + x2  6. g(x) = −2x

x − 3

 

x

y

−1 1 2 3

3

2

1

−1

  

x

y

−3 3 6

−6
−9

3

6

9

  (a) lim
x→2

 h(x)  (b) lim
x→1

 h(x)  (a) lim
x→3

 g(x)  (b) lim
x→0

 g(x)

Using the ε-δ Definition of a Limit In Exercises 7–10, 
find the limit L. Then use the ε-δ definition to prove that the 
limit is L.

 7. lim
x→1

 (x + 4)  8. lim
x→9

 √x

 9. lim
x→2

 (1 − x2) 10. lim
x→5

 9

Finding a Limit In Exercises 11–28, find the limit.

11. lim
x→−6

 x2 12. lim
x→0

 (5x − 3)

13. lim
t→4

 √t + 2 14. lim
x→2

 √x3 + 1

15. lim
x→27

 ( 3√x − 1)4 16. lim
x→7

 (x − 4)3

17. lim
x→4

 
4

x − 1
 18. lim

x→2
 

x
x2 + 1

19. lim
x→−3

 
2x2 + 11x + 15

x + 3
 20. lim

t→4
 
t 2 − 16
t − 4

21. lim
x→4

 
√x − 3 − 1

x − 4
 22. lim

x→0
 
√4 + x − 2

x

23. lim
x→0

 
[1�(x + 1)] − 1

x
 24. lim

s→0
 
(1�√1 + s ) − 1

s

25. lim
x→0

 
1 − cos x

sin x
 26. lim

x→π�4
 

4x
tan x

27. lim
∆x→0

 
sin[(π�6) + ∆x] − (1�2)

∆x

 [Hint: sin(θ + ϕ) = sin θ cos ϕ + cos θ sin ϕ]

28. lim
∆x→0

 
cos(π + ∆x) + 1

∆x

 [Hint: cos(θ + ϕ) = cos θ cos ϕ − sin θ sin ϕ]

Evaluating a Limit In Exercises 29–32, evaluate the limit 
given lim

x→c
 f (x) = −6 and lim

x→c
 g(x) = 1

2.

29. lim
x→c

 [ f (x)g(x)] 30. lim
x→c

 
 f (x)
g(x)

31. lim
x→c

 [ f (x) + 2g(x)] 32. lim
x→c

 [ f (x)]2

Graphical, Numerical, and Analytic Analysis In 
Exercises 33–36, use a graphing utility to graph the function 
and estimate the limit. Use a table to reinforce your conclusion. 
Then find the limit by analytic methods.

33. lim
x→0

 
√2x + 9 − 3

x
 34. lim

x→0
 
[1�(x + 4)] − (1�4)

x

35. lim
x→−9

 
x3 + 729
x + 9

 36. lim
x→0

 
cos x − 1

x

Free-Falling Object In Exercises 37 and 38, use the position 
function s(t) = −4.9t 2 + 250, which gives the height (in 
meters) of an object that has fallen for t seconds from a height 
of 250 meters. The velocity at time t = a seconds is given by

lim
t→a

 
s(a) − s(t)

a − t
.

37. Find the velocity of the object when t = 4.

38.  When will the object hit the ground? At what velocity will the 
object impact the ground?

Finding a Limit In Exercises 39–50, find the limit (if it 
exists). If it does not exist, explain why.

39. lim
x→3+

 
1

x + 3
  40. lim

x→6−
 
x − 6
x2 − 36
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41.	 lim
x→25+

 
√x − 5
x − 25

	 42.	 lim
x→3−

 
∣x − 3∣
x − 3

 

43.	 lim
x→2

 f (x), where f (x) = {(x − 2)2,    
2 − x,

 
x ≤ 2

x > 2

44.	 lim
x→1+

 g(x), where g(x) = {√1 − x,    

x + 1,
 
x ≤ 1

x > 1

45.	 lim
t→1

 h(t), where h(t) = { t 3 + 1,
1
2(t + 1),    

 
t < 1

t ≥ 1

46.	 lim
s→−2

 f (s), where f (s) = {−s2 − 4s − 2,    

s2 + 4s + 6,
 
s ≤ −2

s > −2

47.	 lim
x→2−

 (2⟨x⟩ + 1)	 48.	 lim
x→4

 ⟨x − 1⟩

49.	 lim
x→2−

 
x2 − 4

∣x − 2∣	 50.	 lim
x→1+

 √x(x − 1)

Continuity on a Closed Interval  In Exercises 51 and 52, 
discuss the continuity of the function on the closed interval.

51.	 g(x) = √8 − x3,  [−2, 2]	 52.	 h(x) = 3
5 − x

,  [0, 5]

Removable and Nonremovable Discontinuities  In 
Exercises 53–58, find the x-values (if any) at which f  is not  
continuous. Which of the discontinuities are removable?

53.	 f (x) = x4 − 81x	 54.	 f (x) = x2 − x + 20

55.	 f (x) = 4
x − 5

	 56.	 f (x) = 1
x2 − 9

57.	 f (x) = x
x3 − x

	 58.	 f (x) = x + 3
x2 − 3x − 18

59.	 �Making a Function Continuous  Find the value of c 
such that the function is continuous on the entire real number 
line.

	 f (x) = {x + 3,
cx + 6,   

 x ≤ 2
 x > 2

60.	 �Making a Function Continuous  Find the values of b 
and c such that the function is continuous on the entire real 
number line.

	 f (x) = {x + 1,
x2 + bx + c,    

 1 < x < 3
 ∣x − 2∣ ≥ 1

Testing for Continuity  In Exercises 61–66, describe the 
intervals on which the function is continuous.

61.	 f (x) = −3x2 + 7

62.	 f (x) = 4x2 + 7x − 2
x + 2

63.	 f (x) = √x + cos x

64.	 f (x) = ⟨x + 3⟩

65.	 f (x) = {3x2 − x − 2
x − 1

,

0,

x ≠ 1

x = 1
 

66.	 f (x) = {5 − x,
2x − 3,

    x ≤ 2
    x > 2

67.	 �Using the Intermediate Value Theorem  Use the 
Intermediate Value Theorem to show that

	 f (x) = 2x3 − 3

	 has a zero in the interval [1, 2].

68.	� �Using the Intermediate Value Theorem  Use the 
Intermediate Value Theorem to show that

	 f (x) = x2 + x − 2

	 has at least two zeros in the interval [−3, 3].

Using the Intermediate Value Theorem  In Exercises 
69 and 70, verify that the Intermediate Value Theorem applies 
to the indicated interval and find the value of c guaranteed by 
the theorem.

69.	 f (x) = x2 + 5x − 4,  [−1, 2],  f (c) = 2

70.	 f (x) = (x − 6)3 + 4,  [4, 7],  f (c) = 3

Determining Infinite Limits  In Exercises 71 and 72, 
determine whether f (x) approaches ∞  or −∞ as x approaches 
6 from the left and from the right.

71.	 f (x) = 1
x − 6

	 72.	 f (x) = −1
(x − 6)2

Finding Vertical Asymptotes  In Exercises 73–78, find 
the vertical asymptotes (if any) of the graph of the function.

73.	 f (x) = 3
x
	 74.	 f (x) = 5

(x − 2)4

75.	 f (x) = x3

x 2 − 9
	 76.	 h(x) = 6x

36 − x2

77.	 f (x) = sec 
πx
2

	 78.	 f (x) = csc πx

Finding a One-Sided Limit  In Exercises 79–88, find the 
one-sided limit (if it exists).

79.	 lim
x→1−

 
x2 + 2x + 1

x − 1
	 80.	 lim

x→(1�2)+
 

x
2x − 1

81.	 lim
x→−1+

 
x + 1
x3 + 1

	 82.	 lim
x→−1−

 
x + 1
x4 − 1

83.	 lim
x→0+

 (x −
1
x3)	 84.	 lim

x→2−
  

1
3√x2 − 4

85.	 lim
x→0+

 
sin 4x

5x
	 86.	 lim

x→0−
 
sec x3

2x

87.	 lim
x→0+

 
csc 2x

x
	 88.	 lim

x→0−
 
cos2 x

x

89.	 �Environment  A utility company burns coal to generate 
electricity. The cost C in dollars of removing p% of the air 
pollutants in the stack emissions is

	 C =
80,000p
100 − p

,  0 ≤ p < 100.

	 (a)  Find the cost of removing 50% of the pollutants.

	 (b)  Find the cost of removing 90% of the pollutants.

	 (c) � Find the limit of C as p approaches 100 from the left and 
interpret its meaning.
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Perimeter Let P(x, y) be a point on the parabola y = x2 in 
the first quadrant. Consider the triangle △PAO formed by P, 
A(0, 1), and the origin O(0, 0), and the triangle △PBO formed 
by P, B(1, 0), and the origin (see figure).

x

A
P

O
B

1

1

y

 (a) Write the perimeter of each triangle in terms of x.

 (b) Let r(x) be the ratio of the perimeters of the two triangles,

  r(x)= Perimeter △PAO
Perimeter △PBO

.

  Complete the table. Calculate lim
x→0+

 r(x).
  

x 4 2 1 0.1 0.01

Perimeter △PAO

Perimeter △PBO

r(x)

2.  Area Let P(x, y) be a point on the parabola y = x2 in the first 
quadrant. Consider the triangle △PAO formed by P, A(0, 1), 
and the origin O(0, 0), and the triangle △PBO formed by P, 
B(1, 0), and the origin (see figure).

x

A
P

O
B

1

1

y

 (a) Write the area of each triangle in terms of x.

 (b) Let a(x) be the ratio of the areas of the two triangles, 

  a(x) = Area △PBO
Area △PAO

.

  Complete the table. Calculate lim
x→0+

 a(x).

  
x 4 2 1 0.1 0.01

Area △PAO

Area △PBO

a(x)

3. Area of a Circle

 (a)  Find the area of a regular hexagon inscribed in a circle of 
radius 1 (see figure). How close is this area to that of the circle?

1

 (b)  Find the area An of an n-sided regular polygon inscribed in 
a circle of radius 1. Write your answer as a function of n.

 (c)  Complete the table. What number does An approach as n 
gets larger and larger?

  
n 6 12 24 48 96

An

4.  Tangent Line Let P(3, 4) be a point on the circle 
x2 + y2 = 25 (see figure).

 (a) What is the slope of the line joining P and O(0, 0)?
 (b) Find an equation of the tangent line to the circle at P.

 (c)  Let Q(x, y) be another point on the circle in the first  
quadrant. Find the slope mx of the line joining P and Q in 
terms of x.

 (d)  Calculate lim
x→3

 mx. How does this number relate to your

  answer in part (b)?

  

2−2

−6

6

2

6−6
x

P(3, 4)

Q

O

y  

5−5

15

5

15−15
x

P(5, −12)

Q
O

y

 Figure for 4 Figure for 5

5.  Tangent Line Let P(5, −12) be a point on the circle 
x2 + y2 = 169 (see figure).

 (a) What is the slope of the line joining P and O(0, 0)?
 (b) Find an equation of the tangent line to the circle at P.

 (c)  Let Q(x, y) be another point on the circle in the fourth  
quadrant. Find the slope mx of the line joining P and Q in 
terms of x.

 (d)  Calculate lim
x→5

 mx. How does this number relate to your

  answer in part (b)?
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 6.  Finding Values Find the values of the constants a and b 
such that

 lim
x→0

 
√a + bx − √3

x
= √3.

 7.  Finding Limits Consider the function 

 f (x) = √3 + x1�3 − 2
x − 1

.

 (a) Find the domain of f.

 (b) Use a graphing utility to graph the function.

 (c) Find lim
x→−27+

 f (x).

 (d) Find lim
x→1

 f (x).

 8.  Making a Function Continuous Find all values of the 
constant a such that f  is continuous for all real numbers.

 f (x) = { ax
tan x

,

a2 − 2,

x ≥ 0

x < 0

 9.  Choosing Graphs Consider the graphs of the four  
functions g1, g2, g3, and g4.

x
321

1

2

3

g1

y   

321

g2

y

x

1

2

3

321

g3

y

x

1

2

3

  

x
321

g4

y

1

2

3

  For each given condition of the function f, which of the graphs 
could be the graph of f ?

 (a) lim
x→2

  f (x) = 3

 (b) f  is continuous at 2.

 (c) lim
x→2− 

 f (x) = 3

10. Limits and Continuity Sketch the graph of the function

  f (x) = ⟨1
x⟩.

 (a) Evaluate f (1
4), f (3), and f (1).

 (b)  Evaluate the limits lim
x→1−

 f (x), lim
x→1+

 f (x), lim
x→0−

 f (x), and 
lim
x→0+

 f (x).

 (c)  Discuss the continuity of the function.

11.  Limits and Continuity Sketch the graph of the function 
f (x) = ⟨x⟩ + ⟨−x⟩.

 (a) Evaluate f (1), f (0), f (1
2), and f (−2.7).

 (b)  Evaluate the limits lim
x→1−

 f (x), lim
x→1+

 f (x), and lim
x→1�2

 f (x).

 (c)  Discuss the continuity of the function.

12.  Escape Velocity To escape Earth’s gravitational field, 
a rocket must be launched with an initial velocity called the 
escape velocity. A rocket launched from the surface of Earth 
has velocity v (in miles per second) given by

 v =√2GM
r

+ v0
2 −

2GM
R

≈√192,000
r

+ v0
2 − 48

  where v0 is the initial velocity, r is the distance from the rocket 
to the center of Earth, G is the gravitational constant, M is the 
mass of Earth, and R is the radius of Earth (approximately 
4000 miles).

 (a)  Find the value of v0 for which you obtain an infinite limit 
for r as v approaches zero. This value of v0 is the escape 
 velocity for Earth.

 (b)  A rocket launched from the surface of the moon has 
 velocity v (in miles per second) given by

  v =√1920
r

+ v0
2 − 2.17.

  Find the escape velocity for the moon.

 (c)  A rocket launched from the surface of a planet has velocity 
v (in miles per second) given by 

  v =√10,600
r

+ v0
2 − 6.99.

   Find the escape velocity for this planet. Is the mass of 
this planet larger or smaller than that of Earth? (Assume 
that the mean density of this planet is the same as that of 
Earth.)

13.  Pulse Function For positive numbers a < b, the pulse 
function is defined as

 Pa,b(x) = H(x − a) − H(x − b) = {0,
1,
0,

x < a
a ≤ x < b
x ≥ b

 where H(x) = {1,
0,    

 x ≥ 0
 x < 0

 is the Heaviside function.

 (a) Sketch the graph of the pulse function.

 (b) Find the following limits:

  (i) lim
x→a+

 Pa,b(x) (ii) lim
x→a−

 Pa,b(x)

  (iii) lim
x→b+

 Pa,b(x) (iv) lim
x→b−

 Pa,b(x)

 (c) Discuss the continuity of the pulse function.

 (d) Why is U(x)= 1
b− a

 Pa,b(x) called the unit pulse function?

14.  Proof Let a be a nonzero constant. Prove that if lim
x→0

 f (x) = L,

 then lim
x→0

 f (ax) = L. Show by means of an example that a must

 be nonzero.
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2.1 The Derivative and the Tangent Line Problem
 2.2 Basic Differentiation Rules and Rates of Change
 2.3 Product and Quotient Rules and Higher-Order Derivatives
 2.4 The Chain Rule
 2.5 Implicit Differentiation
 2.6 Related Rates

 2

Bacteria (Exercise 107, p. 143)
Rate of Change 

(Example 2, p. 153)

Velocity of a Falling Object 
(Example 9, p. 116)

Stopping Distance (Exercise 103, p.121)

Acceleration Due to Gravity (Example 10, p. 128)

99

Differentiation

Clockwise from top left, Kateryna Kon/Shutterstock.com; Russ Bishop/Alamy Stock Photo;
Richard Megna/Fundamental Photographs; Tumar/Shutterstock.com; NASA
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2.1 The Derivative and the Tangent Line Problem

 Find the slope of the tangent line to a curve at a point.
 Use the limit definition to find the derivative of a function.
 Understand the relationship between differentiability and continuity.

The Tangent Line Problem
Calculus grew out of four major problems that European mathematicians were working 
on during the seventeenth century.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2.3)

3. The minimum and maximum problem (Section 3.1)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any 
of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although 
partial solutions to this problem were given by Pierre de Fermat (1601–1665), 
René Descartes (1596–1650), Christian Huygens (1629–1695), and Isaac Barrow  
(1630–1677), credit for the first general solution is usually given to Isaac Newton 
(1642–1727) and Gottfried Leibniz (1646–1716). Newton’s work on this problem 
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is  

Tangent line to a circle
Figure 2.1

x

P

y  
tangent to a curve at a point? For a circle, the 
tangent line at a point P is the line that is  
perpendicular to the radial line at point P, as 
shown in Figure 2.1.

For a general curve, however, the problem  
is more difficult. For instance, how would you 
define the tangent lines shown in Figure 2.2?  
You might say that a line is tangent to a curve  
at a point P when it touches, but does not cross, 
the curve at point P. This definition would work 
for the first curve shown in Figure 2.2 but not  
for the second. Or you might say that a line is  
tangent to a curve when the line touches or 
intersects the curve at exactly one point. This 
definition would work for a circle but not for 
more general curves, as the third curve in 
Figure 2.2 shows.

y = f (x)

x

P

y   

y = f (x)

x

P

y   

y = f(x)

x

P

y

 Tangent line to a curve at a point
 Figure 2.2

ISAAC NEWTON (1642–1727)

In addition to his work in 
calculus, Newton made 
revolutionary contributions to 
physics, including the Law of 
Universal Gravitation and his 
three laws of motion.  
See LarsonCalculus.com to read  
more of this biography.

Exploration
Use a graphing utility to graph 
f (x) = 2x3 − 4x2 + 3x − 5. 
On the same screen, graph 
y = x − 5, y = 2x − 5, and 
y = 3x − 5. Which of these 
lines, if any, appears to be 
tangent to the graph of f  at 
the point (0, −5)? Explain 
your reasoning.

Mary Evans Picture Library/Alamy Stock Photo
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2.1 The Derivative and the Tangent Line Problem 101

Essentially, the problem of finding the tangent line at a point P boils down to the 
problem of finding the slope of the tangent line at point P. You can approximate this 
slope using a secant line* through the point of tangency and a second point on the 
curve, as shown in Figure 2.3. If (c, f (c)) is the point of tangency and

(c + ∆x, f (c + ∆x))

is a second point on the graph of f, then the slope of the secant line through the two 
points is given by substitution into the slope formula

 m =
y2 − y1

x2 − x1

 msec =
f (c + ∆x) − f (c)
(c + ∆x) − c

 Change in y
Change in x

msec =
f (c + ∆x) − f (c)

∆x
.    Slope of secant line

The right-hand side of this equation is a difference quotient. The denominator ∆x is 
the change in x, and the numerator

∆y = f (c + ∆x) − f (c)

is the change in y.
The beauty of this procedure is that you can obtain more and more accurate 

approximations of the slope of the tangent line by choosing points closer and closer to 
the point of tangency, as shown in Figure 2.4.

Δx → 0

Δx

Δy

(c, f (c))

Δx
Δy

(c, f (c))

(c, f (c))

Tangent line

Δx

Δy

(c, f (c))

  

Tangent line

Δx

Δx

Δx

Δy

Δy

Δy

(c, f (c))

Δx → 0

(c, f (c))

(c, f (c))

(c, f (c))

 Tangent line approximations
 Figure 2.4

Definition of Tangent Line with Slope m
If f  is defined on an open interval containing c, and if the limit

lim
∆x→0

 
∆y
∆x

= lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= m

exists, then the line passing through (c, f (c)) with slope m is the tangent line to 
the graph of f  at the point (c, f (c)).

The slope of the tangent line to the graph of f  at the point (c, f (c)) is also called 
the slope of the graph of f  at x = c.

*  This use of the word secant comes from the Latin secare, meaning to cut, and is not a 
reference to the trigonometric function of the same name.

The secant line through (c, f (c)) and 
(c + ∆x, f (c + ∆x))
Figure 2.3

x

(c + Δx, f(c + Δx))

f (c + Δx) − f (c) = Δy

Δx

(c, f (c))

y

THE TANGENT LINE PROBLEM

In 1637, mathematician René 
Descartes stated this about the 
tangent line problem:

“And I dare say that this is 
not only the most useful and 
general problem in geometry 
that I know, but even that I 
ever desire to know.”
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 The Slope of the Graph of a Linear Function

To find the slope of the graph of f (x) = 2x − 3 when c = 2, you can apply the  
definition of the slope of a tangent line, as shown.

 lim
∆x→0

 
f (2 + ∆x) − f (2)

∆x
= lim

∆x→0
 
[2(2 + ∆x) − 3] − [2(2) − 3]

∆x

 = lim
∆x→0

 
4 + 2∆x − 3 − 4 + 3

∆x

 = lim
∆x→0

 
2∆x
∆x

 = lim
∆x→0

 2

 = 2

The slope of f  at (c, f (c)) = (2, 1) is m = 2, as shown in Figure 2.5. Notice that the 
limit definition of the slope of f  agrees with the definition of the slope of a line as 
discussed in Section P.2. 

The graph of a linear function has the same slope at any point. This is not true of 
nonlinear functions, as shown in the next example.

 Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of f (x) = x2 + 1 at the points (0, 1) 
and (−1, 2), as shown in Figure 2.6.

Solution Let (c, f (c)) represent an arbitrary point on the graph of f. Then the slope 
of the tangent line at (c, f (c)) can be found as shown below. [Note in the limit process 
that c is held constant (as ∆x approaches 0).]

 lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= lim

∆x→0
 
[(c + ∆x)2 + 1] − (c2 + 1)

∆x

 = lim
∆x→0

 
c2 + 2c(∆x) + (∆x)2 + 1 − c2 − 1

∆x

 = lim
∆x→0

 
2c(∆x) + (∆x)2

∆x

 = lim
∆x→0

 (2c + ∆x)

 = 2c

So, the slope at any point (c, f (c)) on the graph of f  is m = 2c. At the point (0, 1), the
slope is m = 2(0) = 0, and at (−1, 2), the slope is m = 2(−1) = −2. 

The definition of a tangent line to a curve does not cover the possibility of a 
vertical tangent line. For vertical tangent lines, you can use the following definition. If 
f  is continuous at c and

lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= ∞ or lim

∆x→0
 
f (c + ∆x) − f (c)

∆x
= −∞

then the vertical line x = c passing through (c, f (c)) is a vertical tangent line to the 
graph of f. For example, the function shown in Figure 2.7 has a vertical tangent line 
at (c, f (c)).  When the domain of f  is the closed interval [a, b], you can extend the  
definition of a vertical tangent line to include the endpoints by considering continuity 
and limits from the right (for x = a) and from the left (for x = b).

The slope of f  at (2, 1) is m = 2.
Figure 2.5

x
1 2 3

3

2

1 (2, 1)

m = 2

f (x) = 2x − 3

Δx = 1

Δy = 2

y

The slope of f  at any point (c, f (c)) is 
m = 2c.
Figure 2.6

4

21

3

2

−2 −1
x

Tangent line
at (0, 1)

Tangent
line at
(−1, 2)

f (x) = x2 + 1

y

The graph of f  has a vertical tangent 
line at (c, f (c)).
Figure 2.7

x

Vertical
tangent
line

c

(c, f (c))

y
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2.1 The Derivative and the Tangent Line Problem 103

The Derivative of a Function
You have now arrived at a crucial point in the study of calculus. The limit used to 
define the slope of a tangent line is also used to define one of the two fundamental 
operations of calculus—differentiation.

Definition of the Derivative of a Function

The derivative of f  at x is

f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x

provided the limit exists. For all x for which this limit exists, f′ is a function of x.

Be sure you see that the derivative of a function of x is also a function of x. This 
“new” function gives the slope of the tangent line to the graph of f  at the point (x, f (x)), 
provided that the graph has a tangent line at this point. The derivative can also be used 
to determine the instantaneous rate of change (or simply the rate of change) of one 
variable with respect to another.

The process of finding the derivative of a function is called differentiation. A  
function is differentiable at x when its derivative exists at x and is differentiable on 
an open interval (a, b) when it is differentiable at every point in the interval.

In addition to f′(x), other notations are used to denote the derivative of y = f (x). 
The most common are

f′(x),   dy
dx

,   y′,   
d
dx

 [ f (x)],   Dx[y].    Notations for derivatives

The notation dy�dx is read as “the derivative of y with respect to x” or simply “dy,  
dx.” Using limit notation, you can write

dy
dx

= lim
∆x→0

 
∆y
∆x

= lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
= f′(x).

 Finding the Derivative by the Limit Process

See LarsonCalculus.com for an interactive version of this type of example.

To find the derivative of f (x) = x3 + 2x, use the definition of the derivative as shown.

 f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
 Definition of derivative

 = lim
∆x→0

 
(x + ∆x)3 + 2(x + ∆x) − (x3 + 2x)

∆x

 = lim
∆x→0

 
x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 + 2x + 2∆x − x3 − 2x

∆x

 = lim
∆x→0

 
3x2∆x + 3x(∆x)2 + (∆x)3 + 2∆x

∆x

 = lim
∆x→0

 
∆x[3x2 + 3x∆x + (∆x)2 + 2]

∆x

 = lim
∆x→0

 [3x2 + 3x∆x + (∆x)2 + 2]

 = 3x2 + 2  

 FOR FURTHER INFORMATION
For more information on the  
crediting of mathematical discoveries 
to the first “discoverers,” see the 
article “Mathematical Firsts— 
Who Done It?” by Richard H. 
Williams and Roy D. Mazzagatti in 
Mathematics Teacher. To view this 
article, go to MathArticles.com.

REMARK The notation f′(x) 
is read as “ f  prime of x.”

REMARK When using the 
definition to find a derivative of 
a function, the key is to rewrite 
the difference quotient so that 
∆x does not occur as a factor  
of the denominator.
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 Using the Derivative to Find the Slope at a Point

Find f′(x) for f (x) = √x. Then find the slopes of the graph of f  at the points (1, 1) and 
(4, 2). Discuss the behavior of f  at (0, 0).

Solution Use the procedure for rationalizing numerators, as discussed in Section 1.3.

 f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
 Definition of derivative

 = lim
∆x→0

 
√x + ∆x − √x

∆x

 = lim
∆x→0

 (√x + ∆x − √x
∆x )(√x + ∆x + √x

√x + ∆x + √x)
 = lim

∆x→0
 

(x + ∆x) − x

∆x(√x + ∆x + √x)
 = lim

∆x→0
 

∆x

∆x(√x + ∆x + √x)
 = lim

∆x→0
 

1

√x + ∆x + √x

 =
1

2√x

At the point (1, 1), the slope is f′(1) = 1
2. At the point (4, 2), the slope is f′(4) = 1

4. 
See Figure 2.8. The domain of f′ is all x > 0, so the slope of f  is undefined at (0, 0). 
Moreover, the graph of f  has a vertical tangent line at (0, 0).

 Finding the Derivative of a Function

See LarsonCalculus.com for an interactive version of this type of example.

Find the derivative with respect to t for the function y = 2�t.

Solution Considering y = f (t), you obtain

 
dy
dt

= lim
∆t→0

 
f (t + ∆t) − f (t)

∆t
 Definition of derivative

 = lim
∆t→0 

 

2
t + ∆t

−
2
t

∆t
 f (t + ∆t) = 2

t + ∆t
 and f (t) = 2

t

 = lim
∆t→0

 

2t − 2(t + ∆t)
t(t + ∆t)

∆t
 Combine fractions in numerator.

 = lim
∆t→0

 
−2∆t

∆t(t)(t + ∆t) Divide out common factor of ∆t.

 = lim
∆t→0

 
−2

t(t + ∆t) Simplify.

 = −
2
t2

. Evaluate limit as ∆t→0. 

REMARK Remember that 
the derivative of a function f  is 
itself a function, which can be 
used to find the slope of the  
tangent line at the point  
(x, f (x)) on the graph of f .

TECHNOLOGY A graphing utility can be used to reinforce the result given  
in Example 5. For instance, using the formula dy�dt = −2�t2, you know that the 
slope of the graph of y = 2�t at the point (1, 2) is m = −2. Using the point-slope 
form, you can find that the equation of the tangent line to the graph at (1, 2) is

y − 2 = −2(t − 1) or y = −2t + 4. See Figure 2.9.

You can also verify the result using the tangent feature of the graphing utility.

REMARK In many  
applications, it is convenient  
to use a variable other than x  
as the independent variable,  
as shown in Example 5.

For x > 0, the slope of f  at (x, f (x)) is 
m = 1�(2√x).
Figure 2.8

x
1

2

2

3

3 4

At (1, 1), m =   . 

(0, 0)

1
2

At (4, 2), m =   . 1
4

y

f (x) =    x

At the point (1, 2), the line 
y = −2t + 4 is tangent to the graph  
of y = 2�t.
Figure 2.9

6
0

0

4

(1, 2)

y = 2
t

y = −2t + 4
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Differentiability and Continuity
The alternative limit form of the derivative shown below is useful in investigating the 
relationship between differentiability and continuity. The derivative of f  at c is

 f′(c) = lim
x→c

 
f (x) − f (c)

x − c
 Alternative form of derivative

provided this limit exists (see Figure 2.10).

x
c x

x − c

(c, f (c))

(x, f (x))

f (x) − f (c)

y

  As x approaches c, the secant line  
approaches the tangent line.

 Figure 2.10

Note that the existence of the limit in this alternative form requires that the one-sided 
limits

lim
x→c−

 
f (x) − f (c)

x − c

and

lim
x→c+

 
f (x) − f (c)

x − c

exist and are equal. These one-sided limits are called the derivatives from the left and 
from the right, respectively. It follows that f  is differentiable on the closed interval 
[a, b] when it is differentiable on (a, b) and when the derivative from the right at a and 
the derivative from the left at b both exist.

When a function is not continuous at x = c, it is also not differentiable at x = c.
For instance, the greatest integer function

f (x) = ⟨x⟩

is not continuous at x = 0, and so it is not differentiable at x = 0 (see Figure 2.11). You 
can verify this by observing that

lim
x→0−

 
f (x) − f (0)

x − 0
= lim

x→0−
 
⟨x⟩ − 0

x
= ∞ Derivative from the left

and

lim
x→0+

 
f (x) − f (0)

x − 0
= lim

x→0+
 
⟨x⟩ − 0

x
= 0. Derivative from the right

Although it is true that differentiability implies continuity (as shown in Theorem 2.1 
on the next page), the converse is not true. That is, it is possible for a function to be  
continuous at x = c and not differentiable at x = c. Examples 6 and 7 illustrate this 
possibility.

REMARK A proof of the 
equivalence of the alternative 
form of the derivative is  
given in Appendix A.

The greatest integer function is not  
differentiable at x = 0 because it is  
not continuous at x = 0.
Figure 2.11

x

1

2

1 2 3−1−2

−2

y

x[[ ]]f (x) =
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 A Graph with a Sharp Turn

See LarsonCalculus.com for an interactive version of this type of example.

The function f (x) = ∣x − 2∣, shown in Figure 2.12, is continuous at x = 2. The  
one-sided limits, however,

lim
x→2−

 
f (x) − f (2)

x − 2
= lim

x→2−
 
∣x − 2∣ − 0

x − 2
= −1 Derivative from the left

and

lim
x→2+

 
f (x) − f (2)

x − 2
= lim

x→2+
 
∣x − 2∣ − 0

x − 2
= 1 Derivative from the right

are not equal. So, f  is not differentiable at x = 2 and the graph of f  does not have a  
tangent line at the point (2, 0).

 A Graph with a Vertical Tangent Line

The function f (x) = x1�3 is continuous at x = 0, as shown in Figure 2.13. However, 
because the limit

lim
x→0

 
f (x) − f (0)

x − 0
= lim

x→0
 
x1�3 − 0

x
= lim

x→0
 

1
x2�3 = ∞

is infinite, you can conclude that the tangent line is vertical at x = 0. So, f  is not 
differentiable at x = 0. 

From Examples 6 and 7, you can see that a function is not differentiable at a point 
at which its graph has a sharp turn or a vertical tangent line.

THEOREM 2.1 Differentiability Implies Continuity

If f  is differentiable at x = c, then f  is continuous at x = c.

Proof You can prove that f  is continuous at x = c by showing that f (x) approaches 
f (c) as x→ c. To do this, use the differentiability of f  at x = c and consider the  
following limit.

 lim
x→c

 [ f (x) − f (c)] = lim
x→c

 [(x − c)(f (x) − f (c)
x − c )]

 = [limx→c
 (x − c)][limx→c

 
f (x) − f (c)

x − c ]
 = (0)[ f′(c)]
 = 0

Because the difference f (x) − f (c) approaches zero as x→ c, you can conclude that
lim
x→c

  f (x) = f (c). So, f  is continuous at x = c. 

The relationship between continuity and differentiability is summarized below.

1.  If a function is differentiable at x = c, then it is continuous at x = c. So, 
differentiability implies continuity.

2.  It is possible for a function to be continuous at x = c and not be differentiable at 
x = c. So, continuity does not imply differentiability (see Examples 6 and 7).

TECHNOLOGY Some 
graphing utilities, such as 
Maple, Mathematica, and the 
TI-Nspire, perform symbolic 
differentiation. Some have a 
derivative feature that performs 
numerical differentiation by 
finding values of derivatives 
using the formula

f′(x) ≈ f (x + ∆x) − f (x − ∆x)
2∆x

where ∆x is a small number 
such as 0.001. Can you see any 
problems with this definition? 
For instance, using this 
definition, what is the value 
of the derivative of f (x) = ∣x∣ 
when x = 0?

f  is not differentiable at x = 2 because 
the derivatives from the left and from 
the right are not equal.
Figure 2.12

2

1

3

4321
x

m = −1

m = 1

f (x) = | x − 2 |

y

f  is not differentiable at x = 0 because 
f  has a vertical tangent line at x = 0.
Figure 2.13

x
1

1

2−1

−1

−2

f (x) = x1/3

y
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2.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Tangent Line Describe how to find the slope of the 

tangent line to the graph of a function at a point.

2.  Notation List four notation alternatives to f ′(x).

3.  Derivative Describe how to find the derivative of a 
function using the limit process.

4.  Continuity and Differentiability Describe the 
relationship between continuity and differentiability.

Estimating Slope In Exercises 5 and 6, estimate the slope 
of the graph at the points (x1, y1) and (x2, y2).

 5. y

x

(x1, y1)

(x2, y2)

  6. y

x
(x1, y1)

(x2, y2)

Slopes of Secant Lines In Exercises 7 and 8, use the 
graph shown in the figure. To print an enlarged copy of the 
graph, go to MathGraphs.com.

x
1

1

2

2

3

3

5

5

4

4

6

6

(1, 2)

(4, 5)
f

y

 7. Identify or sketch each of the quantities on the figure.

 (a) f (1) and f (4) (b) f (4) − f (1)

 (c) 4 − 1 (d) y − 2 =
f (4) − f (1)

4 − 1
(x − 1)

 8.  Insert the proper inequality symbol (< or >) between the given 
quantities.

 (a) 
f (4) − f (1)

4 − 1
 ■ 

f (4) − f (3)
4 − 3

 (b) 
f (4) − f (1)

4 − 1
 ■ f ′(1)

 Finding the Slope of a Tangent Line In 
Exercises 9–14, find the slope of the tangent line to 
the graph of the function at the given point.

 9. f (x) = 3 − 5x, (−1, 8) 10. g(x) = 3
2 x + 1, (−2, −2)

11. f (x) = 2x2 − 3, (2, 5) 12. f (x) = 5 − x2, (3, −4)
13. f (t) = 3t − t2, (0, 0) 14. h(t) = t2 + 4t, (1, 5)

 Finding the Derivative by the Limit 
Process In Exercises 15–28, find the derivative 
of the function by the limit process.

15. f (x) = 7 16. g(x) = −3

17. f (x) = −5x 18. f (x) = 7x − 3

19. h(s) = 3 + 2
3s 20. f (x) = 5 − 2

3 x

21. f (x) = x2 + x − 3 22. f (x) = x2 − 5

23. f (x) = x3 − 12x 24. g(t) = t3 + 4t

25. f (x) = 1
x − 1

 26. f (x) = 1
x2

27. f (x) = √x + 4 28. h(s) = −2√s

 Finding an Equation of a Tangent Line In 
Exercises 29–36, (a) find an equation of the tangent 
line to the graph of f  at the given point, (b) use 
a graphing utility to graph the function and its 
tangent line at the point, and (c) use the tangent 
feature of a graphing utility to confirm your results.

29. f (x) = x2 + 3, (−1, 4) 30. f (x) = x2 + 2x − 1, (1, 2)
31. f (x) = x3, (2, 8) 32. f (x) = x3 + 1, (−1, 0)
33. f (x) = √x, (1, 1) 34. f (x) = √x − 1, (5, 2)

35. f (x) = x +
4
x
, (−4, −5) 36. f (x) = x −

1
x
, (1, 0)

 Finding an Equation of a Tangent Line In 
Exercises 37–42, find an equation of the line that is 
tangent to the graph of f  and parallel to the given 
line.

 Function Line

37. f (x) = −
1
4

x2 x + y = 0

38. f (x) = 2x2 4x + y + 3 = 0

39. f (x) = x3 3x − y + 1 = 0

40. f (x) = x3 + 2 3x − y − 4 = 0

41. f (x) = 1

√x
 x + 2y − 6 = 0

42. f (x) = 1

√x − 1
 x + 2y + 7 = 0

Sketching a Derivative In Exercises 43–48, sketch the 
graph of f ′. Explain how you found your answer.

43. 

−3

1

−2

2

3

x
1 2−2 3−3

f

y  44. y

x
2 4−2−4

−2

−6

f
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45. y

x
1 2 3

2
3
4
5
6
7

1

−1 4 5 6 7

f

 46. y

x
1 2 3

2
3
4

6
7

1

4 5 6 7 8

f

47. 

x

y

−4−8 4 8
−2

2

4

6

f

 48. 

x

y

−1−2−3 1 2 3

−2

1

3

4

f

EXPLORING CONCEPTS
49.  Sketching a Graph Sketch a graph of a function 

whose derivative is always negative. Explain how you 
found the answer.

50.  Sketching a Graph Sketch a graph of a function 
whose derivative is zero at exactly two points. Explain 
how you found the answer.

51.  Domain of the Derivative Do f  and f ′ always 
have the same domain? Explain.

52.  Symmetry of a Graph A function f  is symmetric 
with respect to the origin. Is f ′ necessarily symmetric 
with respect to the origin? Explain.

53.  Using a Tangent Line The tangent line to the graph of 
y = g(x) at the point (4, 5) passes through the point (7, 0). 
Find g(4) and g′(4).

54.  Using a Tangent Line The tangent line to the graph of 
y = h(x) at the point (−1, 4) passes through the point (3, 6). 
Find h(−1) and h′(−1).

 Working Backwards In Exercises 55–58, the 
limit represents f ′(c) for a function f  and a 
number c. Find f  and c.

55. lim
∆x→0

 
[5 − 3(1 + ∆x)] − 2

∆x

56. lim
∆x→0

 
(−2 + ∆x)3 + 8

∆x

57. lim
x→6

 
−x2 + 36

x − 6

58. lim
x→9

 
2√x − 6

x − 9

Writing a Function Using Derivatives In Exercises 59 
and 60, identify a function f  that has the given characteristics. 
Then sketch the function.

59. f (0) = 2; f ′(x) = −3 for −∞ < x < ∞
60. f (0) = 4; f ′(0) = 0; f ′(x) < 0 for x < 0; f ′(x) > 0 for x > 0

Finding an Equation of a Tangent Line In Exercises 61 
and 62, find equations of the two tangent lines to the graph of 
f  that pass through the indicated point.

61. f (x) = 4x − x2 62. f (x) = x2

 

1

2

3

4

5

x
1 2 3 5

(2, 5)

y  

x
2 6

6
8

10

4

4

−2−4

−4

−6
(1, −3)

y

63.  Graphical Reasoning Use a graphing utility to graph 
each function and its tangent lines at x = −1, x = 0, and 
x = 1. Based on the results, determine whether the slopes of 
tangent lines to the graph of a function at different values of x 
are always distinct.

 (a) f (x) = x2  (b) g(x) = x3

 64.    HOW DO YOU SEE IT? The figure shows 
the graph of g′.

x

g′

−4−6

−4
−6

6

6

4

4

2

y

(a) g′(0) =■   (b) g′(3) =■
(c)  What can you conclude about the graph of g 

knowing that g′(1) = −8
3?

(d)  What can you conclude about the graph of g 
knowing that g′(−4) = 7

3?

(e) Is g(6) − g(4) positive or negative? Explain.

(f)  Is it possible to find g(2) from the graph? Explain.

64.    

65. Graphical Reasoning Consider the function f (x) = 1
2x2.

 (a)  Use a graphing utility to graph the function and estimate 
the values of f ′(0), f ′(1

2), f ′(1), and f ′(2).
 (b)  Use your results from part (a) to determine the values of 

f ′(−1
2), f ′(−1), and f ′(−2).

 (c) Sketch a possible graph of f ′.

 (d) Use the definition of derivative to find f ′(x).
66. Graphical Reasoning Consider the function f (x) = 1

3x3.

 (a)  Use a graphing utility to graph the function and estimate 
the values of f ′(0), f ′(1

2), f ′(1), f ′(2), and f ′(3).
 (b)  Use your results from part (a) to determine the values of 

f ′(−1
2), f ′(−1), f ′(−2), and f ′(−3).

 (c) Sketch a possible graph of f ′.

 (d) Use the definition of derivative to find f ′(x).
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Approximating a Derivative In Exercises 67 and 68,  
evaluate f (2) and f (2.1) and use the results to approximate f ′(2).

67. f (x) = x(4 − x) 68. f (x) = 1
4 x3

 Using the Alternative Form of the 
Derivative In Exercises 69–76, use the 
alternative form of the derivative to find the 
derivative at x = c, if it exists.

69. f (x) = x3 + 2x2 + 1, c = −2

70. g(x) = x2 − x, c = 1

71. g(x) = √∣x∣, c = 0 72. f (x) = 3�x, c = 4

73. f (x) = (x − 6)2�3, c = 6 74. g(x) = (x + 3)1�3, c = −3

75. h(x) = ∣x + 7∣, c = −7 76. f (x) = ∣x − 6∣, c = 6

 Determining Differentiability In Exercises 
77–80, describe the x-values at which f  is 
differentiable.

77. f (x) = (x + 4)2�3 78.  f (x) = x2

x2 − 4

 

x

y

−2−4−6
−2

4

  

x

2
3

3

4

4

5

−3

−4

y

79. f (x) = √x + 1 + 1 80. f (x) = {x2 − 4,
4 − x2,

    x ≤ 0
    x > 0

 

x

y

−1−2 1 2 3
−1

1

2

3

4

  

x

2

4

4−4

−4

y

Graphical Analysis In Exercises 81–84, use a graphing 
utility to graph the function and find the x-values at which f  is  
differentiable.

81. f (x) = ∣x − 5∣ 82. f (x) = 4x
x − 3

83. f (x) = x2�5

84. f (x) = {x3 − 3x2 + 3x,
x2 − 2x,

    x ≤ 1
    x > 1

 Determining Differentiability In Exercises 
85–88, find the derivatives from the left and from 
the right at x = 1 (if they exist). Is the function 
differentiable at x = 1?

85. f (x) = ∣x − 1∣ 86. f (x) = √1 − x2

87. f (x) = {(x − 1)3,
(x − 1)2,

    x ≤ 1
    x > 1

 88. f (x) = (1 − x)2�3

Determining Differentiability In Exercises 89 and 90, 
determine whether the function is  differentiable at x = 2.

89. f (x) = {x2 + 1,
4x − 3,

    x ≤ 2
    x > 2

 90. f (x) = {1
2x + 2,
√2x,

    x < 2
    x ≥ 2

91.   Graphical Reasoning A line with slope m passes through 
the point (0, 4) and has the equation y = mx + 4.

 (a)  Write the distance d between the line and the point (3, 1) 
as a function of m.

 (b)  Use a graphing utility to graph the function d in part (a). 
Based on the graph, is the function differentiable at every 
value of m? If not, where is it not differentiable?

92.  Conjecture Consider the functions f (x) = x2 and 
g(x) = x3.

 (a) Graph f  and f ′ on the same set of axes.

 (b) Graph g and g′ on the same set of axes.

 (c)  Identify a pattern between f  and g and their respective 
derivatives. Use the pattern to make a conjecture about 
h′(x) if h(x) = xn, where n is an integer and n ≥ 2.

 (d)  Find f ′(x) if f (x) = x4. Compare the result with the 
conjecture in part (c). Is this a proof of your conjecture? 
Explain.

True or False? In Exercises 93–96, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

93.  The slope of the tangent line to the differentiable function f  at 
the point (2, f (2)) is

 
f (2 + ∆x) − f (2)

∆x
.

94.  If a function is continuous at a point, then it is differentiable at 
that point.

95.  If a function has derivatives from both the right and the left at 
a point, then it is differentiable at that point.

96.  If a function is differentiable at a point, then it is continuous at 
that point.

97. Differentiability and Continuity Let

 f (x) = {x sin 
1
x
,

0,

    x ≠ 0

    x = 0

 and

 g(x) = {x2 sin 
1
x
,

0,

    x ≠ 0

    x = 0
.

  Show that f  is continuous, but not differentiable, at x = 0. 
Show that g is differentiable at 0 and find g′(0).

98.  Writing Use a graphing utility to graph the two functions 
f (x) = x2 + 1 and g(x) = ∣x∣ + 1 in the same viewing 
window. Use the zoom and trace features to analyze the graphs 
near the point (0, 1). What do you observe? Which function is  
differentiable at this point? Write a short paragraph describing 
the geometric significance of differentiability at a point.
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2.2 Basic Differentiation Rules and Rates of Change

 Find the derivative of a function using the Constant Rule.
 Find the derivative of a function using the Power Rule.
 Find the derivative of a function using the Constant Multiple Rule.
 Find the derivative of a function using the Sum and Difference Rules.
 Find the derivatives of the sine function and of the cosine function.
 Use derivatives to find rates of change.

The Constant Rule
In Section 2.1, you used the limit definition to find derivatives. In this and the next two 
sections, you will be introduced to several “differentiation rules” that allow you to find 
derivatives without the direct use of the limit definition.

THEOREM 2.2 The Constant Rule

The derivative of a constant function is 0. That is, if c is a real  
number, then

d
dx

 [c] = 0. See Figure 2.14.

Proof Let f (x) = c. Then, by the limit definition of the derivative,

 
d
dx

 [c] = f′(x)

 = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x

 = lim
∆x→0

 
c − c
∆x

 = lim
∆x→0

 0

 = 0. 

 Using the Constant Rule

 Function Derivative
a. y = 7 dy�dx = 0

b. f (x) = 0 f′(x) = 0

c. s(t) = −3 s′(t) = 0

d. y = kπ2, k is constant dy�dx = 0 

Exploration
Writing a Conjecture Use the definition of the derivative given in Section 2.1 
to find the derivative of each function. What patterns do you see? Use your 
results to write a conjecture about the derivative of f (x) = xn.

a. f (x) = x1 b. f (x) = x2 c. f (x) = x3

d. f (x) = x4 e. f (x) = x1�2 f. f (x) = x−1

Notice that the Constant Rule is  
equivalent to saying that the slope of a 
horizontal line is 0. This demonstrates 
the relationship between slope and 
derivative.
Figure 2.14

x

The slope of a 
horizontal line
is 0.

The derivative of a
constant function
is 0.

f (x) = c

y
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The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a 
binomial.

(x + ∆x)2 = x2 + 2x∆x + (∆x)2

(x + ∆x)3 = x3 + 3x2∆x + 3x(∆x)2 + (∆x)3

(x + ∆x)4 = x4 + 4x3∆x + 6x2(∆x)2 + 4x(∆x)3 + (∆x)4

(x + ∆x)5 = x5 + 5x4∆x + 10x3(∆x)2 + 10x2(∆x)3 + 5x(∆x)4 + (∆x)5

The general binomial expansion for a positive integer n is

(x + ∆x)n = xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n.

 
 (∆x)2 is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

THEOREM 2.3 The Power Rule

If n is a rational number, then the function f(x) = xn is differentiable and

d
dx

 [xn] = nxn−1.

For f  to be differentiable at x = 0, n must be a number such that 
xn−1 is defined on an interval containing 0.

Proof If n is a positive integer greater than 1, then the binomial expansion produces

 
d
dx

 [xn] = lim
∆x→0

 
(x + ∆x)n − xn

∆x

 = lim
∆x→0

 
xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n − xn

∆x

 = lim
∆x→0

 [nxn−1 +
n(n − 1)xn−2

2
 (∆x) + .  .  . + (∆x)n−1]

 = nxn−1 + 0 + .  .  . + 0

 = nxn−1.

This proves the case for which n is a positive integer greater than 1. It is left to you to prove 
the case for n = 1. Example 7 in Section 2.3 proves the case for which n is a negative 
integer. In Exercise 73 in Section 2.5, you are asked to prove the case for which n is 
rational. (In Section 5.5, the Power Rule will be extended to cover irrational values of n.) 
 

When using the Power Rule, the case for which n = 1 is best thought of as a 
 separate differentiation rule. That is,

d
dx

 [x] = 1.    Power Rule when n = 1

This rule is consistent with the fact that the slope of the line y = x is 1, as shown in 
Figure 2.15.

REMARK From Example 7  
in Section 2.1, you know that 
the function f (x) = x1�3 is 
defined at x = 0 but is not  
differentiable at x = 0. This  
is because x−2�3 is not defined 
on an interval containing 0.

The slope of the line y = x is 1.
Figure 2.15

x

y = x

y

1

1

2

3

4

2 3 4
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 Using the Power Rule

 Function Derivative

a. f (x) = x3 f′(x) = 3x2

b. g(x) = 3√x g′(x) = d
dx

 [x1�3] = 1
3

 x−2�3 =
1

3x2�3

c. y =
1
x2 

dy
dx

=
d
dx

 [x−2] = (−2)x−3 = −
2
x3 

In Example 2(c), note that before differentiating, 1�x2 was rewritten as x−2. 
Rewriting is the first step in many differentiation problems.

Given:

y =
1
x2

 
 Rewrite:

y = x−2

  Differentiate:
dy
dx

= (−2)x−3

  Simplify:
dy
dx

= −
2
x3

 Finding the Slope of a Graph

See LarsonCalculus.com for an interactive version of this type of example.

Find the slope of the graph of f (x) = x4 for each value of x.

a. x = −1  b. x = 0  c. x = 1

Solution The slope of a graph at a point is the value of the derivative at that point. 
The derivative of f  is f′(x) = 4x3.

a. When x = −1, the slope is f′(−1) = 4(−1)3 = −4. Slope is negative.

b. When x = 0, the slope is f′(0) = 4(0)3 = 0. Slope is zero.

c. When x = 1, the slope is f′(1) = 4(1)3 = 4. Slope is positive.

See Figure 2.16.

 Finding an Equation of a Tangent Line

See LarsonCalculus.com for an interactive version of this type of example.

Find an equation of the tangent line to the graph of f (x) = x2 when x = −2.

Solution To find the point on the graph of f, evaluate the original function at 
x = −2.

(−2, f (−2)) = (−2, 4) Point on graph

To find the slope of the graph when x = −2, evaluate the derivative, f′(x) = 2x, at 
x = −2.

m = f′(−2) = −4 Slope of graph at (−2, 4)

Now, using the point-slope form of the equation of a line, you can write

 y − y1 = m(x − x1) Point-slope form

 y − 4 = −4[x − (−2)] Substitute for y1, m, and x1.

 y = −4x − 4. Simplify.

You can check this result using the tangent feature of a graphing utility, as shown in 
Figure 2.17. 

Note that the slope of the graph is  
negative at the point (−1, 1), the  
slope is zero at the point (0, 0), and  
the slope is positive at the point (1, 1).
Figure 2.16

x

2

1

−1 1

(1, 1)

(0, 0)

(−1, 1)

f (x) = x4

y

The line y = −4x − 4 is tangent to the 
graph of f (x) = x2 at the point (−2, 4).
Figure 2.17

−4.5 4.5

−1

5

X=-2
Y=-4X+-4

f (x) = x2
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The Constant Multiple Rule

THEOREM 2.4 The Constant Multiple Rule

If f  is a differentiable function and c is a real number, then cf  is also 
differentiable and

d
dx

 [cf (x)] = cf′(x).

Proof

 
d
dx

 [cf (x)] = lim
∆x→0

 
cf (x + ∆x) − cf (x)

∆x
 Definition of derivative

 = lim
∆x→0

 c[f (x + ∆x) − f (x)
∆x ]

 = c [ lim
∆x→0

 
f (x + ∆x) − f (x)

∆x ] Apply Theorem 1.2.

 = cf′(x) 

Informally, the Constant Multiple Rule states that constants can be factored out of 
the differentiation process, even when the constants appear in the denominator.

d
dx

 [cf (x)] = c 
d
dx

 [     f (x)] = cf′(x)

d
dx

 [f (x)c ] =
d
dx

 [(1c) f (x)] = (1c) 
d
dx

 [    f (x)] = (1c) f′(x)

 Using the Constant Multiple Rule

 Function Derivative

a. y = 5x3 
dy
dx

=
d
dx

 [5x3] = 5 
d
dx

 [x3] = 5(3)x2 = 15x2

b. y =
2
x
 

dy
dx

=
d
dx

 [2x−1] = 2 
d
dx

 [x−1] = 2(−1)x−2 = −
2
x2

c. f (t) = 4t2

5
 f′(t) = d

dt
 [45 t2] = 4

5
 
d
dt

 [t2] = 4
5

 (2t) = 8
5

 t

d. y = 2√x 
dy
dx

=
d
dx

 [2x1�2] = 2(12 x−1�2) = x−1�2 =
1

√x

e. y =
1

2 3√x2
 

dy
dx

=
d
dx

 [12 x−2�3] = 1
2

 (−2
3) x−5�3 = −

1
3x5�3

f. y = −
3x
2

 y′ =
d
dx

 [−3
2

 x] = −
3
2

 (1) = −
3
2

 

The Constant Multiple Rule and the Power Rule can be combined into one rule. 
The combination rule is

d
dx

 [cxn] = cnxn−1.

REMARK Before  
differentiating functions  
involving radicals, rewrite  
the function with rational 
exponents.
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 Using Parentheses When Differentiating

 Original Function Rewrite Differentiate Simplify

a. y =
5

2x3 y =
5
2

 (x−3) y′ =
5
2

 (−3x−4) y′ = −
15
2x4

b. y =
5

(2x)3 y =
5
8

 (x−3) y′ =
5
8

 (−3x−4) y′ = −
15
8x4

c. y =
7

3x−2 y =
7
3

 (x2) y′ =
7
3

 (2x) y′ =
14x
3

d. y =
7

(3x)−2 y = 63(x2) y′ = 63(2x) y′ = 126x 

The Sum and Difference Rules

THEOREM 2.5 The Sum and Difference Rules

The sum (or difference) of two differentiable functions f  and g is itself 
differentiable. Moreover, the derivative of f + g (or f − g) is the sum (or 
difference) of the derivatives of f  and g.

d
dx

 [ f (x) + g(x)] = f′(x) + g′(x) Sum Rule

d
dx

 [ f (x) − g(x)] = f′(x) − g′(x) Difference Rule

 Proof A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule can 
be proved in a similar way.)

 
d
dx

 [ f (x) + g(x)] = lim
∆x→0

 
[f (x + ∆x) + g(x + ∆x)] − [f (x) + g(x)]

∆x

 = lim
∆x→0

 
f (x + ∆x) + g(x + ∆x) − f (x) − g(x)

∆x

 = lim
∆x→0

 [f (x + ∆x) − f (x)
∆x

+
g(x + ∆x) − g(x)

∆x ]
 = lim

∆x→0
 
f (x + ∆x) − f (x)

∆x
+ lim

∆x→0
 
g(x + ∆x) − g(x)

∆x

 = f′(x) + g′(x) 

The Sum and Difference Rules can be extended to any finite number of functions. 
For instance, if F(x) = f (x) + g(x) − h(x), then F′(x) = f′(x) + g′(x) − h′(x).

 Using the Sum and Difference Rules

 Function Derivative

a. f (x) = x3 − 4x + 5 f′(x) = 3x2 − 4

b. g(x) = −
x4

2
+ 3x3 − 2x g′(x) = −2x3 + 9x2 − 2

c. y =
3x2 − x + 1

x
= 3x − 1 +

1
x
 y′ = 3 −

1
x2 =

3x2 − 1
x2  

REMARK In Example 7(c), 
note that before differentiating,

3x2 − x + 1
x

was rewritten as

3x − 1 +
1
x
.
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Derivatives of the Sine and Cosine Functions
In Section 1.3, you studied the limits

lim
∆x→0

 
sin ∆x
∆x

= 1 and lim
∆x→0

 
1 − cos ∆x

∆x
= 0.

These two limits can be used to prove differentiation rules for the sine and cosine 
functions. (The derivatives of the other four trigonometric functions are discussed in 
Section 2.3.)

THEOREM 2.6 Derivatives of Sine and Cosine Functions

d
dx

 [sin x] = cos x    
d
dx

 [cos x] = −sin x

 Proof Here is a proof of the first rule. (The proof of the second rule is left as an  
exercise [see Exercise 114].) In the proof, note the use of the trigonometric identity 
sin(x + ∆x) = sin x cos ∆x + cos x sin ∆x.

 
d
dx

 [sin x] = lim
∆x→0

 
sin(x + ∆x) − sin x

∆x
 Definition of derivative

 = lim
∆x→0

 
sin x cos ∆x + cos x sin ∆x − sin x

∆x

 = lim
∆x→0

 
cos x sin ∆x − (sin x)(1 − cos ∆x)

∆x

 = lim
∆x→0

 [(cos x)(sin ∆x
∆x ) − (sin x)(1 − cos ∆x

∆x )]
 = (cos x)( lim

∆x→0
 
sin ∆x
∆x ) − (sin x)( lim

∆x→0
 
1 − cos ∆x

∆x )
 = (cos x)(1) − (sin x)(0)
 = cos x

This differentiation rule is shown graphically in Figure 2.18. Note that for each x, the 
slope of the sine curve is equal to the value of the cosine. 

 Derivatives Involving Sines and Cosines

See LarsonCalculus.com for an interactive version of this type of example.

 Function Derivative

a. y = 2 sin x y′ = 2 cos x

b. y =
sin x

2
=

1
2

 sin x y′ =
1
2

 cos x =
cos x

2

c. y = x + cos x y′ = 1 − sin x

d. y = cos x −
π
3

 sin x y′ = −sin x −
π
3

 cos x 

TECHNOLOGY A graphing utility can provide insight into the interpretation  
of a derivative. For instance, Figure 2.19 shows the graphs of

y = a sin x

for a = 1
2, 1, 32, and 2. Estimate the slope of each graph at the point (0, 0). Then verify 

your estimates analytically by evaluating the derivative of each function when x = 0.

 FOR FURTHER INFORMATION
For the outline of a geometric 
proof of the derivatives of the  
sine and cosine functions, see the 
article “The Spider’s Spacewalk 
Derivation of sin′ and cos′” by 
Tim Hesterberg in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

x

1

−1

π2π
2

π

y increasing y increasingy decreasing

y ′ = 0

y ′ = −1

y ′ = 0

y ′ = 1

y ′ = 1

y = sin x
y

The derivative of the sine function is 
the cosine function.
Figure 2.18

x

y

−1

π2π
2

π

y ′ = cos x

y ′ positive y ′ positivey ′ negative

d
dx

 [a sin x] = a cos x

Figure 2.19

−2

2

−π π

3
2

y =     sin xy = 2 sin x

y = sin x 1
2

y =     sin x
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Rates of Change
You have seen how the derivative is used to determine slope. The derivative can also  
be used to determine the rate of change of one variable with respect to another. 
Applications involving rates of change, sometimes referred to as instantaneous rates of 
change, occur in a wide variety of fields. A few examples are population growth rates, 
production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving in 
a straight line. In such problems, it is customary to use either a horizontal or a  vertical 
line with a designated origin to represent the line of motion. On such lines, movement 
to the right (or upward) is considered to be in the positive direction, and movement to 
the left (or downward) is considered to be in the negative direction.

The function s that gives the position (relative to the origin) of an object as a 
 function of time t is called a position function. If, over a period of time ∆t, the object 
changes its position by the amount

∆s = s(t + ∆t) − s(t)

then, by the familiar formula

Rate =
distance

time

the average velocity is

Change in distance
Change in time

=
∆s
∆t

.    Average velocity

 Finding Average Velocity of a Falling Object

A billiard ball is dropped from a height of 100 feet. The ball’s height s at time t is the 
position function

s = −16t2 + 100 Position function

where s is measured in feet and t is measured in seconds. Find the average velocity 
over each time interval.

a. [1, 2]  b. [1, 1.5]  c. [1, 1.1]

Solution

a.  For the interval [1, 2], the object falls from a height of s(1) = −16(1)2 + 100 = 84 
feet to a height of s(2) = −16(2)2 + 100 = 36 feet. The average velocity is

∆s
∆t

=
36 − 84
2 − 1

=
−48

1
= −48 feet per second.

b.  For the interval [1, 1.5], the object falls from a height of 84 feet to a height of 
s(1.5) = −16(1.5)2 + 100 = 64 feet. The average velocity is

∆s
∆t

=
64 − 84
1.5 − 1

=
−20
0.5

= −40 feet per second.

c.  For the interval [1, 1.1], the object falls from a height of 84 feet to a height of 
s(1.1) = −16(1.1)2 + 100 = 80.64 feet. The average velocity is

∆s
∆t

=
80.64 − 84

1.1 − 1
=

−3.36
0.1

= −33.6 feet per second.

Note that the average velocities are negative, indicating that the object is moving  
downward. 

Time-lapse photograph of a  
free-falling billiard ball

Richard Megna/Fundamental Photographs
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Suppose that in Example 9, you wanted to find the instantaneous velocity (or 
 simply the velocity) of the object when t = 1. Just as you can approximate the slope 
of the tangent line by calculating the slope of the secant line, you can approximate the 
velocity at t = 1 by calculating the average velocity over a small interval [1, 1 + ∆t] 
(see Figure 2.20). By taking the limit as ∆t approaches zero, you obtain the velocity 
when t = 1. Try doing this—you will find that the velocity when t = 1 is −32 feet 
per second.

In general, if s = s(t) is the position function for an object moving along a straight 
line, then the velocity of the object at time t is

v(t) = lim
∆t→0

 
s(t + ∆t) − s(t)

∆t
= s′(t).    Velocity function

In other words, the velocity function is the derivative of the position function. Velocity 
can be negative, zero, or positive. The speed of an object is the absolute value of its 
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence 
of gravity can be represented by the equation

 s(t) = −
1
2

 gt2 + v0t + s0  Position function

where s0 is the initial height of the object, v0 is the initial velocity of the object, and g 
is the acceleration due to gravity. On Earth, the value of g is approximately 32 feet per 
second per second or 9.8 meters per second per second.

 Using the Derivative to Find Velocity

At time t = 0 seconds, a diver jumps from a platform diving board that is 32 feet above 
the water (see Figure 2.21). The initial velocity of the diver is 16 feet per second. When 
does the diver hit the water? What is the diver’s velocity at impact?

Solution

Begin by writing an equation to represent the position of the diver. Using the position 
function given above with g = 32 feet per second per second, v0 = 16 feet per second, 
and s0 = 32 feet, you can write

 s(t) = −
1
2
(32)t2 + 16t + 32

 = −16t2 + 16t + 32. Position function

To find the time t when the diver hits the water, let s = 0 and solve for t.

 −16t2 + 16t + 32 = 0 Set position function equal to 0.

 −16(t + 1)(t − 2) = 0 Factor.

 t = −1 or 2 Solve for t.

Because t ≥ 0, choose the positive value to conclude that the diver hits the water at 
t = 2 seconds. The velocity at time t is given by the derivative

s′(t) = −32t + 16. Velocity function

So, the velocity at time t = 2 is

s′(2) = −32(2) + 16 = −48 feet per second.

Notice that the unit for s′(t) is the unit for s (feet) divided by the unit for t (seconds). In 
general, the unit for f′(x) is the unit for f  divided by the unit for x. 

The average velocity between t1 and t2 
is the slope of the secant line, and the 
instantaneous velocity at t1 is the slope 
of the tangent line.
Figure 2.20

Secant line

Tangent lineP

t1 = 1 t2

s

t

Velocity is positive when an object 
is rising and is negative when an 
object is falling. Notice that the diver 
moves upward for the first half-second 
because the velocity is positive for 
0 < t < 1

2. When the velocity is 0, the 
diver has reached the maximum height 
of the dive.
Figure 2.21

32 ft
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2.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Constant Rule What is the derivative of a constant 

function?

2.  Finding a Derivative Explain how to find the 
derivative of the function f (x) = cxn.

3.  Derivatives of Trigonometric Functions What 
are the derivatives of the sine and cosine functions?

4.  Average Velocity and Velocity Describe the 
difference between average velocity and velocity.

 Estimating Slope In Exercises 5 and 6, use 
the graph to estimate the slope of the tangent line 
to y = xn at the point (1, 1). Verify your answer 
 analytically. To print an enlarged copy of the 
graph, go to MathGraphs.com.

 5. (a) y = x1�2  (b) y = x3

  

x
1 2

2

1
(1, 1)

y    

x
1 2

2

1
(1, 1)

y

 6. (a) y = x−1�2  (b) y = x−1

  

x
1 2 3

2

1

y

(1, 1)

   

x
1 2

2

1
(1, 1)

y

 Finding a Derivative In Exercises 7–26, use 
the rules of differentiation to find the derivative of 
the function.

 7. y = 12  8. f (x) = −9

 9. y = x7 10. y = x12

11. y =
1
x5 12. y =

3
x7

13. f (x) = 9√x 14. g(x) = 4√x

15. f (x) = x + 11 16. g(x) = 6x + 3

17. f (t) = −3t2 + 2t − 4 18. y = t2 − 3t + 1

19. g(x) = x2 + 4x3 20. y = 4x − 3x3

21. s(t) = t3 + 5t2 − 3t + 8 22. y = 2x3 + 6x2 − 1

23. y =
π
2

 sin θ 24. g(t) = π cos t

25. y = x2 − 1
2 cos x 26. y = 7x4 + 2 sin x

 Rewriting a Function Before Differentiating 
In Exercises 27–30, complete the table to find the 
derivative of the function.

 Original Function Rewrite Differentiate Simplify

27. y =
2

7x4   

28. y =
8

5x−5   

29. y =
6

(5x)3   

30. y =
3

(2x)−2   

 Finding the Slope of a Graph In Exercises 
31–38, find the slope of the graph of the function 
at the given point. Use the derivative feature of a 
graphing  utility to confirm your results.

 Function Point

31. f (x) = 8
x2 (2, 2)

32. f (t) = 2 −
4
t
 (4, 1)

33. f (x) = −1
2 + 7

5x3 (0, −1
2)

34. y = 2x4 − 3 (1, −1)
35. y = (4x + 1)2 (0, 1)
36. f (x) = 2(x − 4)2 (2, 8)
37. f (θ) = 4 sin θ − θ (0, 0)
38. g(t) = −2 cos t + 5 (π, 7)

 Finding a Derivative In Exercises 39–54, find 
the derivative of the function.

39. f (x) = x2 + 5 − 3x−2 40. f (x) = x3 − 2x + 3x−3

41. g(t) = t2 −
4
t3

 42. f (x) = 8x +
3
x2

43. f (x) = x3 − 3x2 + 4
x2  44. h(x) = 4x3 + 2x + 5

x

45. g(t) = 3t2 + 4t − 8
t3�2  46. h(s) = s5 + 2s + 6

s1�3

47. y = x(x2 + 1) 48. y = x2(2x2 − 3x)
49. f (x) = √x − 6 3√x 50. f (t) = t2�3 − t1�3 + 4

51. f (x) = 6√x + 5 cos x 52. f (x) = 2
3√x

+ 3 cos x

53. y =
1

(3x)−2 − 5 cos x

54. y =
3

(2x)3 + 2 sin x
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 Finding an Equation of a Tangent Line In 
Exercises 55–58, (a) find an equation of the tangent 
line to the graph of the function at the given point, 
(b) use a graphing utility to graph the function and 
its tangent line at the point, and (c) use the tangent 
feature of a graphing utility to confirm your results.

 Function Point

55. f (x) = −2x4 + 5x2 − 3 (1, 0)
56. y = x3 − 3x (2, 2)

57. f (x) = 2
4√x3

 (1, 2)

58. y = (x − 2)(x2 + 3x) (1, −4)

 Horizontal Tangent Line In Exercises 59–64, 
determine the point(s) (if any) at which the graph 
of the function has a horizontal tangent line.

59. y = x4 − 2x2 + 3 60. y = x3 + x

61. y =
1
x2 62. y = x2 + 9

63. y = x + sin x, 0 ≤ x < 2π

64. y = √3x + 2 cos x, 0 ≤ x < 2π

 Finding a Value In Exercises 65–68, find k 
such that the line is tangent to the graph of the 
function.

 Function Line

65. f (x) = k − x2 y = −6x + 1

66. f (x) = kx2 y = −2x + 3

67. f (x) = k
x
 y = −

3
4

x + 3

68. f (x) = k√x y = x + 4

EXPLORING CONCEPTS
Exploring a Relationship In Exercises 69–72, the 
relationship between f  and g is given. Explain the 
relationship between f ′ and g′.

69.  g(x) = f (x) + 6 70. g(x) = 2 f (x)
71. g(x) = −5 f (x) 72. g(x) = 3 f (x) − 1

A Function and Its Derivative In Exercises 73 
and 74, the graphs of a function f  and its derivative f ′
are shown on the same set of coordinate axes. Label the 
graphs as f  or f ′ and write a short paragraph  stating the 
criteria you used in making your selection. To print an 
enlarged copy of the graph, go to MathGraphs.com.

73. 

x
−3 −2

−2

−1 1 2 3

3

1

y  74. 

x
−2 −1 1 2 3 4

1
2

y

75.  Sketching a Graph Sketch the graph of a function f  
such that f ′ > 0 for all x and the rate of change of the function 
is decreasing.

 76.  HOW DO YOU SEE IT? Use the graph of 
f  to answer each question. To print an enlarged 
copy of the graph, go to MathGraphs.com.

x

f

C
A

B

ED

y

(a)  Between which two consecutive points is the 
average rate of change of the function greatest?

(b)  Is the average rate of change of the function 
between A and B greater than or less than the 
instantaneous rate of change at B?

(c)  Sketch a tangent line to the graph between C and 
D such that the slope of the tangent line is the 
same as the average rate of change of the function 
between C and D.

76.  

77.  Finding Equations of Tangent Lines Sketch the 
graphs of y = x2 and y = −x2 + 6x − 5, and sketch the two 
lines that are tangent to both graphs. Find  equations of these 
lines.

78. Tangent Lines Show that the graphs of the two equations

 y = x and y =
1
x

  have tangent lines that are perpendicular to each other at their 
point of intersection.

79.  Horizontal Tangent Line Show that the graph of the 
function

 f (x) = 3x + sin x + 2

 does not have a horizontal tangent line.

80. Tangent Line Show that the graph of the function

 f (x) = x5 + 3x3 + 5x

 does not have a tangent line with a slope of 3.

Finding an Equation of a Tangent Line In Exercises 81 
and 82, find an equation of the tangent line to the graph of the 
function f  through the point (x0, y0) not on the graph. To find 
the point of tangency (x, y) on the graph of f, solve the equation

f ′(x) = y0 − y
x0 − x

.

81. f (x) = √x 82. f (x) = 2
x

 (x0, y0) = (−4, 0)  (x0, y0) = (5, 0)
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83.  Linear Approximation Consider the function 
f (x) = x3�2 with the solution point (4, 8).

 (a)  Use a graphing utility to graph f. Use the zoom feature  
to obtain successive magnifications of the graph in the 
neighborhood of the point (4, 8). After zooming in a few 
times, the graph should appear nearly linear. Use the trace 
feature to determine the coordinates of a point near (4, 8). 
Find an equation of the secant line S(x) through the two 
points.

 (b)  Find the equation of the line T(x) = f ′(4)(x − 4) + f (4) 
tangent to the graph of f  passing through the given point. 
Why are the linear functions S and T nearly the same?

 (c)  Use a graphing utility to graph f  and T on the same set of 
coordinate axes. Note that T is a good approximation of f  
when x is close to 4. What happens to the accuracy of the 
approximation as you move farther away from the point of 
tangency?

 (d)  Demonstrate the conclusion in part (c) by completing the 
table.

 
∆x −3 −2 −1 −0.5 −0.1 0

f (4 + ∆x)

T(4 + ∆x)

∆x 0.1 0.5 1 2 3

f (4 + ∆x)

T(4 + ∆x)

84.  Linear Approximation Repeat Exercise 83 for the 
function f (x) = x3, where T(x) is the line tangent to the graph 
at the point (1, 1). Explain why the accuracy of the linear 
approximation decreases more rapidly than in Exercise 83.

True or False? In Exercises 85–90, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

85. If f ′(x) = g′(x), then f (x) = g(x).
86. If y = x a+2 + bx, then dy�dx = (a + 2)x a+1 + b.

87. If y = π2, then dy�dx = 2π.

88. If f (x) = −g(x) + b, then f ′(x) = −g′(x).
89. If f (x) = 0, then f ′(x) is undefined.

90. If f (x) = 1
xn, then f ′(x) = 1

nx n−1.

 Finding Rates of Change In Exercises 91–94, 
find the average rate of change of the function over 
the given interval. Compare this average rate of 
change with the instantaneous rates of change at 
the endpoints of the interval.

91. f (t) = 3t + 5, [1, 2] 92. f (t) = t2 − 7, [3, 3.1]

93. f (x) = −1
x

, [1, 2] 94. f (x) = sin x, [0, 
π
6]

Vertical Motion In Exercises 95 and 96, use the position 
function s(t) = −16t2 + v0 t + s0 for free-falling objects.

 95.  A silver dollar is dropped from the top of a building that is 
1362 feet tall.

  (a)  Determine the position and velocity functions for the 
coin.

  (b) Determine the average velocity on the interval [1, 2].
  (c) Find the instantaneous velocities when t = 1 and t = 2.

  (d) Find the time required for the coin to reach ground level.

  (e) Find the velocity of the coin at impact.

 96.  A ball is thrown straight down from the top of a 220-foot 
 building with an initial velocity of −22 feet per second. 
What is its velocity after 3 seconds? What is its velocity after 
falling 108 feet?

Vertical Motion In Exercises 97 and 98, use the position 
function s(t) = −4.9t2 + v0 t + s0 for free-falling objects.

 97.  A projectile is shot upward from the surface of Earth with an 
 initial velocity of 120 meters per second. What is its veloc ity 
after 5 seconds? After 10 seconds?

 98.  A rock is dropped from the edge of a cliff that is 214 meters 
above water.

  (a)  Determine the position and velocity functions for the 
rock.

  (b)  Determine the average velocity on the interval [2, 5].
  (c)  Find the instantaneous velocities when t = 2 and t = 5.

  (d)  Find the time required for the rock to reach the surface of 
the water.

  (e)  Find the velocity of the rock at impact.

 99.  Think About It The graph of the position function 
(see figure) represents the distance in miles that a person 
drives during a 10-minute trip to work. Make a sketch of the 
corresponding velocity function.
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 Figure for 99 Figure for 100

100.  Think About It The graph of the velocity function (see 
figure) represents the velocity in miles per hour during a 
10-minute trip to work. Make a sketch of the corresponding 
position function.

101.  Volume The volume of a cube with sides of length s is 
given by V = s3. Find the rate of change of the volume with 
respect to s when s = 6 centimeters.

102.  Area The area of a square with sides of length s is given 
by A = s2. Find the rate of change of the area with respect to 
s when s = 6 meters.
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104.  Fuel Cost A car is driven 15,000 miles a year and gets 
x miles per gallon. Assume that the average fuel cost is  
$3.48 per gallon. Find the annual cost of fuel C as a function 
of x and use this function to complete the table.

  
x 10 15 20 25 30 35 40

C

dC�dx

   Who would benefit more from a one-mile-per-gallon increase in 
fuel efficiency—the driver of a car that gets 15 miles per gallon 
or the driver of a car that gets 35 miles per gallon? Explain.

105.  Velocity Verify that the average velocity over the time 
interval [t0 − ∆t, t0 + ∆t] is the same as the instantaneous 
velocity at t = t0 for the position function

  s(t) = −
1
2

at2 + c.

106.  Inventory Management The annual inventory cost C 
for a manufacturer is

  C =
1,008,000

Q
+ 6.3Q

   where Q is the order size when the inventory is replenished. 
Find the change in annual cost when Q is increased from  
350 to 351 and compare this with the instantaneous rate of 
change when Q = 350.

107.  Finding an Equation of a Parabola Find an equation 
of the parabola y = ax2 + bx + c that passes through (0, 1) 
and is tangent to the line y = x − 1 at (1, 0).

108.  Proof Let (a, b) be an arbitrary point on the graph of 
y = 1�x, x > 0. Prove that the area of the triangle formed by 
the  tangent line through (a, b) and the coordinate axes is 2.

109.  Tangent Line Find the equation(s) of the tangent line(s) 
to the graph of the curve y = x3 − 9x through the point 
(1, −9) not on the graph.

110.  Tangent Line Find the equation(s) of the tangent line(s) 
to the graph of the parabola y = x2 through the given point 
not on the graph.

  (a) (0, a)  (b) (a, 0)
  Are there any restrictions on the constant a?

Making a Function Differentiable In Exercises 111 and 
112, find a and b such that f  is differentiable everywhere.

111. f (x) = {ax3,
x2 + b,

    x ≤ 2
    x > 2

112. f (x) = {cos x,
ax + b,

    x < 0
    x ≥ 0

113.  Determining Differentiability Where are the  
functions f1(x) = ∣sin x∣ and f2(x) = sin ∣x∣ differentiable?

114. Proof Prove that 
d
dx

 [cos x] = −sin x.

 FOR FURTHER INFORMATION For a geometric  
interpretation of the derivatives of trigonometric functions, see the 
article “Sines and Cosines of the Times” by Victor J. Katz in Math 
Horizons. To view this article, go to MathArticles.com.

PUTNAM EXAM CHALLENGE
115. Find all differentiable functions f : R→R such that

  f ′(x) = f (x + n) − f (x)
n

  for all real numbers x and all positive integers n.
This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

The stopping distance of an automobile, on dry, level  
pavement,  traveling at a speed v (in kilometers per hour)  
is the distance R (in meters) the car travels during the   
reaction time of the driver plus the distance B (in meters)  
the car travels after the brakes are applied (see figure).  
The table shows the results of an  experiment.

Driver sees
obstacle

Driver applies
brakes

Car
stops

R B

Reaction
time

Braking
distance

Speed, v 20 40 60 80 100

Reaction Time 
Distance, R 8.3 16.7 25.0 33.3 41.7

Braking Time 
Distance, B 2.3 9.0 20.2 35.8 55.9

(a)  Use the regression  
capabilities of a  
graphing utility to  
find a linear model  
for reaction time  
distance R.

(b)  Use the regression  
capabilities of a  
graphing utility to  
find a quadratic model 
for braking time distance B.

(c)  Determine the polynomial giving the total stopping 
 distance T.

(d)  Use a graphing utility to graph the functions R, B, and  
T in the same viewing window.

(e)  Find the derivative of T and the rates of change of the 
total stopping distance for v = 40, v = 80, and v = 100.

(f )  Use the results of this exercise to draw conclusions  
about the total stopping distance as speed increases.

103. Modeling Data

Tumar/Shutterstock.com 
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2.3 Product and Quotient Rules and Higher-Order Derivatives

 Find the derivative of a function using the Product Rule.
 Find the derivative of a function using the Quotient Rule.
 Find the derivative of a trigonometric function.
 Find a higher-order derivative of a function.

The Product Rule
In Section 2.2, you learned that the derivative of the sum of two functions is simply the 
sum of their derivatives. The rules for the derivatives of the product and quotient of two 
functions are not as simple.

THEOREM 2.7 The Product Rule

The product of two differentiable functions f  and g is itself differentiable. 
Moreover, the derivative of fg is the first function times the derivative of the 
second, plus the second function times the derivative of the first.

d
dx

[ f (x)g(x)] = f (x)g′(x) + g(x)f′(x)

Proof Some mathematical proofs, such as the proof of the Sum Rule, are straight-
forward. Others involve clever steps that may appear unmotivated to a reader. This 
proof involves such a step—subtracting and adding the same quantity—which is shown 
in color.

Note that lim
∆x→0  

f (x + ∆x) = f (x) because f  is given to be differentiable and therefore

is continuous. 

The Product Rule can be extended to cover products involving more than two 
factors. For example, if f, g, and h are differentiable functions of x, then

d
dx

[ f (x)g(x)h(x)] = f′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x).

So, the derivative of y = x2 sin x cos x is

 
dy
dx

= 2x sin x cos x + x2 cos x cos x + x2(sin x)(−sin x)

 = 2x sin x cos x + x2(cos2 x − sin2 x).

 
d
dx

[ f (x)g(x)] = lim
∆x→0

 
f (x + ∆x)g(x + ∆x) − f (x)g(x)

∆x

 = lim
∆x→0

 
f (x + ∆x)g(x + ∆x) − f (x + ∆x)g(x) + f (x + ∆x)g(x) − f (x)g(x)

∆x

 = lim
∆x→0

 [f (x + ∆x)g(x + ∆x) − g(x)
∆x

+ g(x) f (x + ∆x) − f (x)
∆x ]

 = lim
∆x→0

 [f (x + ∆x)g(x + ∆x) − g(x)
∆x ] + lim

∆x→0
 [g(x) f (x + ∆x) − f (x)

∆x ]
 = lim

∆x→0
 f (x + ∆x) ∙ lim

∆x→0
 
g(x + ∆x) − g(x)

∆x
+ lim

∆x→0
 g(x) ∙ lim

∆x→0
 
f (x + ∆x) − f (x)

∆x

 = f (x)g′(x) + g(x)f′(x)

REMARK The proof of the 
Product Rule for products of 
more than two factors is left as 
an exercise (see Exercise 137).

REMARK A version of the 
Product Rule that some people 
prefer is

The advantage of this form  
is that it generalizes easily  
to products of three or more  
factors.

d
dx

[ f (x)g(x)] = f′(x)g(x) + f (x)g′(x).
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The derivative of a product of two functions is not (in general) given by the product 
of the derivatives of the two functions. To see this, try comparing the product of the  
derivatives of

f (x) = 3x − 2x2

and

g(x) = 5 + 4x

with the derivative in Example 1.

 Using the Product Rule

Find the derivative of h(x) = (3x − 2x2)(5 + 4x).

Solution

 h′(x) = (3x − 2x2) d
dx

 [5 + 4x] + (5 + 4x) d
dx

 [3x − 2x2] Apply Product Rule.

 = (3x − 2x2)(4) + (5 + 4x)(3 − 4x)
 = (12x − 8x2) + (15 − 8x − 16x2)
 = −24x2 + 4x + 15 

In Example 1, you have the option of finding the derivative with or without the 
Product Rule. To find the derivative without the Product Rule, you can write

 Dx[(3x − 2x2)(5 + 4x)] = Dx[−8x3 + 2x2 + 15x]
 = −24x2 + 4x + 15.

In the next example, you must use the Product Rule.

 Using the Product Rule

Find the derivative of y = 3x2 sin x.

Solution

 
d
dx

 [3x2 sin x] = 3x2 
d
dx

 [sin x] + sin x 
d
dx

 [3x2] Apply Product Rule.

 = 3x2 cos x + (sin x)(6x)
 = 3x2 cos x + 6x sin x

 = 3x(x cos x + 2 sin x)

 Using the Product Rule

Find the derivative of y = 2x cos x − 2 sin x.

Solution

 
dy
dx

= (2x)( d
dx

 [cos x]) + (cos x)( d
dx

[2x]) − 2 
d
dx

 [sin x]

 = (2x)(−sin x) + (cos x)(2) − 2(cos x)
 = −2x sin x 

First
Derivative of 

second
Derivative  

of firstSecond

Product Rule Constant Multiple Rule

REMARK In Example 3, 
notice that you use the Product 
Rule when both factors of the 
product are variable, and you 
use the Constant Multiple Rule 
when one of the factors is a  
constant.

THE PRODUCT RULE

When Leibniz originally wrote 
a formula for the Product 
Rule, he was motivated by the 
expression

(x + dx)(y + dy) − xy

from which he subtracted 
dx dy (as being negligible) and 
obtained the differential form 
x dy + y dx. This derivation 
resulted in the traditional form 
of the Product Rule. (Source: 
The History of Mathematics by 
David M. Burton) 
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The Quotient Rule

THEOREM 2.8 The Quotient Rule

The quotient f�g of two differentiable functions f  and g is itself differentiable  
at all values of x for which g(x) ≠ 0. Moreover, the derivative of f�g is given  
by the denominator times the derivative of the numerator minus the numerator 
times the derivative of the denominator, all divided by the square of the 
denominator.

d
dx

 [ f (x)
g(x)] =

g(x)f′(x) − f (x)g′(x)
[g(x)]2 , g(x) ≠ 0

Proof As with the proof of Theorem 2.7, the key to this proof is subtracting and 
adding the same quantity––which is shown in color.

 
d
dx

 [ f (x)
g(x)] = lim

∆x→0
 

f(x + ∆x)
g(x + ∆x) −

f (x)
g(x)

∆x
 Definition of derivative

 = lim
∆x→0

 
g(x)f (x + ∆x) − f (x)g(x + ∆x)

∆xg(x)g(x + ∆x)

 = lim
∆x→0

 
g(x)f (x + ∆x) − f (x)g(x) + f (x)g(x) − f (x)g(x + ∆x)

∆xg(x)g(x + ∆x)

 =
lim
∆x→0

 
g(x)[ f (x + ∆x) − f (x)]

∆x
− lim

∆x→0
 
f (x)[g(x + ∆x) − g(x)]

∆x
lim
∆x→0

 [g(x)g(x + ∆x)]

 =
g(x)[ lim

∆x→0
 
f (x + ∆x) − f (x)

∆x ] − f (x)[ lim
∆x→0

g(x + ∆x) − g(x)
∆x ]

lim
∆x→0

 [g(x)g(x + ∆x)]

 =
g(x)f′(x) − f (x)g′(x)

[g(x)]2

Note that lim
∆x→0

 g(x + ∆x) = g(x) because g is given to be differentiable and therefore

is continuous. 

 Using the Quotient Rule

Find the derivative of y =
5x − 2
x2 + 1

.

Solution

 
d
dx

 [5x − 2
x2 + 1] =

(x2 + 1) d
dx

 [5x − 2] − (5x − 2) d
dx

 [x2 + 1]

(x2 + 1)2  Apply Quotient Rule.

 =
(x2 + 1)(5) − (5x − 2)(2x)

(x2 + 1)2

 =
(5x2 + 5) − (10x2 − 4x)

(x2 + 1)2

 =
−5x2 + 4x + 5

(x2 + 1)2  

REMARK From the Quotient 
Rule, you can see that the  
derivative of a quotient is not  
(in general) the quotient of  
the derivatives. 

y ′ = −5x2 + 4x + 5
(x2 + 1)2

−4

−7 8

6

y = 5x − 2
x2 + 1

Graphical comparison of a  
function and its derivative
Figure 2.22

TECHNOLOGY A graphing 
utility can be used to compare 
the graph of a function with 
the graph of its derivative. For 
instance, in Figure 2.22, the 
graph of the function in  
Example 4 appears to have  
two points that have horizontal  
tangent lines. What are the  
values of y′ at these two points?
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Note the use of parentheses in Example 4. A liberal use of parentheses is 
recommended for all types of differentiation problems. For instance, with the Quotient 
Rule, it is a good idea to enclose all factors and derivatives in parentheses and to pay 
special attention to the subtraction required in the numerator. 

When differentiation rules were introduced in the preceding section, the need for 
rewriting before differentiating was emphasized. The next example illustrates this point 
with the Quotient Rule.

 Rewriting Before Differentiating

Find an equation of the tangent line to the graph of f (x) = 3 − (1�x)
x + 5

 at (−1, 1).

Solution Begin by rewriting the function.

 f (x) = 3 − (1�x)
x + 5

 Write original function.

 =
x(3 −

1
x)

x(x + 5)  Multiply numerator and denominator by x.

 =
3x − 1
x2 + 5x

 Rewrite.

Next, apply the Quotient Rule.

 f′(x) = (x2 + 5x)(3) − (3x − 1)(2x + 5)
(x2 + 5x)2  Quotient Rule

 =
(3x2 + 15x) − (6x2 + 13x − 5)

(x2 + 5x)2

 =
−3x2 + 2x + 5

(x2 + 5x)2  Simplify.

To find the slope at (−1, 1), evaluate f′(−1).

f′(−1) = 0 Slope of graph at (−1, 1)

Then, using the point-slope form of the equation of a line, you can determine that the 
equation of the tangent line at (−1, 1) is y = 1. See Figure 2.23. 

Not every quotient needs to be differentiated by the Quotient Rule. For instance, 
each quotient in the next example can be considered as the product of a constant times 
a function of x. In such cases, it is more convenient to use the Constant Multiple Rule.

 Using the Constant Multiple Rule

 Original Function Rewrite Differentiate Simplify

a. y =
x2 + 3x

6
 y =

1
6

 (x2 + 3x) y′ =
1
6

 (2x + 3) y′ =
2x + 3

6

b. y =
5x4

8
 y =

5
8

x4 y′ =
5
8

 (4x3) y′ =
5
2

 x3

c. y =
−3(3x − 2x2)

7x
 y = −

3
7

 (3 − 2x) y′ = −
3
7

 (−2) y′ =
6
7

d. y =
9

5x2 y =
9
5

 (x−2) y′ =
9
5

 (−2x−3) y′ = −
18
5x3

  

REMARK To see the benefit 
of using the Constant Multiple 
Rule for some quotients, try 
using the Quotient Rule to  
differentiate the functions in 
Example 6. You should  
obtain the same results but  
with more work.

The line y = 1 is tangent to the graph 
of f  at the point (−1, 1).
Figure 2.23

y

x

y = 1

f (x) = 
3 −     1

x + 5
x

−1−2−3−4−5−6−7 1 2 3

−2

−3

−4

−5

3

4

5

(−1, 1)
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In Section 2.2, the Power Rule was proved only for the case in which the exponent 
n is a positive integer greater than 1. The next example extends the proof to include 
negative integer exponents.

 Power Rule: Negative Integer Exponents

If n is a negative integer, then there exists a positive integer k such that n = −k. So, by 
the Quotient Rule, you can write

 
d
dx

[xn] = d
dx[

1
xk]

 =
xk(0) − (1)(kxk−1)

(xk)2  Quotient Rule and Power Rule

 =
0 − kxk−1

x2k

 = −kx−k−1

 = nxn−1. n = −k

So, the Power Rule

d
dx

 [xn] = nxn−1 Power Rule

is valid for any integer n. In Exercise 73 in Section 2.5, you are asked to prove the case 
for which n is any rational number. 

Derivatives of Trigonometric Functions
Knowing the derivatives of the sine and cosine functions, you can use the Quotient Rule 
to find the derivatives of the four remaining trigonometric functions.

THEOREM 2.9 Derivatives of Trigonometric Functions

d
dx

 [tan x] = sec2 x 
d
dx

 [cot x] = −csc2 x

d
dx

 [sec x] = sec x tan x 
d
dx

 [csc x] = −csc x cot x

Proof Considering tan x = (sin x)�(cos x) and applying the Quotient Rule, you 
obtain

 
d
dx

 [tan x] = d
dx

 [ sin x
cos x]

 =
(cos x)(cos x) − (sin x)(−sin x)

cos2 x
 Apply Quotient Rule.

 =
cos2 x + sin2 x

cos2 x

 =
1

cos2 x

 = sec2 x.

The proofs of the other three parts of the theorem are left as an exercise (see  
Exercise 87). 

REMARK In the proof of 
Theorem 2.9, note the use of  
the trigonometric identities

sin2 x + cos2 x = 1

and

sec x =
1

cos x
.

These trigonometric identities 
and others are listed in Section 
P.4 and on the formula cards 
for this text.
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 Differentiating Trigonometric Functions

See LarsonCalculus.com for an interactive version of this type of example.

 Function Derivative

a. y = x − tan x  
dy
dx

= 1 − sec2 x

b. y = x sec x  y′ = x(sec x tan x) + (sec x)(1)
  = (sec x)(1 + x tan x)

 Different Forms of a Derivative

Differentiate both forms of

y =
1 − cos x

sin x
= csc x − cot x.

Solution

First form:  y =
1 − cos x

sin x

  y′ =
(sin x)(sin x) − (1 − cos x)(cos x)

sin2 x

  =
sin2 x − cos x + cos2 x

sin2 x

  =
1 − cos x

sin2 x
 sin2 x + cos2 x = 1

Second form:  y = csc x −  cot x

  y′ = −csc x cot x + csc2 x

To show that the two derivatives are equal, you can write 

 
1 − cos x

sin2 x
=

1
sin2 x

−
cos x
sin2 x

 =
1

sin2 x
− ( 1

sin x)(
cos x
sin x)

 = csc2 x − csc x cot x. 

The summary below shows that much of the work in obtaining a simplified form 
of a derivative occurs after differentiating. Note that two characteristics of a simplified 
form are the absence of negative exponents and the combining of like terms.

f′(x) After Differentiating f′(x) After Simplifying

Example 1 (3x − 2x2)(4) + (5 + 4x)(3 − 4x) −24x2 + 4x + 15

Example 3 (2x)(−sin x) + (cos x)(2) − 2(cos x) −2x sin x

Example 4
(x2 + 1)(5) − (5x − 2)(2x)

(x2 + 1)2
−5x2 + 4x + 5

(x2 + 1)2

Example 5
(x2 + 5x)(3) − (3x − 1)(2x + 5)

(x2 + 5x)2
−3x2 + 2x + 5

(x2 + 5x)2

Example 9
(sin x)(sin x) − (1 − cos x)(cos x)

sin2 x
1 − cos x

sin2 x

REMARK Because of 
trigonometric identities, the 
derivative of a trigonometric 
function can take many forms. 
This presents a challenge when 
you are trying to match your 
answers to those given in the 
back of the text.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



128 Chapter 2 Differentiation

Higher-Order Derivatives
Just as you can obtain a velocity function by differentiating a position function, you 
can obtain an acceleration function by differentiating a velocity function. Another way 
of looking at this is that you can obtain an acceleration function by differentiating a 
position function twice.

 s(t) Position function

 v(t) = s′(t) Velocity function

 a(t) = v′(t) = s″(t) Acceleration function

The function a(t) is the second derivative of s(t) and is denoted by s″(t).
The second derivative is an example of a higher-order derivative. You can 

define derivatives of any positive integer order. For instance, the third derivative is 
the derivative of the second derivative. Higher-order derivatives are denoted as shown 
below.

First derivative: y′, f′(x), dy
dx

, 
d
dx

 [ f (x)], Dx [y]

Second derivative: y″, f ″(x), d2y
dx2 , 

d2

dx2 [ f (x)], Dx
2[y]

Third derivative: y′″, f′″(x), d3y
dx3 , 

d3

dx3 [ f (x)], Dx
3[y]

Fourth derivative: y(4), f (4)(x), d4y
dx4, 

d4

dx4 [ f (x)], Dx
4[y]

 ⋮
nth derivative: y(n), f (n)(x), dny

dxn, 
dn

dxn [ f (x)], Dx
n[y]

 Finding the Acceleration Due to Gravity

Because the moon has no atmosphere, a falling  

1 2 3

1

2

3

t

s

s(t) = −0.81t2 + 2

 
object on the moon encounters no air resistance.  
In 1971, astronaut David Scott demonstrated that  
a feather and a hammer fall at the same rate on  
the moon. The position function for each of these  
falling objects is 

s(t) = −0.81t2 + 2

where s(t) is the height in meters and t is the  
time in seconds, as shown in the figure at the  
right. What is the ratio of Earth’s gravitational  
force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

 s(t) = −0.81t2 + 2 Position function

 s′(t) = −1.62t Velocity function

 s″(t) = −1.62 Acceleration function

Because s″(t) = −g, the acceleration due to gravity on the moon is g = 1.62 meters per 
second per second. The acceleration due to gravity on Earth is 9.8 meters per second 
per second, so the ratio of Earth’s gravitational force to the moon’s is 

 
Earth s gravitational force
Moon s gravitational force

=
9.8
1.62

 ≈ 6.0. 

’
’

The moon’s mass is 7.349 × 1022 
kilograms, and Earth’s mass 
is 5.976 × 1024 kilograms. 
The moon’s radius is 1737 
kilometers, and Earth’s radius 
is 6378 kilometers. Because 
the gravitational force on the 
surface of a planet is directly 
proportional to its mass and 
inversely proportional to the 
square of its radius, the ratio of 
the gravitational force on Earth 
to the gravitational force on the 
moon is

(5.976 × 1024)�63782

(7.349 × 1022)�17372 ≈ 6.0.

REMARK The second  
derivative of a function is the  
derivative of the first derivative 
of the function.

NASA
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2.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Product Rule Describe the Product Rule in your  

own words.

2.  Quotient Rule Describe the Quotient Rule in your 
own words.

3.  Trigonometric Functions What are the derivatives 
of tan x, cot x, sec x, and csc x?

4.  Higher-Order Derivative What is a higher-order 
derivative?

 Using the Product Rule In Exercises 5–10, 
use the Product Rule to find the derivative of the 
function.

 5. g(x) = (2x − 3)(1 − 5x)  6. y = (3x − 4)(x3 + 5)
 7. h(t) = √t(1 − t2)  8. g(s) = √s(s2 + 8)
 9. f (x) = x3 cos x 10. g(x) = √x sin x

 Using the Quotient Rule In Exercises 11–16, 
use the Quotient Rule to find the derivative of the 
function.

11. f (x) = x
x − 5

 12. g(t) = 3t2 − 1
2t + 5

13. h(x) = √x
x3 + 1

 14. f (x) = x2

2√x + 1

15. g(x) = sin x
x2  16. f (t) = cos t

t3

 Finding and Evaluating a Derivative In 
Exercises 17–22, find f ′(x) and f ′(c).

 Function Value of c

17. f (x) = (x3 + 4x)(3x2 + 2x − 5) c = 0

18. f (x) = (2x2 − 3x)(9x + 4) c = −1

19. f (x) = x2 − 4
x − 3

 c = 1

20. f (x) = x − 4
x + 4

 c = 3

21. f (x) = x cos x c =
π
4

22. f (x) = sin x
x

 c =
π
6

 Using the Constant Multiple Rule In 
Exercises 23–28, complete the table to find the 
derivative of the function without using the 
Quotient Rule.

 Function Rewrite Differentiate Simplify

23. y =
x3 + 6x

3
   

 Function Rewrite Differentiate Simplify

24. y =
5x2 − 3

4
   

25. y =
6

7x2   

26. y =
10
3x3   

27. y =
4x3�2

x
   

28. y =
2x

x1�3   

Finding a Derivative In Exercises 29–40, find the derivative 
of the algebraic function.

29. f (x) = 4 − 3x − x2

x2 − 1
 30. f (x) = x2 + 5x + 6

x2 − 4

31. f (x) = x(1 −
4

x + 3) 32. f (x) = x4(1 −
2

x + 1)
33. f (x) = 3x − 1

√x
 34. f (x) = 3√x(√x + 3)

35. f (x) =
2 −

1
x

x − 3
 36. h(x) =

1
x2 + 5x

x + 1

37. g(s) = s3(5 −
s

s + 2) 38. g(x) = x2(2x −
1

x + 1)
39. f (x) = (2x3 + 5x)(x − 3)(x + 2)
40. f (x) = (x3 − x)(x2 + 2)(x2 + x − 1)

 Finding a Derivative of a Trigonometric 
Function In Exercises 41–56, find the derivative 
of the trigonometric function.

41. f (t) = t2 sin t 42. f (θ) = (θ + 1) cos θ

43. f (t) = cos t
t

 44. f (x) = sin x
x3

45. f (x) = −x + tan x 46. y = x + cot x

47. g(t) = 4√t + 6 csc t 48. h(x) = 1
x
− 12 sec x

49. y =
3(1 − sin x)

2 cos x
 50. y =

sec x
x

51. y = −csc x − sin x 52. y = x sin x + cos x

53. f (x) = x2 tan x 54. f (x) = sin x cos x

55. y = 2x sin x + x2 cos x 56. h(θ) = 5θ sec θ + θ tan θ

Finding a Derivative Using Technology In Exercises 57 
and 58, use a computer algebra system to find the derivative 
of the function.

57. g(x) = (x + 1
x + 2)(2x − 5) 58. f (x) = cos x

1 − sin x
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Finding the Slope of a Graph In Exercises 59–62, find 
the slope of the graph of the function at the given point. Use the 
derivative feature of a graphing utility to confirm your results.

 Function Point

59. y =
1 + csc x
1 − csc x

 (π6, −3)
60. f (x) = tan x cot x (1, 1)

61. h(t) = sec t
t

 (π, −
1
π)

62. f (x) = (sin x)(sin x + cos x) (π4, 1)
Finding an Equation of a Tangent Line In Exercises 
63–68, (a) find an equation of the tangent line to the graph 
of f  at the given point, (b) use a graphing utility to graph 
the function and its tangent line at the point, and (c) use the 
tangent feature of a graphing utility to confirm your results.

63. f (x) = (x3 + 4x − 1)(x − 2), (1, −4)
64. f (x) = (x − 2)(x2 + 4), (1, −5)

65. f (x) = x
x + 4

, (−5, 5) 66. f (x) = x + 3
x − 3

, (4, 7)

67. f (x) = tan x, (π4, 1) 68. f (x) = sec x, (π3, 2)
Famous Curves In Exercises 69–72, find an equation of 
the tangent line to the graph at the given point. (The graphs in 
Exercises 69 and 70 are called Witches of Agnesi. The graphs 
in Exercises 71 and 72 are called serpentines.)

69. y

x
2 4−2

−2

−4

4

6

f (x) = 8
x2 + 4

(2, 1)

 70. y

x
2 4−2

−2

−4

4

6 f (x) = 27
x2 + 9

−3, 3
2( (

71. y

x
4 8

−8

4

8 f (x) = 16x
x2 + 16

−2, − 8
5( (

 72. y

x
21 3 4

2
3

1

4

f (x) = 4x
x2 + 6

2, 4
5( (

 Horizontal Tangent Line In Exercises 73–76, 
determine the point(s) at which the graph of the 
function has a horizontal tangent line.

73. f (x) = 2x − 1
x2  74. f (x) = x2

x2 + 1

75. f (x) = x2

x − 1
 76. f (x) = x − 4

x2 − 7

77.  Tangent Lines Find equations of the tangent lines to the 
graph of f (x) = (x + 1)�(x − 1) that are parallel to the line 
2y + x = 6. Then graph the function and the tangent lines.

78.  Tangent Lines Find equations of the tangent lines to the 
graph of f (x) = x�(x − 1) that pass through the point (−1, 5).
Then graph the function and the tangent lines.

Exploring a Relationship In Exercises 79 and 80, verify 
that f ′(x) = g′(x) and explain the relationship between f  and g.

79. f (x) = 3x
x + 2

, g(x) = 5x + 4
x + 2

80. f (x) = sin x − 3x
x

, g(x) = sin x + 2x
x

Finding Derivatives In Exercises 81 and 82, use the graphs 
of f  and g. Let p(x) = f (x)g(x) and q(x) = f (x)�g(x).

81. (a) Find p′(1). 82. (a) Find p′(4).
 (b) Find q′(4).  (b) Find q′(7).
 y

x

f

g

2−2 4 6 8 10

2

6

8

10

  y

x
2−2 4 6 8 10

2

4

8

10

f

g

83.  Area The length of a rectangle is given by 6t + 5 and its 
height is √t, where t is time in seconds and the dimensions are 
in centimeters. Find the rate of change of the area with respect 
to time.

84.  Volume The radius of a right circular cylinder is given by 
√t + 2 and its height is 1

2√t, where t is time in seconds and 
the dimensions are in inches. Find the rate of change of the 
volume with respect to time.

85.  Inventory Replenishment The ordering and 
transportation cost C for the components used in manufacturing 
a product is

 C = 100(200
x2 +

x
x + 30), x ≥ 1

   where C is measured in thousands of dollars and x is the order 
size in hundreds. Find the rate of change of C with respect to 
x when (a) x = 10, (b) x = 15, and (c) x = 20. What do these 
rates of change imply about increasing order size?

86.  Population Growth A population of 500 bacteria is 
introduced into a culture and grows in number according to the 
equation 

 P(t) = 500(1 +
4t

50 + t2)
   where t is measured in hours. Find the rate at which the 

population is growing when t = 2.
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87. Proof Prove each differentiation rule.

 (a) 
d
dx

 [sec x] = sec x tan x

 (b) 
d
dx

 [csc x] = −csc x cot x

 (c) 
d
dx

 [cot x] = −csc2 x

88.  Rate of Change Determine whether there exist any 
values of x in the interval [0, 2π) such that the rate of change 
of f (x) = sec x and the rate of change of g(x) = csc x are 
equal.

89.  Modeling Data The table shows the national health care 
expenditures h (in billions of dollars) in the United States and 
the population p (in millions) of the United States for the years 
2008 through 2013. The year is represented by t, with t = 8 
corresponding to 2008. (Source: U.S. Centers for Medicare 
& Medicaid Services and U.S. Census Bureau)

Year, t 8 9 10 11 12 13

h 2414 2506 2604 2705 2817 2919

p 304 307 309 311 313 315

 (a)  Use a graphing utility to find linear models for the health 
care expenditures h(t) and the population p(t).

 (b)  Use a graphing utility to graph h(t) and p(t).
 (c)  Find A = h(t)�p(t), then graph A using a graphing utility. 

What does this function represent?

 (d) Find and interpret A′(t) in the context of the problem.

90.  Satellites When satellites observe Earth, they can scan 
only part of Earth’s surface. Some satellites have sensors that 
can measure the angle θ shown in the figure. Let h represent 
the satellite’s distance from Earth’s surface, and let r represent 
Earth’s radius.

r

r h
θ

 (a) Show that h = r(csc θ − 1).
 (b)  Find the rate at which h is changing with respect to θ when 

θ = 30°. (Assume r = 4000 miles.)

 Finding a Second Derivative In Exercises 
91–100, find the second derivative of the function.

91. f (x) = x2 + 7x − 4  92. f (x) = 4x5 − 2x3 + 5x2

93. f (x) = 4x3�2  94. f (x) = x2 + 3x−3

95. f (x) = x
x − 1

  96. f (x) = x2 + 3x
x − 4

97. f (x) = x sin x  98. f (x) = x cos x

99. f (x) = csc x 100. f (x) = sec x

 Finding a Higher-Order Derivative In 
Exercises 101–104, find the given higher-order 
derivative.

101. f ′(x) = x3 − x2�5, f (3)(x)
102. f (3)(x) = 5√x4, f (4)(x)
103. f ″(x) = −sin x, f (8)(x)
104. f (4)(t) = t cos t, f (5)(t)

Using Relationships In Exercises 105–108, use the given 
information to find f ′(2).

g(2) = 3 and g′(2) = −2

h(2) = −1 and h′(2) = 4

105. f (x) = 2g(x) + h(x)
106. f (x) = 4 − h(x)

107. f (x) = g(x)
h(x)

108. f (x) = g(x)h(x)

EXPLORING CONCEPTS

109.  Higher-Order Derivatives Polynomials of what 
degree satisfy f (n) = 0? Explain your reasoning.

110.   Differentiation of Piecewise Functions 
Describe how you would differentiate a piecewise 
function. Use your approach to find the first and second 
derivatives of f (x) = x∣x∣. Explain why f ″(0) does not 
exist.

Identifying Graphs In Exercises 111 and 112, the 
graphs of f, f ′, and f ″ are shown on the same set 
of coordinate axes. Identify each graph. Explain your 
reasoning. To print an enlarged copy of the graph, go to 
MathGraphs.com.

111. 

2

2

−1−2
x

y

Sketching Graphs In Exercises 113 and 114, the graph 
of f  is shown. Sketch the graphs of f ′ and f ″. To print an 
enlarged copy of the graph, go to MathGraphs.com.

113. y

x

f

−2−4 4
−2

2

4

112.

3
−1

−1

−2

x

y

114. y

x

2
3
4

1

−4

f

π
2

π
2
3
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115.  Sketching a Graph Sketch the graph of a differentiable 
function f  such that f (2) = 0, f ′ < 0 for −∞ < x < 2, and 
f ′ > 0 for 2 < x < ∞. Explain how you found your answer.

116.  Sketching a Graph Sketch the graph of a differentiable 
function f  such that f > 0 and f ′ < 0 for all real numbers x. 
Explain how you found your answer.

117.  Acceleration The velocity of an object is

  v(t) = 36 − t2, 0 ≤ t ≤ 6

   where v is measured in meters per second and t is the time 
in seconds. Find the velocity and acceleration of the object 
when t = 3. What can be said about the speed of the object 
when the velocity and acceleration have opposite signs?

118.  Acceleration The velocity of an automobile starting 
from rest is

  v(t) = 100t
2t + 15

   where v is measured in feet per second and t is the 
time in seconds. Find the acceleration at (a) 5 seconds,  
(b) 10 seconds, and (c) 20 seconds.

119.  Stopping Distance A car is traveling at a rate of 66 feet 
per second (45 miles per hour) when the brakes are applied. 
The position function for the car is s(t) = −8.25t2 + 66t, 
where s is measured in feet and t is measured in seconds. 
Use this function to complete the table and find the average 
velocity during each time interval.

  
t 0 1 2 3 4

s(t)

v(t)

a(t)

 120.    HOW DO YOU SEE IT? The figure shows 
the graphs of the position, velocity, and 
acceleration functions of a particle.

y

t
1−1 4 5 6 7

8
4

12
16

(a)  Copy the graphs of the functions shown. Identify 
each graph. Explain your reasoning. To print an 
enlarged copy of the graph, go to MathGraphs.com.

(b)  On your sketch, identify when the particle speeds up 
and when it slows down. Explain your reasoning.

120.    

Finding a Pattern In Exercises 121 and 122, develop a 
general rule for f (n)(x) given f (x).

121. f (x) = xn 122. f (x) = 1
x

123. Finding a Pattern Consider the function f (x) = g(x)h(x).
  (a)  Use the Product Rule to generate rules for finding f ″(x), 

f ′″(x), and f (4)(x).
  (b) Use the results of part (a) to write a general rule for f (n)(x).
124.  Finding a Pattern Develop a general rule for the nth 

derivative of xf (x), where f  is a differentiable function of x.

Finding a Pattern In Exercises 125 and 126, find the 
derivatives of the function f  for n = 1, 2, 3, and 4. Use the 
results to write a general rule for f ′(x) in terms of n.

125. f (x) = xn sin x 126. f (x) = cos x
xn

Differential Equations In Exercises 127–130, verify that 
the function satisfies the differential equation. (A differential 
equation in x and y is an equation that involves x, y, and 
derivatives of y.)

 Function Differential Equation

127. y =
1
x
, x > 0 x3y″ + 2x2y′ = 0

128. y = 2x3 − 6x + 10 −y′″ − xy″ − 2y′ = −24x2

129. y = 2 sin x + 3 y″ + y = 3

130. y = 3 cos x + sin x y″ + y = 0

True or False? In Exercises 131–136, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

131. If y = f (x)g(x), then 
dy
dx

= f ′(x)g′(x).

132. If y = (x + 1)(x + 2)(x + 3)(x + 4), then 
d5y
dx5 = 0.

133. If f ′(c) and g′(c) are zero and h(x) = f (x)g(x), then h′(c) = 0.

134.  If the position function of an object is linear, then its 
acceleration is zero.

135.  The second derivative represents the rate of change of the 
first derivative.

136.  The function f (x) = sin x + c satisfies f (n) = f (n+4) for all 
integers n ≥ 1.

137.  Proof Use the Product Rule twice to prove that if f, g, and 
h are differentiable functions of x, then

d
dx

 [ f (x)g(x)h(x)] = f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x).

138.  Think About It Let f  and g be functions whose first 
and second derivatives exist on an interval I. Which of the 
following formulas is (are) true?

  (a) fg″ − f ″g = ( fg′ − f ′g)′  (b) fg″ + f ″g = ( fg)″
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2.4 The Chain Rule

 Find the derivative of a composite function using the Chain Rule.
 Find the derivative of a function using the General Power Rule.
 Simplify the derivative of a function using algebra.
 Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule
This text has yet to discuss one of the most powerful differentiation rules—the Chain 
Rule. This rule deals with composite functions and adds a surprising versatility to the 
rules discussed in the two previous sections. For example, compare the functions shown 
below. Those on the left can be differentiated without the Chain Rule, and those on the 
right are best differentiated with the Chain Rule.

 Without the Chain Rule With the Chain Rule

y = x2 + 1 y = √x2 + 1

y = sin x y = sin 6x

y = 3x + 2 y = (3x + 2)5

y = x + tan x y = x + tan x2

Basically, the Chain Rule states that if y changes dy�du times as fast as u, and u changes 
du�dx times as fast as x, then y changes (dy�du)(du�dx) times as fast as x.

 The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.24, such that the second and third 
gears are on the same axle. As the first axle revolves, it drives the second axle, which 
in turn drives the third axle. Let y, u, and x represent the numbers of revolutions per 
minute of the first, second, and third axles, respectively. Find dy�du, du�dx, and dy�dx, 
and show that

dy
dx

=
dy
du

∙ du
dx

.

Solution Because the circumference of the second gear is three times that of the 
first, the first axle must make three revolutions to turn the second axle once. Similarly, 
the second axle must make two revolutions to turn the third axle once, and you can 
write

dy
du

= 3 and 
du
dx

= 2.

Combining these two results, you know that the first axle must make six revolutions to 
turn the third axle once. So, you can write

 
dy
dx

= Rate of change of first axle 
with respect to second axle ∙ Rate of change of second axle 

with respect to third axle

 =
dy
du

∙ du
dx

 = 3 ∙ 2

 = 6

 = Rate of change of first axle 
with respect to third axle .

In other words, the rate of change of y with respect to x is the product of the rate of 
change of y with respect to u and the rate of change of u with respect to x. 

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute
Axle 3: x revolutions per minute
Figure 2.24

1

1
2

Axle 1

Axle 2

Axle 3

Gear 1

Gear 2

Gear 3

Gear 4

3
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Example 1 illustrates a simple case of the Chain Rule. The general rule is stated 
in the next theorem.

THEOREM 2.10 The Chain Rule

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable  
function of x, then y = f (g(x)) is a differentiable function of x and 

dy
dx

=
dy
du

∙ du
dx

or, equivalently,

d
dx

 [ f (g(x))] = f′(g(x))g′(x).

 Proof Let h(x) = f (g(x)). Then, using the alternative form of the derivative, you need 
to show that, for x = c,

h′(c) = f′(g(c))g′(c).

An important consideration in this proof is the behavior of g as x approaches c. A 
problem occurs when there are values of x, other than c, such that

g(x) = g(c).

Appendix A shows how to use the differentiability of f  and g to overcome this  problem. 
For now, assume that g(x) ≠ g(c) for values of x other than c. In the proofs of the 
Product Rule and the Quotient Rule, the same  quantity was added and subtracted to 
obtain the desired form. This proof uses a similar technique— multiplying and dividing 
by the same (nonzero) quantity. Note that because g is  differentiable, it is also continuous, 
and it follows that g(x) approaches g(c) as x approaches c.

 h′(c) = lim
x→c

 
f (g(x)) − f (g(c))

x − c
 Alternative form of derivative

 = lim
x→c

 [f (g(x)) − f (g(c))
x − c

∙ g(x) − g(c)
g(x) − g(c)], g(x) ≠ g(c)

 = lim
x→c

 [f (g(x)) − f (g(c))
g(x) − g(c) ∙ g(x) − g(c)

x − c ]
 = [limx→c

 
f (g(x)) − f (g(c))

g(x) − g(c) ][limx→c
 
g(x) − g(c)

x − c ]
 = f′(g(c))g′(c) 

When applying the Chain Rule, it is helpful to think of the composite function f ∘ g 
as having two parts—an inner part and an outer part.

 Outer function

y = f (g(x)) = f (u)

 Inner function

The derivative of y = f (u) is the derivative of the outer function (at the inner function u) 
times the derivative of the inner function.

y′ = f′(u) ∙ u′

REMARK The alternative 
limit form of the derivative was 
given at the end of Section 2.1.

Exploration
Using the Chain Rule Each 
of the following functions 
can be differentiated using 
rules that you studied in 
Sections 2.2 and 2.3. For 
each function, find the 
derivative using those rules. 
Then find the derivative 
using the Chain Rule. 
Compare your results. 
Which method is simpler?

a. y =
2

3x + 1

b. y = (x + 2)3

c. y = sin 2x 
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 Decomposition of a Composite Function

y = f (g(x)) u = g(x) y = f (u)

a. y =
1

x + 1
 u = x + 1 y =

1
u

b. y = sin 2x u = 2x y = sin u

c. y = √3x2 − x + 1 u = 3x2 − x + 1 y = √u

d. y = tan2 x u = tan x y = u2

 Using the Chain Rule

Find dy�dx for

y = (x2 + 1)3.

Solution For this function, you can consider the inside function to be u = x2 + 1 
and the outer function to be y = u3. By the Chain Rule, you obtain

dy
dx

= 3(x2 + 1)2(2x) = 6x(x2 + 1)2.

 
 dy

du
 du

dx
  

The General Power Rule
The function in Example 3 is an example of one of the most common types of 
composite functions, y = [u(x)]n. The rule for differentiating such functions is called 
the General Power Rule, and it is a special case of the Chain Rule.

THEOREM 2.11 The General Power Rule

If y = [u(x)]n, where u is a differentiable function of x and n is a rational  
number, then

dy
dx

= n[u(x)]n−1 
du
dx

or, equivalently,

d
dx

 [un] = nun−1u′.

Proof Because y = [u(x)]n = un, you apply the Chain Rule to obtain

 
dy
dx

= (dy
du)(

du
dx)

 =
d
du

 [un] du
dx

.

By the (Simple) Power Rule in Section 2.2, you have Du[un] = nun−1, and it follows 
that

dy
dx

= nun−1 
du
dx

. 

REMARK You could also 
solve the problem in Example 3 
without using the Chain Rule by 
observing that

y = x6 + 3x4 + 3x2 + 1

and

y′ = 6x5 + 12x3 + 6x.

Verify that this is the same as 
the derivative in Example 3. 
Which method would you use  
to find

d
dx

[(x2 + 1)50]?
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 Applying the General Power Rule

Find the derivative of f (x) = (3x − 2x2)3.

Solution Let u = 3x − 2x2. Then

f (x) = (3x − 2x2)3 = u3

and, by the General Power Rule, the derivative is

 n un−1 u′
   

  f′(x) = 3(3x − 2x2)2 d
dx

 [3x − 2x2] Apply General Power Rule.

 = 3(3x − 2x2)2(3 − 4x). Differentiate 3x − 2x2.

 Differentiating Functions Involving Radicals

Find all points on the graph of 

f (x) = 3√(x2 − 1)2 

for which f′(x) = 0 and those for which f′(x) does not exist.

Solution Begin by rewriting the function as

f (x) = (x2 − 1)2�3.

Then, applying the General Power Rule (with u = x2 − 1) produces

 n un−1 u′
   

  f′(x) = 2
3

 (x2 − 1)−1�3(2x) Apply General Power Rule.

 =
4x

3 3√x2 − 1
. Write in radical form.

So, f′(x) = 0 when x = 0, and f′(x) does not exist when x = ±1, as shown in  
Figure 2.25.

 Differentiating Quotients: Constant Numerators

Differentiate the function

g(t) = −7
(2t − 3)2 .

Solution Begin by rewriting the function as

g(t) = −7(2t − 3)−2.

Then, applying the General Power Rule (with u = 2t − 3) produces

 n un−1 u′
   

 g′(t) = (−7)(−2)(2t − 3)−3(2) Apply General Power Rule.

 
 Constant
 Multiple Rule

 = 28(2t − 3)−3  Simplify.

 =
28

(2t − 3)3.  Write with positive exponent.  

REMARK Try differentiating 
the function in Example 6 using 
the Quotient Rule. You should 
obtain the same result, but  
using the Quotient Rule is  
less efficient than using the 
General Power Rule.

The derivative of f  is 0 at x = 0 and is 
undefined at x = ±1.
Figure 2.25

−2 2

2

−1

−2

−1 1
x

y

f ′(x) =

f(x) =     (x2 − 1)2

4x

3    x2 − 13

3
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Simplifying Derivatives
The next three examples demonstrate techniques for simplifying the “raw derivatives” 
of functions involving products, quotients, and composites.

 Simplifying by Factoring Out the Least Powers

Find the derivative of  f (x) = x2√1 − x2.

Solution

 f (x) = x2√1 − x2 Write original function.

 = x2(1 − x2)1�2 Rewrite.

  f′(x) = x2 
d
dx

 [(1 − x2)1�2] + (1 − x2)1�2 
d
dx

 [x2] Product Rule

 = x2 [12 (1 − x2)−1�2(−2x)] + (1 − x2)1�2(2x) General Power Rule

 = −x3(1 − x2)−1�2 + 2x(1 − x2)1�2 Simplify.

 = x(1 − x2)−1�2[−x2(1) + 2(1 − x2)] Factor.

 =
x(2 − 3x2)
√1 − x2

 Simplify.

 Simplifying the Derivative of a Quotient

  f (x) = x
3√x2 + 4

 Original function

 =
x

(x2 + 4)1�3 Rewrite.

  f′(x) = (x2 + 4)1�3(1) − x(1�3)(x2 + 4)−2�3(2x)
(x2 + 4)2�3  Quotient Rule

 =
1
3

 (x2 + 4)−2�3[3(x
2 + 4) − (2x2)(1)
(x2 + 4)2�3 ] Factor.

 =
x2 + 12

3(x2 + 4)4�3 Simplify.

 Simplifying the Derivative of a Power

See LarsonCalculus.com for an interactive version of this type of example.

 y = (3x − 1
x2 + 3)

2

 Original function

 n un−1 u′
   

 y′ = 2(3x − 1
x2 + 3) 

d
dx

 [3x − 1
x2 + 3] General Power Rule

 = [2(3x − 1)
x2 + 3 ][

(x2 + 3)(3) − (3x − 1)(2x)
(x2 + 3)2 ] Quotient Rule

 =
2(3x − 1)(3x2 + 9 − 6x2 + 2x)

(x2 + 3)3  Multiply.

 =
2(3x − 1)(−3x2 + 2x + 9)

(x2 + 3)3  Simplify. 

TECHNOLOGY Symbolic 
differ entiation utilities are 
capable of differentiating very 
complicated functions. Often, 
however, the result is given in 
unsimplified form. If you have 
access to such a utility, use it 
to find the derivatives of the 
functions given in Examples 
7, 8, and 9. Then compare the 
results with those given in  
these examples.
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Trigonometric Functions and the Chain Rule
The “Chain Rule versions” of the derivatives of the six trigonometric functions are 
shown below.

 
d
dx

 [sin u] = (cos u)u′  
d
dx

 [cos u] = −(sin u)u′

 
d
dx

 [tan u] = (sec2 u)u′  
d
dx

 [cot u] = −(csc2 u)u′

 
d
dx

 [sec u] = (sec u tan u)u′  
d
dx

 [csc u] = −(csc u cot u)u′

 The Chain Rule and Trigonometric Functions

 u cos u u′
   

a. y = sin 2x y′ = cos 2x 
d
dx

 [2x] = (cos 2x)(2) = 2 cos 2x

 u −(sin u) u′
  

b. y = cos(x − 1) y′ = −sin(x − 1) d
dx

 [x − 1] = −sin(x − 1)

 u (sec2 u) u′
   

c. y = tan 3x y′ = sec2 3x 
d
dx

 [3x] = (sec2 3x)(3) = 3 sec2(3x) 

Be sure you understand the mathematical conventions regarding parentheses and 
trigonometric functions. For instance, in Example 10(a), sin 2x is written to mean sin(2x).

 Parentheses and Trigonometric Functions

a. y = cos 3x2 = cos(3x2) y′ = (−sin 3x2)(6x) = −6x sin 3x2

b. y = (cos 3)x2 y′ = (cos 3)(2x) = 2x cos 3

c. y = cos(3x)2 = cos(9x2) y′ = (−sin 9x2)(18x) = −18x sin 9x2

d. y = cos2 x = (cos x)2 y′ = 2(cos x)(−sin x) = −2 cos x sin x

e. y = √cos x = (cos x)1�2 y′ =
1
2

 (cos x)−1�2(−sin x) = −
sin x

2√cos x
 

To find the derivative of a function of the form k(x) = f (g(h(x))), you need to 
apply the Chain Rule twice, as shown in Example 12.

 Repeated Application of the Chain Rule

  f (t) = sin3 4t Original function

 = (sin 4t)3 Rewrite.

  f′(t) = 3(sin 4t)2 d
dt

 [sin 4t] Apply Chain Rule once.

 = 3(sin 4t)2(cos 4t) d
dt

 [4t] Apply Chain Rule a second time.

 = 3(sin 4t)2(cos 4t)(4)
 = 12 sin2 4t cos 4t Simplify. 
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 Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of f (x) = 2 sin x + cos 2x at the point 
(π, 1), as shown in Figure 2.26. Then determine all values of x in the  interval (0, 2π) at 
which the graph of f  has a horizontal tangent.

Solution Begin by finding f′(x).

  f (x) = 2 sin x + cos 2x Write original function.

  f′(x) = 2 cos x + (−sin 2x)(2) Apply Chain Rule to cos 2x.

 = 2 cos x − 2 sin 2x Simplify.

To find the slope of the tangent line at (π, 1), evaluate f′(π).

  f′(π) = 2 cos π − 2 sin 2π Substitute.

 = −2 Slope of tangent line at (π, 1)

Now, using the point-slope form of the equation of a line, you can write

 y − y1 = m(x − x1) Point-slope form

 y − 1 = −2(x − π) Substitute for y1, m, and x1.

 y = −2x + 1 + 2π. Equation of tangent line at (π, 1)

You can then determine that f′(x) = 0 when x =
π
6

, 
π
2

, 
5π
6

, and 
3π
2

. So, f  has horizontal

tangents at x =
π
6

, 
π
2

, 
5π
6

, and 
3π
2

. 

This section concludes with a summary of the differentiation rules studied so far. 
To become skilled at differentiation, you should memorize each rule in words, not 
symbols. As an aid to memorization, note that the cofunctions (cosine, cotangent, and 
cosecant) require a negative sign as part of their derivatives.

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules  Let c be a real number, let n be a rational number, let u and v be differentiable 
functions of x, and let f  be a differentiable function of u.

 Constant Rule: (Simple) Power Rule:

 
d
dx

[c] = 0 
d
dx

[xn] = nxn−1, 
d
dx

[x] = 1

 Constant Multiple Rule: Sum or Difference Rule:

 
d
dx

[cu] = cu′ 
d
dx

[u ± v] = u′ ± v′

 Product Rule: Quotient Rule:

 
d
dx

[uv] = uv′ + vu′ 
d
dx[

u
v] =

vu′ − uv′
v2

 Chain Rule: General Power Rule:

 
d
dx

[ f (u)] = f′(u)u′ d
dx

[un] = nun−1u′

Derivatives of Trigonometric 
Functions

 
d
dx

[sin x] = cos x 
d
dx

[tan x] = sec2 x 
d
dx

[sec x] = sec x tan x

 
d
dx

[cos x] = −sin x 
d
dx

[cot x] = −csc2 x 
d
dx

[csc x] = −csc x cot x

Figure 2.26

y

x
π
2

π

π

π2

−2

−3

−4

1

2

(   , 1)

f(x) = 2 sin x + cos 2x

π
2

3
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2.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Chain Rule Describe the Chain Rule for the 

composition of two differentiable functions in your own 
words.

2.  General Power Rule What is the difference between 
the (Simple) Power Rule and the General Power Rule?

 Decomposition of a Composite Function 
In Exercises 3–8, complete the table.

 y = f (g(x)) u = g(x) y = f (u)
 3. y = (6x − 5)4  

 4. y = 3√4x + 3  

 5. y =
1

3x + 5
  

 6. y =
2

√x2 + 10
  

 7. y = csc3 x  

 8. y = sin 
5x
2

  

 Finding a Derivative In Exercises 9–34, find 
the derivative of the function.

 9. y = (2x − 7)3 10. y = 5(2 − x3)4

11. g(x) = 3(4 − 9x)5�6 12. f (t) = (9t + 2)2�3

13. h(s) = −2√5s2 + 3 14. g(x) = √4 − 3x2

15. y = 3√6x2 + 1 16. y = 2 4√9 − x2

17. y =
1

x − 2
 18. s(t) = 1

4 − 5t − t2

19. g(s) = 6
(s3 − 2)3 20. y = −

3
(t − 2)4

21. y =
1

√3x + 5
 22. g(t) = 1

√t2 − 2

23. f (x) = x2(x − 2)7 24. f (x) = x(2x − 5)3

25. y = x√1 − x2 26. y = x2√16 − x2

27. y =
x

√x2 + 1
 28. y =

x

√x4 + 4

29. g(x) = ( x + 5
x2 + 2)

2

 30. h(t) = ( t2

t3 + 2)
2

31. s(t) = (1 + t
t + 3)

4

32. g(x) = (3x2 − 2
2x + 3 )

−2

33. f (x) = ((x2 + 3)5 + x)2

34. g(x) = (2 + (x2 + 1)4)3

 Finding a Derivative of a Trigonometric 
Function In Exercises 35–54, find the derivative 
of the trigonometric function.

35. y = cos 4x 36. y = sin πx

37. g(x) = 5 tan 3x 38. h(x) = sec 6x

39. y = sin(πx)2 40. y = csc(1 − 2x)2

41. h(x) = sin 2x cos 2x 42. g(θ) = sec(1
2θ) tan(1

2θ)

43. f (x) = cot x
sin x

 44. g(v) = cos v
csc v

45. y = 4 sec2 x 46. g(t) = 5 cos2 πt

47. f (θ) = 1
4 sin2 2θ 48. h(t) = 2 cot2(πt + 2)

49. f (t) = 3 sec (πt − 1)2 50. y = 5 cos(πx)2

51. y = sin(3x2 + cos x) 52. y = cos(5x + csc x)
53. y = sin√cot 3πx 54. y = cos√sin(tan πx)

Finding a Derivative Using Technology In Exercises 
55–60, use a computer algebra system to find the derivative 
of the function. Then use the utility to graph the function and 
its derivative on the same set of coordinate axes. Describe the 
behavior of the function that corresponds to any zeros of the 
graph of the derivative.

55. y =
√x + 1
x2 + 1

 56. y =√ 2x
x + 1

57. y =√x + 1
x

 58. g(x) = √x − 1 + √x + 1

59. y =
cos πx + 1

x
 60. y = x2 tan 

1
x

Slope of a Tangent Line In Exercises 61 and 62, find 
the slope of the tangent line to the sine function at the origin. 
Compare this value with the number of complete cycles in the 
interval [0, 2π].

61. 

x

−2

2

1

π π2

y

y = sin 3x

 62. 

x

−2

−1

2

1

π π2

y

y = sin
x
2

π
2

3π
2

Finding the Slope of a Graph In Exercises 63–70, find 
the slope of the graph of the function at the given point. Use the 
derivative feature of a graphing utility to confirm your results.

63. y = √x2 + 8x, (1, 3) 64. y = 5√3x3 + 4x, (2, 2)
65. f (x) = 5(x3 − 2)−1, (−2, −1

2)

66. f (x) = 1
(x2 − 3x)2, (4, 

1
16)

67. y =
4

(x + 2)2, (0, 1) 68. y =
4

(x2 − 2x)3, (1, −4)
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69. y = 26 − sec3 4x, (0, 25) 70. y =
1
x
+ √cos x, (π2, 

2
π)

 Finding an Equation of a Tangent Line In 
Exercises 71–78, (a) find an equation of the tangent 
line to the graph of the function at the given point, 
(b) use a graphing utility to graph the function and 
its tangent line at the point, and (c) use the tangent 
feature of a graphing utility to confirm your results.

71. f (x) = √2x2 − 7, (4, 5) 72. f (x) = 1
3x√x2 + 5, (2, 2)

73. y = (4x3 + 3)2, (−1, 1) 74. f (x) = (9 − x2)2�3, (1, 4)

75. f (x) = sin 8x, (π, 0) 76. y = cos 3x, (π4, −
√2
2 )

77. f (x) = tan2 x, (π4, 1) 78. y = 2 tan3 x, (π4, 2)
Famous Curves In Exercises 79 and 80, find an equation 
of the tangent line to the graph at the given point. Then use a 
 graphing utility to graph the function and its tangent line at the 
point in the same viewing window.

79. Semicircle 80. Bullet-nose curve

 

y

x

f (x) =    25 − x2 

(3, 4)

−2−4−6 2 4 6

−4

2

4

6

8

  

y

x

f (x) =

(1, 1)

−1−2−3 1 2 3

−2

1

2

3

4

2 − x2

| x |

81.  Horizontal Tangent Line Determine the point(s) in the 
interval (0, 2π) at which the graph of f (x) = 2 cos x + sin 2x 
has a horizontal tangent.

82.  Horizontal Tangent Line Determine the point(s) at 
which the graph of 

 f (x) = −4x

√2x − 1

 has a horizontal tangent.

Finding a Second Derivative In Exercises 83–88, find the 
second derivative of the function.

83. f (x) = 5(2 − 7x)4 84. f (x) = 6(x3 + 4)3

85. f (x) = 1
11x − 6

 86. f (x) = 8
(x − 2)2

87. f (x) = sin x2 88. f (x) = sec2 πx

Evaluating a Second Derivative In Exercises 89–92, 
evaluate the second derivative of the function at the given 
point. Use a computer algebra system to verify your result.

89. h(x) = 1
9
(3x + 1)3, (1, 

64
9 ) 90. f (x) = 1

√x + 4
, (0, 

1
2)

91. f (x) = cos x2, (0, 1) 92. g(t) = tan 2t, (π6, √3)

EXPLORING CONCEPTS
Identifying Graphs In Exercises 93 and 94, the graphs 
of a function f  and its derivative f ′ are shown. Label the 
graphs as f  or f ′ and write a short paragraph stating the 
criteria you used in making your selection. To print an 
enlarged copy of the graph, go to MathGraphs.com.

93. 

x

−3

−2 3

−2

3
2

y    94. 

x
32 41

3
2

4

y

95.  Describing Relationships The relationship 
between f  and g is given. Describe the relationship 
between f ′ and g′.

 (a) g(x) = f (3x) (b) g(x) = f (x2)

96.  Comparing Methods Consider the function

 r(x) = 2x − 5
(3x + 1)2.

 (a)  In general, how do you find the derivative of

 h(x) = f (x)
g(x) using the Product Rule, where g is a

  composite function?

 (b)  Find r′(x) using the Product Rule.

 (c)  Find r′(x) using the Quotient Rule.

 (d) Which method do you prefer? Explain.

97.  Think About It The table shows some values of the 
derivative of an unknown function f. Complete the table by 
finding the derivative of each transformation of f, if possible.

 (a) g(x) = f (x) − 2   (b) h(x) = 2 f (x)
 (c) r(x) = f (−3x) (d) s(x) = f (x + 2)
 

x −2 −1 0 1 2 3

f ′(x) 4 2
3 −1

3 −1 −2 −4

g′(x)

h′(x)

r′(x)

s′(x)

98.  Using Relationships Given that g(5) = −3, g′(5) = 6, 
h(5) = 3, and h′(5) = −2, find f ′(5) for each of the following, 
if possible. If it is not possible, state what additional information 
is required.

 (a) f (x) = g(x)h(x) (b) f (x) = g(h(x))

 (c) f (x) = g(x)
h(x) (d) f (x) = [g(x)]3
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Finding Derivatives In Exercises 99 and 100, the graphs 
of f  and g are shown. Let h(x) = f (g(x)) and s(x) = g( f (x)). 
Find each derivative, if it exists. If the derivative does not exist, 
explain why.

 99. (a) Find h′(1). 100. (a) Find h′(3).
  (b) Find s′(5).   (b) Find s′(9).
  

x

g

2 4 6 8 10

2

6

8

10

f

y   

x

f

g

2 4 6 8 10

2

4

8

10

y

101.  Doppler Effect The frequency F of a fire truck siren 
heard by a stationary observer is 

  F =
132,400
331 ± v

   where ±v represents the velocity of the accelerating fire 
truck in meters per second (see figure). Find the rate of 
change of F with respect to v when

  (a)  the fire truck is approaching at a velocity of 30 meters per 
second (use −v).

  (b)  the fire truck is moving away at a velocity of 30 meters 
per second (use + v).

331 + v
F =

331 − v
F =132,400 132,400

102.  Harmonic Motion The displacement from equilibrium 
of an object in harmonic motion on the end of a spring is 

  y =
1
3

 cos 12t −
1
4

 sin 12t

    where y is measured in feet and t is the time in seconds. 
Determine the position and velocity of the object when 
t = π�8.

103.  Pendulum A 15-centimeter pendulum moves according 
to the equation θ = 0.2 cos 8t, where θ is the angular 
displacement from the vertical in radians and t is the time in 
seconds. Determine the maximum angular displacement and 
the rate of change of θ when t = 3 seconds.

104.  Wave Motion A buoy oscillates in simple harmonic 
motion y = A cos ωt as waves move past it. The buoy moves 
a total of 3.5 feet  (vertically) from its low point to its high 
point. It returns to its high point every 10 seconds.

  (a)  Write an equation describing the motion of the buoy if it 
is at its high point at t = 0.

  (b) Determine the velocity of the buoy as a function of t.

105.  Modeling Data The normal daily maximum temperatures 
T (in degrees Fahrenheit) for Chicago, Illinois, are shown 
in the table. (Source: National Oceanic and Atmospheric 
Administration)

  

Month Sep Oct Nov Dec

Temperature 74.8 62.3 48.2 34.8

Month May Jun Jul Aug

Temperature 70.0 79.7 84.1 81.9

Month Jan Feb Mar Apr

Temperature 31.0 35.3 46.6 59.0

  (a)  Use a graphing utility to plot the data and find a model 
for the data of the form

   T(t) = a + b sin(ct − d)

    where T is the temperature and t is the time in months, 
with t = 1 corresponding to January.

  (b)  Use a graphing utility to graph the model. How well does 
the model fit the data?

  (c) Find T′ and use a graphing utility to graph T′.

  (d)  Based on the graph of T′, during what times does the 
temperature change most rapidly? Most slowly? Do your 
answers agree with your observations of the temperature 
changes? Explain.

 106.    HOW DO YOU SEE IT? The cost C (in 
dollars) of producing x units of a product is 
C = 60x + 1350. For one week, management 
determined that the number of units produced x 
at the end of t hours can be modeled by 
x = −1.6t3 + 19t2 − 0.5t − 1. The graph 
shows the cost C in terms of the time t.

1 2 3 4 5

Time (in hours)

Cost of Producing a Product

C
os

t (
in

 d
ol

la
rs

)

6 7 8

5,000

10,000

15,000

20,000

25,000

C

t

(a)  Using the graph, which is greater, the rate of 
change of the cost after 1 hour or the rate of 
change of the cost after 4 hours?

(b)  Explain why the cost function is not increasing at 
a constant rate during the eight-hour shift.

106.    
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108.  Depreciation The value V of a machine t years after it 
is purchased is inversely proportional to the square root of 
t + 1. The initial value of the machine is $10,000.

  (a) Write V as a function of t.

  (b) Find the rate of depreciation when t = 1.

  (c) Find the rate of depreciation when t = 3.

109.  Finding a Pattern Consider the function f (x) = sin βx, 
where β is a constant.

  (a)  Find the first-, second-, third-, and fourth-order derivatives 
of the function.

  (b)  Verify that the function and its second derivative satisfy 
the equation f ″(x) + β2 f (x) = 0.

  (c)  Use the results of part (a) to write general rules for the 
even- and odd-order derivatives f (2k)(x) and f (2k−1)(x).

    [Hint: (−1)k is positive if k is even and negative if k is 
odd.]

110. Conjecture Let f  be a differentiable function of period p.

  (a) Is the function f ′ periodic? Verify your answer.

  (b)  Consider the function g(x) = f (2x). Is the function g′(x) 
peri odic? Verify your answer.

111.  Think About It Let r(x) = f (g(x)) and s(x) = g( f (x)), 
where f  and g are shown in the figure. Find (a) r′(1) and  
(b) s′(4).

x

g

f

1
2
3
4
5
6
7

1 2 3 4 5 6 7

(2, 4)

(6, 6)

(6, 5)

y

112. Using Trigonometric Functions

  (a)  Find the derivative of the function g(x) = sin2 x + cos2 x 
in two ways.

  (b) For f (x) = sec2 x and g(x) = tan2 x, show that 

 f ′(x) = g′(x).

113. Even and Odd Functions

  (a)  Show that the derivative of an odd function is even. That 
is, if f (−x) = −f (x), then f ′(−x) = f ′(x).

  (b)  Show that the derivative of an even function is odd. That 
is, if f (−x) = f (x), then f ′(−x) = −f ′(x).

114.  Proof Let u be a differentiable function of x. Use the fact 
that ∣u∣ = √u2 to prove that

  
d
dx

[∣u∣] = u′
u

∣u∣ , u ≠ 0.

Using Absolute Value In Exercises 115–118, use the 
result of Exercise 114 to find the derivative of the function.

115. g(x) = ∣3x − 5∣ 116. f (x) = ∣x2 − 9∣
117. h(x) = ∣x∣ cos x 118. f (x) = ∣sin x∣
Linear and Quadratic Approximations The linear and 
quadratic approximations of a function f  at x = a are

P1(x) = f ′(a)(x − a) + f (a) and

P2(x) =
1
2 f ″(a)(x − a)2 + f ′(a)(x − a) + f (a).

In Exercises 119 and 120, (a) find the specified linear and 
 quadratic approximations of f, (b) use a graphing utility to 
graph f  and the approximations, (c) determine whether P1 or 
P2 is the better approximation, and (d) state how the accuracy 
changes as you move farther from x = a.

119. f (x) = tan x; a =
π
4

 120. f (x) = sec x; a =
π
6

True or False? In Exercises 121–124, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

121.  The slope of the function f (x) = sin ax at the origin is a.

122.  The slope of the function f (x) = cos bx at the origin is −b.

123.  If y is a differentiable function of u, and u is a differentiable 
function of x, then y is a differentiable function of x.

124.  If y is a differentiable function of u, u is a differentiable 
 function of v, and v is a differentiable function of x, then

  
dy
dx

=
dy
du

 
du
dv

 
dv
dx

.

PUTNAM EXAM CHALLENGE
125.  Let f (x) = a1 sin x + a2 sin 2x + .  .  . + an sin nx, 

where a1, a2, .  .  ., an are real numbers and where n is a 
positive  integer. Given that ∣ f (x)∣ ≤ ∣sin x∣ for all real x, 
prove that ∣a1 + 2a2 + .  .  . + nan∣ ≤ 1.

126.  Let k be a fixed positive integer. The nth derivative 

  of 
1

xk − 1
 has the form 

Pn(x)
(xk − 1)n+1 where Pn(x) is a 

  polynomial. Find Pn(1).
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The number N of bacteria in a culture after t days is  
modeled by

 N = 400[1 −
3

(t2 + 2)2].
 Find the rate of  
change of N with  
respect to t when  
(a) t = 0, (b) t = 1,  
(c) t = 2, (d) t = 3,  
and (e) t = 4. (f) What  
can you conclude?

107. Biology

Kateryna Kon/Shutterstock.com
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2.5 Implicit Differentiation

 Distinguish between functions written in implicit form and explicit form.
 Use implicit differentiation to find the derivative of a function.

Implicit and Explicit Functions
Up to this point in the text, most functions have been expressed in explicit form. For 
example, in the equation y = 3x2 − 5, the variable y is explicitly written as a function 
of x. Some functions, however, are only implied by an equation. For instance, the 
function y = 1�x is defined implicitly by the equation

xy = 1. Implicit form

To find dy�dx for this equation, you can write y explicitly as a function of x and then 
differentiate.

 Implicit Form Explicit Form Derivative

xy = 1 y =
1
x
= x−1 

dy
dx

= −x−2 = −
1
x2

This strategy works whenever you can solve for the function explicitly. You  cannot, 
however, use this procedure when you are unable to solve for y as a function of x. For 
instance, how would you find dy�dx for the equation

x2 − 2y3 + 4y = 2?

For this equation, it is difficult to express y as a function of x explicitly. To find dy�dx, 
you can use implicit differentiation.

To understand how to find dy�dx implicitly, you must realize that the differentiation 
is taking place with respect to x. This means that when you differentiate terms involving 
x alone, you can differentiate as usual. However, when you differentiate terms involving 
y, you must apply the Chain Rule, because you are assuming that y is defined implicitly 
as a differentiable function of x.

 Differentiating with Respect to x

a. 
d
dx

 [x3] = 3x2 Variables agree: use Simple Power Rule.

 Variables agree

b. 
d
dx

 [y3] = 3y2 
dy
dx

 Variables disagree: use Chain Rule.

 Variables disagree

c. 
d
dx

 [x + 3y] = 1 + 3
dy
dx

 Chain Rule: 
d
dx

 [3y] = 3y′

d.  
d
dx

 [xy2] = x 
d
dx

 [y2] + y2 
d
dx

 [x] Product Rule

  = x(2y 
dy
dx) + y2(1) Chain Rule

  = 2xy 
dy
dx

+ y2 Simplify. 

un nun−1 u′
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Implicit Differentiation

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to x.

2.  Collect all terms involving dy�dx on the left side of the equation and move 
all other terms to the right side of the equation.

3. Factor dy�dx out of the left side of the equation.

4. Solve for dy�dx.

In Example 2, note that implicit differentiation can produce an expression for 
dy�dx that contains both x and y.

 Implicit Differentiation

Find dy�dx given that y3 + y2 − 5y − x2 = −4.

Solution

1. Differentiate both sides of the equation with respect to x.

 
d
dx

 [y3 + y2 − 5y − x2] = d
dx

 [−4]

 
d
dx

 [y3] + d
dx

 [y2] − d
dx

 [5y] − d
dx

 [x2] = d
dx

 [−4]

 3y2 
dy
dx

+ 2y 
dy
dx

− 5 
dy
dx

− 2x = 0

2.  Collect the dy�dx terms on the left side of the equation and move all other terms to 
the right side of the equation.

3y2 dy
dx

+ 2y
dy
dx

− 5
dy
dx

= 2x

3. Factor dy�dx out of the left side of the equation.

dy
dx

(3y2 + 2y − 5) = 2x

4. Solve for dy�dx by dividing by (3y2 + 2y − 5).

dy
dx

=
2x

3y2 + 2y − 5
 

To see how you can use an implicit derivative, consider the graph shown in 
Figure 2.27. From the graph, you can see that y is not a function of x. Even so, the  
derivative found in Example 2 gives a formula for the slope of the tangent line at a point 
on this graph. The slopes at several points on the graph are shown below the graph.

TECHNOLOGY With most graphing utilities, it is easy to graph an equation 
that explicitly represents y as a function of x. Graphing other equations, however, 
can require some ingenuity. For instance, to graph the equation given in Example 2, 
use a graphing utility, set in parametric  mode, to graph the parametric representations 
x = √t3 + t2 − 5t + 4, y = t, and x = −√t3 + t2 − 5t + 4, y = t, for 
−5 ≤ t ≤ 5. How does the result compare with the graph shown in Figure 2.27? 
(You will learn more about this type of representation when you study parametric 
equations in Section 10.2.)

Point on Graph Slope of Graph

(2, 0) −4
5

(1, −3) 1
8

x = 0 0

(1, 1) Undefined

The implicit equation

y3 + y2 − 5y − x2 = −4

has the derivative

dy
dx

=
2x

3y2 + 2y − 5
.

Figure 2.27

x
1 2

2

1

3−1
−1

−2

−2

−3

−4

(1, −3)

(2, 0)
(1, 1)

y3 + y2 − 5y − x2 = −4

y
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It is meaningless to solve for dy�dx in an equation that has no solution points. (For 
example, x2 + y2 = −4 has no solution points.) If, however, a segment of a graph can 
be represented by a differentiable function, then dy�dx will have meaning as the slope 
at each point on the segment. Recall that a function is not differentiable at (a) points 
with vertical tangents and (b) points at which the function is not continuous.

 Graphs and Differentiable Functions

If possible, represent y as a differentiable function of x.

a. x2 + y2 = 0  b. x2 + y2 = 1  c. x + y2 = 1

Solution

a.  The graph of this equation is a single point. So, it does not define y as a differentiable 
function of x. See Figure 2.28(a).

b.  The graph of this equation is the unit circle centered at (0, 0). The upper semi  circle 
is given by the differentiable function

y = √1 − x2, −1 < x < 1

 and the lower semicircle is given by the differentiable function

y = −√1 − x2, −1 < x < 1.

  At the points (−1, 0) and (1, 0), the slope of the graph is undefined. See Figure 
2.28(b).

c. The upper half of this parabola is given by the differentiable function

y = √1 − x, x < 1

 and the lower half of this parabola is given by the differentiable function

y = −√1 − x, x < 1.

 At the point (1, 0), the slope of the graph is undefined. See Figure 2.28(c).

 Finding the Slope of a Graph Implicitly

See LarsonCalculus.com for an interactive version of this type of example.

Determine the slope of the tangent line to the graph of x2 + 4y2 = 4 at the point 
(√2, −1�√2). See Figure 2.29.

Solution

 x2 + 4y2 = 4 Write original equation.

 2x + 8y 
dy
dx

= 0 Differentiate with respect to x.

 
dy
dx

=
−2x
8y

 Solve for 
dy
dx

.

 =
−x
4y

 Simplify.

So, at (√2, −1�√2), the slope is

dy
dx

=
−√2

−4�√2
=

1
2

. Evaluate 
dy
dx

 when x = √2 and y = −
1

√2
. 

x

1

1

−1

−1

(0, 0)
x2 + y2 = 0

y

(a)

x

1

1

−1

−1

(−1, 0) (1, 0)

y =     1 − x2

y = −     1 − x2

y

(b)

x

1

1

−1

(1, 0)

−1

y = −    1 − x

y =     1 − x

y

(c)
 Some graph segments can be  
represented by differentiable functions.
Figure 2.28

x
1

2

−1

−2
2, − )) 1

x2 + 4y2 = 4

y

2

Figure 2.29

REMARK To see the benefit of implicit differentiation, try doing Example 4 using 
the explicit function y = −1

2√4 − x2.
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 Finding the Slope of a Graph Implicitly

Determine the slope of the graph of

3(x2 + y2)2 = 100xy

at the point (3, 1).

Solution

 
d
dx

[3(x2 + y2)2] = d
dx

[100xy]

 3(2)(x2 + y2)(2x + 2y 
dy
dx) = 100[x 

dy
dx

+ y(1)]
 12y(x2 + y2) dy

dx
− 100x 

dy
dx

= 100y − 12x(x2 + y2)

 [12y(x2 + y2) − 100x]dy
dx

= 100y − 12x(x2 + y2)

 
dy
dx

=
100y − 12x(x2 + y2)
−100x + 12y(x2 + y2)

 =
25y − 3x(x2 + y2)
−25x + 3y(x2 + y2)

At the point (3, 1), the slope of the graph is

 
dy
dx

=
25(1) − 3(3)(32 + 12)
−25(3) + 3(1)(32 + 12) =

25 − 90
−75 + 30

=
−65
−45

=
13
9

as shown in Figure 2.30. This graph is called a lemniscate.

 Determining a Differentiable Function

Find dy�dx implicitly for the equation sin y = x. Then find the largest interval of the 
form −a < y < a on which y is a differentiable function of x (see Figure 2.31).

Solution

 
d
dx

[sin y] = d
dx

[x]

 cos y 
dy
dx

= 1

 
dy
dx

=
1

cos y

The largest interval about the origin for which y is a differentiable function of x is 
−π�2 < y < π�2. To see this, note that cos y is positive for all y in this interval and 
is 0 at the endpoints. When you restrict y to the interval −π�2 < y < π�2, you should 
be able to write dy�dx explicitly as a function of x. To do this, you can use

 cos y = √1 − sin2 y

 = √1 − x2, −
π
2

< y <
π
2

and conclude that

dy
dx

=
1

√1 − x2
.

You will study this example further when inverse trigonometric functions are defined 
in Section 5.7. 

x
1

1

2

3

3

4

4

−1−2−4

−4

(3, 1)

y

3(x2 + y2)2 = 100xy

Lemniscate
Figure 2.30

x
1−1

π
2

π
2

−

2
− π3

−1, −π
2))

1, 
π
2))

sin y = x

y

The derivative is 
dy
dx

=
1

√1 − x2
.

Figure 2.31
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With implicit differentiation, the form of the derivative often can be simplified (as 
in Example 6) by an appropriate use of the original equation. A similar technique can 
be used to find and simplify higher-order derivatives obtained implicitly.

 Finding the Second Derivative Implicitly

Given x2 + y2 = 25, find 
d2y
dx2.

Solution Differentiating each term with respect to x produces

 2x + 2y 
dy
dx

= 0

 2y 
dy
dx

= −2x

 
dy
dx

=
−2x
2y

 = −
x
y
.

Differentiating a second time with respect to x yields

 
d2y
dx2 = −

(y)(1) − (x)(dy�dx)
y2  Quotient Rule

 = −
y − (x)(−x�y)

y2  Substitute −
x
y
 for 

dy
dx

.

 = −
y2 + x2

y3  Simplify.

 = −
25
y3 . Substitute 25 for x2 + y2.

 Finding a Tangent Line to a Graph

Find the tangent line to the graph of x2(x2 + y2) = y2 at the point (√2�2, √2�2), as 
shown in Figure 2.32.

Solution By rewriting and differentiating implicitly, you obtain

 x4 + x2y2 − y2 = 0

 4x3 + x2(2y 
dy
dx) + 2xy2 − 2y 

dy
dx

= 0

 2y(x2 − 1) dy
dx

= −2x(2x2 + y2)

 
dy
dx

=
x(2x2 + y2)
y(1 − x2) .

At the point (√2�2, √2�2), the slope is

dy
dx

= (√2�2)[2(1�2) + (1�2)]
(√2�2)[1 − (1�2)]

=
3�2
1�2

= 3

and the equation of the tangent line at this point is

 y −
√2
2

= 3(x −
√2
2 )

 y = 3x − √2. 

The kappa curve
Figure 2.32

x
1

1

−1

−1

,( (

y

2
2

2
2

x2(x2 + y2) = y2

ISAAC BARROW (1630–1677)

The graph in Figure 2.32 
is called the kappa curve 
because it resembles the Greek 
letter kappa, κ. The general 
solution for the tangent line 
to this curve was discovered 
by the English mathematician 
Isaac Barrow. Newton was 
Barrow’s student, and they 
corresponded frequently 
regarding their work in the 
early development of calculus.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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2.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Explicit and Implicit Functions Describe the 

difference between the explicit form of a function and an 
implicit equation. Give an example of each.

2.  Implicit Differentiation In your own words, state 
the guidelines for implicit differentiation.

3.  Implicit Differentiation Explain when you have to 
use implicit differentiation to find a derivative.

4.  Chain Rule How is the Chain Rule applied when 
finding dy�dx implicitly?

 Finding a Derivative In Exercises 5–20, find 
dy�dx by implicit differentiation.

 5. x2 + y2 = 9  6. x2 − y2 = 25

 7. x5 + y5 = 16  8. 2x3 + 3y3 = 64

 9. x3 − xy + y2 = 7 10. x2y + y2x = −2

11. x3y3 − y = x 12. √xy = x2y + 1

13. x3 − 3x2y + 2xy2 = 12 14. x4y − 8xy + 3xy2 = 9

15. sin x + 2 cos 2y = 1 16. (sin πx + cos πy)2 = 2

17. csc x = x(1 + tan y) 18. cot y = x − y

19. y = sin xy 20. x = sec 
1
y

 Finding Derivatives Implicitly and 
Explicitly In Exercises 21–24, (a) find two 
explicit functions by solving the equation for y in 
terms of x, (b) sketch the graph of the equation and 
label the parts given by the corresponding explicit 
functions, (c) differentiate the explicit functions, 
and (d) find dy�dx implicitly and show that the 
result is equivalent to that of part (c).

21. x2 + y2 = 64 22. 25x2 + 36y2 = 300

23. 16y2 − x2 = 16 24. x2 + y2 − 4x + 6y + 9 = 0

 Finding the Slope of a Graph In Exercises 
25–32, find dy�dx by implicit differentiation. Then 
find the slope of the graph at the given point.

25. xy = 6, (−6, −1) 26. 3x3y = 6, (1, 2)

27. y2 =
x2 − 49
x2 + 49

, (7, 0)  28. 4y3 =
x2 − 36
x3 + 36

, (6, 0)

29. (x + y)3 = x3 + y3, (−1, 1)
30. x3 + y3 = 6xy − 1, (2, 3)
31. tan(x + y) = x, (0, 0)

32. x cos y = 1, (2, 
π
3)

 Famous Curves In Exercises 33–36, find the 
slope of the tangent line to the graph at the given 
point.

33. Witch of Agnesi: 34. Cissoid:

 (x2 + 4)y = 8  (4 − x)y2 = x3

 

x

1

1

3

2
−1

−1−2

y

(2, 1)

  

x
2 3

1

2

−1

−2

y

(2, 2)

35. Bifolium: 36. Folium of Descartes:

 (x2 + y2)2 = 4x2y  x3 + y3 − 6xy = 0

 

x

1

1

2

2
−1

−1

−2

−2

y

(1, 1)

  

x

1

1

2

2 3

3

4

4

−2

−2

y

 , 8
3

4
3( (

 Famous Curves In Exercises 37–42, find an 
equation of the tangent line to the graph at the 
given point. To print an enlarged copy of the 
graph, go to MathGraphs.com.

37. Parabola 38. Circle

 

y

x
(6, 1)

(y − 3)2 = 4(x − 5)

2 4 6 8 14−2
−4
−6

2
4
6
8

10

  

y

x
−2−4 4 6

−4

2
4
6
8

10

(x + 2)2 + (y − 3)2 = 37

(4, 4)

39. Cruciform 40. Astroid

 

y

x

−4, 2    3

−2−4−6 4 62

−4

4

6

x2y2 − 9x2 − 4y2 = 0

((

  

y

x
(8, 1)

12

−12

12

x2/3 + y2/3 = 5
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41. Lemniscate 42. Kappa curve

 

y

x

(4, 2)

−6 6

−4

−6

2

4

6

3(x2 + y2)2 = 100(x2 − y2)   

y

x

(1, 1)

−3 −2 32

−2

−3

2

3

y2(x2 + y2) = 2x2

EXPLORING CONCEPTS
43.  Implicit and Explicit Forms Write two different 

equations in implicit form that you can write in explicit 
form. Then write two different equations in implicit form 
that you cannot write in explicit form.

44.  Think About It Explain why the derivative of 
x2 + y2 + 2 = 1 does not mean anything.

45. Ellipse

 (a) Use implicit differentiation to find an equation of the

  tangent line to the ellipse 
x2

2
+

y2

8
= 1 at (1, 2).

 (b) Show that the equation of the tangent line to the ellipse

  
x2

a2 +
y2

b2 = 1 at (x0, y0) is 
x0x
a2 +

y0y
b2 = 1.

46. Hyperbola

 (a) Use implicit differentiation to find an equation of the

  tangent line to the hyperbola 
x2

6
−

y2

8
= 1 at (3, −2).

 (b) Show that the equation of the tangent line to the hyperbola

  
x2

a2 −
y2

b2 = 1 at (x0, y0) is 
x0x
a2 −

y0y
b2 = 1.

 Determining a Differentiable Function In 
Exercises 47 and 48, find dy�dx implicitly and find 
the largest interval of the form −a < y < a or 
0 < y < a such that y is a differentiable function 
of x. Write dy�dx as a function of x.

47. tan y = x 48. cos y = x

 Finding a Second Derivative In Exercises 
49–54, find d2y�dx2 implicitly in terms of x and y.

49. x2 + y2 = 4 50. x2y − 4x = 5

51. x2y − 2 = 5x + y 52. xy − 1 = 2x + y2

53. 7xy + sin x = 2 54. 3xy − 4 cos x = −6

Finding an Equation of a Tangent Line In Exercises 55 
and 56, use a graphing utility to graph the  equation. Find an 
equation of the tangent line to the graph at the given point and 
graph the tangent line in the same viewing window.

55. √x + √y = 5, (9, 4) 56. y2 =
x − 1
x2 + 1

, (2, 
√5
5 )

Tangent Lines and Normal Lines In Exercises 57 and 58, 
find equations for the tangent line and normal line to the circle 
at each given point. (The normal line at a point is perpendicular 
to the tangent line at the point.) Use a graphing utility to graph 
the circle, the tangent lines, and the normal lines.

57. x2 + y2 = 25 58. x2 + y2 = 36

 (4, 3), (−3, 4)  (6, 0), (5, √11)

59.  Normal Lines Show that the normal line at any point on 
the circle x2 + y2 = r2 passes through the origin.

60.  Circles Two circles of radius 4 are tangent to the graph of 
y2 = 4x at the point (1, 2). Find equations of these two circles.

Vertical and Horizontal Tangent Lines In Exercises 61 
and 62, find the points at which the graph of the equation has 
a vertical or horizontal tangent line.

61. 25x2 + 16y2 + 200x − 160y + 400 = 0

62. 4x2 + y2 − 8x + 4y + 4 = 0

Orthogonal Trajectories In Exercises 63–66, use a 
graphing utility to sketch the intersecting graphs of the 
equations and show that they are orthogonal. [Two graphs are 
orthogonal if at their point(s) of intersection, their tangent lines 
are perpendicular to each other.]

63. 2x2 + y2 = 6 64. y2 = x3

 y2 = 4x  2x2 + 3y2 = 5

65. x + y = 0 66. x3 = 3(y − 1)
 x = sin y  x(3y − 29) = 3

Orthogonal Trajectories In Exercises 67 and 68, verify 
that the two families of curves are orthogonal, where C and 
K are real numbers. Use a graphing utility to graph the two  
families for two values of C and two values of K.

67. xy = C, x2 − y2 = K

68. x2 + y2 = C2, y = Kx

69.  Orthogonal Trajectories The figure below shows the 
topographic map carried by a group of hikers. The hikers are 
in a wooded area on top of the hill shown on the map, and 
they decide to follow the path of steepest descent (orthogonal 
trajectories to the contours on the map). Draw their routes if 
they start from point A and if they start from point B. Their 
goal is to reach the road along the top of the map. Which 
 starting point should they use? To print an enlarged copy of 
the map, go to MathGraphs.com.

A

B
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 70.  HOW DO YOU SEE IT? Use the graph to 
answer the questions.

x

y

−2 2

2

4

y3 − 9y2 + 27y + 5x2 = 47

(a)  Which is greater, the slope of the tangent line 
at x = −3 or the slope of the tangent line at 
x = −1?

(b)  Estimate the point(s) where the graph has a 
vertical tangent line.

(c)  Estimate the point(s) where the graph has a  
horizontal tangent line.

70.  

71.  Finding Equations of Tangent Lines Consider the 
equation x4 = 4(4x2 − y2).

 (a) Use a graphing utility to graph the equation.

 (b)  Find and graph the four tangent lines to the curve for 
y = 3.

 (c)  Find the exact coordinates of the point of intersection of 
the two tangent lines in the first quadrant.

72.  Tangent Lines and Intercepts Let L be any tangent 
line to the curve

 √x + √y = √c.

 Show that the sum of the x- and y-intercepts of L is c.

73. Proof Prove (Theorem 2.3) that

 
d
dx

 [xn] = nxn−1

  for the case in which n is a rational number. (Hint: Write 
y = xp�q in the form yq = xp and differentiate implicitly. 
Assume that p and q are integers, where q > 0.)

74.  Slope Find all points on the circle x2 + y2 = 100 where the 
slope is 34.

75. Tangent Lines Find equations of both tangent lines to the

 graph of the ellipse 
x2

4
+

y2

9
= 1 that pass through the point

 (4, 0) not on the graph.

76.  Normals to a Parabola  The graph shows the normal 
lines from the point (2, 0) to the graph of the parabola x = y2. 
How many normal lines are there from the point (x0, 0) to the

  graph of the parabola if (a) x0 =
1
4, (b) x0 =

1
2, and  

(c) x0 = 1? (d) For what value of x0 are two of the normal lines 
perpendicular to each other?

y

x
(2, 0)

x = y2

77. Normal Lines (a) Find an equation of the normal line to

 the ellipse 
x2

32
+

y2

8
= 1 at the point (4, 2). (b) Use a graphing

  utility to graph the ellipse and the normal line. (c) At what 
other point does the normal line intersect the ellipse?

In each graph below, an optical illusion is created by having lines 
intersect a family of curves. In each case, the lines appear to be 
curved. Find the value of dy�dx for the given values.

(a) Circles: x2 + y2 = C 2 (b) Hyperbolas: xy = C

 x = 3, y = 4, C = 5  x = 1, y = 4, C = 4

 

x

y   

x

y

(c) Lines: ax = by (d) Cosine curves: y = C cos x

 
x = √3, y = 3,

  x =
π
3

, y =
1
3

, C =
2
3

 a = √3, b = 1

 

x

y   

x

y

Optical Illusions

 FOR FURTHER INFORMATION For more information on 
the mathematics of optical illusions, see the article “Descriptive 
Models for Perception of Optical Illusions” by David A. Smith in 
The UMAP Journal.
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2.6 Related Rates

 Find a related rate.
 Use related rates to solve real-life problems.

Finding Related Rates
You have seen how the Chain Rule can be used to find dy�dx implicitly. Another  
important use of the Chain Rule is to find the rates of change of two or more related 
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the  
volume V, the radius r, and the height h of the water level are all functions of time t. 
Knowing that these variables are related by the equation

V =
π
3

 r2h Original equation

you can differentiate implicitly with respect to t to obtain the related-rate equation

 
d
dt
[V] = d

dt[
π
3

r2h]
 
dV
dt

=
π
3

 [r2 
dh
dt

+ h(2r 
dr
dt)] Differentiate with respect to t.

 =
π
3

 (r2 
dh
dt

+ 2rh 
dr
dt).

From this equation, you can see that the rate of change of V is related to the rates of 
change of both h and r.

Exploration
Finding a Related Rate In the conical tank shown in Figure 2.33, the height 
of the water level is changing at a rate of −0.2 foot per minute and the radius 
is changing at a rate of −0.1 foot per minute. What is the rate of change of the 
volume when the radius is r = 1 foot and the height is h = 2 feet? Does the 
rate of change of the volume depend on the values of r and h? Explain.

 Two Rates That Are Related

The variables x and y are both differentiable functions of t and are related by the 
equation y = x2 + 3. Find dy�dt when x = 1, given that dx�dt = 2 when x = 1.

Solution Using the Chain Rule, you can differentiate both sides of the equation with 
respect to t.

 y = x2 + 3  Write original equation.

 
d
dt
[y] = d

dt
[x2 + 3] Differentiate with respect to t.

 
dy
dt

= 2x 
dx
dt

 Chain Rule

When x = 1 and dx�dt = 2, you have

dy
dt

= 2(1)(2) = 4. 

Volume is related to radius and height.
Figure 2.33

h

r

h

r

h

r
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Problem Solving with Related Rates
In Example 1, you were given an equation that related the variables x and y and were 
asked to find the rate of change of y when x = 1.

Equation: y = x2 + 3

Given rate: 
dx
dt

= 2 when x = 1

Find: 
dy
dt

 when x = 1

In each of the remaining examples in this section, you must create a mathematical 
model from a verbal description.

 Ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric circles, 
as shown in Figure 2.34. The radius r of the outer ripple is increasing at a constant rate 
of 1 foot per second. When the radius is 4 feet, at what rate is the total area A of the 
disturbed water changing?

Solution The variables r and A are related by A = πr2. The rate of change of the 
radius r is dr�dt = 1.

Equation: A = πr2

Given rate: 
dr
dt

= 1 foot per second

Find: 
dA
dt

 when r = 4 feet 

With this information, you can proceed as in Example 1.

 
d
dt
[A] = d

dt
[πr2] Differentiate with respect to t.

 
dA
dt

= 2πr 
dr
dt

 Chain Rule

 = 2π(4)(1) Substitute 4 for r and 1 for 
dr
dt

.

 = 8π square feet per second Simplify.

When the radius is 4 feet, the area is changing at a rate of 8π  square feet per second.
  

GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS

1.  Identify all given quantities and quantities to be determined. Make a sketch 
and label the quantities.

2.  Write an equation involving the variables whose rates of change either are 
given or are to be determined.

3.  Using the Chain Rule, implicitly differentiate both sides of the equation 
with respect to time t.

4.  After completing Step 3, substitute into the resulting equation all known 
values for the variables and their rates of change. Then solve for the 
required rate of change.

Total area increases as the outer radius 
increases.
Figure 2.34

REMARK When using  
these guidelines, be sure you 
perform Step 3 before Step 4. 
Substituting the known  
values of the variables before 
differentiating will  produce an 
inappropriate derivative.

Russ Bishop/Alamy Stock Photo
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154 Chapter 2 Differentiation

The table below lists examples of mathematical models involving rates of change. 
For instance, the rate of change in the first example is the velocity of a car.

Verbal Statement Mathematical Model

The velocity of a car after traveling for  
1 hour is 50 miles per hour.

x = distance traveled

dx
dt

= 50 mi�h when t = 1

Water is being pumped into a swimming  
pool at a rate of 10 cubic meters per hour.

V = volume of water in pool

dV
dt

= 10 m3�h

A gear is revolving at a rate of 25 revolutions 
per minute (1 revolution = 2π rad).

θ = angle of revolution

dθ
dt

= 25(2π) rad�min

A population of bacteria is increasing at a  
rate of 2000 per hour.

x = number in population

dx
dt

= 2000 bacteria per hour

 An Inflating Balloon

Air is being pumped into a spherical balloon at a rate of 4.5 cubic feet per minute. Find 
the rate of change of the radius when the radius is 2 feet.

Solution Let V be the volume of the balloon, and let r be its radius. Because the 
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time t the 
rate of change of the volume is dV�dt = 9

2. So, the problem can be stated as shown.

Given rate: 
dV
dt

=
9
2

 cubic feet per minute (constant rate)

Find: 
dr
dt

 when r = 2 feet

To find the rate of change of the radius, you must find an equation that relates the radius 
r to the volume V.

Equation: V =
4
3

 πr3 Volume of a sphere

Differentiating both sides of the equation with respect to t produces

dV
dt

= 4 πr2 
dr
dt

 Differentiate with respect to t.

 
dr
dt

=
1

4πr2 (dV
dt ). Solve for 

dr
dt

.

Finally, when r = 2, the rate of change of the radius is

dr
dt

=
1

4π(2)2 (
9
2) ≈ 0.09 foot per minute. 

In Example 3, note that the volume is increasing at a constant rate, but the radius is 
increasing at a variable rate. Just because two rates are related does not mean that they 
are proportional. In this particular case, the radius is growing more and more slowly as 
t increases. Do you see why?

 FOR FURTHER INFORMATION
To learn more about the history of 
related-rate problems, see the article 
“The Lengthening Shadow: The 
Story of Related Rates” by Bill Austin, 
Don Barry, and David Berman in 
Mathematics Magazine. To view this 
article, go to MathArticles.com.

REMARK The formula for 
the volume of a sphere and 
other formulas from geometry 
are listed on the formula cards 
for this text.
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 The Speed of an Airplane Tracked by Radar

See LarsonCalculus.com for an interactive version of this type of example.

An airplane is flying on a flight path that will take it directly over a radar tracking 
station, as shown in Figure 2.35. The distance s is decreasing at a rate of 400 miles per 
hour when s = 10 miles. What is the speed of the plane?

Solution Let x be the horizontal distance from the station, as shown in Figure 2.35. 
Notice that when s = 10, x = √102 − 62 = 8.

Given rate: ds�dt = −400 miles per hour when s = 10 miles

Find: dx�dt when s = 10 miles and x = 8 miles

You can find the velocity of the plane as shown.

Equation:  x2 + 62 = s2 Pythagorean Theorem

  2x 
dx
dt

= 2s 
ds
dt

 Differentiate with respect to t.

  
dx
dt

=
s
x
 (ds

dt) Solve for 
dx
dt

.

  =
10
8

 (−400) Substitute for s, x, and 
ds
dt

.

  = −500 miles per hour Simplify.

Because the velocity is −500 miles per hour, the speed is 500 miles per hour. 

 A Changing Angle of Elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 2.36 at 
10 seconds after lift-off.

Solution Let θ be the angle of elevation, as shown in Figure 2.36. When t = 10, the 
height s of the rocket is s = 50t2 = 50(10)2 = 5000 feet.

Given rate: ds�dt = 100t = velocity of rocket (in feet per second)

Find: dθ�dt when t = 10 seconds and s = 5000 feet

Using Figure 2.36, you can relate s and θ by the equation tan θ = s�2000.

Equation:  tan θ =
s

2000
 See Figure 2.36.

  (sec2 θ) dθ
dt

=
1

2000
 (ds

dt) Differentiate with respect to t.

 
dθ
dt

= cos2 θ 
100t
2000

 Substitute 100t for 
ds
dt

.

  = ( 2000

√s2 + 20002)
2

 
100t
2000

 cos θ =
2000

√s2 + 20002

When t = 10 and s = 5000, you have

dθ
dt

=
2000(100)(10)
50002 + 20002 =

2
29

 radian per second.

So, when t = 10, θ is changing at a rate of 2
29 radian per second. 

REMARK The velocity in Example 4 is negative because x represents a distance 
that is decreasing.

An airplane is flying at an altitude of  
6 miles, s miles from the station.
Figure 2.35

s

x

Not drawn to scale

6 mi

A television camera at ground level  
is filming the lift-off of a rocket that  
is rising vertically according to the 
position equation s = 50t2, where s is 
measured in feet and t is measured in 
seconds. The camera is 2000 feet from 
the launch pad.
Figure 2.36

s
θ

θ
2000 ft

tan    = s
2000

Not drawn to scale
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 The Velocity of a Piston

In the engine shown in Figure 2.37, a 7-inch connecting rod is fastened to a crank of radius 
3 inches. The crankshaft rotates counterclockwise at a constant rate of 200 revolutions per 
minute. Find the velocity of the piston when θ = π�3.

θ

Spark plug

Connecting rod

Crankshaft Piston   

θ
3 7

x

 The velocity of a piston is related to the angle of the crankshaft.
 Figure 2.37

Solution Label the distances as shown in Figure 2.37. Because a complete revolution 
corresponds to 2π  radians, it follows that dθ�dt = 200(2π) = 400π  radians per minute.

Given rate: 
dθ
dt

= 400π  radians per minute (constant rate)

Find: 
dx
dt

 when θ =
π
3

You can use the Law of Cosines (see Figure 2.38) to find an equation that relates x and θ.

Equation:  72 = 32 + x2 − 2(3)(x) cos θ

  0 = 2x 
dx
dt

− 6(−x sin θ 
dθ
dt

+ cos θ 
dx
dt)

  (6 cos θ − 2x) dx
dt

= 6x sin θ 
dθ
dt

  
dx
dt

=
6x sin θ

6 cos θ − 2x
 (dθdt )

When θ = π�3, you can solve for x as shown.

 72 = 32 + x2 − 2(3)(x) cos 
π
3

 49 = 9 + x2 − 6x(12)
 0 = x2 − 3x − 40

 0 = (x − 8)(x + 5)
 x = 8 inches Choose positive solution.

So, when x = 8 and θ = π�3, the velocity of the piston is

 
dx
dt

=
6(8)(√3�2)
6(1�2) − 16

(400π)

 =
9600π√3

−13

 ≈ −4018 inches per minute.  

REMARK The velocity in Example 6 is negative because x represents a distance 
that is decreasing.

Law of Cosines: 
b2 = a2 + c2 − 2ac cos θ
Figure 2.38

b

c

θ

a
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2.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Related-Rate Equation What is a related-rate 

equation?

2.  Related Rates In your own words, state the guidelines 
for solving related-rate problems.

 Using Related Rates In Exercises 3–6, assume 
that x and y are both differentiable functions of t 
and find the required values of dy�dt and dx�dt.

 Equation Find Given

 3. y = √x (a) 
dy
dt

 when x = 4 
dx
dt

= 3

  (b) 
dx
dt

 when x = 25 
dy
dt

= 2

 4. y = 3x2 − 5x (a) 
dy
dt

 when x = 3 
dx
dt

= 2

  (b) 
dx
dt

 when x = 2 
dy
dt

= 4

 5. xy = 4 (a) 
dy
dt

 when x = 8 
dx
dt

= 10

  (b) 
dx
dt

 when x = 1 
dy
dt

= −6

 6. x2 + y2 = 25 (a) 
dy
dt

 when x = 3, y = 4 
dx
dt

= 8

  (b) 
dx
dt

 when x = 4, y = 3 
dy
dt

= −2

 Moving Point In Exercises 7–10, a point is 
moving along the graph of the given function at 
the rate dx�dt. Find dy�dt for the given values of x.

 7. y = 2x2 + 1; 
dx
dt

= 2 centimeters per second

 (a) x = −1 (b) x = 0 (c) x = 1

 8. y =
1

1 + x2; 
dx
dt

= 6 inches per second

 (a) x = −2 (b) x = 0 (c) x = 2

 9. y = tan x; 
dx
dt

= 3 feet per second

 (a) x = −
π
3

 (b) x = −
π
4

 (c) x = 0

10. y = cos x; 
dx
dt

= 4 centimeters per second

 (a) x =
π
6

 (b) x =
π
4

 (c) x =
π
3

11.  Area The radius r of a circle is increasing at a rate of  
4 centimeters per minute. Find the rates of change of the area 
when r = 37 centimeters.

12.  Area The length s of each side of an equilateral triangle is 
increasing at a rate of 13 feet per hour. Find the rate of change 
of the area when s = 41 feet. (Hint: The formula for the area 
of an equilateral triangle is

 A =
s2√3

4
.)

13.  Volume The radius r of a sphere is increasing at a rate of  
3 inches per minute.

 (a)  Find the rates of change of the volume when r = 9 inches 
and r = 36 inches.

 (b)  Explain why the rate of change of the volume of the sphere 
is not constant even though dr�dt is constant.

14.  Radius A spherical balloon is inflated with gas at the rate 
of 800 cubic centimeters per minute. 

 (a)  Find the rates of change of the radius when r = 30 centimeters 
and r = 85 centimeters.

 (b)  Explain why the rate of change of the radius of the sphere is 
not constant even though dV�dt is constant.

15.  Volume All edges of a cube are expanding at a rate of  
6 centimeters per second. How fast is the volume changing 
when each edge is (a) 2 centimeters and (b) 10 centimeters?

16.  Surface Area All edges of a cube are expanding at a 
rate of 6 centimeters per second. How fast is the surface 
area changing when each edge is (a) 2 centimeters and  
(b) 10 centimeters?

17.  Height At a sand and gravel plant, sand is falling off a 
conveyor and onto a conical pile at a rate of 10 cubic feet per 
minute. The diameter of the base of the cone is approximately 
three times the altitude. At what rate is the height of the pile 
changing when the pile is 15 feet high? (Hint: The formula for

 the volume of a cone is V = 1
3πr2h.)

18.  Height The volume of oil in a cylindrical container is 
increasing at a rate of 150 cubic inches per second. The height 
of the cylinder is approximately ten times the radius. At what 
rate is the height of the oil changing when the oil is 35 inches 
high? (Hint: The formula for the volume of a cylinder is 
V = πr2h.)

19.  Depth A swimming pool is 12 meters long, 6 meters wide, 
1 meter deep at the shallow end, and 3 meters deep at the 
deep end (see figure). Water is being pumped into the pool at 
1
4 cubic meter per minute, and there is 1 meter of water at the 
deep end.

4

3 m

12 m

6 m

1 mmin
1 m3

 (a) What percent of the pool is filled?

 (b) At what rate is the water level rising?
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20.  Depth A trough is 12 feet long and 3 feet across the top (see 
figure). Its ends are isosceles triangles with altitudes of 3 feet.

3 ft

3 ft

h

12 ft

2
min
ft3

 (a)  Water is being pumped into the trough at 2 cubic feet per 
minute. How fast is the water level rising when the depth 
h is 1 foot?

 (b)  The water is rising at a rate of 3
8 inch per minute when 

h = 2 feet. Determine the rate at which water is being 
pumped into the trough.

21.  Moving Ladder A ladder 25 feet long is leaning against 
the wall of a house (see figure). The base of the ladder is 
pulled away from the wall at a rate of 2 feet per second.

 (a)  How fast is the top of the ladder moving down the wall 
when its base is 7 feet, 15 feet, and 24 feet from the wall?

 (b)  Consider the triangle formed by the side of the house, the 
ladder, and the ground. Find the rate at which the area 
of the triangle is changing when the base of the ladder is  
7 feet from the wall.

 (c)  Find the rate at which the angle between the ladder and the 
wall of the house is changing when the base of the ladder 
is 7 feet from the wall.

2

25 ft

ft
sec

r

  

5 m

0.15 m
sec

 Figure for 21 Figure for 22

22.  Construction A construction worker pulls a five-meter 
plank up the side of a building under construction by means 
of a rope tied to one end of the plank (see figure). Assume the 
opposite end of the plank follows a path perpendicular to the 
wall of the building and the worker pulls the rope at a rate of 
0.15 meter per second. How fast is the end of the plank sliding 
along the ground when it is 2.5 meters from the wall of the 
building?

23.  Construction A winch at the top of a 12-meter building 
pulls a pipe of the same length to a vertical position, as shown 
in the figure. The winch pulls in rope at a rate of −0.2 meter 
per  second. Find the rate of vertical change and the rate of 
horizontal change at the end of the pipe when y = 6 meters.

x

12 m

(x, y)s

= −0.2ds
dt

m
sec

3

6

9

3 6

y   

12 ft
13 ft

Not drawn to scale

 Figure for 23 Figure for 24

24.  Boating A boat is pulled into a dock by means of a winch 
12 feet above the deck of the boat (see figure).

 (a)  The winch pulls in rope at a rate of 4 feet per second. 
Determine the speed of the boat when there is 13 feet of 
rope out. What happens to the speed of the boat as it gets 
closer to the dock?

 (b)  Suppose the boat is moving at a constant rate of 4 feet 
per second. Determine the speed at which the winch pulls 
in rope when there is a total of 13 feet of rope out. What 
 happens to the speed at which the winch pulls in rope as 
the boat gets closer to the dock?

25.  Air Traffic Control An air traffic controller spots two 
planes at the same altitude converging on a point as they fly at 
right angles to each other (see figure). One plane is 225 miles 
from the point, moving at 450 miles per hour. The other plane 
is 300 miles from the point, moving at 600 miles per hour.

 (a)  At what rate is the distance s between the planes decreasing?

 (b)  How much time does the air traffic controller have to get 
one of the planes on a different flight path?

100 200 400

400
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200
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e 
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n 
m

ile
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s

y  

5 mi

x

s

y

x

Not drawn to scale

Figure for 25 Figure for 26

26.  Air Traffic Control An airplane is flying at an altitude of  
5 miles and passes directly over a radar antenna (see figure). 
When the plane is 10 miles away (s = 10), the radar detects 
that the distance s is changing at a rate of 240 miles per hour. 
What is the speed of the plane?

 FOR FURTHER INFORMATION For more information  
on the mathematics of moving ladders, see the article “The Falling 
Ladder Paradox” by Paul Scholten and Andrew Simoson in  
The College Mathematics Journal. To view this article, go to 
MathArticles.com.
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27.  Sports A baseball diamond has the shape of a square with 
sides 90 feet long (see figure). A player running from second 
base to third base at a speed of 25 feet per second is 20 feet 
from third base. At what rate is the player’s distance from 
home plate changing?

1st3rd

Home

2nd

90 ft

 
16

12

8

4

4 8 12 16 20
x

y

Figure for 27 and 28 Figure for 29

28.  Sports For the baseball diamond in Exercise 27, suppose 
the player is running from first base to second base at a speed 
of 25 feet per second. Find the rate at which the distance from 
home plate is changing when the player is 20 feet from second 
base.

29.  Shadow Length A man 6 feet tall walks at a rate of 5 feet 
per second away from a light that is 15 feet above the ground 
(see figure). 

 (a)  When he is 10 feet from the base of the light, at what rate 
is the tip of his shadow moving?

 (b)  When he is 10 feet from the base of the light, at what rate 
is the length of his shadow changing?

30.  Shadow Length Repeat Exercise 29 for a man 6 feet tall 
walking at a rate of 5 feet per second toward a light that is  
20 feet above the ground (see figure).

20

16

12

8

4

4 8 12 16 20
x

y  
y

x
(x, 0)

(0, y)

1 m

Figure for 30 Figure for 31

31.  Machine Design The endpoints of a movable rod of 
length 1 meter have coordinates (x, 0) and (0, y) (see figure). 
The  position of the end on the x-axis is

 x(t) = 1
2

 sin 
πt
6

 where t is the time in seconds.

 (a) Find the time of one complete cycle of the rod.

 (b)  What is the lowest point reached by the end of the rod on 
the y-axis?

 (c)  Find the speed of the y-axis endpoint when the x-axis  
endpoint is (1

4, 0).

32.  Machine Design Repeat Exercise 31 for a position function 
of x(t) = 3

5 sin πt. Use the point ( 3
10, 0) for part (c).

33.  Evaporation As a spherical raindrop falls, it reaches 
a layer of dry air and begins to evaporate at a rate that is 
proportional to its surface area (S = 4πr2). Show that the 
radius of the raindrop decreases at a constant rate.

 34.  HOW DO YOU SEE IT? Using the graph 
of f, (a) determine whether dy�dt is positive or 
negative given that dx�dt is negative, and (b) 
determine whether dx�dt is positive or  negative 
given that dy�dt is positive. Explain.

(i) 

x
1 2 3 4

4

2

1 f

y (ii) 

x
−3 −2 −1 1 2 3

6
5
4
3
2

f

y

34.  

EXPLORING CONCEPTS
35.  Think About It Describe the relationship between 

the rate of change of y and the rate of change of x in 
each expression. Assume all variables and derivatives 
are positive.

 (a) 
dy
dt

= 3
dx
dt

   (b) 
dy
dt

= x(L − x)dx
dt

, 0 ≤ x ≤ L

36.  Volume Let V be the volume of a cube of side 
length s that is changing with respect to time. If ds�dt is 
constant, is dV�dt constant? Explain.

37.  Electricity The combined electrical resistance R of two 
resistors R1 and R2, connected in parallel, is given by

 
1
R
=

1
R1

+
1
R2

  where R, R1, and R2 are measured in ohms. R1 and R2 are 
increasing at rates of 1 and 1.5 ohms per second, respectively. At 
what rate is R changing when R1 = 50 ohms and R2 = 75 ohms?

38.  Electrical Circuit The voltage V in volts of an electrical 
circuit is V = IR, where R is the resistance in ohms and I is 
the current in amperes. R is increasing at a rate of 2 ohms per 
second, and V is increasing at a rate of 3 volts per second. At 
what rate is I changing when V = 12 volts and R = 4 ohms?

39.  Flight Control An airplane is flying in still air with an 
airspeed of 275 miles per hour. The plane is climbing at 
an angle of 18°. Find the rate at which the plane is gaining 
altitude.

40.  Angle of Elevation A balloon rises at a rate of 4 meters 
per second from a point on the ground 50 meters from an 
observer. Find the rate of change of the angle of elevation of 
the balloon from the observer when the balloon is 50 meters 
above the ground.
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41.  Angle of Elevation A fish is reeled in at a rate of 1 foot 
per second from a point 10 feet above the water (see figure). 
At what rate is the angle θ between the line and the water 
changing when there is a total of 25 feet of line from the end 
of the rod to the water?

10 ft
x

θ

 

5 mi

θ

Not drawn to scale

 Figure for 41 Figure for 42

42.  Angle of Elevation An airplane flies at an altitude of  
5 miles toward a point directly over an observer (see figure). 
The speed of the plane is 600 miles per hour. Find the rates at 
which the angle of elevation θ is changing when the angle is 
(a) θ = 30°, (b) θ = 60°, and (c) θ = 75°.

43.  Linear vs. Angular Speed A patrol car is parked 50 feet 
from a long warehouse (see figure). The revolving light on top 
of the car turns at a rate of 30 revolutions per minute. How fast 
is the light beam moving along the wall when the beam makes 
angles of (a) θ = 30°, (b) θ = 60°, and (c) θ = 70° with the 
perpendicular line from the light to the wall?

θ

x

50 ft

 

xθ
30 cm

x

P

Figure for 43 Figure for 44

44.  Linear vs. Angular Speed A wheel of radius  
30 centimeters revolves at a rate of 10 revolutions per second. A 
dot is painted at a point P on the rim of the wheel (see figure).

 (a) Find dx�dt as a function of θ.

 (b) Use a graphing utility to graph the function in part (a).

 (c)  When is the absolute value of the rate of change of x 
 greatest? When is it least?

 (d) Find dx�dt when θ = 30° and θ = 60°.

45.  Area The included angle of the two sides of constant equal 
length s of an isosceles triangle is θ.

 (a)  Show that the area of the triangle is given by A = 1
2s2 sin θ.

 (b)  The angle θ is increasing at the rate of 12 radian per minute. 
Find the rates of change of the area when θ = π�6 and 
θ = π�3.

46.  Security Camera A security camera is centered 50 feet 
above a 100-foot hallway (see figure). It is easiest to design the 
camera with a constant angular rate of rotation, but this results 
in recording the images of the surveillance area at a variable 
rate. So, it is desirable to design a system with a variable rate 
of rotation and a constant rate of movement of the scanning 
beam along the hallway. Find a model for the variable rate of 
rotation when ∣dx�dt∣ = 2 feet per second.

 

x

100 ft

θ

(0, 50)

y

 Figure for 46

47.  Modeling Data The table shows the numbers (in millions) 
of participants in the free lunch program f  and the reduced 
price lunch program r in the United States for the years 2007 
through 2014. (Source: U.S. Department of Agriculture)

Year 2011 2012 2013 2014

f 18.4 18.7 18.9 19.2

r 2.7 2.7 2.6 2.5

Year 2007 2008 2009 2010

f 15.0 15.4 16.3 17.6

r 3.1 3.1 3.2 3.0

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form

  r( f ) = af 3 + bf 2 + cf + d

   for the data, where t is the time in years, with t = 7 
corresponding to 2007.

 (b)  Find dr�dt. Then use the model to estimate dr�dt for t = 9 
when it is predicted that the number of participants in the 
free lunch program will increase at the rate of 1.25 million 
participants per year.

48.  Moving Shadow A ball is dropped from a height 
of 20 meters, 12 meters away from the top of a 20-meter 
lamppost (see figure). The ball’s shadow, caused by the light 
at the top of the lamppost, is moving along the level ground. 
How fast is the shadow moving 1 second after the ball is 
released? (Submitted by Dennis Gittinger, St. Philips College, 
San Antonio, TX)

 

12 m
Shadow

20 m

Acceleration In Exercises 49 and 50, find the acceleration of 
the specified object. (Hint: Recall that if a variable is changing 
at a constant rate, then its acceleration is zero.)

49.  Find the acceleration of the top of the ladder described in 
Exercise 21 when the base of the ladder is 7 feet from the wall.

50.  Find the acceleration of the boat in Exercise 24(a) when there 
is a total of 13 feet of rope out.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Derivative by the Limit Process In 
Exercises 1–4, find the derivative of the function by the limit 
process.

 1. f (x) = 12  2. f (x) = 5x − 4

 3. f (x) = x3 − 2x + 1  4. f (x) = 6
x

Using the Alternative Form of the Derivative In 
Exercises 5 and 6, use the alternative form of the derivative to 
find the derivative at x = c, if it exists.

 5. g(x) = 2x2 − 3x, c = 2  6. f (x) = 1
x + 4

, c = 3

Determining Differentiability In Exercises 7 and 8, 
describe the x-values at which f  is differentiable.

 7. f (x) = (x − 3)2�5  8. f (x) = 3x
x + 1

 

x

y

−1 1 2 3 4 5−1

1

2

3

4

5

  

x

y

−2−3 1 2

2

4

6

8

−1

Finding a Derivative In Exercises 9–20, use the rules of 
differentiation to find the derivative of the function.

 9. y = 25 10. f (t) = π�6

11. f (x) = x3 − 11x2 12. g(s) = 3s5 − 2s4

13. h(x) = 6√x + 3 3√x 14. f (x) = x1�2 − x−5�6

15. g(t) = 2
3t 2 16. h(x) = 8

5x4

17. f (θ) = 4θ − 5 sin θ 18. g(α) = 4 cos α + 6

19. f (θ) = 3 cos θ −
sin θ

4
 20. g(α) = 5 sin α

3
− 2α

Finding the Slope of a Graph In Exercises 21–24, find 
the slope of the graph of the function at the given point.

21. f (x) = 27
x3 , (3, 1) 22. f (x) = 3x2 − 4x, (1, −1)

23. f (x) = 4x5 + 3x − sin x, (0, 0)
24. f (x) = 5 cos x − 9x, (0, 5)

25.   Vibrating String When a guitar string is plucked, 
it vibrates with a frequency of F = 200√T, where F 
is measured in vibrations per second and the tension T 
is measured in pounds. Find the rates of change of the 
frequency when (a) T = 4  pounds and (b) T = 9 pounds.

26.  Surface Area The surface area of a cube with sides of 
length x is given by S = 6x2. Find the rate of change of the 
surface area with respect to x when x = 4 inches.

Vertical Motion In Exercises 27 and 28, use the position 
function s(t) = −16t2 + v0 t + s0 for free-falling objects.

27.  A ball is thrown straight down from the top of a 600-foot 
building with an initial velocity of −30 feet per second.

 (a) Determine the position and velocity functions for the ball.

 (b) Determine the average velocity on the interval [1, 3].
 (c) Find the instantaneous velocities when t = 1 and t = 3.

 (d) Find the time required for the ball to reach ground level.

 (e) Find the velocity of the ball at impact.

28.  A block is dropped from the top of a 450-foot platform. What 
is its velocity after 2 seconds? After 5 seconds?

Finding a Derivative In Exercises 29–40, use the Product 
Rule or the Quotient Rule to find the derivative of the function.

29. f (x) = (5x2 + 8)(x2 − 4x − 6)
30. g(x) = (2x3 + 5x)(3x − 4)
31. f (x) = (9x − 1)sin x 32. f (t) = 2t5 cos t

33. f (x) = x2 + x − 1
x2 − 1

 34. f (x) = 2x + 7
x2 + 4

35. y =
x 4

cos x
 36. y =

sin x
x4

37. y = 3x2 sec x 38. y = −x2 tan x

39. y = x cos x − sin x

40. g(x) = x4 cot x + 3x cos x

Finding an Equation of a Tangent Line In Exercises 
41–44, find an equation of the tangent line to the graph of f  at 
the given point.

41. f (x) = (x + 2)(x2 + 5), (−1, 6)
42. f (x) = (x − 4)(x2 + 6x − 1), (0, 4)

43. f (x) = x + 1
x − 1

, (12, −3)
44. f (x) = 1 + cos x

1 − cos x
, (π2, 1)

Finding a Second Derivative In Exercises 45–52, find the 
second derivative of the function.

45. g(t) = −8t3 − 5t + 12 46. h(x) = 6x−2 + 7x2

47. f (x) = 15x5�2 48. f (x) = 20 5√x

49. f (θ) = 3 tan θ 50. h(t) = 10 cos t − 15 sin t

51. g(x) = 4 cot x

52. h(t) = −12 csc t
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53.  Acceleration The velocity of an object is v(t) = 20 − t2,
0 ≤ t ≤ 6, where v is measured in meters per second and t is 
the time in seconds. Find the velocity and acceleration of the 
object when t = 3.

54.  Acceleration The velocity of an automobile starting from 
rest is

 v(t) = 90t
4t + 10

where v is measured in feet per second and t is the time in 
seconds. Find the acceleration at (a) 1 second, (b) 5 seconds, 
and (c) 10 seconds.

Finding a Derivative In Exercises 55–66, find the derivative 
of the function.

55. y = (7x + 3)4 56. y = (x2 − 6)3

57. y =
1

(x2 + 5)3 58. f (x) = 1
(5x + 1)2

59. y = 5 cos(9x + 1) 60. y = −6 sin 3x4

61. y =
x
2
−

sin 2x
4

 62. y =
sec7 x

7
−

sec5 x
5

63. y = x(6x + 1)5 64. f (s) = (s2 − 1)5�2(s3 + 5)

65. f (x) = ( x

√x + 5)
3

 66. h(x) = ( x + 5
x2 + 3)

2

Finding the Slope of a Graph In Exercises 67–72, find 
the slope of the graph of the function at the given point.

67. f (x) = √1 − x3, (−2, 3) 68. f (x) = 3√x2 − 1, (3, 2)

69. f (x) = x + 8

√3x + 1
, (0, 8) 70. f (x) = 3x + 1

(4x − 3)3, (1, 4)

71. y =
1
2

 csc 2x, (π4, 
1
2) 72. y = csc 3x + cot 3x, (π6, 1)

Finding a Second Derivative In Exercises 73–76, find the 
second derivative of the function.

73. y = (8x + 5)3 74. y =
1

5x + 1

75. f (x) = cot x 76. y = x sin2 x

77.  Refrigeration The temperature T (in degrees Fahrenheit) 
of food in a freezer is

 T =
700

t2 + 4t + 10

where t is the time in hours. Find the rate of change of T with 
respect to t at each of the following times.

 (a) t = 1  (b) t = 3  (c) t = 5  (d) t = 10

78.  Harmonic Motion The displacement from equilibrium of 
an object in harmonic motion on the end of a spring is

 y =
1
4

 cos 8t −
1
4

 sin 8t

where y is measured in feet and t is the time in seconds. Determine 
the position and velocity of the object when t = π�4.

Finding a Derivative In Exercises 79–84, find dy�dx by 
implicit differentiation.

79. x2 + y2 = 64 80. x2 + 4xy − y3 = 6

81. x3y − xy3 = 4 82. √xy = x − 4y

83. x sin y = y cos x 84. cos(x + y) = x

Tangent Lines and Normal Lines In Exercises 85 and 
86, find equations for the tangent line and the normal line to 
the graph of the equation at the given point. (The normal line 
at a point is perpendicular to the tangent line at the point.) Use 
a graphing utility to graph the equation, the tangent line, and 
the normal line.

85. x2 + y2 = 10, (3, 1) 86. x2 − y2 = 20, (6, 4)

87.  Rate of Change A point moves along the curve y = √x
in such a way that the y-component of the position of the point 
is increasing at a rate of 2 units per second. At what rate is the 
x-component changing for each of the following values?

 (a) x = 1
2  (b) x = 1  (c) x = 4

88.  Surface Area All edges of a cube are expanding at a rate 
of 8 centimeters per second. How fast is the surface area 
changing when each edge is 6.5 centimeters?

89.  Linear vs. Angular Speed A rotating beacon is located 
1 kilometer off a straight shoreline (see figure). The beacon 
rotates at a rate of 3 revolutions per minute. How fast (in 
kilometers per hour) does the beam of light appear to be 
moving to a viewer who is 12 kilometer down the shoreline?

θ

1
2

km

3 rev
min

Not drawn to scale

1 km

90.  Moving Shadow A sandbag is dropped from a balloon at 
a height of 60 meters when the angle of elevation to the sun is 
30° (see figure). The position of the sandbag is

s(t) = 60 − 4.9t2.

Find the rate at which the shadow of the sandbag is traveling 
along the ground when the sandbag is at a height of 35 meters.

30°

60 m

Rays

Shadow’s path

Position:
s (t) = 60 − 4.9t2
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Finding Equations of Circles Consider the graph of the 
parabola y = x2.

 (a)  Find the radius r of the largest possible circle centered 
on the y-axis that is tangent to the parabola at the origin, 
as shown in the figure. This circle is called the circle of 
curvature (see Section 12.5). Find the equation of this 
circle. Use a graphing utility to graph the circle and parabola 
in the same viewing window to verify your answer.

 (b)  Find the center (0, b) of the circle of radius 1 centered on 
the y-axis that is tangent to the parabola at two points, as 
shown in the figure. Find the equation of this circle. Use a 
graphing utility to graph the circle and parabola in the same 
viewing window to verify your answer.

x
r

y

1

2

−1

  

x
−1 1

1
1

2

(0, b)

y

 Figure for 1(a) Figure for 1(b)

2.   Finding Equations of Tangent Lines Graph the two 
parabolas

 y = x2 and y = −x2 + 2x − 5

  in the same coordinate plane. Find equations of the two lines 
that are simultaneously tangent to both parabolas.

3.  Finding a Polynomial Find a third-degree polynomial 
p(x) that is tangent to the line y = 14x − 13 at the point (1, 1), 
and tangent to the line y = −2x − 5 at the point (−1, −3).

4.  Finding a Function Find a function of the form 
f (x) = a + b cos cx that is tangent to the line y = 1 at the 
point (0, 1), and tangent to the line 

 y = x +
3
2
−

π
4

 at the point (π4, 
3
2).

5. Tangent Lines and Normal Lines

 (a)  Find an equation of the tangent line to the parabola y = x2 
at the point (2, 4).

 (b)  Find an equation of the normal line to y = x2 at the point 
(2, 4). (The normal line at a point is perpendicular to the 
tangent line at the point.) Where does this line intersect the 
parabola a second time?

 (c)  Find equations of the tangent line and normal line to y = x2 
at the point (0, 0).

 (d)  Prove that for any point (a, b) ≠ (0, 0) on the parabola 
y = x2, the normal line intersects the graph a second time.

 

6. Finding Polynomials

 (a)  Find the polynomial P1(x) = a0 + a1x whose value and 
slope agree with the value and slope of f (x) = cos x at the 
point x = 0.

 (b)  Find the polynomial P2(x) = a0 + a1x + a2 x2 whose value 
and first two derivatives agree with the value and first 
two derivatives of f (x) = cos x at the point x = 0. This 
polynomial is called the second-degree Taylor polynomial 
of f (x) = cos x at x = 0.

 (c)  Complete the table comparing the values of f (x) = cos x 
and P2(x). What do you observe?

 
x −1.0 −0.1 −0.001 0 0.001 0.1 1.0

cos x

P2(x)

 (d)  Find the third-degree Taylor polynomial of f (x) = sin x at 
x = 0.

7. Famous Curve The graph of the eight curve

 x4 = a2(x2 − y2), a ≠ 0

 is shown below.

 (a)  Explain how you could use a graphing utility to graph this 
curve.

 (b)  Use a graphing utility to graph the curve for various values 
of the constant a. Describe how a affects the shape of the 
curve.

 (c)  Determine the points on the curve at which the tangent line 
is horizontal.

x
−a a

y   

x
a

y

 Figure for 7 Figure for 8

8. Famous Curve The graph of the pear-shaped quartic

 b2y2 = x3(a − x), a, b > 0

 is shown above.

 (a)  Explain how you could use a graphing utility to graph this 
curve.

 (b)  Use a graphing utility to graph the curve for various values 
of the constants a and b. Describe how a and b affect the 
shape of the curve.

 (c)  Determine the points on the curve at which the tangent line 
is horizontal.
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 9.  Shadow Length A man 6 feet tall walks at a rate of 5 feet 
per second toward a streetlight that is 30 feet high (see figure). 
The man’s 3-foot-tall child follows at the same speed but  
10 feet behind the man. The shadow behind the child is caused 
by the man at some times and by the child at other times.

 (a)  Suppose the man is 90 feet from the streetlight. Show that 
the man’s shadow extends beyond the child’s shadow.

 (b)  Suppose the man is 60 feet from the streetlight. Show that 
the child’s shadow extends beyond the man’s shadow.

 (c)  Determine the distance d from the man to the streetlight 
at which the tips of the two shadows are exactly the same 
 distance from the streetlight.

 (d)  Determine how fast the tip of the man’s shadow is moving 
as a function of x, the distance between the man and the 
streetlight. Discuss the continuity of this shadow speed 
function.

10 ft

6 ft
3 ft

30 ft

Not drawn to scale

  

3

2

1

2 4 6 8 10

−1

x
θ

(8, 2)

y

 Figure for 9 Figure for 10

10.  Moving Point A particle is moving along the graph of 
y = 3√x (see figure). When x = 8, the y-component of the 
position of the particle is increasing at the rate of 1 centimeter 
per second.

 (a)  How fast is the x-component changing at this moment?

 (b)  How fast is the distance from the origin changing at this 
moment?

 (c)  How fast is the angle of inclination θ changing at this 
moment?

11.  Projectile Motion An astronaut standing on the moon 
throws a rock upward. The height of the rock is

 s = −
27
10

t2 + 27t + 6

 where s is measured in feet and t is measured in seconds.

 (a)  Find expressions for the velocity and acceleration of the 
rock.

 (b)  Find the time when the rock is at its highest point by 
 finding the time when the velocity is zero. What is the 
height of the rock at this time?

 (c)  How does the acceleration of the rock compare with the 
acceleration due to gravity on Earth?

12.  Proof Let E be a function satisfying E(0) = E′(0) = 1. 
Prove that if E(a + b) = E(a)E(b) for all a and b, then E is 
differentiable and E′(x) = E(x) for all x. Find an example of a 
function satisfying E(a + b) = E(a)E(b).

13.  Proof Let L be a differentiable function for all x. Prove that 
if L(a + b) = L(a) + L(b) for all a and b, then L′(x) = L′(0) 
for all x. What does the graph of L look like?

14. Radians and Degrees The fundamental limit

 lim
x→0

 
sin x

x
= 1

  assumes that x is measured in radians. Suppose you assume 
that x is measured in degrees instead of radians.

 (a) Set your calculator to degree mode and complete the table.

  
z (in degrees) 0.1 0.01 0.0001

sin z
z

 (b) Use the table to estimate

 lim
z→0

 
sin z

z

  for z in degrees. What is the exact value of this limit? 
(Hint: 180° = π  radians)

 (c) Use the limit definition of the derivative to find

 
d
dz

[sin z]

 for z in degrees.

 (d)  Define the new functions

  S(z) = sin cz and C(z) = cos cz

   where c = π�180. Find S(90) and C(180). Use the Chain 
Rule to calculate

 
d
dz

[S(z)].

 (e)  Explain why calculus is made easier by using radians 
instead of degrees.

15.  Acceleration and Jerk If a is the acceleration of an 
object, then the jerk j is defined by j = a′(t).

 (a) Use this definition to give a physical interpretation of j.

 (b)  Find j for the slowing vehicle in Exercise 119 in Section 
2.3 and interpret the result.

 (c)  The figure shows the graphs of the position, velocity, 
acceleration, and jerk functions of a vehicle. Identify each 
graph and explain your reasoning.

y

x

a

d

b

c
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166 Chapter 3 Applications of Differentiation

3.1 Extrema on an Interval

 Understand the definition of extrema of a function on an interval.
 Understand the definition of relative extrema of a function on an open interval.
 Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function f  on an 
interval I. Does f  have a maximum value on I? Does it have a minimum value? Where 
is the function increasing? Where is it decreasing? In this chapter, you will learn 
how derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

Definition of Extrema

Let f  be defined on an interval I containing c.

1. f (c) is the minimum of f  on I when f (c) ≤ f (x) for all x in I.

2. f (c) is the maximum of f  on I when f (c) ≥ f (x) for all x in I.

The minimum and maximum of a function on an interval are the extreme 
values, or extrema (the singular form of extrema is extremum), of the function 
on the interval. The minimum and maximum of a function on an interval are 
also called the absolute minimum and absolute maximum, or the global 
minimum and global maximum, on the interval. Extrema can occur at interior 
points or endpoints of an interval (see Figure 3.1). Extrema that occur at the 
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in 
Figures 3.1(a) and (b), you can see that the function f (x) = x2 + 1 has both a minimum 
and a maximum on the closed interval [−1, 2] but does not have a maximum on the 
open interval (−1, 2). Moreover, in Figure 3.1(c), you can see that continuity (or the 
lack of it) can affect the existence of an extremum on the interval. This suggests the 
theorem below. (Although the Extreme Value Theorem is   intuitively plausible, a proof 
of this theorem is not within the scope of this text.)

THEOREM 3.1 The Extreme Value Theorem

If f  is continuous on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

Exploration
Finding Minimum and Maximum Values The Extreme Value Theorem (like 
the Intermediate Value Theorem) is an existence theorem because it tells of the 
existence of minimum and maximum values but does not show how to find 
these values. Use the minimum and maximum features of a graphing utility to 
find the extrema of each function. In each case, do you think the x-values are 
exact or approximate? Explain your reasoning.

a. f (x) = x2 − 4x + 5 on the closed interval [−1, 3]
b. f (x) = x3 − 2x2 − 3x − 2 on the closed interval [−1, 3]

x

1−1 2

2

3

3

4

5 (2, 5)

(0, 1)

Maximum

Minimum

y

f(x) = x2 + 1

(a) f  is continuous, [−1, 2] is closed.

x

1−1 2

2

3

3

4

5

(0, 1)

Not a
maximum

Minimum

y

f(x) = x2 + 1

(b) f  is continuous, (−1, 2) is open.

x

1−1 2

2

3

3

4

5 (2, 5)

Not a
minimum

Maximum

g(x) = x2 + 1,  x ≠ 0
2,          x = 0

y

(c) g is not continuous, [−1, 2] is closed.

Figure 3.1
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Relative Extrema and Critical Numbers
In Figure 3.2, the graph of f (x) = x3 − 3x2 has a relative maximum at the point (0, 0) 
and a relative minimum at the point (2, −4). Informally, for a continuous function, 
you can think of a relative maximum as occurring on a “hill” on the graph, and a 
relative minimum as occurring in a “valley” on the graph. Such a hill and valley can 
occur in two ways. When the hill (or valley) is smooth and rounded, the graph has a 
horizontal tangent line at the high point (or low point). When the hill (or valley) is sharp 
and peaked, the graph represents a function that is not differentiable at the high point 
(or low point).

Definition of Relative Extrema

1.  If there is an open interval containing c on which f (c) is a maximum, then 
f (c) is called a relative maximum of f, or you can say that f  has a relative 
maximum at (c, f (c)). 

2.   If there is an open interval containing c on which f (c) is a minimum, then 
f (c) is called a relative minimum of f, or you can say that f  has a relative 
minimum at (c, f (c)).

The plural of relative maximum is relative maxima, and the plural of relative 
minimum is relative minima. Relative maximum and relative minimum are 
sometimes called local maximum and local minimum, respectively.

Example 1 examines the derivatives of functions at given relative extrema. (Much 
more is said about finding the relative extrema of a function in Section 3.3.)

 The Value of the Derivative at Relative Extrema

Find the value of the derivative at each relative extremum shown in Figure 3.3.

Solution

a. The derivative of f (x) = 9(x2 − 3)
x3  is

  f′(x) = x3(18x) − (9)(x2 − 3)(3x2)
(x3)2  Differentiate using Quotient Rule.

  =
9(9 − x2)

x4 . Simplify.

 At the point (3, 2), the value of the derivative is f′(3) = 0. [See Figure 3.3(a).]

b.  At x = 0, the derivative of f (x) = ∣x∣ does not exist because the following 
one-sided limits differ. [See Figure 3.3(b).]

 lim
x→0−

 
f (x) − f (0)

x − 0
= lim

x→0−
 ∣x∣

x
= −1 Limit from the left

 lim
x→0+

 
f (x) − f (0)

x − 0
= lim

x→0+
 ∣x∣

x
= 1 Limit from the right

c. The derivative of f (x) = sin x is

 f′(x) = cos x.

  At the point (π�2, 1), the value of the derivative is f′(π�2) = cos(π�2) = 0. At the 
point (3π�2, −1), the value of the derivative is f′(3π�2) = cos(3π�2) = 0. [See 
Figure 3.3(c).] 

x

2

2 4 6

−2

−4

Relative
maximum

(3, 2)

y
f(x) = 

x3

9(x2 − 3)

(a) f ′(3) = 0

x
−1

−1

2

2

1

1

3

−2

Relative
minimum

(0, 0)

f(x) =  | x |

y

(b) f ′(0) does not exist.

x

−1

2

1

−2

Relative
minimum

Relative
maximum

, 1π
2

(

( (

(2
π3

22
ππ 3

, −1

f(x) = sin x

y

(c) f ′(π2) = 0; f ′(3π2 ) = 0

Figure 3.3

x
1 2−1

−2

−3

−4

Hill
(0, 0)

Valley
(2, −4)

y f(x) = x3 − 3x2

f  has a relative maximum at (0, 0) and 
a relative minimum at (2, −4).
Figure 3.2
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168 Chapter 3 Applications of Differentiation

Note in Example 1 that at each relative extremum, the derivative either is zero or 
does not exist. The x-values at these special points are called critical numbers. Figure 
3.4 illustrates the two types of critical numbers. Notice in the definition that the critical 
number c has to be in the domain of f, but c does not have to be in the domain of f′.

Definition of a Critical Number

Let f  be defined at c. If f′(c) = 0 or if f  is not differentiable at c, then c is a 
critical number of f.

xc

f ′(c) does not exist.

f

y    

xc

Horizontal
tangent

f ′(c) = 0

y

f

 c is a critical number of f.
 Figure 3.4

THEOREM 3.2  Relative Extrema Occur Only  
at Critical Numbers

If f  has a relative minimum or relative maximum at x = c, then 
c is a critical number of f.

Proof

Case 1: If f  is not differentiable at x = c, then, by definition, c is a critical number of 
f  and the theorem is valid.

Case 2: If f  is differentiable at x = c, then f′(c) must be positive, negative, or 0. 
Suppose f′(c) is positive. Then

f′(c) = lim
x→c

 
f (x) − f (c)

x − c
> 0

which implies that there exists an interval (a, b) containing c such that

f (x) − f (c)
x − c

> 0, for all x ≠ c in (a, b). See Exercise 84(b), Section 1.2.

Because this quotient is positive, the signs of the denominator and numerator  must 
agree. This produces the following inequalities for x-values in the interval (a, b).

Left of c: x < c and f (x) < f (c)  f (c) is not a relative minimum.

Right of c: x > c and f (x) > f (c)  f (c) is not a relative maximum.

So, the assumption that f′(c) > 0 contradicts the hypothesis that f (c) is a rela tive 
extremum. Assuming that f′(c) < 0 produces a similar contradiction, you are left  
with only one possibility—namely, f′(c) = 0. So, by definition, c is a critical number 
of f  and the theorem is valid. 

PIERRE DE FERMAT (1601–1665)

For Fermat, who was trained 
as a lawyer, mathematics 
was more of a hobby than 
a profession. Nevertheless, 
Fermat made many 
contributions to analytic 
geometry, number theory, 
calculus, and probability. In 
letters to friends, he wrote of 
many of the fundamental ideas 
of calculus, long before Newton 
or Leibniz. For instance, 
Theorem 3.2 is sometimes 
attributed to Fermat.
See LarsonCalculus.com to read 
more of this biography.

The Print Collector/Alamy Stock Photo
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3.1 Extrema on an Interval 169

Finding Extrema on a Closed Interval
Theorem 3.2 states that the relative extrema of a function can occur only at the critical 
numbers of the function. Knowing this, you can use these guidelines to find extrema 
on a closed interval.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f  on a closed interval [a, b], use 
these steps.

1. Find the critical numbers of f  in (a, b).
2. Evaluate f  at each critical number in (a, b).
3. Evaluate f  at each endpoint of [a, b].
4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that 
finding the critical numbers of the function is only part of the procedure. Evaluating the 
function at the critical numbers and the endpoints is the other part.

 Finding Extrema on a Closed Interval

Find the extrema of

f (x) = 3x4 − 4x3

on the interval [−1, 2].

Solution Begin by differentiating the function.

 f (x) = 3x4 − 4x3 Write original function.

 f′(x) = 12x3 − 12x2 Differentiate.

To find the critical numbers of f  in the interval (−1, 2), you must find all x-values for 
which f′(x) = 0 and all x-values for which f′(x) does not exist.

 12x3 − 12x2 = 0 Set f ′(x) equal to 0.

 12x2(x − 1) = 0 Factor.

 x = 0, 1 Critical numbers

Because f′ is defined for all x, you can conclude that these are the only critical  numbers 
of f. By evaluating f  at these two critical numbers and at the endpoints of [−1, 2], 
you can determine that the maximum is f (2) = 16 and the minimum is f (1) = −1, as 
shown in the table. The graph of f  is shown in Figure 3.5.

 
Left 

Endpoint
Critical 
Number

Critical 
Number

Right 
Endpoint

f (−1) = 7 f (0) = 0 f (1) = −1 
Minimum

f (2) = 16
Maximum

 

In Figure 3.5, note that the critical number x = 0 does not yield a relative  minimum 
or a relative maximum. This tells you that the converse of Theorem 3.2 is not true. In 
other words, the critical numbers of a function need not produce relative extrema.

x
2

4

8

12

16

−1

−4

(0, 0)

(2, 16)
Maximum

Minimum
(1, −1)

(−1, 7)

y

f (x) = 3x4 − 4x3

On the closed interval [−1, 2], f  has a  
minimum at (1, −1) and a maximum  
at (2, 16).
Figure 3.5
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170 Chapter 3 Applications of Differentiation

 Finding Extrema on a Closed Interval

Find the extrema of f (x) = 2x − 3x2�3 on the interval [−1, 3].

Solution Begin by differentiating the function.

 f (x) = 2x − 3x2�3 Write original function.

 f′(x) = 2 −
2

x1�3 Differentiate.

 = 2(x
1�3 − 1

x1�3 ) Simplify.

From this derivative, you can see that the function has two critical numbers in the 
interval (−1, 3). The number 1 is a critical number because f′(1) = 0, and the number 
0 is a critical number because f′(0) does not exist. By evaluating f  at these two 
numbers and at the endpoints of the interval, you can conclude that the minimum is 
f (−1) = −5 and the maximum is f (0) = 0, as shown in the table. The graph of f  is 
shown in Figure 3.6.

Left 
Endpoint

Critical 
Number

Critical 
Number

Right 
Endpoint

f (−1) = −5
Minimum

f (0) = 0 
Maximum f (1) = −1 f (3) = 6 − 3 3√9 ≈ −0.24

 Finding Extrema on a Closed Interval

See LarsonCalculus.com for an interactive version of this type of example.

Find the extrema of

f (x) = 2 sin x − cos 2x

on the interval [0, 2π].

Solution Begin by differentiating the function.

 f (x) = 2 sin x − cos 2x Write original function.

 f′(x) = 2 cos x + 2 sin 2x Differentiate.

 = 2 cos x + 4 cos x sin x sin 2x = 2 cos x sin x

 = 2(cos x)(1 + 2 sin x) Factor.

Because f  is differentiable for all real x, you can find all critical numbers of f  by 
finding the zeros of its derivative. Considering 2(cos x)(1 + 2 sin x) = 0 in the interval 
(0, 2π), the factor cos x is zero when x = π�2 and when x = 3π�2. The factor 
(1 + 2 sin x) is zero when x = 7π�6 and when x = 11π�6. By evaluating f  at these 
four critical numbers and at the endpoints of the interval, you can conclude that the 
maximum is f (π�2) = 3 and the minimum occurs at two points, f (7π�6) = −3�2 and 
f (11π�6) = −3�2, as shown in the table. The graph is shown in Figure 3.7.

 
  

Left 
Endpoint

Critical 
Number

Critical 
Number

Critical 
Number

Critical 
Number

Right 
Endpoint

f (0) = −1
f (π2) = 3

 
Maximum

f (7π6 ) = −
3
2

Minimum
f (3π2 ) = −1 f (11π

6 ) = −
3
2

Minimum
f (2π) = −1

Maximum

Minimum

(0, 0)

−1−2

−4

−5

1 2
x

(1, −1)

(−1, −5)

y

93, 6 − 3 3 ))

f(x) = 2x − 3x2/3

On the closed interval [−1, 3], f  has a 
minimum at (−1, −5) and a maximum 
at (0, 0).
Figure 3.6

ππ

Maximum

Minima

(0, −1)
−1

−2

−3

1

2

3

4

x

(2  , −1)

π
6( (, −7

2
3 π

6( (, −11
2
3

π
2( (, −1

π
2 (( , 3

3

2
π

y

f (x) = 2 sin x − cos 2x

On the closed interval [0, 2π], f  has 
two minima at (7π�6, −3�2) and 
(11π�6, −3�2) and a maximum at 
(π�2, 3).
Figure 3.7
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3.1 Extrema on an Interval 171

3.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Minimum What does it mean to say that f (c) is the 

minimum of f  on an interval I?

2.  Extreme Value Theorem In your own words, 
describe the Extreme Value Theorem.

3.  Maximum What is the difference between a relative 
maximum and an absolute maximum on an interval I?

4.  Critical Numbers What is a critical number?

5.  Critical Numbers Explain how to find the critical 
numbers of a function.

6.  Extrema on a Closed Interval Explain how to find 
the extrema of a continuous function on a closed interval 
[a, b].

 The Value of the Derivative at Relative 
Extrema In Exercises 7–12, find the value of the 
derivative (if it exists) at each indicated extremum.

 7. f (x) = x2

x2 + 4
  8. f (x) = cos 

πx
2

 

x
1

1

2

2

−1
−2

−2

(0, 0)

y   

x
1 2 3

2

−1

−2

(0, 1)

(2, −1)

y

 9. g(x) = x +
4
x2 10. f (x) = −3x√x + 1

 

1 2 3 4 5 6

1

2

3

4

5

6

x

y

(2, 3)

  

x
1

2

−1
−2−3

−2

( (2 2
3 3

3− , 

y

(−1, 0)

11. f (x) = (x + 2)2�3 12. f (x) = 4 − ∣x∣
 

x

1

2

−1
−1

−2−3−4

−2

(−2, 0)

y   

x

4

4

2

2

6

−4 −2
−2

(0, 4)

y

Approximating Critical Numbers In Exercises 13–16, 
approximate the critical numbers of the function shown in 
the graph. Determine whether the function has a relative 
maximum, a relative minimum, an absolute maximum, an 
absolute minimum, or none of these at each critical number on 
the interval shown.

13. 

x
421 3−1

2

4

5

1

3

y

5

 14. 

x
1−1

−1

1

y

15. 

x
421 3−1

2

4

5

1

3

y

5

 16. 

x
42 6−2

−2

2

4

8

6

y

8

 Finding Critical Numbers In Exercises 17–22, 
find the critical numbers of the function.

17. f (x) = 4x2 − 6x 18. g(x) = x − √x

19. g(t) = t√4 − t, t < 3 20. f (x) = 4x
x2 + 1

21. h(x) = sin2 x + cos x, 0 < x < 2π

22. f (θ) = 2 sec θ + tan θ, 0 < θ < 2π

 Finding Extrema on a Closed Interval In 
Exercises 23–40, find the absolute extrema of the 
function on the closed interval.

23. f (x) = 3 − x, [−1, 2] 24. f (x) = 3
4

x + 2, [0, 4]

25. h(x) = 5 − 2x2, [−3, 1] 26. f (x) = 7x2 + 1, [−1, 2]

27. f (x) = x3 −
3
2

x2, [−1, 2] 28. f (x) = 2x3 − 6x, [0, 3]

29. y = 3x2�3 − 2x, [−1, 1] 30. g(x) = 3√x, [−8, 8]

31. g(x) = 6x2

x − 2
, [−2, 1] 32. h(t) = t

t + 3
, [−1, 6]

33. y = 3 − ∣t − 3∣, [−1, 5] 34. g(x) = ∣x + 4∣, [−7, 1]
35. f (x) = ⟨x⟩, [−2, 2] 36. h(x) = ⟨2 − x⟩, [−2, 2]

37. f (x) = sin x, [5π6 , 
11π

6 ] 38. g(x) = sec x, [−π
6

, 
π
3]

39. y = 3 cos x, [0, 2π] 40. y = tan 
πx
8

, [0, 2]
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172 Chapter 3 Applications of Differentiation

 Finding Extrema on an Interval In Exercises 
41–44, find the absolute extrema of the function (if 
any exist) on each interval.

41. f (x) = 2x − 3 42. f (x) = 5 − x

 (a) [0, 2]   (b) [0, 2)  (a) [1, 4]   (b) [1, 4)
 (c) (0, 2]   (d) (0, 2)  (c) (1, 4]   (d) (1, 4)
43. f (x) = x2 − 2x 44. f (x) = √4 − x2

 (a) [−1, 2]  (b) (1, 3]  (a) [−2, 2]  (b) [−2, 0)
 (c) (0, 2)   (d) [1, 4)  (c) (−2, 2)  (d) [1, 2)

Finding Absolute Extrema Using Technology In 
Exercises 45–48, use a graphing utility to graph the function 
and find the absolute extrema of the function on the given 
interval.

45. f (x) = 3
x − 1

, (1, 4]

46. f (x) = 2
2 − x

, [0, 2)

47. f (x) = √x +
sin x

3
, [0, π]

48. f (x) = −x + cos 3πx, [0, 
π
6]

Finding Extrema Using Technology In Exercises 49 
and 50, (a) use a computer algebra system to graph the 
function and approximate any absolute extrema on the given 
interval. (b) Use the utility to find any critical numbers, and 
use them to find any absolute extrema not located at the 
endpoints. Compare the results with those in part (a).

49. f (x) = 3.2x5 + 5x3 − 3.5x, [0, 1]

50. f (x) = 4
3

x√3 − x, [0, 3]

Finding Maximum Values Using Technology In 
Exercises 51 and 52, use a computer algebra system to find 
the maximum value of ∣f ″(x)∣ on the closed interval. (This 
value is used in the error estimate for the Trapezoidal Rule, as 
discussed in Section 8.6.)

51. f (x) = √1 + x3, [0, 2]

52. f (x) = 1
x2 + 1

, [12, 3]
Finding Maximum Values Using Technology In 
Exercises 53 and 54, use a computer algebra system to find the 
maximum value of ∣f (4)(x)∣ on the closed interval. (This value 
is used in the error estimate for Simpson’s Rule, as  discussed 
in Section 8.6.)

53. f (x) = (x + 1)2�3, [0, 2]

54. f (x) = 1
x2 + 1

, [−1, 1]

55.  Writing Write a short paragraph explaining why a continuous 
function on an open interval may not have a maximum or 
minimum. Illustrate your explanation with a sketch of the 
graph of such a function.

 56.  HOW DO YOU SEE IT? Determine 
whether each labeled point is an absolute 
maximum or minimum, a relative maximum or 
minimum, or none of these.

x

y

A

B

C

D

E

F

G

56.

EXPLORING CONCEPTS
Using Graphs In Exercises 57 and 58, determine 
from the graph whether f  has a minimum in the open 
interval (a, b). Explain your reasoning.

57. (a)   (b)
 

x
a b

f

y  

x
a b

f

y

58. (a)   (b)
 

x
a b

f

y   

x
a b

f

y

59.  Critical Numbers Consider the function

 f (x) = x − 4
x + 2

. 

 Is x = −2 a critical number of f ? Why or why not?

60.  Creating the Graph of a Function Graph a  
function on the interval [−2, 5] having the given 
characteristics.

 Relative minimum at x = −1
 Critical number (but no extremum) at x = 0
 Absolute maximum at x = 2
 Absolute minimum at x = 5
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3.1 Extrema on an Interval 173

61. Power The formula for the power output P of a battery is

 P = VI − RI 2

  where V is the electromotive force in volts, R is the resistance 
in ohms, and I is the current in amperes. Find the current that 
corresponds to a maximum value of P in a battery for which 
V = 12 volts and R = 0.5 ohm. Assume that a 15-ampere fuse 
bounds the output in the interval 0 ≤ I ≤ 15. Could the power 
output be increased by replacing the 15-ampere fuse with a 
20-ampere fuse? Explain.

62.  Lawn Sprinkler A lawn sprinkler is constructed in such 
a way that dθ�dt is constant, where θ ranges between 45° and 
135° (see figure). The distance the water travels horizontally is

 x =
v2 sin 2θ

32
, 45° ≤ θ ≤ 135°

  where v is the speed of the water. Find dx�dt and explain why 
this lawn sprinkler does not water evenly. What part of the 
lawn receives the most water?

θ  = 135°

x

32
−

θ θ

θ

Water sprinkler: 45° ≤    ≤ 135°θ

v2

32
v2

64
− v2

64
v2

θ  = 45°

 = 105°  = 75°y

63.  Honeycomb The surface area of a cell in a honeycomb is

 S = 6hs +
3s2

2 (
√3 − cos θ

sin θ )
  where h and s are positive constants and θ is the angle at which 

the upper faces meet the altitude of the cell (see figure). Find the 
angle θ (π�6 ≤ θ ≤ π�2) that minimizes the surface area S.

s

h

θ

64.  Highway Design In order to build a highway, it is 
necessary to fill a section of a valley where the grades (slopes) 
of the sides are 9% and 6% (see figure). The top of the filled 
region will have the shape of a parabolic arc that is tangent to 
the two slopes at the points A and B. The horizontal distances 
from A to the y-axis and from B to the y-axis are both 500 feet.

A
B

Highway

x

y

500 ft 500 ft

Not drawn to scale

6% grade9% grade

 (a) Find the coordinates of A and B.

 (b)  Find a quadratic function y = ax2 + bx + c for 
−500 ≤ x ≤ 500 that describes the top of the filled 
region.

 (c)  Construct a table giving the depths d of the fill for 
x = −500, −400, −300, −200, −100, 0, 100, 200, 300, 
400, and 500.

 (d)  What will be the lowest point on the completed highway? 
Will it be directly over the point where the two hillsides 
come together?

True or False? In Exercises 65–68, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

65.  The maximum of y = x2 on the open interval (−3, 3) is 9.

66.  If a function is continuous on a closed interval, then it must 
have a minimum on the interval.

67.  If x = c is a critical number of the function f, then it is also a 
critical number of the function g(x) = f (x) + k, where k is a 
constant.

68.  If x = c is a critical number of the function f, then it is also a 
critical number of the function g(x) = f (x − k), where k is a 
constant.

69.  Functions Let the function f  be differentiable on an 
interval I containing c. If f  has a maximum value at x = c, 
show that −f  has a minimum value at x = c.

70.  Critical Numbers Consider the cubic function 
f (x) = ax3 + bx2 + cx + d, where a ≠ 0. Show that f  can 
have zero, one, or two critical numbers and give an example 
of each case.

PUTNAM EXAM CHALLENGE
71.  Determine all real numbers a > 0 for which there exists 

a nonnegative continuous function f (x) defined on [0, a] 
with the property that the region R = {(x, y); 0 ≤ x ≤ a, 
0 ≤ y ≤ f (x)} has perimeter k units and area k square 
units for some real number k.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

 FOR FURTHER INFORMATION For more information 
on the “calculus of lawn sprinklers,” see the article “Design of an 
Oscillating Sprinkler” by Bart Braden in Mathematics Magazine. 
To view this article, go to MathArticles.com.

 FOR FURTHER INFORMATION For more information 
on the geometric structure of a honeycomb cell, see the article 
“The Design of Honeycombs” by Anthony L. Peressini in UMAP 
Module 502, published by COMAP, Inc., Suite 210, 57 Bedford 
Street, Lexington, MA.
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3.2 Rolle’s Theorem and the Mean Value Theorem

 Understand and use Rolle’s Theorem.
 Understand and use the Mean Value Theorem.

Rolle’s Theorem
The Extreme Value Theorem (see Section 3.1) states that a continuous function on a 
closed interval [a, b] must have both a minimum and a maximum on the interval. Both 
of these values, however, can occur at the endpoints. Rolle’s Theorem, named after the 
French mathematician Michel Rolle (1652–1719), gives conditions that guarantee the 
existence of an extreme value in the interior of a closed interval.

THEOREM 3.3 Rolle’s Theorem

Let f  be continuous on the closed interval [a, b] and differentiable 
on the open interval (a, b). If f (a) = f (b), then there is at least one 
number c in (a, b) such that f′(c) = 0.

Proof Let f (a) = d = f (b).
Case 1: If f (x) = d for all x in [a, b], then f  is constant on the interval and, by 
Theorem 2.2, f′(x) = 0 for all x in (a, b).
Case 2: Consider f (x) > d for some x in (a, b). By the Extreme Value Theorem, you 
know that f  has a maximum at some c in the interval. Moreover, because f (c) > d, this 
maximum does not occur at either endpoint. So, f  has a maximum in the open interval 
(a, b). This implies that f (c) is a relative maximum and, by Theorem 3.2, c is a critical 
number of f. Finally, because f  is differentiable at c, you can conclude that f′(c) = 0.

Case 3: When f (x) < d for some x in (a, b), you can use an argument similar to that 
in Case 2 but involving the minimum instead of the maximum. 

From Rolle’s Theorem, you can see that if a function f  is continuous on [a, b] 
and differentiable on (a, b), and if f (a) = f (b), then there must be at least one x-value 
between a and b at which the graph of f  has a horizontal tangent [See Figure 3.8(a)]. 
When the differentiability requirement is dropped from Rolle’s Theorem, f  will still 
have a critical number in (a, b), but it may not yield a horizontal tangent. Such a case 
is shown in Figure 3.8(b).

x

f

d

a bc

Relative
maximum

y
    

x

f

d

a bc

Relative
maximum

y

 (a)   f  is continuous on [a, b] and  (b) f  is continuous on [a, b] but not 
differentiable on (a, b).  differentiable on (a, b).

 Figure 3.8

Exploration
Extreme Values in a 
Closed Interval Sketch a 
rectangular coordinate plane 
on a piece of paper. Label 
the points (1, 3) and (5, 3). 
Using a pencil or pen, draw 
the graph of a differentiable 
function f  that starts at (1, 3) 
and ends at (5, 3). Is there at 
least one point on the graph 
for which the derivative is 
zero? Would it be possible to 
draw the graph so that there 
is not a point for which the 
derivative is zero? Explain 
your reasoning.

ROLLE’S THEOREM

French mathematician Michel 
Rolle first  published the 
theorem that bears his name 
in 1691. Before this time, 
however, Rolle was one of the 
most vocal critics of calculus, 
stating that it gave erroneous 
results and was based on 
unsound reasoning. Later in 
life, Rolle came to see the 
usefulness of calculus.
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3.2 Rolle’s Theorem and the Mean Value Theorem 175

 Illustrating Rolle’s Theorem

Find the two x-intercepts of

f (x) = x2 − 3x + 2

and show that f′(x) = 0 at some point between the two x-intercepts.

Solution Note that f  is differentiable on the entire real number line. Setting f (x) 
equal to 0 produces

 x2 − 3x + 2 = 0 Set f (x) equal to 0.

 (x − 1)(x − 2) = 0 Factor.

 x = 1, 2. Solve for x.

So, f (1) = f (2) = 0, and from Rolle’s Theorem you know that there exists at least one 
c in the interval (1, 2) such that f′(c) = 0. To find such a c, differentiate f  to obtain

f′(x) = 2x − 3 Differentiate.

and then determine that f′(x) = 0 when x = 3
2. Note that this x-value lies in the open

interval (1, 2), as shown in Figure 3.9. 

Rolle’s Theorem states that when f  satisfies the conditions of the theorem, there 
must be at least one point between a and b at which the derivative is 0. There may, of 
course, be more than one such point, as shown in the next example.

 Illustrating Rolle’s Theorem

Let f (x) = x4 − 2x2. Find all values of c in the interval (−2, 2) such that f′(c) = 0.

Solution To begin, note that the function satisfies the conditions of Rolle’s 
Theorem. That is, f  is continuous on the interval [−2, 2] and differentiable on the 
interval (−2, 2). Moreover, because f (−2) = f (2) = 8, you can conclude that there 
exists at least one c in (−2, 2) such that f′(c) = 0. Because

f′(x) = 4x3 − 4x Differentiate.

setting the derivative equal to 0 produces

 4x3 − 4x = 0 Set f ′(x) equal to 0.

 4x(x − 1)(x + 1) = 0 Factor.

 x = 0, 1, −1. x-values for which f ′(x) = 0

So, in the interval (−2, 2), the derivative is zero when x = −1, 0, and 1, as shown in 
Figure 3.10. 

3

2

1

−1

x

Horizontal
tangent

(1, 0) (2, 0)

f ′ 3
2( ) = 0

f (x) = x2 − 3x + 2

y

The x-value for which f ′(x) = 0 is 
between the two x-intercepts.
Figure 3.9

x
−2

−2

2

8

6

4

2

f (2) = 8
f (−2) = 8

f ′(−1) = 0 f ′(1) = 0

f ′(0) = 0

f (x) = x4 − 2x2y

f ′(x) = 0 for more than one x-value in 
the interval (−2, 2).
Figure 3.10

6

−3

−3

3

Figure 3.11

TECHNOLOGY PITFALL A graphing utility can be used to indicate whether 
the points on the graphs in Examples 1 and 2 are relative minima or relative maxima 
of the functions. When using a graphing utility, however, you should keep in mind 
that it can give  misleading pictures of graphs. For example, use a graphing utility 
to graph

f (x) = 1 − (x − 1)2 − 1
1000(x − 1)1�7 + 1

.

With most viewing windows, it appears that the function has a maximum of 1 when 
x = 1, as shown in Figure 3.11. By evaluating the function at x = 1, however, you 
can see that f (1) = 0. To determine the behavior of this function near x = 1, you 
need to examine the graph analytically to get the complete picture.
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176 Chapter 3 Applications of Differentiation

The Mean Value Theorem
Rolle’s Theorem can be used to prove another theorem—the Mean Value Theorem.

THEOREM 3.4 The Mean Value Theorem

If f  is continuous on the closed interval [a, b] and differentiable on the open 
interval (a, b), then there exists a number c in (a, b) such that

f′(c) = f (b) − f (a)
b − a

.

Proof Refer to Figure 3.12. The equation of the secant line that passes through the 
points (a, f (a)) and (b, f (b)) is

y = [f (b) − f (a)
b − a ](x − a) + f (a).

Let g(x) be the difference between f (x) and y. Then

 g(x) = f (x) − y

 = f (x) − [f (b) − f (a)
b − a ](x − a) − f (a).

By evaluating g at a and b, you can see that

g(a) = 0 = g(b).

Because f  is continuous on [a, b], it follows that g is also continuous on [a, b]. 
Furthermore, because f  is differentiable, g is also differentiable, and you can apply 
Rolle’s Theorem to the function g. So, there exists a number c in (a, b) such that 
g′(c) = 0, which implies that

 g′(c) = 0

 f′(c) − f (b) − f (a)
b − a

= 0.

So, there exists a number c in (a, b) such that

f′(c) = f (b) − f (a)
b − a

. 

Although the Mean Value Theorem can be used directly in problem solving, it is 
used more often to prove other theorems. In fact, some people consider this to be the 
most important theorem in calculus—it is closely related to the Fundamental Theorem 
of Calculus discussed in Section 4.4. For now, you can get an idea of the versatility 
of the Mean Value Theorem by looking at the results stated in Exercises 77–85 in this 
section.

The Mean Value Theorem has implications for both basic interpretations of the 
derivative. Geometrically, the theorem guarantees the existence of a tangent line that is 
parallel to the secant line through the points

(a, f (a)) and (b, f (b)).

as shown in Figure 3.12. Example 3 illustrates this geometric interpretation of the 
Mean Value Theorem. In terms of rates of change, the Mean Value Theorem implies 
that there must be a point in the open interval (a, b) at which the instantaneous rate of 
change is equal to the average rate of change over the interval [a, b]. This is illustrated in 
Example 4.

x

Tangent line

Secant line

Slope of tangent line = f ′(c)

a c b

(b, f (b))

f

(a, f (a))

y

Figure 3.12

REMARK The “mean” in the 
Mean Value Theorem refers to 
the mean (or average) rate of 
change of f  on the interval [a, b]. 

JOSEPH-LOUIS LAGRANGE 
(1736–1813)

The Mean Value Theorem 
was first proved by the 
famous mathematician Joseph-
Louis Lagrange. Born in Italy, 
Lagrange held a position in the 
court of Frederick the Great in 
Berlin for 20 years.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library/The Image Works
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3.2 Rolle’s Theorem and the Mean Value Theorem 177

 Finding a Tangent Line

See LarsonCalculus.com for an interactive version of this type of example.

For f (x) = 5 − (4�x), find all values of c in the open interval (1, 4) such that

f′(c) = f (4) − f (1)
4 − 1

.

Solution The slope of the secant line through (1, f (1)) and (4, f (4)) is

f (4) − f (1)
4 − 1

=
4 − 1
4 − 1

= 1. Slope of secant line

Note that the function satisfies the conditions of the Mean Value Theorem. That is, f  is 
continuous on the interval [1, 4] and differentiable on the interval (1, 4). So, there exists 
at least one number c in (1, 4) such that f′(c) = 1. Solving the equation f′(x) = 1 yields

4
x2 = 1 Set f ′(x) equal to 1.

which implies that

x = ±2.

So, in the interval (1, 4), you can conclude that c = 2, as shown in Figure 3.13.

 Finding an Instantaneous Rate of Change

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as 
shown in Figure 3.14. As a truck passes the first patrol car, its speed is clocked at  
55 miles per hour. Four minutes later, when the truck passes the second patrol car, its 
speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the 
speed limit (of 55 miles per hour) at some time during the 4 minutes.

Solution Let t = 0 be the time (in hours) when the truck passes the first patrol car. 
The time when the truck passes the second patrol car is

t =
4
60

=
1
15

 hour.

By letting s(t) represent the distance (in miles) traveled by the truck, you have s(0) = 0

and s( 1
15) = 5. So, the average velocity of the truck over the five-mile stretch of

highway is

Average velocity =
s(1�15) − s(0)
(1�15) − 0

=
5

1�15
= 75 miles per hour.

Assuming that the position function is differentiable, you can apply the Mean Value 
Theorem to conclude that the truck must have been traveling at a rate of 75 miles per 
hour sometime during the 4 minutes. 

A useful alternative form of the Mean Value Theorem is: If f  is continuous on 
[a, b] and differentiable on (a, b), then there exists a number c in (a, b) such that

f (b) = f (a) + (b − a) f′(c).    Alternative form of Mean Value Theorem

When doing the exercises for this section, keep in mind that polynomial functions, 
rational functions, and trigonometric functions are differentiable at all points in their 
domains.

t = 4 minutes t = 0

5 miles

Not drawn to scale

At some time t, the instantaneous 
velocity is equal to the average 
velocity over 4 minutes.
Figure 3.14

Tangent line

Secant line

x
1 2 3 4

4

3

2

1
(1, 1)

(2, 3)

(4, 4)

y

4
xf(x) = 5 − 

The tangent line at (2, 3) is parallel  
to the secant line through (1, 1) and 
(4, 4).
Figure 3.13
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178 Chapter 3 Applications of Differentiation

3.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Rolle’s Theorem In your own words, describe 

Rolle’s Theorem.

2.  Mean Value Theorem In your own words, describe 
the Mean Value Theorem.

Writing In Exercises 3–6, explain why Rolle’s Theorem does 
not apply to the function even though there exist a and b such 
that f (a) = f (b).

 3. f (x) = ∣1x∣, [−1, 1]  4. f (x) = cot 
x
2

, [π, 3π]

 5. f (x) = 1 − ∣x − 1∣,   6. f (x) = √(2 − x2�3)3,
 [0, 2]  [−1, 1]

 Using Rolle’s Theorem In Exercises 7–10, 
find the two x-intercepts of the function f  and 
show that f ′(x) = 0 at some point between the two  
x-intercepts.

 7. f (x) = x2 − x − 2  8. f (x) = x2 + 6x

 9. f (x) = x√x + 4 10. f (x) = −3x√x + 1

 Using Rolle’s Theorem In Exercises 11–24, 
determine whether Rolle’s Theorem can be 
applied to f  on the closed interval [a, b]. If Rolle’s 
Theorem can be applied, find all values of c in the 
open interval (a, b) such that f ′(c) = 0. If Rolle’s 
Theorem cannot be applied, explain why not.

11. f (x) = −x2 + 3x, [0, 3]
12. f (x) = x2 − 8x + 5, [2, 6]
13. f (x) = (x − 1)(x − 2)(x − 3), [1, 3]
14. f (x) = (x − 4)(x + 2)2, [−2, 4]
15. f (x) = x2�3 − 1, [−8, 8]
16. f (x) = 3 − ∣x − 3∣, [0, 6]

17. f (x) = x2 − 2x − 3
x + 2

, 18. f (x) = x2 − 4
x − 1

,

 [−1, 3]  [−2, 2]
19. f (x) = sin x, [0, 2π] 20. f (x) = cos x, [π, 3π]

21. f (x) = cos πx, [0, 2] 22. f (x) = sin 3x, [π2, 
7π
6 ]

23. f (x) = tan x, [0, π] 24. f (x) = sec x, [π, 2π]

Using Rolle’s Theorem In Exercises 25–28, use a graphing 
utility to graph the function on the closed interval [a, b]. 
Determine whether Rolle’s Theorem can be applied to f  on the 
interval and, if so, find all values of c in the open interval (a, b) 
such that f ′(c) = 0.

25. f (x) = ∣x∣ − 1, [−1, 1] 26. f (x) = x − x1�3, [0, 1]

27. f (x) = x
2
− sin 

πx
6

, [−1, 0] 28. f (x) = x − tan πx, [−1
4, 14]

29.  Vertical Motion The height of a ball t seconds after it 
is thrown upward from a height of 6 feet and with an initial 
velocity of 48 feet per second is

 f (t) = −16t2 + 48t + 6.

 (a) Verify that f (1) = f (2).
 (b)  According to Rolle’s Theorem, what must the velocity be 

at some time in the interval (1, 2)? Find that time.

30.  Reorder Costs The ordering and transportation cost C  
for components used in a manufacturing process is 
approximated by

 C(x) = 10(1x +
x

x + 3)
  where C is measured in thousands of dollars and x is the order 

size in hundreds.

 (a) Verify that C(3) = C(6).
 (b)  According to Rolle’s Theorem, the rate of change of the 

cost must be 0 for some order size in the interval (3, 6). 
Find that order size.

 Mean Value Theorem In Exercises 31 and 
32, copy the graph and sketch the secant line to 
the graph through the points (a, f (a)) and (b, f (b)). 
Then sketch any tangent lines to the graph for each 
value of c guaranteed by the Mean Value Theorem. 
To print an enlarged copy of the graph, go to  
MathGraphs.com.

31. 

x
a b

f

y 32. 

x
a b

f

y

Writing In Exercises 33–36, explain why the Mean Value 
Theorem does not apply to the function f  on the interval [0, 6].

33. y

x

f

1 2 3 4 5 6

1

2

5

6

3

4

 34. y

x
1 2 3 4 5 6

1

2

5

6

3

4

f

35. f (x) = 1
x − 3

36. f (x) = ∣x − 3∣
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37.  Mean Value Theorem Consider the graph of the function 
f (x) = −x2 + 5 (see figure).

 (a)  Find the equation of the secant line joining the points 
(−1, 4) and (2, 1).

 (b)  Use the Mean Value Theorem to determine a point c in the 
interval (−1, 2) such that the  tangent line at c is parallel to  
the secant line.

 (c) Find the equation of the tangent line through c.

 (d)  Use a graphing utility to graph f, the secant line, and the 
tangent line.

 

−4 2 4

−2

2

6

(−1, 4)

(2, 1)

x

y
f (x) = −x2 + 5  

(−2, −6)

(4, 0)
x

y
f (x) = x2 − x − 12

−4−8 8

−12

 Figure for 37 Figure for 38

38.  Mean Value Theorem Consider the graph of the function 
f (x) = x2 − x − 12 (see figure).

 (a)  Find the equation of the secant line joining the points 
(−2, −6) and (4, 0).

 (b)  Use the Mean Value Theorem to determine a point c in the 
interval (−2, 4) such that the tangent line at c is parallel to 
the secant line. 

 (c) Find the equation of the tangent line through c.

 (d)  Use a graphing utility to graph f, the secant line, and the 
tangent line.

 Using the Mean Value Theorem In 
Exercises 39–48, determine whether the Mean 
Value Theorem can be applied to f  on the closed 
interval [a, b]. If the Mean Value Theorem can be 
applied, find all values of c in the open interval 
(a, b) such that

  f ′(c) = f (b) − f (a)
b − a

.

   If the Mean Value Theorem cannot be applied, 
explain why not.

39. f (x) = 6x3, [1, 2] 40. f (x) = x6, [−1, 1]
41. f (x) = x3 + 2x + 4, [−1, 0]
42. f (x) = x3 − 3x2 + 9x + 5, [0, 1]

43. f (x) = x + 2
x − 1

, [−3, 3] 44. f (x) = x
x − 5

, [1, 4]

45. f (x) = ∣2x + 1∣, [−1, 3] 
46. f (x) = √2 − x, [−7, 2]
47. f (x) = sin x, [0, π]
48. f (x) = cos x + tan x, [0, π]

Using the Mean Value Theorem In Exercises 49–52, 
use a graphing utility to (a) graph the function f  on the given 
interval, (b) find and graph the secant line through points 
on the graph of f  at the endpoints of the given interval, and 
(c) find and graph any tangent lines to the graph of f  that are 
parallel to the secant line.

49. f (x) = x
x + 1

, [−1
2

, 2]
50. f (x) = x − 2 sin x, [−π, π]
51. f (x) = √x, [1, 9]
52. f (x) = x4 − 2x3 + x2, [0, 6]

53.  Vertical Motion The height of an object t seconds after it 
is dropped from a height of 300 meters is

 s(t) = −4.9t2 + 300.

 (a)  Find the average velocity of the object during the first  
3 seconds.

 (b)  Use the Mean Value Theorem to verify that at some time 
during the first 3 seconds of fall, the instantaneous velocity 
equals the average velocity. Find that time.

54.  Sales A company introduces a new product for which the 
number of units sold S is

 S(t) = 200(5 −
9

2 + t)
 where t is the time in months.

 (a)  Find the average rate of change of S during the first year.

 (b)  During what month of the first year does S′(t) equal the 
average rate of change?

EXPLORING CONCEPTS
55.  Converse of Rolle’s Theorem Let f  be 

continuous on [a, b] and differentiable on (a, b). If there 
exists c in (a, b) such that f ′(c) = 0, does it follow that 
f (a) = f (b)? Explain.

56.  Rolle’s Theorem Let f  be continuous on [a, b] and 
differentiable on (a, b). Also, suppose that f (a) = f (b)
and that c is a real number in the interval (a, b) such 
that f ′(c) = 0. Find an interval for the function g over 
which Rolle’s Theorem can be applied, and find the 
corresponding critical number of g, where k is a constant.

 (a) g(x) = f (x) + k  (b) g(x) = f (x − k)
 (c) g(x) = f (kx)
57. Rolle’s Theorem The function

 f (x) = {0,
1 − x,

    x = 0
    0 < x ≤ 1

  is differentiable on (0, 1) and satisfies f (0) = f (1).
However, its derivative is never zero on (0, 1). Does this 
contradict Rolle’s Theorem? Explain.

58.  Mean Value Theorem Can you find a function f  
such that f (−2) = −2, f (2) = 6, and f ′(x) < 1 for  
all x? Why or why not?
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60.  Temperature When an object is removed from a furnace 
and placed in an environment with a constant temperature of 
90°F, its core temperature is 1500°F. Five hours later, the core 
temperature is 390°F. Explain why there must exist a time in 
the interval (0, 5) when the temperature is decreasing at a rate 
of 222°F per hour.

61.  Velocity Two bicyclists begin a race at 8:00 a.m. They 
both finish the race 2 hours and 15 minutes later. Prove that 
at some time during the race, the bicyclists are traveling at the 
same velocity.

62.  Acceleration At 9:13 a.m., a sports car is traveling 35 miles 
per hour. Two minutes later, the car is traveling 85 miles per 
hour. Prove that at some time during this two-minute interval, 
the car’s acceleration is exactly 1500 miles per hour squared.

63.  Think About It Sketch the graph of an arbitrary function 
f  that satisfies the given condition but does not satisfy the 
conditions of the Mean Value Theorem on the interval [−5, 5].
(a) f  is continuous. (b) f  is not continuous.

64.  HOW DO YOU SEE IT? The figure shows 
two parts of the graph of a continuous differentiable 
function f  on [−10, 4]. The derivative f ′ is also 
continuous. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 

x
−8 −4 4

8

4

−4

−8

y

(a)  Explain why f  must have at least one zero in [−10, 4].
(b)  Explain why f ′ must also have at least one zero in 

the interval [−10, 4]. What are these zeros called?

(c)  Make a possible sketch of the function, where f ′ 
has one zero on the interval [−10, 4].

64.

Finding a Solution In Exercises 65–68, use the Intermediate 
Value Theorem and Rolle’s Theorem to prove that the equation 
has exactly one real solution.

65. x5 + x3 + x + 1 = 0 66. 2x5 + 7x − 1 = 0

67. 3x + 1 − sin x = 0 68. 2x − 2 − cos x = 0

Using a Derivative In Exercises 69–72, find a function f
that has the derivative f ′(x) and whose graph passes through 
the given point. Explain your reasoning.

69. f ′(x) = 0, (2, 5) 70. f ′(x) = 4, (0, 1)
71. f ′(x) = 2x, (1, 0) 72. f ′(x) = 6x − 1, (2, 7)

True or False? In Exercises 73–76, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73. The Mean Value Theorem can be applied to

 f (x) = 1
x

on the interval [−1, 1].
74.  If the graph of a function has three x-intercepts, then it must 

have at least two points at which its tangent line is horizontal.

75.  If the graph of a polynomial function has three x-intercepts, 
then it must have at least two points at which its tangent line is 
horizontal.

76.  The Mean Value Theorem can be applied to f (x) = tan x on 
the interval [0, π�4].

77.  Proof Prove that if a > 0 and n is any positive integer, then 
the polynomial function p(x) = x2n+1 + ax + b cannot have 
two real roots.

78.  Proof Prove that if f ′(x) = 0 for all x in an interval (a, b),
then f  is constant on (a, b).

79.  Proof Let p(x) = Ax2 + Bx + C. Prove that for any 
interval [a, b], the value c guaranteed by the Mean Value 
Theorem is the  midpoint of the interval.

80. Using Rolle’s Theorem

(a)  Let f (x) = x2 and g(x) = −x3 + x2 + 3x + 2. Then 
f (−1) = g(−1) and f (2) = g(2). Show that there is at 
least one value c in the interval (−1, 2) where the tangent 
line to f  at (c, f (c)) is parallel to the tangent line to g at 
(c, g(c)). Identify c.

(b)  Let f  and g be differentiable functions on [a, b], where 
f (a) = g(a) and f (b) = g(b). Show that there is at least 
one value c in the interval (a, b) where the tangent line to 
f  at (c, f (c)) is parallel to the tangent line to g at (c, g(c)).

81.  Proof Prove that if f  is differentiable on (−∞, ∞) and 
f ′(x) < 1 for all real numbers, then f  has at most one fixed 
point. [A fixed point of a function f  is a real number c such 
that f (c) = c.]

82.  Fixed Point Use the result of Exercise 81 to show that 
f (x) = 1

2 cos x has at most one fixed point.

83. Proof Prove that ∣cos a − cos b∣ ≤ ∣a − b∣ for all a and b.

84. Proof Prove that ∣sin a − sin b∣ ≤ ∣a − b∣ for all a and b.

85.  Using the Mean Value Theorem Let 0 < a < b. Use 
the Mean Value Theorem to show that

 √b − √a <
b − a

2√a
.

A plane begins its takeoff 
at 2:00 p.m. on a  
2500-mile flight. After 
5.5 hours, the plane 
arrives at its destination. 
Explain why there are  
at least two times during 
the flight when the 
speed of the plane is  
400 miles per hour.

59. Speed

narvikk/E+/Getty Images
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3.3 Increasing and Decreasing Functions and the First Derivative Test

 Determine intervals on which a function is increasing or decreasing.
 Apply the First Derivative Test to find relative extrema of a function.

Increasing and Decreasing Functions
In this section, you will learn how derivatives can be used to classify relative extrema 
as either relative minima or relative maxima. First, it is important to define increasing 
and decreasing functions.

Definitions of Increasing and Decreasing Functions

A function f  is increasing on an interval when, for any two numbers x1  
and x2 in the interval, x1 < x2 implies f (x1) < f (x2).
A function f  is decreasing on an interval when, for any two numbers x1  
and x2 in the interval, x1 < x2 implies f (x1) < f (x2).

A function is increasing when, as x  

x

f

In
cr

ea
si

ng

D
ecreasing

Constant

x = a x = b

f ′(x) < 0 f ′(x) > 0f ′(x) = 0

y

The derivative is related to the slope 
of a function.
Figure 3.15

 
moves to the right, its graph moves up, and  
is decreasing when its graph moves down. 
For example, the function in Figure 3.15 is 
decreasing on the interval (−∞, a), is 
constant on the interval (a, b), and is 
increasing on the interval (b, ∞). As shown 
in Theorem 3.5 below, a positive derivative 
implies that the function is increasing, a 
negative derivative implies that the function 
is decreasing, and a zero derivative on an 
entire interval implies that the function is 
constant on that interval.

THEOREM 3.5 Test for Increasing and Decreasing Functions

Let f  be a function that is continuous on the closed interval [a, b] and 
differentiable on the open interval (a, b).

1. If f′(x) > 0 for all x in (a, b), then f  is increasing on [a, b].
2. If f′(x) < 0 for all x in (a, b), then f  is decreasing on [a, b].
3. If f′(x) = 0 for all x in (a, b), then f  is constant on [a, b].

Proof To prove the first case, assume that f′(x) > 0 for all x in the interval (a, b) and 
let x1 < x2 be any two points in the interval. By the Mean Value Theorem, you know 
that there exists a number c such that x1 < c < x2, and

f′(c) =
f (x2) − f (x1)

x2 − x1
.

Because f′(c) > 0 and x2 − x1 > 0, you know that f (x2) − f (x1) > 0, which implies 
that f (x1) < f (x2). So, f  is increasing on the interval. The second case has a similar proof 
(see Exercise 97), and the third case is a consequence of Exercise 78 in Section 3.2. 

REMARK The conclusions  
in the first two cases of 
Theorem 3.5 are valid even 
when f′(x) = 0 at a finite  
number of x-values in (a, b).
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 Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which f (x) = x3 − 3
2x2 is increasing or decreasing.

Solution Note that f  is differentiable on the entire real number line and the 
derivative of f  is

 f (x) = x3 − 3
2x2 Write original function.

 f ′(x) = 3x2 − 3x. Differentiate.

To determine the  critical numbers of f, set f′(x) equal to zero.

 3x2 − 3x = 0 Set f ′(x) equal to 0.

 3(x)(x − 1) = 0 Factor.

 x = 0, 1 Critical numbers

Because there are no points for which f′ does not exist, you can conclude that x = 0 
and x = 1 are the only critical numbers. The table summarizes the testing of the three 
intervals determined by these two critical numbers.

Interval −∞ < x < 0 0 < x < 1 1 < x < ∞
Test Value x = −1 x = 1

2 x = 2

Sign of f′(x) f′(−1) = 6 > 0 f′(1
2) = −3

4 < 0 f′(2) = 6 > 0

Conclusion Increasing Decreasing Increasing

By Theorem 3.5, f  is increasing on the intervals (−∞, 0) and (1, ∞) and decreasing 
on the interval (0, 1), as shown in Figure 3.16. 

Example 1 gives you one instance of how to find intervals on which a function is 
increasing or decreasing. The guidelines below summarize the steps followed in that 
example.

GUIDELINES FOR FINDING INTERVALS ON WHICH A 
FUNCTION IS INCREASING OR DECREASING

Let f  be continuous on the interval (a, b). To find the open intervals on which 
f  is increasing or decreasing, use the following steps.

1.  Locate the critical numbers of f  in (a, b), and use these numbers to 
determine test intervals.

2.  Determine the sign of f′(x) at one test value in each of the intervals.

3.  Use Theorem 3.5 to determine whether f  is increasing or decreasing on 
each interval.

These guidelines are also valid when the interval (a, b) is replaced by an 
interval of the form (−∞, b), (a, ∞), or (−∞, ∞).

A function is strictly monotonic on an interval when it is either increasing on the 
entire interval or decreasing on the entire interval. For instance, the function f (x) = x3 
is strictly monotonic on the entire real number line because it is increasing on the entire 
real number line, as shown in Figure 3.17(a). The function shown in Figure 3.17(b) 
is not strictly monotonic on the entire real number line because it is constant on the 
interval [0, 1].
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(b) Not strictly monotonic

Figure 3.17
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The First Derivative Test
After you have determined the intervals  3

2
f(x) = x3 −    x2

−1 1 2

−1

2

1

x
(0, 0)

Relative
maximum

Relative
minimum

y

1
2

1, −( )

Relative extrema of f
Figure 3.18

 
on which a function is increasing or 
decreasing, it is not difficult to locate the 
relative extrema of the function. For instance, 
in Figure 3.18 (from Example 1), the function

f (x) = x3 −
3
2

x2

has a relative maximum at the point (0, 0) 
because f  is increasing immediately to the 
left of x = 0 and decreasing immediately to 
the right of x = 0. Similarly, f  has a relative 
minimum at the point (1, −1

2) because f  is 
decreasing immediately to the left of x = 1 
and increasing immediately to the right of 
x = 1. The next theorem makes this more explicit.

THEOREM 3.6 The First Derivative Test

Let c be a critical number of a function f  that is continuous 
on an open interval I containing c. If f  is differentiable on the 
interval, except possibly at c, then f (c) can be classified as follows.

1.  If f′(x) changes from negative to positive at c, then f  has a relative 
minimum at (c, f (c)).

2.  If f′(x) changes from positive to negative at c, then f  has a relative 
maximum at (c, f (c)).

3.  If f′(x) is positive on both sides of c or negative on both sides of c, then 
f (c) is neither a relative minimum nor a relative maximum.

a c b

(−) (+)

f ′(x) < 0 f ′(x) > 0

   

a c b

f ′(x) < 0f ′(x) > 0

(−)(+)

 Relative minimum Relative maximum

a c b

(+) (+)

f ′(x) > 0 f ′(x) > 0

  

a c b

(−)
(−)

f ′(x) < 0 f ′(x) < 0

 Neither relative minimum nor relative maximum

Proof Assume that f′(x) changes from negative to positive at c. Then there exist a 
and b in I such that

f′(x) < 0 for all x in (a, c) and f′(x) > 0 for all x in (c, b).

By Theorem 3.5, f  is decreasing on [a, c] and increasing on [c, b]. So, f (c) is a 
minimum of f  on the open interval (a, b) and, consequently, a relative minimum of f. 
This proves the first case of the theorem. The second case can be proved in a similar 
way (see Exercise 98). 
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 Applying the First Derivative Test

Find the relative extrema of f (x) = 1
2x − sin x in the interval (0, 2π).

Solution Note that f  is continuous on the interval (0, 2π). The derivative of f  is 
f′(x) = 1

2 − cos x. To determine the critical numbers of f  in this interval, set f′(x) 
equal to 0.

 
1
2
− cos x = 0 Set f ′(x) equal to 0.

 cos x =
1
2

 x =
π
3

, 
5π
3

 Critical numbers

Because there are no points for which f′ does not exist, you can conclude that x = π�3 
and x = 5π�3 are the only critical numbers. The table summarizes the testing of the 
three intervals determined by these two critical numbers. By applying the First Derivative 
Test, you can conclude that f  has a relative minimum at the point where x = π�3 and a 
relative maximum at the point where x = 5π�3, as shown in Figure 3.19.

Interval 0 < x <
π
3

π
3

< x <
5π
3

5π
3

< x < 2π

Test Value x =
π
4

x = π x =
7π
4

Sign of f′(x) f′(π4) < 0 f′(π) > 0 f′(7π4 ) < 0

Conclusion Decreasing Increasing Decreasing

 Applying the First Derivative Test

Find the relative extrema of f (x) = (x2 − 4)2�3.

Solution Begin by noting that f  is continuous on the entire real number line. The 
derivative of f

 f′(x) = 2
3
(x2 − 4)−1�3(2x) General Power Rule

 =
4x

3(x2 − 4)1�3 Simplify.

is 0 when x = 0 and does not exist when x = ±2. So, the critical numbers are x = −2, 
x = 0, and x = 2. The table summarizes the testing of the four intervals determined by 
these three critical numbers. By applying the First Derivative Test, you can conclude 
that f has a relative minimum at the point (−2, 0), a relative maximum at the point 
(0, 3√16), and another relative minimum at the point (2, 0), as shown in Figure 3.20.

Interval −∞ < x < −2 −2 < x < 0 0 < x < 2 2 < x < ∞
Test Value x = −3 x = −1 x = 1 x = 3

Sign of f′(x) f′(−3) < 0 f′(−1) > 0 f′(1) < 0 f′(3) > 0

Conclusion Decreasing Increasing Decreasing Increasing  

x
π ππ5

3
π4
3

2

4

3

2

1

−1

Relative
maximum

Relative
minimum

f(x) =    x − sin x

y

1
2

A relative minimum occurs where f  
changes from decreasing to increasing, 
and a relative maximum occurs where f  
changes from increasing to decreasing.
Figure 3.19
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Note that in Examples 1 and 2, the given functions are differentiable on the entire 
real number line. For such functions, the only critical numbers are those for which 
f′(x) = 0. Example 3 concerns a function that has two types of critical numbers—those 
for which f′(x) = 0 and those for which f  is not differentiable.

When using the First Derivative Test, be sure to consider the domain of the 
function. For instance, in the next example, the function

f (x) = x4 + 1
x2

is not defined when x = 0. This x-value must be used with the critical numbers to 
determine the test intervals.

 Applying the First Derivative Test

See LarsonCalculus.com for an interactive version of this type of example.

Find the relative extrema of f (x) = x4 + 1
x2 .

Solution Note that f  is not defined when x = 0.

 f (x) = x2 + x−2 Rewrite original function.

 f′(x) = 2x − 2x−3 Differentiate.

 = 2x −
2
x3 Rewrite with positive exponent.

 =
2(x4 − 1)

x3  Simplify.

 =
2(x2 + 1)(x − 1)(x + 1)

x3  Factor.

So, f′(x) is zero at x = ±1. Moreover, because x = 0 is not in the domain of f, you 
should use this x-value along with the critical numbers to determine the test intervals.

x = ±1 Critical numbers, f ′(±1) = 0

x = 0 0 is not in the domain of f.

The table summarizes the testing of the four intervals determined by these three  
x-values. By applying the First Derivative Test, you can conclude that f  has one relative 
minimum at the point (−1, 2) and another at the point (1, 2), as shown in Figure 3.21.

Interval −∞ < x < −1 −1 < x < 0 0 < x < 1 1 < x < ∞
Test Value x = −2 x = −1

2 x = 1
2 x = 2

Sign of f′(x) f′(−2) < 0 f′(−1
2) > 0 f′(1

2) < 0 f′(2) > 0

Conclusion Decreasing Increasing Decreasing Increasing

  

TECHNOLOGY The most difficult step in applying the First Derivative Test is  
finding the values for which the derivative is equal to 0. For instance, the values of 
x for which the derivative of

f (x) = x4 + 1
x2 + 1

is equal to zero are x = 0 and x = ±√√2 − 1. If you have access to technology 
that can perform symbolic differentiation and solve equations, use it to apply the 
First Derivative Test to this function.

5

4

3

2

1

321−1−2

y

x

Relative
minimum

Relative
minimum

(−1, 2) (1, 2)

f(x) = 
x2

x4 + 1

x-values that are not in the domain 
of f, as well as critical numbers, 
determine test intervals for f ′.
Figure 3.21
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 The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle θ is

y = −
g sec2 θ

2v0
2 x2 + (tan θ)x + h, 0 ≤ θ ≤ π

2

where y is the height, x is the horizontal distance, g is the acceleration due to gravity, 
v0 is the initial velocity, and h is the initial height. (This equation is derived in Section 
12.3.) Let g = 32 feet per second per second, v0 = 24 feet per second, and h = 9 feet. 
What value of θ will produce a maximum horizontal distance?

Solution To find the distance the projectile travels, let y = 0, g = 32, v0 = 24, and 
h = 9. Then substitute these values in the given equation as shown.

 −
g sec2 θ

2v0
2 x2 + (tan θ)x + h = y

 −
32 sec2 θ

2(242) x2 + (tan θ)x + 9 = 0

 −
sec2 θ

36
x2 + (tan θ)x + 9 = 0

Next, solve for x using the Quadratic Formula with a = (−sec2 θ)�36, b = tan θ, and 
c = 9.

 x =
−b ± √b2 − 4ac

2a

 x =
−tan θ ± √(tan θ)2 − 4[(−sec2 θ)�36](9)

2[(−sec2 θ)�36]

 x =
−tan θ ± √tan2 θ + sec2 θ

(−sec2 θ)�18

 x = 18(cos θ)(sin θ + √sin2 θ + 1), x ≥ 0

At this point, you need to find the value of θ that produces a maximum value of x. 
Applying the First Derivative Test by hand would be very tedious. Using technology 
to solve the equation dx�dθ = 0, however, eliminates most of the messy computations. 
The result is that the maximum value of x occurs when

θ ≈ 0.61548 radian, or 35.3°.

This conclusion is reinforced by sketching the path of the projectile for different values 
of θ, as shown in Figure 3.22. Of the three paths shown, note that the distance traveled 
is greatest for θ = 35°.

5 10 15 20 25

15

10

5

x

h = 9
 = 25°θ

 = 35°θ
 = 45°θ

y

 The path of a projectile with initial angle θ
 Figure 3.22 

Neglecting air resistance, the path of a projectile that is propelled at an angle 

where 
v
12.3.) Let 
What value of 

Solution
h

When a projectile is propelled 
from ground level and air 
resistance is neglected, the object 
will travel farthest with an initial 
angle of 45°. When, however, 
the projectile is propelled from 
a point above ground level, the 
angle that yields a maximum 
horizontal distance is not 45°  
(see Example 5).

Dotshock/Shutterstock.com
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3.3 Increasing and Decreasing Functions and the First Derivative Test 187

3.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Increasing and Decreasing Functions Describe 

the Test for Increasing and Decreasing Functions in your 
own words.

2.  First Derivative Test Describe the First Derivative 
Test in your own words.

Using a Graph In Exercises 3 and 4, use the graph of f  to 
find (a) the largest open interval on which f  is increasing and 
(b) the largest open interval on which f  is decreasing.

3. y

x
2 4 6 8 10

2

4

6

8

10

f

  4. y

x

6

2

4

−2

−4

2 4−2

f

 Using a Graph In Exercises 5–10, use the 
graph to estimate the open intervals on which the 
function is increasing or decreasing. Then find the 
open intervals analytically.

5. y = −(x + 1)2  6. f (x) = x2 − 6x + 8

 

x
−3 −1 1

−1

−2

−3

−4

y   

x

−1 1 2 4 5

4

3

2

1

y

7. y =
x3

4
− 3x  8. f (x) = x4 − 2x2

 

x
−2 2

4

4
−2

−4

y   

x
−2

3

2

1

2

y

9. f (x) = 1
(x + 1)2 10. y =

x2

2x − 1

 

−2 −1−3−4 1 2

1

2

x

y
  

x

y

1 2 3 4−1
−2

1

2

3

4

 Intervals on Which a Function Is Increasing 
or Decreasing In Exercises 11–18, find the 
open intervals on which the function is increasing 
or decreasing.

11. g(x) = x2 − 2x − 8 12. h(x) = 12x − x3

13. y = x√16 − x2 14. y = x +
9
x

15. f (x) = sin x − 1, 0 < x < 2π

16. f (x) = cos 
3x
2

, 0 < x < 2π

17. y = x − 2 cos x, 0 < x < 2π

18. f (x) = sin2 x + sin x, 0 < x < 2π

 Applying the First Derivative Test In 
Exercises 19–40, (a) find the critical numbers of 
f, if any, (b) find the open intervals on which the 
function is increasing or decreasing, (c) apply the 
First Derivative Test to identify all relative extrema, 
and (d) use a graphing utility to confirm your 
results.

19. f (x) = x2 − 8x 20. f (x) = x2 + 6x + 10

21. f (x) = −2x2 + 4x + 3 22. f (x) = −3x2 − 4x − 2

23. f (x) = −7x3 + 21x + 3 24. f (x) = x3 − 6x2 + 15

25. f (x) = (x − 1)2(x + 3) 26. f (x) = (8 − x)(x + 1)2

27. f (x) = x5 − 5x
5

 28. f (x) = −x6 + 6x
10

29. f (x) = x1�3 + 1 30. f (x) = x2�3 − 4

31. f (x) = (x + 2)2�3 32. f (x) = (x − 3)1�3

33. f (x) = 5 − ∣x − 5∣ 34. f (x) = ∣x + 3∣ − 1

35. f (x) = 2x +
1
x
 36. f (x) = x

x − 5

37. f (x) = x2

x2 − 9
 38. f (x) = x2 − 2x + 1

x + 1

39. f (x) = {4 − x2,
−2x,

   x ≤ 0
   x > 0

 40. f (x) = {2x + 1,
x2 − 2,

   x ≤ −1
   x > −1

 Applying the First Derivative Test In 
Exercises 41–48, consider the function on the 
interval (0, 2π). (a) Find the open intervals on 
which the function is increasing or decreasing. 
(b) Apply the First Derivative Test to identify 
all relative extrema. (c) Use a graphing  utility to 
confirm your results.

41. f (x) = x − 2 sin x 42. f (x) = sin x cos x + 5

43. f (x) = sin x + cos x 44. f (x) = x
2
+ cos x

45. f (x) = cos2(2x) 46. f (x) = sin x − √3 cos x

47. f (x) = sin2 x + sin x 48. f (x) = sin x
1 + cos2 x
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Finding and Analyzing Derivatives Using 
Technology In Exercises 49–54, (a) use a computer algebra 
system to  differentiate the function, (b) sketch the graphs of 
f  and f ′ on the same set of coordinate axes over the given 
interval, (c) find the critical numbers of f  in the open interval, 
and (d) find the interval(s) on which f ′ is positive and the 
interval(s) on which f ′is negative. Compare the behavior of f  
and the sign of f ′.

49. f (x) = 2x√9 − x2, [−3, 3]
50. f (x) = 10(5 − √x2 − 3x + 16), [0, 5]
51. f (t) = t2 sin t, [0, 2π]

52. f (x) = x
2
+ cos 

x
2

, [0, 4π]

53. f (x) = −3 sin 
x
3

, [0, 6π]

54. f (x) = 2 sin 3x + 4 cos 3x, [0, π]

Comparing Functions In Exercises 55 and 56, use 
symmetry, extrema, and zeros to sketch the graph of f. How 
do the functions f  and g differ?

55. f (x) = x5 − 4x3 + 3x
x2 − 1

 g(x) = x(x2 − 3)
56. f (t) = cos2 t − sin2 t

 g(t) = 1 − 2 sin2 t

Think About It In Exercises 57–62, the graph of f  is shown 
in the figure. Sketch a graph of the derivative of f. To print an 
enlarged copy of the graph, go to MathGraphs.com.
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 62. 
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y
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EXPLORING CONCEPTS
Transformations of Functions In Exercises 63–66, 
assume that f  is differentiable for all x. The signs of f ′
are as follows.

f ′(x) > 0 on (−∞, −4)

f ′(x) < 0 on (−4, 6)

f ′(x) > 0 on (6, ∞)

Supply the appropriate inequality sign for the indicated 
value of c.

 Function Sign of g′(c)
63. g(x) = f (x) + 5  g′(0)  ■0

64. g(x) = 3f (x) − 3  g′(−5) ■0

65. g(x) = −f (x)  g′(−6) ■0

66. g(x) = f (x − 10)  g′(0)  ■0

67.  Sketching a Graph Sketch the graph of the arbitrary 
function f  such that

 f ′(x){> 0,
undefined,
< 0,

     x < 4
     x = 4
     x > 4

  .

68.  Increasing Functions Is the sum of two increasing 
functions always increasing? Explain.

69.  Increasing Functions Is the product of two 
increasing functions always increasing? Explain.

 70.  HOW DO YOU SEE IT? Use the graph of 
f ′ to (a) identify the critical numbers of f,  
(b) identify the open intervals on which f  is 
increasing or decreasing, and (c) determine 
whether f  has a relative maximum, a relative 
minimum, or neither at each critical number.

(i) y

x
2 4−2

−2

2

−4

f ′
 (ii)

(iii) y

x
2 4−2

−2

−4

−4

2

4

f ′

70.

(iv)

x

y

f ′

−4−6 2 4 6−2
−4
−6

4

6

y

x
2 4−2−4

−2

6
f ′
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71.  Analyzing a Critical Number A differentiable function 
f  has one critical number at x = 5. Identify the relative 
extrema of f  at the critical number when f ′(4) = −2.5 and 
f ′(6) = 3.

72.  Analyzing a Critical Number A differentiable function 
f  has one critical number at x = 2. Identify the relative 
extrema of f  at the critical number when f ′(1) = 2 and 
f ′(3) = 6.

Think About It In Exercises 73 and 74, the function f  is 
differentiable on the indicated interval. The table shows f ′(x) for 
selected values of x. (a) Sketch the graph of f, (b) approximate 
the critical  numbers, and (c) identify the relative extrema.

73. f  is differentiable on [−1, 1].

x −1 −0.75 −0.50 −0.25 0

f ′(x) −10 −3.2 −0.5 0.8 5.6

x 0.25 0.50 0.75 1

f ′(x) 3.6 −0.2 −6.7 −20.1

74. f  is differentiable on [0, π].
 

x 2π�3 3π�4 5π�6 π

f ′(x) 3.00 1.37 −1.14 −2.84

x 0 π�6 π�4 π�3 π�2

f ′(x) 3.14 −0.23 −2.45 −3.11 0.69

75.  Rolling a Ball Bearing A ball bearing is placed on an 
inclined plane and begins to roll. The angle of elevation of the 
plane is θ. The distance (in meters) the ball bearing rolls in t 
seconds is s(t) = 4.9(sin θ)t2.

 (a) Determine the speed of the ball bearing after t seconds.

 (b)  Complete the table and use it to determine the value of θ 
that produces the maximum speed at a particular time.

  
 θ 0 π�4 π�3 π�2 2π�3 3π�4 π

s′(t)

76.  Modeling Data  The end-of-year assets of the Medicare 
Hospital Insurance Trust Fund (in billions of dollars) for the 
years 2006 through 2014 are shown.

  2006: 305.4 2007: 326.0 2008: 321.3 
2009: 304.2 2010: 271.9 2011: 244.2  
2012: 220.4 2013: 205.4 2014: 197.3

 (Source: U.S. Centers for Medicare and Medicaid Services)

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form M = at3 + bt2 + ct + d for the data. 
Let t = 6 represent 2006.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Find the maximum value of the model and compare the 
result with the actual data.

77.  Numerical, Graphical, and Analytic Analysis The 
concentration C of a chemical in the bloodstream t hours after 
injection into muscle tissue is

 C(t) = 3t
27 + t3, t ≥ 0.

 (a)  Complete the table and use it to approximate the time 
when the concentration is greatest.

  
t 0 0.5 1 1.5 2 2.5 3

C(t)

 (b)  Use a graphing utility to graph the concentration function 
and use the graph to approximate the time when the 
 concentration is greatest.

 (c)  Use calculus to determine analytically the time when the 
concentration is greatest.

78.  Numerical, Graphical, and Analytic Analysis  
Consider the functions f (x) = x and g(x) = sin x on the 
interval (0, π).

 (a)  Complete the table and make a conjecture about which is 
the greater function on the interval (0, π).

  
x 0.5 1 1.5 2 2.5 3

f (x)

g(x)

 (b)  Use a graphing utility to graph the functions and use the 
graphs to make a conjecture about which is the greater 
function on the interval (0, π).

 (c)  Prove that f (x) > g(x) on the interval (0, π). [Hint: Show 
that h′(x) > 0, where h = f − g.]

79.  Trachea Contraction Coughing forces the trachea 
(windpipe) to contract, which affects the velocity v of the air 
passing through the trachea. The velocity of the air during 
coughing is 

 v = k(R − r)r2, 0 ≤ r < R

  where k is a constant, R is the normal radius of the trachea, and 
r is the radius during coughing. What radius will produce the 
maximum air velocity?

80.  Electrical Resistance The resistance R of a certain type 
of resistor is 

 R = √0.001T 4 − 4T + 100

  where R is measured in ohms and the temperature T is 
 measured in degrees Celsius.

(a)  Use a computer algebra system to find dR�dT and the 
critical number of the function. Determine the minimum 
resistance for this type of resistor.

 (b)  Use a graphing utility to graph the function R and use the 
graph to approximate the minimum resistance for this type 
of resistor.
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Motion Along a Line In Exercises 81–84, the function s(t) 
describes the motion of a particle along a line. (a) Find the 
velocity function of the particle at any time t ≥ 0. (b) Identify 
the time interval(s) on which the particle is moving in a positive 
direction. (c) Identify the time interval(s) on which the particle is 
moving in a negative direction. (d) Identify the time(s) at which 
the particle changes direction.

81. s(t) = 6t − t2

82. s(t) = t2 − 10t + 29

83. s(t) = t3 − 5t2 + 4t

84. s(t) = t3 − 20t2 + 128t − 280

Motion Along a Line In Exercises 85 and 86, the graph 
shows the position of a particle moving along a line. Describe 
how the position of the particle changes with respect to time.

85. s

t
1 2 3 4 5 6 8 10

4

−4
−8
−12

8
12
16
20
24
28

86. s

t
3 6 9 12 15 18

20

40

60

80

100

120

Creating Polynomial Functions In Exercises 87–90, find 
a polynomial function

f (x) = anx
n + an−1x

n−1 + .  .  . + a2x
2 + a1x + a0

that has only the specified extrema. (a) Determine the minimum 
degree of the function and give the criteria you used in 
 determining the degree. (b) Using the fact that the coordinates 
of the extrema are solution points of the function, and that 
the x-coordinates are critical numbers, determine a system of 
linear equations whose solution yields the coefficients of the 
required function. (c) Use a graphing utility to solve the system 
of  equations and determine the function. (d) Use a graphing 
 utility to confirm your result graphically.

87. Relative minimum: (0, 0); Relative maximum: (2, 2)
88. Relative minimum: (0, 0); Relative maximum: (4, 1000)
89. Relative minima: (0, 0), (4, 0); Relative maximum: (2, 4)
90. Relative minimum: (1, 2); Relative maxima: (−1, 4), (3, 4)

True or False? In Exercises 91–96, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

91. There is no function with an infinite number of critical points.

92.  The function f (x) = x has no extrema on any open interval.

93. Every nth-degree polynomial has (n − 1) critical numbers.

94. An nth-degree polynomial has at most (n − 1) critical numbers.

95.  There is a relative extremum at each critical number.

96.  The relative maxima of the function f  are f (1) = 4 and 
f (3) = 10. Therefore, f  has at least one minimum for some x 
in the interval (1, 3).

 97. Proof Prove the second case of Theorem 3.5.

 98. Proof Prove the second case of Theorem 3.6.

 99.  Proof Use the definitions of increasing and decreasing 
functions to prove that

  f (x) = x3

  is increasing on (−∞, ∞).
100.  Proof Use the definitions of increasing and decreasing 

functions to prove that

  f (x) = 1
x

  is decreasing on (0, ∞).

PUTNAM EXAM CHALLENGE
101. Find the minimum value of

  ∣sin x + cos x + tan x + cot x + sec x + csc x∣
  for real numbers x.
This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

(a)  Graph each of the fourth-degree polynomials below. Then find 
the critical numbers, the open intervals on which the function 
is increasing or decreasing, and the relative extrema.

 (i) f (x) = x4 + 1

 (ii) f (x) = x4 + 2x2 + 1

 (iii) f (x) = x4 − 2x2 + 1

(b)  Consider the fourth-degree polynomial

 f (x) = x4 + ax2 + b.

 (i)  Show that there is one critical number when a = 0. Then 
find the open intervals on which the function is increasing 
or decreasing.

 (ii)  Show that there is one critical number when a > 0. Then 
find the open intervals on which the function is increasing 
or decreasing.

 (iii)  Show that there are three critical numbers when a < 0. 
Then find the open intervals on which the function is 
increasing or decreasing.

 (iv)  Show that there are no real zeros when

  a2 < 4b.

 (v)  Determine the possible number of zeros when

  a2 ≥ 4b.

  Explain your reasoning.

Even Fourth-Degree Polynomials
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3.4 Concavity and the Second Derivative Test

 Determine intervals on which a function is concave upward or concave downward.
 Find any points of inflection of the graph of a function.
 Apply the Second Derivative Test to find relative extrema of a function.

Concavity
You have already seen that locating the intervals on which a function f  increases or 
decreases helps to describe its graph. In this section, you will see how locating the 
intervals on which f′ increases or decreases can be used to determine where the graph 
of f  is curving upward or curving downward.

Definition of Concavity

Let f  be differentiable on an open interval I. The graph of f  
is concave upward on I when f′ is increasing on the interval 
and concave downward on I when f′ is decreasing on the interval.

The following graphical interpretation of concavity is useful. (See Appendix A for 
a proof of these results.)

1.  Let f  be differentiable on an open interval I. If the graph of f  is concave upward on 
I, then the graph of f  lies above all of its tangent lines on I.

 [See Figure 3.23(a).]

2.  Let f  be differentiable on an open interval I. If the graph of f  is concave downward 
on I, then the graph of f  lies below all of its tangent lines on I.

 [See Figure 3.23(b).]

x

Concave upward,
f ′ is increasing.

y     

x

Concave downward,
f ′ is decreasing.

y

 (a) The graph of f  lies above its tangent lines. (b) The graph of f  lies below its tangent lines.

 Figure 3.23

To find the open intervals on which the graph of a function f  is concave upward 
or concave downward, you need to find the intervals on which f′ is increasing or 
decreasing. For instance, the graph of

f (x) = 1
3

x3 − x

is concave downward on the open interval (−∞, 0) because

f′(x) = x2 − 1

is decreasing there. (See Figure 3.24.) Similarly, the graph of f  is concave upward on 
the interval (0, ∞) because f′ is increasing on (0, ∞).

−2

−2

1

1

1

1

−1

x

x

y

m = 0

m = 0

m = −1

Concave
downward

Concave
upward

−1

−1

(1, 0)

(0, −1)

(−1, 0)

f ′(x) = x2 − 1

f ′ is decreasing. f ′ is increasing.

f(x) =    x3 − x1
3

y

The concavity of f  is related to the 
slope of the derivative.
Figure 3.24
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The next theorem shows how to use the second derivative of a function f  to 
determine intervals on which the graph of f  is concave upward or concave downward. 
A proof of this theorem follows directly from Theorem 3.5 and the definition of  
concavity.

THEOREM 3.7 Test for Concavity

Let f  be a function whose second derivative exists on an open interval I.

1. If f ″(x) > 0 for all x in I, then the graph of f  is concave upward on I.

2.  If f ″(x) < 0 for all x in I, then the graph of f  is concave  
downward on I.

A proof of this theorem is given in Appendix A.

To apply Theorem 3.7, locate the x-values at which f ″(x) = 0 or f ″(x) does not 
exist. Use these x-values to determine test intervals. Finally, test the sign of f ″(x) in 
each of the test intervals.

 Determining Concavity

Determine the open intervals on which the graph of

f (x) = 6
x2 + 3

is concave upward or concave downward.

Solution Begin by observing that f  is continuous on the entire real number line. 
Next, find the second derivative of f.

 f (x) = 6(x2 + 3)−1 Rewrite original function.

 f′(x) = (−6)(x2 + 3)−2(2x) Differentiate.

 =
−12x

(x2 + 3)2 First derivative

 f ″(x) = (x2 + 3)2(−12) − (−12x)(2)(x2 + 3)(2x)
(x2 + 3)4  Differentiate.

 =
36(x2 − 1)
(x2 + 3)3  Second derivative

Because f ″(x) = 0 when x = ±1 and f ″ is defined on the entire real number line, you 
should test f ″ in the intervals (−∞, −1), (−1, 1), and (1, ∞). The results are shown 
in the table and in Figure 3.25.

Interval −∞ < x < −1 −1 < x < 1 1 < x < ∞
Test Value x = −2 x = 0 x = 2

Sign of f ″(x) f ″(−2) > 0 f ″(0) < 0 f ″(2) > 0

Conclusion Concave upward Concave downward Concave upward

  

The function given in Example 1 is continuous on the entire real number line. 
When there are x-values at which a function is not continuous, these values should be 
used, along with the points at which f ″(x) = 0 or f ″(x) does not exist, to form the test 
intervals.

x
−2 −1

−1

1 2

1

3

Concave
upward

Concave
upward

Concave
downward

f ″(x) > 0 f ″(x) > 0

f ″(x) < 0

y
f(x) =

x2 + 3
6

From the sign of f ″(x), you can 
determine the concavity of the graph 
of f.
Figure 3.25

REMARK A third case of 
Theorem 3.7 could be that if 
f ″(x) = 0 for all x in I, then f   
is linear. Note, however, that 
concavity is not defined for a 
line. In other words, a straight 
line is neither concave upward 
nor concave downward.  
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 Determining Concavity

Determine the open intervals on which the graph of

f (x) = x2 + 1
x2 − 4

is concave upward or concave downward.

Solution Differentiating twice produces the following.

 f (x) = x2 + 1
x2 − 4

 Write original function.

 f′(x) = (x2 − 4)(2x) − (x2 + 1)(2x)
(x2 − 4)2  Differentiate.

 =
−10x

(x2 − 4)2 First derivative

 f ″(x) = (x2 − 4)2(−10) − (−10x)(2)(x2 − 4)(2x)
(x2 − 4)4  Differentiate.

 =
10(3x2 + 4)
(x2 − 4)3  Second derivative

There are no points at which f ″(x) = 0, but at x = ±2, the function f  is not continuous. 
So, test for concavity in the intervals (−∞, −2), (−2, 2), and (2, ∞), as shown in the 
table. The graph of f  is shown in Figure 3.26.

Interval −∞ < x < −2 −2 < x < 2 2 < x < ∞
Test Value x = −3 x = 0 x = 3

Sign of f ″(x) f ″(−3) > 0 f ″(0) < 0 f ″(3) > 0

Conclusion Concave upward Concave downward Concave upward

  

Points of Inflection
The graph in Figure 3.25 has two points at which the concavity changes. If the tangent 
line to the graph exists at such a point, then that point is a point of inflection. Three 
types of points of inflection are shown in Figure 3.27.

Definition of Point of Inflection

Let f  be a function that is continuous on an open interval, and let c be a point 
in the interval. If the graph of f  has a tangent line at the point (c, f (c)), then 
this point is a point of inflection of the graph of f  when the concavity of f  
changes from upward to downward (or downward to upward) at the point.

The definition of point of inflection requires that the tangent line exists at the point 
of inflection. Some calculus texts do not require this. For instance, after applying the 
definition above to the function

f (x) = {x3,
x2 + 2x,

     x < 0
     x ≥ 0

you would conclude that f  does not have a point of inflection at the origin, even though 
the concavity of the graph changes from concave downward to concave upward.

x
−6 −4 4 6−2 2

6

4

2

−2

−4

−6

Concave
upward

Concave
upward

Concave
downward

y

f(x) = 
x2 + 1
x2 − 4

Figure 3.26

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

The concavity of f  changes at a point 
of inflection. Note that the graph  
crosses its tangent line at a point  
of inflection.
Figure 3.27
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To locate possible points of inflection, you can determine the values of x for which 
f ″(x) = 0 or f ″(x) does not exist. This is similar to the procedure for locating relative 
extrema of f.

THEOREM 3.8 Points of Inflection

If (c, f (c)) is a point of inflection of the graph of f, then either f ″(c) = 0 or 
f ″(c) does not exist.

 Finding Points of Inflection

Determine the points of inflection and discuss the concavity of the graph of 

f (x) = x4 − 4x3.

Solution Differentiating twice produces the following.

 f (x) = x4 − 4x3 Write original function.

 f′(x) = 4x3 − 12x2 Find first derivative.

 f ″(x) = 12x2 − 24x = 12x(x − 2) Find second derivative.

Setting f ″(x) = 0, you can determine that the possible points of inflection occur at 
x = 0 and x = 2. By testing the intervals  determined by these x-values, you can 
conclude that they both yield points of inflection. A summary of this testing is shown 
in the table, and the graph of f  is shown in Figure 3.28.

Interval −∞ < x < 0 0 < x < 2 2 < x < ∞
Test Value x = −1 x = 1 x = 3

Sign of f ″(x) f ″(−1) > 0 f ″(1) < 0 f ″(3) > 0

Conclusion Concave upward Concave downward Concave upward

  

The converse of Theorem 3.8 is not generally true. That is, it is possible for the 
second derivative to be 0 at a point that is not a point of inflection. For instance, the 
graph of f (x) = x4 is shown in Figure 3.29. The second derivative is 0 when x = 0, but 
the point (0, 0) is not a point of inflection because the graph of f  is concave upward on 
the intervals −∞ < x < 0 and 0 < x < ∞.

x
−1 1

2

1

f(x) = x4

y

 f ″(x) = 0, but (0, 0) is not a point of inflection.
 Figure 3.29

x
−1 2 3

18

9

−9

−18

−27

Points of
in�ection

Concave
upward

Concave
upward

Concave
downward

f(x) = x4 − 4x3
y

Points of inflection can occur where 
f ″(x) = 0 or f ″ does not exist.
Figure 3.28

Exploration
Consider a general cubic 
function of the form

f (x) = ax3 + bx2 + cx + d.

You know that the value 
of d has a bearing on the 
location of the graph but has 
no bearing on the value of 
the first derivative at given 
values of x. Graphically, 
this is true because changes 
in the value of d shift the 
graph up or down but do not 
change its basic shape. Use 
a graphing utility to graph 
several cubics with different 
values of c. Then give a 
graphical explanation of why 
changes in c do not affect 
the values of the second 
derivative.
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The Second Derivative Test
In addition to testing for concavity, the second derivative can be used to perform a 
simple test for relative maxima and minima. The test is based on the fact that if the 
graph of a function f  is concave upward on an open interval containing c, and f′(c) = 0, 
then f (c) must be a relative minimum of f. Similarly, if the graph of a function f  is 
concave downward on an open interval containing c, and f′(c) = 0, then f (c) must be 
a relative maximum of f. (See Figure 3.30.)

THEOREM 3.9 Second Derivative Test

Let f  be a function such that f′(c) = 0 and the second derivative of f  exists on 
an open interval containing c.

1. If f ″(c) > 0, then f  has a relative minimum at (c, f (c)).
2. If f ″(c) < 0, then f  has a relative maximum at (c, f (c)).

If f ″(c) = 0, then the test fails. That is, f  may have a relative 
maximum, a relative minimum, or neither. In such cases, you can 
use the First Derivative Test.

Proof If f′(c) = 0 and f ″(c) > 0, then there exists an open interval I containing c 
for which

f′(x) − f′(c)
x − c

=
f′(x)

x − c
> 0

for all x ≠ c in I. If x < c, then x − c < 0 and f′(x) < 0. Also, if x > c, then 
x − c > 0 and f′(x) > 0. So, f′(x) changes from negative to positive at c, and the First 
Derivative Test implies that f (c) is a relative minimum. A proof of the second case is 
left to you.  

 Using the Second Derivative Test

See LarsonCalculus.com for an interactive version of this type of example.

Find the relative extrema of

f (x) = −3x5 + 5x3.

Solution Begin by finding the first derivative of f.

f′(x) = −15x4 + 15x2 = 15x2(1 − x2)

From this derivative, you can see that x = −1, 0, and 1 are the only critical numbers 
of f. By finding the second derivative 

f ″(x) = −60x3 + 30x = 30x(1 − 2x2)

you can apply the Second Derivative Test as shown below.

Point (−1, −2) (0, 0) (1, 2)

Sign of f ″(x) f ″(−1) > 0 f ″(0) = 0 f ″(1) < 0

Conclusion Relative minimum Test fails Relative maximum

Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test 
and observe that f  increases to the left and right of x = 0. So, (0, 0) is neither a relative 
minimum nor a relative maximum (even though the graph has a horizontal tangent line 
at this point). The graph of f  is shown in Figure 3.31. 

x
c

Concave
upward f

f ″(c) > 0

y

If f ′(c) = 0 and f ″(c) > 0, then f (c) is 
a relative minimum.

x
c

f

Concave
downward

f ″(c) < 0
y

If f ′(c) = 0 and f ″(c) < 0, then f (c) is 
a relative maximum.
Figure 3.30

x

y

(1, 2)

(0, 0)

(−1, −2)

Relative
maximum

Relative
minimum

−2 −1 1 2

−2

−1

1

2

f(x) = −3x5 + 5x3

(0, 0) is neither a relative minimum nor 
a relative maximum.
Figure 3.31
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3.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Test for Concavity Describe the Test for Concavity 

in your own words.

2.  Second Derivative Test Describe the Second 
Derivative Test in your own words.

Using a Graph In Exercises 3 and 4, the graph of f  is 
shown. State the signs of f ′ and f ″ on the interval (0, 2).

 3. 

x

y

1 2

f

  4. 

x

y

f

1 2

 Determining Concavity In Exercises 5–16, 
determine the open intervals on which the graph 
of the function is concave upward or concave 
downward.

 5. f (x) = x2 − 4x + 8  6. g(x) = 3x2 − x3

 7. f (x) = x4 − 3x3  8. h(x) = x5 − 5x + 2

 9. f (x) = 24
x2 + 12

 10. f (x) = 2x2

3x2 + 1

11. f (x) = x − 2
6x + 1

 12. f (x) = x + 8
x − 7

13. f (x) = x2 + 1
x2 − 1

 14. h(x) = x2 − 1
2x − 1

15. y = 2x − tan x, (−π
2

, 
π
2) 16. y = x +

2
sin x

, (−π, π)

 Finding Points of Inflection In Exercises 
17–32, find the points of inflection and discuss the 
concavity of the graph of the function.

17. f (x) = x3 − 9x2 + 24x − 18 18. f (x) = −x3 + 6x2 − 5

19. f (x) = 2 − 7x4 20. f (x) = 4 − x − 3x4

21. f (x) = x(x − 4)3 22. f (x) = (x − 2)3(x − 1)
23. f (x) = x√x + 3 24. f (x) = x√9 − x

25. f (x) = 6 − x

√x
 26. f (x) = x + 3

√x

27. f (x) = sin 
x
2

, [0, 4π] 28. f (x) = 2 csc 
3x
2

, (0, 2π)

29. f (x) = sec(x − π
2), (0, 4π) 

30. f (x) = sin x + cos x, [0, 2π]
31. f (x) = 2 sin x + sin 2x, [0, 2π]
32. f (x) = x + 2 cos x, [0, 2π]

 Using the Second Derivative Test In 
Exercises 33–44, find all relative extrema of the 
function. Use the Second Derivative Test where 
applicable.

33. f (x) = 6x − x2 34. f (x) = x2 + 3x − 8

35. f (x) = x3 − 3x2 + 3 36. f (x) = −x3 + 7x2 − 15x

37. f (x) = x4 − 4x3 + 2 38. f (x) = −x4 + 2x3 + 8x

39. f (x) = x2
3 − 3 40. f (x) = √x2 + 1

41. f (x) = x +
4
x
 42. f (x) = 9x − 1

x + 5

43. f (x) = cos x − x, [0, 4π]
44. f (x) = 2 sin x + cos 2x, [0, 2π]

Finding Extrema and Points of Inflection Using 
Technology In Exercises 45–48, use a computer algebra 
system to analyze the function over the given interval. (a) Find 
the first and second derivatives of the function. (b) Find any 
relative extrema and points of inflection. (c) Graph f, f ′, and 
f ″ on the same set of coordinate axes and state the relationship 
between the behavior of f  and the signs of f ′ and f ″.

45. f (x) = 0.2x2(x − 3)3, [−1, 4]
46. f (x) = x2√6 − x2, [−√6, √6]
47. f (x) = sin x − 1

3 sin 3x + 1
5 sin 5x, [0, π]

48. f (x) = √2x sin x, [0, 2π]

EXPLORING CONCEPTS
49.  Sketching a Graph Consider a function f  such that 

f ′ is increasing. Sketch graphs of f  for (a) f ′ < 0 and  
(b) f ′ > 0.

50.  Think About It S represents weekly sales of a 
product. What can be said of S′ and S ″ for each of the 
following statements?

 (a) The rate of change of sales is increasing.

 (b) The rate of change of sales is constant.

 (c) Sales are steady.

 (d) Sales are declining but at a slower rate.

 (e) Sales have bottomed out and have started to rise.

Sketching Graphs In Exercises 51 and 52, the graph of f  is 
shown. Graph f, f ′, and f ″ on the same set of  coordinate axes. 
To print an enlarged copy of the graph, go to MathGraphs.com.

51. 

−1 1 2 3
−1

3

2

f

x

y  52. 

−2 1 2

−4

−2

4

f

x

y
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 Think About It In Exercises 53–56, sketch 
the graph of a function f  having the given 
characteristics.

53. f (0) = f (2) = 0 54. f (0) = f (2) = 0

 f ′(x) > 0 for x < 1  f ′(x) < 0 for x < 1

 f ′(1) = 0  f ′(1) = 0

 f ′(x) < 0 for x > 1  f ′(x) > 0 for x > 1

 f ″(x) < 0  f ″(x) > 0

55. f (2) = f (4) = 0 56. f (1) = f (3) = 0

 f ′(x) < 0 for x < 3  f ′(x) > 0 for x < 2

 f ′(3) does not exist.  f ′(2) does not exist.

 f ′(x) > 0 for x > 3  f ′(x) < 0 for x > 2

 f ″(x) < 0, x ≠ 3  f ″(x) > 0, x ≠ 2

57.  Think About It The figure shows the graph of f ″. Sketch 
a graph of f. (The answer is not unique.) To print an enlarged 
copy of the graph, go to MathGraphs.com.

6

4

2
3

5

5321−1 4

1

f ″

x

y

 58.  HOW DO YOU SEE IT? Water is running 
into the vase shown in the figure at a constant rate.

d

(a)  Graph the depth d of water in the vase as a 
function of time.

(b) Does the function have any extrema? Explain.

(c) Interpret the inflection points of the graph of d.

58.

59. Conjecture Consider the function

 f (x) = (x − 2)n.

 (a)  Use a graphing utility to graph f  for n = 1, 2, 3, and 4. 
Use the graphs to make a conjecture about the relationship 
between n and any inflection points of the graph of f.

 (b) Verify your conjecture in part (a).

60. Inflection Point Consider the function f (x) = 3√x.

 (a) Graph the function and identify the inflection point.

 (b) Does f ″ exist at the inflection point? Explain.

Finding a Cubic Function In Exercises 61 and 62, find a, 
b, c, and d such that the cubic function

f (x) = ax3 + bx2 + cx + d

satisfies the given conditions.

61. Relative maximum: (3, 3)
 Relative minimum: (5, 1)
 Inflection point: (4, 2)
62. Relative maximum: (2, 4)
 Relative minimum: (4, 2)
 Inflection point: (3, 3)

63.  Aircraft Glide Path A small aircraft starts its descent from 
an altitude of 1 mile, 4 miles west of the runway (see figure).

−4 −3 −2 −1

1

x

y

 (a)  Find the cubic function f (x) = ax3 + bx2 + cx + d on 
the interval [−4, 0] that describes a smooth glide path for 
the landing.

 (b)  The function in part (a) models the glide path of the plane. 
When would the plane be descending at the greatest rate?

64.  Highway Design A section of highway connecting two 
 hillsides with grades of 6% and 4% is to be built between 
two points that are separated by a horizontal distance of 2000 
feet (see figure). At the point where the two hillsides come 
together, there is a 50-foot difference in elevation.

Highway

50 ft

y

x

A(−1000, 60)
B(1000, 90)

6% grade
4% grade

Not drawn to scale

 (a)  Find the cubic function

 f (x) = ax3 + bx2 + cx + d, −1000 ≤ x ≤ 1000

   that describes the section of highway connecting the 
hillsides. At points A and B, the slope of the model must 
match the grade of the hillside.

 (b) Use a graphing utility to graph the model.

 (c) Use a graphing utility to graph the derivative of the model.

 (d)  Determine the grade at the steepest part of the transitional 
section of the highway.

 FOR FURTHER INFORMATION For more information on 
this type of modeling, see the article “How Not to Land at Lake 
Tahoe!” by Richard Barshinger in The American Mathematical 
Monthly. To view this article, go to MathArticles.com.
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65.  Average Cost A manufacturer has determined that the 
total cost C of operating a factory is

 C = 0.5x2 + 15x + 5000

where x is the number of units produced. At what level of 
production will the average cost per unit be minimized? (The 
average cost per unit is C
x.)

66.  Specific Gravity A model for the specific gravity of 
water S is

 S =
5.755
108 T 3 −

8.521
106 T 2 +

6.540
105 T + 0.99987, 0 < T < 25

where T is the water temperature in degrees Celsius.

 (a) Use the second derivative to determine the concavity of S.

(b)  Use a computer algebra system to find the coordinates of 
the maximum value of the function.

(c)  Use a graphing utility to graph the function over the specified 
domain. (Use a setting in which 0.996 ≤ S ≤ 1.001.)

(d) Estimate the specific gravity of water when T = 20°.

67.  Sales Growth The annual sales S of a new product are 
given by

 S =
5000t2

8 + t2, 0 ≤ t ≤ 3

where t is time in years.

 (a)  Complete the table. Then use it to estimate when the 
annual sales are increasing at the greatest rate.

t 0.5 1 1.5 2 2.5 3

S

 (b)  Use a graphing utility to graph the function S. Then use the 
graph to estimate when the annual sales are increasing at 
the greatest rate.

 (c)  Find the exact time when the annual sales are increasing at 
the greatest rate.

68.  Modeling Data The average typing speeds S (in words 
per minute) of a typing student after t weeks of lessons are 
shown in the table.

 t 5 10 15 20 25 30

S 28 56 79 90 93 94

 A model for the data is

 S =
100t2

65 + t2, t > 0.

 (a) Use a graphing utility to plot the data and graph the model.

 (b)  Use the second derivative to determine the concavity of S. 
Compare the result with the graph in part (a).

 (c)  What is the sign of the first derivative for t > 0? By 
combining this information with the concavity of the 
model, what inferences can be made about the typing 
speed as t increases?

Linear and Quadratic Approximations In Exercises 
69–72, use a graphing utility to graph the function. Then graph 
the linear and quadratic approximations

P1(x) = f (a) + f ′(a)(x − a)

and

P2(x) = f (a) + f ′(a)(x − a) + 1
2 f ″(a)(x − a)2

in the same viewing window. Compare the values of f, P1, 
and P2 and their first derivatives at x = a. How do the 
approximations change as you move farther away from x = a?

 Function Value of a

69. f (x) = 2(sin x + cos x) a =
π
4

70. f (x) = 2(sin x + cos x) a = 0

71. f (x) = √1 − x a = 0

72. f (x) = √x
x − 1

 a = 2

73. Determining Concavity Use a graphing utility to graph

 y = x sin 
1
x
.

 Show that the graph is concave downward to the right of

 x =
1
π .

74.  Point of Inflection and Extrema Show that the point 
of inflection of 

 f (x) = x(x − 6)2

 lies midway between the relative extrema of f.

True or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75.  The graph of every cubic polynomial has precisely one point 
of inflection.

76. The graph of

 f (x) = 1
x

  is concave downward for x < 0 and concave upward for 
x > 0, and thus it has a point of inflection at x = 0.

77. If f ′(c) > 0, then f  is concave upward at x = c.

78.  If f ″(2) = 0, then the graph of f  must have a point of 
inflection at x = 2.

Proof In Exercises 79 and 80, let f  and g represent 
differentiable functions such that f ″ ≠ 0 and g ″ ≠ 0.

79.  Show that if f  and g are concave upward on the interval (a, b),
then f + g is also concave upward on (a, b).

80.  Prove that if f  and g are positive, increasing, and concave 
upward on the interval (a, b), then fg is also concave upward 
on (a, b).
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3.5 Limits at Infinity

 Determine (finite) limits at infinity.
 Determine the horizontal asymptotes, if any, of the graph of a function.
 Determine infinite limits at infinity.

Limits at Infinity
This section discusses the “end behavior” of a function on an infinite interval.  Consider 
the graph of

f (x) = 3x2

x2 + 1

as shown in Figure 3.32. Graphically, you can see that f (x) appears to approach 3 as 
x increases without bound or decreases without bound. You can come to the same 
conclusions numerically, as shown in the table.

 

x decreases without bound. x increases without bound.

x −∞ → −100 −10 −1 0 1 10 100 →∞
f (x) 3 → 2.9997 2.9703 1.5 0 1.5 2.9703 2.9997 →3

 
 

f (x) approaches 3. f (x) approaches 3.

The table suggests that f (x) approaches 3 as x increases without bound (x→∞). 
Similarly, f (x) approaches 3 as x decreases without bound (x→−∞). These limits at 
infinity are denoted by

lim
x→−∞

 f (x) = 3 Limit at negative infinity

and

lim
x→∞

 f (x) = 3. Limit at positive infinity

To say that a statement is true as x increases without bound means that for some 
(large) real number M, the statement is true for all x in the interval {x:  x > M}. The 
next definition uses this concept.

Definition of Limits at Infinity

Let L be a real number.

1. The statement lim
x→∞

 f (x) = L means that for each ε > 0 there exists an

 M > 0 such that ∣ f (x) − L∣ < ε whenever x > M.

2. The statement lim
x→−∞

 f (x) = L means that for each ε > 0 there exists an 

 N < 0 such that ∣ f (x) − L∣ < ε whenever x < N.

The definition of a limit at infinity is shown in Figure 3.33. In this figure, note that 
for a given positive number ε, there exists a positive number M such that, for x > M,  
the graph of f  will lie between the horizontal lines

y = L + ε and y = L − ε.

x

L

M

ε
ε

lim f(x) = L
x→∞

y

f (x) is within ε units of L as x→∞.
Figure 3.33

x
−4 −3 −2 −1 1 2 3 4

4

2
f (x) → 3
as x → −∞

f(x) → 3
as x → ∞

y

f(x) = 3x2

x2 + 1

The limit of f (x) as x approaches −∞ 
or ∞ is 3.
Figure 3.32

REMARK The statement 
lim

x→−∞
 f (x) = L or lim

x→∞
 f (x) = L

means that the limit exists and 
the limit is equal to L.
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Horizontal Asymptotes
In Figure 3.33, the graph of f  approaches the line y = L as x increases without bound. 
The line y = L is called a horizontal asymptote of the graph of f.

Definition of a Horizontal Asymptote

The line y = L is a horizontal asymptote of the graph of f  when

lim
x→−∞

 f (x) = L or lim
x→∞

 f (x) = L.

Note that from this definition, it follows that the graph of a function of x can have 
at most two horizontal asymptotes—one to the right and one to the left.

Limits at infinity have many of the same properties of limits discussed in  
Section 1.3. For example, if lim

x→∞
 f (x) and lim

x→∞
 g (x) both exist, then

lim
x→∞

 [ f (x) + g(x)] = lim
x→∞

 f (x) + lim
x→∞

 g(x)

and

lim
x→∞

 [ f (x)g(x)] = [ lim
x→∞

 f (x)] [ lim
x→∞

 g(x)].
Similar properties hold for limits at −∞.

When evaluating limits at infinity, the next theorem is helpful.

THEOREM 3.10 Limits at Infinity

If r is a positive rational number and c is any real number, then

lim
x→∞

 
c
xr = 0.

Furthermore, if xr is defined when x < 0, then

lim
x→−∞

 
c
xr = 0.

A proof of this theorem is given in Appendix A.

 Finding a Limit at Infinity

Find the limit: lim
x→∞

 (5 −
2
x2).

Solution Using Theorem 3.10, you can write

 lim
x→∞

 (5 −
2
x2) = lim

x→∞
 5 − lim

x→∞
 
2
x2 Property of limits

 = 5 − 0

 = 5.

So, the line y = 5 is a horizontal asymptote to the right. By finding the limit

lim
x→−∞

 (5 −
2
x2) Limit as x→−∞

you can see that y = 5 is also a horizontal asymptote to the left. The graph of the 
function f (x) = 5 − (2�x2) is shown in Figure 3.34. 

642

10

8

6

−2−4−6

4

x

y

2
x2

f(x) = 5 −

y = 5 is a horizontal asymptote.
Figure 3.34

Exploration
Use a graphing utility to graph

f (x) = 2x2 + 4x − 6
3x2 + 2x − 16

.

Describe all the important 
features of the graph. Can 
you find a single viewing 
window that shows all 
of these features clearly? 
Explain your reasoning.

What are the horizontal 
asymptotes of the graph? 
How far to the right do you 
have to move on the graph 
so that the graph is within 
0.001 unit of its horizontal 
asymptote? Explain your 
reasoning.
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 Finding a Limit at Infinity

Find the limit: lim
x→∞

 
2x − 1
x + 1

.

Solution Note that both the numerator and the denominator approach infinity as x 
approaches infinity.

 lim
x→∞

 (2x − 1)→∞

lim
x→∞

 
2x − 1
x + 1

 lim
x→∞

 (x + 1)→∞

This results in ∞�∞, an indeterminate form. To resolve this problem, you can 
divide both the numerator and the denominator by x. After dividing, the limit may be 
evaluated as shown.

 lim
x→∞

 
2x − 1
x + 1

= lim
x→∞

 

2x − 1
x

x + 1
x

 Divide numerator and denominator by x.

 = lim
x→∞

 
2 −

1
x

1 +
1
x

 Simplify.

 =
lim

x→∞
 2 − lim

x→∞
 
1
x

lim
x→∞

 1 + lim
x→∞

 
1
x

 Take limits of numerator and denominator.

 =
2 − 0
1 + 0

 Apply Theorem 3.10.

 = 2

So, the line y = 2 is a horizontal asymptote to the right. By taking the limit as x→−∞, 
you can see that y = 2 is also a horizontal asymptote to the left. The graph of the 
function is shown in Figure 3.35. 

TECHNOLOGY You can test the reasonableness of the limit found in Example 2 
by evaluating f (x) for a few large positive values of x. For instance,

f (100) ≈ 1.9703, f (1000) ≈ 1.9970, 

80
0

0

3

As x increases, the graph of f  moves 
closer and closer to the line y = 2.
Figure 3.36

and f (10,000) ≈ 1.9997.

 Another way to test the reasonableness of the  
limit is to use a graphing utility. For instance,  
in Figure 3.36, the graph of

f (x) = 2x − 1
x + 1

is shown with the horizontal line y = 2. Note  
that as x increases, the graph of f  moves closer  
and closer to its horizontal asymptote.

x
−5 −4 −3 −2

−1
1 2 3

6

5

4

3

1

y

f (x) = 2x − 1
x + 1

y = 2 is a horizontal asymptote.

Figure 3.35

REMARK When you 
encounter an indeterminate form 
such as the one in Example 2, 
you should divide the numerator 
and denominator by the highest 
power of x in the denominator.
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 A Comparison of Three Rational Functions

See LarsonCalculus.com for an interactive version of this type of example.

Find each limit.

a. lim
x→∞

 
2x + 5
3x2 + 1

  b. lim
x→∞

 
2x2 + 5
3x2 + 1

  c. lim
x→∞

 
2x3 + 5
3x2 + 1

Solution In each case, attempting to evaluate the limit produces the indeterminate 
form ∞�∞.

a. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x + 5
3x2 + 1

= lim
x→∞

 
(2�x) + (5�x2)

3 + (1�x2) =
0 + 0
3 + 0

=
0
3
= 0

b. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x2 + 5
3x2 + 1

= lim
x→∞

 
2 + (5�x2)
3 + (1�x2) =

2 + 0
3 + 0

=
2
3

c. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x3 + 5
3x2 + 1

= lim
x→∞

 
2x + (5�x2)
3 + (1�x2) = ∞

3

  You can conclude that the limit does not exist because the numerator increases 
without bound while the denominator approaches 3. 

Example 3 suggests the guidelines below for finding limits at infinity of rational 
functions. Use these guidelines to check the results in Example 3.

GUIDELINES FOR FINDING LIMITS AT ±∞ OF RATIONAL  
FUNCTIONS

1.  If the degree of the numerator is less than the degree of the denominator, then 
the limit of the rational function is 0.

2.  If the degree of the numerator is equal to the degree of the denominator, then 
the limit of the rational function is the ratio of the leading coefficients.

3.  If the degree of the numerator is greater than the degree of the denominator, 
then the limit of the rational function does not exist.

The guidelines for finding limits at infinity of rational functions seem reasonable 
when you consider that for large values of x, the highest-power term of the rational 
function is the most “influential” in determining the limit. For instance,

lim
x→∞

 
1

x2 + 1

is 0 because the denominator overpowers the numerator as x increases or decreases 
without bound, as shown in Figure 3.37.

The function shown in Figure 3.37 is a special case of a type of curve studied by 
the Italian mathematician Maria Gaetana Agnesi. The general form of this function is 

f (x) = 8a3

x2 + 4a2 Witch of Agnesi

and, through a mistranslation of the Italian word vertéré, the curve has come to be 
known as the Witch of Agnesi. Agnesi’s work with this curve first appeared in a 
 comprehensive text on calculus that was published in 1748.

x

1

−2 −1 1 2

2

lim   f (x) = 0
x→−∞

lim  f (x) = 0
x→∞

f(x) =
x2 + 1

y

f  has a horizontal asymptote at y = 0.
Figure 3.37

MARIA GAETANA AGNESI 
(1718–1799)

Agnesi was one of a handful of 
women to receive credit for 
significant contributions to 
mathematics before the 
twentieth century. In her 
early twenties, she wrote the 
first text that included both 
differential and integral calculus. 
By age 30, she was an honorary 
member of the faculty at the 
University of Bologna.
See LarsonCalculus.com to read 
more of this biography.
For more information on the 
contributions of women to 
mathematics, see the article 
“Why Women Succeed in 
Mathematics” by Mona Fabricant, 
Sylvia Svitak, and Patricia Clark 
Kenschaft in Mathematics 
Teacher. To view this article,  
go to MathArticles.com.

The Granger Collection, NY
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In Figure 3.37, you can see that the function

f (x) = 1
x2 + 1

approaches the same horizontal asymptote to the right and to the left. This is always true 
of rational functions. Functions that are not rational, however, may approach different 
horizontal asymptotes to the right and to the left. This is demonstrated in Example 4.

 A Function with Two Horizontal Asymptotes

Find each limit.

a. lim
x→∞

 
3x − 2

√2x2 + 1
  b. lim

x→−∞
 

3x − 2

√2x2 + 1

Solution

a.  For x > 0, you can write x =√x2. So, dividing both the numerator and the 
denominator by x produces

3x − 2

√2x2 + 1
=

3x − 2
x

√2x2 + 1

√x2

=
3 −

2
x

√2x2 + 1
x2

=
3 −

2
x

√2 +
1
x2

 and you can take the limit as follows.

lim
x→∞

 
3x − 2

√2x2 + 1
= lim

x→∞
 

3 −
2
x

√2 +
1
x2

=
3 − 0

√2 + 0
=

3

√2

b.  For x < 0, you can write x = −√x2. So, dividing both the numerator and the 
denominator by x produces

3x − 2

√2x2 + 1
=

3x − 2
x

√2x2 + 1

−√x2

=
3 −

2
x

−√2x2 + 1
x2

=
3 −

2
x

−√2 +
1
x2

 and you can take the limit as follows.

lim
x→−∞

 
3x − 2

√2x2 + 1
= lim

x→−∞
 

3 −
2
x

−√2 +
1
x2

=
3 − 0

−√2 + 0
= −

3

√2

The graph of f (x) = (3x − 2)�√2x2 + 1 is shown in Figure 3.38. 

TECHNOLOGY PITFALL If you use a graphing utility to estimate a limit,  
be sure that you also confirm the estimate analytically—the graphs shown by a 
graphing utility can be misleading. For instance, Figure 3.39 shows one view of the 
graph of

y =
2x3 + 1000x2 + x

x3 + 1000x2 + x + 1000
.

From this view, one could be convinced that the graph has y = 1 as a horizontal 
asymptote. An analytical approach shows that the horizontal asymptote is actually 
y = 2. Confirm this by enlarging the viewing window on the graphing utility.

x

2

2
3

,

y = −

y = 

,

Horizontal
asymptote
to the left

Horizontal
asymptote
to the right

−6 −4 −2 2 4

4

−4

y 3

f(x) = 3x − 2

2x2 + 1

Functions that are not rational may 
have different right and left horizontal 
asymptotes.
Figure 3.38

8

−1

−8

2

The horizontal asymptote appears to 
be the line y = 1, but it is actually the 
line y = 2.
Figure 3.39
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In Section 1.4, Example 7(c), you used the Squeeze Theorem to evaluate a limit 
involving a trigonometric function. The Squeeze Theorem is also valid for limits at 
infinity.

 Limits Involving Trigonometric Functions

Find each limit.

a. lim
x→∞

 sin x  b. lim
x→∞

 
sin x

x

Solution

a.  As x approaches infinity, the sine function oscillates between 1 and −1. So, this 
limit does not exist.

b. Because −1 ≤ sin x ≤ 1, it follows that for x > 0,

−
1
x

≤ sin x
x

≤ 1
x

 where

lim
x→∞

 (−1
x) = 0 and lim

x→∞
 
1
x
= 0.

 So, by the Squeeze Theorem, you obtain

lim
x→∞

 
sin x

x
= 0

 as shown in Figure 3.40.

 Oxygen Level in a Pond

Let f (t) measure the level of oxygen in a pond, where f (t) = 1 is the normal 
(unpolluted) level and the time t is measured in weeks. When t = 0, organic waste is 
dumped into the pond, and as the waste material oxidizes, the level of oxygen in the 
pond is

f (t) = t2 − t + 1
t2 + 1

.

What percent of the normal level of oxygen exists in the pond after 1 week? After  
2 weeks? After 10 weeks? What is the limit as t approaches infinity?

Solution When t = 1, 2, and 10, the levels of oxygen are as shown.

 f (1) = 12 − 1 + 1
12 + 1

=
1
2
= 50% 1 week

 f (2) = 22 − 2 + 1
22 + 1

=
3
5
= 60% 2 weeks

 f (10) = 102 − 10 + 1
102 + 1

=
91
101

≈ 90.1% 10 weeks

To find the limit as t approaches infinity, you can use the guidelines on page 202, or 
you can divide the numerator and the denominator by t2 to obtain

lim
t→∞

 
t2 − t + 1

t2 + 1
= lim

t→∞
 
1 − (1�t) + (1�t2)

1 + (1�t2) =
1 − 0 + 0

1 + 0
= 1 = 100%.

See Figure 3.41. 

x

1

−1

π

y =

y = − 1
x

1
x

lim           = 0sin x
xx→∞

y

f(x) = sin x
x

As x increases without bound, f (x) 
approaches 0.
Figure 3.40

t

1.00

0.75

0.50

0.25

O
xy

ge
n 

le
ve

l

2 4 6 8 10

Weeks

(10, 0.9)

(1, 0.5)

(2, 0.6)

f (t)

f(t) = t
2 − t + 1
t2 + 1

The level of oxygen in a pond 
approaches the normal level of 1 as  
t approaches ∞.
Figure 3.41
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Infinite Limits at Infinity
Many functions do not approach a finite limit as x increases (or decreases) without 
bound. For instance, no polynomial function has a finite limit at infinity. The next 
definition is used to describe the behavior of polynomial and other functions at infinity.

Definition of Infinite Limits at Infinity

Let f  be a function defined on the interval (a, ∞).

1. The statement lim
x→∞

 f (x) = ∞ means that for each positive number M, there

 is a corresponding number N > 0 such that f (x) > M whenever x > N.

2. The statement lim
x→∞

 f (x) = −∞ means that for each negative number M,

  there is a corresponding number N > 0 such that f (x) < M whenever x > N.

Similar definitions can be given for the statements

lim
x→−∞

 f (x) = ∞ and lim
x→−∞

 f (x) = −∞.

 Finding Infinite Limits at Infinity

Find each limit.

a. lim
x→∞

 x3  b. lim
x→−∞

 x3

Solution

a. As x increases without bound, x3 also increases without bound. So, you can write

lim
x→∞

 x3 = ∞.

b. As x decreases without bound, x3 also decreases without bound. So, you can write

lim
x→−∞

 x3 = −∞.

 The graph of f (x) = x3 in Figure 3.42 illustrates these two results. These results agree 
with the Leading Coefficient Test for polynomial functions as described in Section P.3.

 Finding Infinite Limits at Infinity

Find each limit.

a. lim
x→∞

 
2x2 − 4x

x + 1
  b. lim

x→−∞
 
2x2 − 4x

x + 1

Solution One way to evaluate each of these limits is to use long division to rewrite 
the improper rational function as the sum of a polynomial and a rational function.

a. lim
x→∞

 
2x2 − 4x

x + 1
= lim

x→∞
 (2x − 6 +

6
x + 1) = ∞

b. lim
x→−∞

 
2x2 − 4x

x + 1
= lim

x→−∞
 (2x − 6 +

6
x + 1) = −∞

The statements above can be interpreted as saying that as x approaches ±∞, the 
function f (x) = (2x2 − 4x)�(x + 1) behaves like the function g(x) = 2x − 6. In 
Section 3.6, you will see that this is graphically described by saying that the line
y = 2x − 6 is a slant asymptote of the graph of f, as shown in Figure 3.43. 

REMARK Determining 
whether a function has an  
infinite limit at infinity is useful 
in analyzing the “end behavior” 
of its graph. You will see  
examples of this in Section 3.6 
on curve sketching. 

x

f(x) = x3

1−1

−3

−2

−1

1

2

3

2−2 3−3

y

Figure 3.42

x

y = 2x − 6

3−3

−6

−3

3

6

6−6 9 12−9−12

f(x) = 2x
2 − 4x
x + 1

y

Figure 3.43
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3.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Writing Describe in your own words what each 

statement means.

 (a) lim
x→∞

 f (x) = −5

 (b) lim
x→−∞

 f (x) = 3

2.  Horizontal Asymptote What does it mean for the 
graph of a function to have a horizontal asymptote?

3.  Horizontal Asymptote A graph can have a 
maximum of how many horizontal asymptotes? Explain.

4.  Limits at Infinity In your own words, summarize 
the guidelines for finding limits at infinity of rational 
functions.

Matching In Exercises 5–10, match the function with its 
graph using horizontal asymptotes as an aid. [The graphs are 
labeled (a), (b), (c), (d), (e), and (f).]

(a) 

x
−2 −1 1 2

−1

1

3

y  (b) 

x
−3 −1 1 2 3

−3

3

2

1

y

(c) 

x
−3 −2 −1 1 2 3

−3

3

1

y  (d) 

x
1 2 3

3

2

1

−1
−2
−3

y

(e) 

x
−6 −4 −2 2 4

8

6

4

2

y  (f ) 

x

y

−1−2−3 1 2 3

−2

1

3

4

2

 5. f (x) = 2x2

x2 + 2
  6. f (x) = 2x

√x2 + 2

 7. f (x) = x
x2 + 2

  8. f (x) = 2 +
x2

x4 + 1

 9. f (x) = 4 sin x
x2 + 1

 10. f (x) = 2x2 − 3x + 5
x2 + 1

 Finding Limits at Infinity In Exercises 11 and 
12, find lim

x→∞
 h(x), if it exists.

11. f (x) = 5x3 − 3 12. f (x) = −4x2 + 2x − 5

 (a) h(x) = f (x)
x2   (a) h(x) = f (x)

x

 (b) h(x) = f (x)
x3   (b) h(x) = f (x)

x2

 (c) h(x) = f (x)
x4   (c) h(x) = f (x)

x3

 Finding Limits at Infinity In Exercises 13–16, 
find each limit, if it exists.

13. (a) lim
x→∞

 
x2 + 2
x3 − 1

 14. (a) lim
x→∞

 
3 − 2x
3x3 − 1

 (b) lim
x→∞

 
x2 + 2
x2 − 1

  (b) lim
x→∞

 
3 − 2x
3x − 1

 (c) lim
x→∞

 
x2 + 2
x − 1

  (c) lim
x→∞

 
3 − 2x2

3x − 1

15. (a) lim
x→∞

 
5 − 2x3�2

3x2 − 4
 16. (a) lim

x→∞
 

5x3�2

4x2 + 1

 (b) lim
x→∞

 
5 − 2x3�2

3x3�2 − 4
  (b) lim

x→∞
 

5x3�2

4x3�2 + 1

 (c) lim
x→∞

 
5 − 2x3�2

3x − 4
  (c) lim

x→∞
 

5x3�2

4√x + 1

 Finding a Limit In Exercises 17–36, find the 
limit, if it exists.

17. lim
x→∞

 (4 +
3
x) 18. lim

x→−∞
 (5x −

x
3)

19. lim
x→∞

 
7x + 6
9x − 4

 20. lim
x→−∞

 
4x2 + 5
x2 + 3

21. lim
x→−∞

 
2x2 + x

6x3 + 2x2 + x
 22. lim

x→∞
 

5x3 + 1
10x3 − 3x2 + 7

23. lim
x→−∞

 
5x2

x + 3
 24. lim

x→−∞
 
x3 − 4
x2 + 1

25. lim
x→−∞

 
x

√x2 − x
 26. lim

x→−∞
 

x

√x2 + 1

27. lim
x→−∞

 
2x + 1

√x2 − x
 28. lim

x→∞
 

5x2 + 2

√x2 + 3

29. lim
x→∞

 
√x2 − 1
2x − 1

 30. lim
x→−∞

 
√x4 − 1
x3 − 1

31. lim
x→∞

 
x + 1

(x2 + 1)1�3 32. lim
x→−∞

 
2x

(x6 − 1)1�3

33. lim
x→∞

 
1

2x + sin x
 34. lim

x→∞
 cos 

1
x

35. lim
x→∞

 
sin 2x

x
 36. lim

x→∞
 
x − cos x

x
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Finding Horizontal Asymptotes Using Technology 
In Exercises 37–40, use a graphing utility to graph the function 
and identify any horizontal asymptotes.

37. f (x) = ∣x∣
x + 1

 38. f (x) = ∣3x + 2∣
x − 2

39. f (x) = 3x

√x2 + 2

40. f (x) = √9x2 − 2
2x + 1

Finding a Limit In Exercises 41 and 42, find the limit.  
(Hint: Let x = 1�t and find the limit as t→ 0+.)

41. lim
x→∞

 x sin 
1
x
 42. lim

x→∞
 x tan 

1
x

Finding a Limit In Exercises 43–46, find the limit. Use 
a graphing utility to verify your result. (Hint: Treat the 
expression as a fraction whose denominator is 1, and rationalize 
the numerator.)

43. lim
x→−∞

 (x + √x2 + 3) 44. lim
x→∞

 (x − √x2 + x)
45. lim

x→−∞
 (3x + √9x2 − x) 46. lim

x→∞
 (4x − √16x2 − x)

Numerical, Graphical, and Analytic Analysis In 
Exercises 47–50, use a graphing utility to complete the table 
and estimate the limit as x approaches infinity. Then use a 
graphing utility to graph the function and estimate the limit. 
Finally, find the limit analytically and compare your results 
with the estimates.

x 100 101 102 103 104 105 106

f (x)

47. f (x) = x − √x(x − 1) 48. f (x) = x2 − x√x(x − 1)

49. f (x) = x sin 
1
2x

50. f (x) = x + 1

x√x

52.  Physics Newton’s First Law of Motion and Einstein’s 
Special Theory of Relativity differ concerning the behavior 
of a particle as its velocity approaches the speed of light c. 
In the graph, functions N and E represent the velocity v, with 
respect to time t, of a particle accelerated by a constant force 
as predicted by Newton and Einstein, respectively. Write limit 
statements that describe these two theories.

 

t

v

N

E
c

EXPLORING CONCEPTS
53.  Limits Explain the differences between limits at 

infinity and infinite limits.

54.  Horizontal Asymptote Can the graph of a function 
cross a horizontal asymptote? Explain.

55.   Using Symmetry to Find Limits If f  is a 
continuous function such that lim

x→∞
 f (x) = 5, find, if

 possible, lim
x→−∞

 f (x) for each specified condition.

 (a)  The graph of f  is symmetric with respect to the y-axis.

 (b)  The graph of f  is symmetric with respect to the origin.

 56.   HOW DO YOU SEE IT? The graph shows 
the temperature T, in degrees Fahrenheit, of molten 
glass t seconds after it is removed from a kiln.

t

T

72

(0, 1700)

(a) Find lim
t→0+

 T. What does this limit represent?

(b) Find lim
t→∞

 T. What does this limit represent?

56.

57.  Modeling Data The average typing speeds S (in words 
per minute) of a typing student after t weeks of lessons are 
shown in the table.

 
t 5 10 15 20 25 30

S 28 56 79 90 93 94

  A model for the data is S =
100t2

65 + t2
, t > 0.

  (a) Use a graphing utility to plot the data and graph the model.

 (b)  Does there appear to be a limiting typing speed? Explain.

The efficiency (in percent) of an internal combustion engine is

Efficiency = 100[1 −
1

(v1�v2)c]
where v1�v2 is the ratio 
of the uncompressed 
gas to the compressed 
gas and c is a positive 
constant dependent on 
the engine design. Find 
the limit of the efficiency 
as the compression ratio 
approaches infinity.

51. Engine Efficiency

Straight 8 Photography/Shutterstock.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



208 Chapter 3 Applications of Differentiation

58.  Modeling Data A heat probe is attached to the heat 
exchanger of a heating system. The temperature T (in degrees 
Celsius) is recorded t seconds after the furnace is started. The 
results for the first 2 minutes are recorded in the table.

 
t 0 15 30 45 60

T 25.2 36.9 45.5 51.4 56.0

t 75 90 105 120

T 59.6 62.0 64.0 65.2

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form T1 = at2 + bt + c for the data.

 (b)  Use a graphing utility to graph T1.

 (c)  A rational model for the data is

  T2 =
1451 + 86t

58 + t
.

  Use a graphing utility to graph T2.

 (d) Find lim
t→∞

 T2.

 (e)  Interpret the result in part (d) in the context of the problem. 
Is it possible to do this type of analysis using T1? Explain.

59. Using the Definition of Limits at Infinity The graph of

 f (x) = 2x2

x2 + 2

 is shown (see figure).

 (a) Find L = lim
x→∞

 f (x).
 (b) Determine x1 and x2 in terms of ε.

 (c)  Determine M, where M > 0, such that ∣ f (x) − L∣ < ε for 
x > M.

 (d)  Determine N, where N < 0, such that ∣ f (x) − L∣ < ε for 
x < N.

 

x

y

ε

x2 x1

f

Not drawn to scale

 

x

y

ε

x1x2

fε

Not drawn to scale

 Figure for 59 Figure for 60

60. Using the Definition of Limits at Infinity The graph of

 f (x) = 6x

√x2 + 2
 is shown (see figure).

 (a) Find L = lim
x→∞

 f (x) and K = lim
x→−∞

 f (x).
 (b) Determine x1 and x2 in terms of ε.

 (c)  Determine M, where M > 0, such that ∣ f (x) − L∣ < ε for 
x > M.

 (d)  Determine N, where N < 0, such that ∣ f (x) − K∣ < ε for 
x < N.

61. Using the Definition of Limits at Infinity Consider 

 lim
x→∞

 
3x

√x2 + 3
.

 (a)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.5.

 (b)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.1.

62. Using the Definition of Limits at Infinity Consider 

  lim
x→−∞

 
3x

√x2 + 3
.

  (a)  Use the definition of limits at infinity to find the value of 
N that corresponds to ε = 0.5.

  (b)  Use the definition of limits at infinity to find the value of 
N that corresponds to ε = 0.1.

Proof In Exercises 63–66, use the definition of limits at  
infinity to prove the limit.

63. lim
x→∞

 
1
x2 = 0 64. lim

x→∞
 

2

√x
= 0

65. lim
x→−∞

 
1
x3 = 0

66. lim
x→−∞

 
1

x − 2
= 0

67.  Distance A line with slope m passes through the point 
(0, 4).

 (a)  Write the distance d between the line and the point (3, 1) 
as a function of m. (Hint: See Section P.2, Exercise 77.)

 (b) Use a graphing utility to graph the equation in part (a).

 (c) Find lim
m→∞

 d(m) and lim
m→−∞

 d(m). Interpret the results

  geometrically.

68.  Distance A line with slope m passes through the point 
(0, −2).

 (a)  Write the distance d between the line and the point (4, 2) 
as a function of m. (Hint: See Section P.2, Exercise 77.)

 (b) Use a graphing utility to graph the equation in part (a).

 (c) Find lim
m→∞

 d(m) and lim
m→−∞

 d(m). Interpret the results

  geometrically.

69. Proof Prove that if

 p(x) = anxn + .  .  . + a1x + a0

 and

 q(x) = bmxm + .  .  . + b1x + b0

 where an ≠ 0 and bm ≠ 0, then

 lim
x→∞

 
p(x)
q(x) = {

0,
an

bm

,

±∞,

    n < m

    n = m .

    n > m

70.  Proof Use the definition of infinite limits at infinity to 
prove that lim

x→∞
 x3 = ∞.
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3.6 A Summary of Curve Sketching

 Analyze and sketch the graph of a function.

Analyzing the Graph of a Function
It would be difficult to overstate the importance of using graphs in mathematics. 
Descartes’s introduction of analytic geometry contributed significantly to the rapid 
advances in calculus that began during the mid-seventeenth century. In the words of 
Lagrange, “As long as algebra and geometry traveled separate paths their advance was 
slow and their applications limited. But when these two sciences joined company, they 
drew from each other fresh vitality and thenceforth marched on at a rapid pace toward 
perfection.”

So far, you have studied several concepts that are useful in analyzing the graph of 
a function.

• x-intercepts and y-intercepts (Section P.1)

• Symmetry (Section P.1)

• Domain and range (Section P.3)

• Continuity (Section 1.4)

• Vertical asymptotes (Section 1.5)

• Differentiability (Section 2.1)

• Relative extrema (Section 3.1)

• Increasing and decreasing functions (Section 3.3)

• Concavity (Section 3.4)

• Points of inflection (Section 3.4)

• Horizontal asymptotes (Section 3.5)

• Infinite limits at infinity (Section 3.5)

When you are sketching the graph of a function, either by hand or with a graphing 
utility, remember that normally you cannot show the entire graph. The decision as to 
which part of the graph you choose to show is often crucial. For instance, which of the 
viewing windows in Figure 3.44 better represents the graph of

f (x) = x3 − 25x2 + 74x − 20?

By seeing both views, it is clear that the second viewing window gives a more  complete 
representation of the graph. But would a third viewing window reveal other interesting 
portions of the graph? To answer this, you need to use calculus to interpret the first 
and second derivatives. To determine a good viewing window for a function, use these 
guidelines to analyze its graph.

GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION

1. Determine the domain and range of the function.

2. Determine the intercepts, asymptotes, and symmetry of the graph.

3. Locate the x-values for which f′(x) and f ″(x) either are zero or do not exist. 
Use the results to determine relative extrema and points of inflection.

REMARK In these guidelines, note the importance of algebra (as well as calculus) 
for solving the equations f (x) = 0, f′(x) = 0, and f ″(x) = 0.

5

−10

−2

40

Different viewing windows for the 
graph of f (x) = x3 − 25x2 + 74x − 20
Figure 3.44

30

−1200

−10

200
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 Sketching the Graph of a Rational Function

Analyze and sketch the graph of

f (x) = 2(x2 − 9)
x2 − 4

.

Solution
Domain: All real numbers except x = ±2

Range: (−∞, 2) ∪ [9
2, ∞)

x-intercepts: (−3, 0), (3, 0)
y-intercept: (0, 92)

Vertical asymptotes: x = −2, x = 2

Horizontal asymptote: y = 2

Symmetry: With respect to y-axis

 First derivative: f′(x) = 20x
(x2 − 4)2

Second derivative: f ″(x) = −20(3x2 + 4)
(x2 − 4)3

Critical number: x = 0

Possible points of inflection: None

Test intervals: (−∞, −2), (−2, 0), (0, 2), (2, ∞)

The table shows how the test intervals are used to determine several characteristics of 
the graph. The graph of f  is shown in Figure 3.45.

f (x) f′(x) f ″(x) Characteristic of Graph

−∞ < x < −2 − − Decreasing, concave downward

x = −2 Undef. Undef. Undef. Vertical asymptote

−2 < x < 0 − + Decreasing, concave upward

x = 0 9
2 0 + Relative minimum

0 < x < 2 + + Increasing, concave upward

x = 2 Undef. Undef. Undef. Vertical asymptote

2 < x < ∞ + − Increasing, concave downward

 

Be sure you understand all of the implications of creating a table such as that 
shown in Example 1. By using calculus, you can be sure that the graph has no relative 
extrema or points of inflection other than those shown in Figure 3.45.

TECHNOLOGY PITFALL Without using the type of analysis outlined in 
Example 1, it is easy to obtain an incomplete view of the basic characteristics of a 
graph. For instance, Figure 3.46 shows a view of the graph of

g(x) = 2(x2 − 9)(x − 20)
(x2 − 4)(x − 21) .

From this view, it appears that the graph of g is about the same as the graph of f  shown 
in Figure 3.45. The graphs of these two functions, however, differ significantly. Try 
enlarging the viewing window to see the differences.

 FOR FURTHER INFORMATION
For more information on the use 
of technology to graph rational 
functions, see the article “Graphs 
of Rational Functions for Computer 
Assisted Calculus” by Stan Byrd 
and Terry Walters in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

Using calculus, you can be certain that 
you have determined all characteristics 
of the graph of f.
Figure 3.45

−8 −4 4 8

4 0,
9
2( )

Relative
minimum

x

y

f(x) = 
2(x2 − 9)

x2 − 4

V
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tic
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as
ym

pt
ot

e:
x 

=
 −

2

Horizontal
asymptote:

y = 2

V
er

tic
al

as
ym

pt
ot

e:
x 

=
 2

(−3, 0) (3, 0)

By not using calculus, you may 
overlook important characteristics  
of the graph of g.
Figure 3.46

6

−8

−6

12
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 Sketching the Graph of a Rational Function

Analyze and sketch the graph of f (x) = x2 − 2x + 4
x − 2

.

Solution
Domain: All real numbers except x = 2

Range: (−∞, −2] ∪ [6, ∞)
x-intercepts: None

 y-intercept: (0, −2)
Vertical asymptote: x = 2

Horizontal asymptotes: None

Symmetry: None

End behavior: lim
x→−∞

 f (x) = −∞, lim
x→∞

 f (x) = ∞

 First derivative: f′(x) = x(x − 4)
(x − 2)2

 Second derivative: f ″(x) = 8
(x − 2)3

 Critical numbers: x = 0, x = 4

Possible points of inflection: None

 Test intervals: (−∞, 0), (0, 2), (2, 4), (4, ∞)

The analysis of the graph of f  is shown in the table, and the graph is shown in  
Figure 3.47.

f (x) f′(x) f ″(x) Characteristic of Graph

−∞ < x < 0 + − Increasing, concave downward

x = 0 −2 0 − Relative maximum

0 < x < 2 − − Decreasing, concave downward

x = 2 Undef. Undef. Undef. Vertical asymptote

2 < x < 4 − + Decreasing, concave upward

x = 4 6 0 + Relative minimum

4 < x < ∞ + + Increasing, concave upward

 

Although the graph of the function in Example 2 has no horizontal asymptote, 
it does have a slant asymptote. The graph of a rational function (having no common 
 factors and whose denominator is of degree 1 or greater) has a slant asymptote when 
the degree of the numerator exceeds the degree of the denominator by exactly 1. To 
find the slant asymptote, use long division to rewrite the rational function as the sum of 
a first-degree polynomial (the slant asymptote) and another rational function.

 f (x) = x2 − 2x + 4
x − 2

 Write original equation.

 = x +
4

x − 2
 Rewrite using long division.

In Figure 3.48, note that the graph of f  approaches the slant asymptote y = x as x
approaches −∞ or ∞.

Figure 3.47

x
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y

A slant asymptote
Figure 3.48
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 Sketching the Graph of a Radical Function

Analyze and sketch the graph of f (x) = x

√x2 + 2
.

Solution

 f′(x) = 2
(x2 + 2)3�2 Find first derivative.

 f ″(x) = −
6x

(x2 + 2)5�2 Find second derivative.

The graph has only one intercept, (0, 0). It has no vertical asymptotes, but it has two 
horizontal asymptotes: y = 1 (to the right) and y = −1 (to the left). The function has 
no critical numbers and one possible point of inflection (at x = 0). The domain of the 
function is all real numbers, and the graph is symmetric with respect to the origin. The 
analysis of the graph of f  is shown in the table, and the graph is shown in Figure 3.49.

f (x) f′(x) f ″(x) Characteristic of Graph

−∞ < x < 0 + + Increasing, concave upward

x = 0 0 + 0 Point of inflection

0 < x < ∞ + − Increasing, concave downward

 Sketching the Graph of a Radical Function

Analyze and sketch the graph of f (x) = 2x5�3 − 5x4�3.

Solution

 f′(x) = 10
3

x1�3(x1�3 − 2) Find first derivative.

 f ″(x) = 20(x1�3 − 1)
9x2�3  Find second derivative.

The function has two intercepts: (0, 0) and (125
8 , 0). There are no horizontal or vertical 

asymptotes. The function has two critical numbers (x = 0 and x = 8) and two possible 
points of inflection (x = 0 and x = 1). The domain is all real numbers. The analysis of 
the graph of f  is shown in the table, and the graph is shown in Figure 3.50.

f (x) f′(x) f ″(x) Characteristic of Graph

−∞ < x < 0 + − Increasing, concave downward

x = 0 0 0 Undef. Relative maximum

0 < x < 1 − − Decreasing, concave downward

x = 1 −3 − 0 Point of inflection

1 < x < 8 − + Decreasing, concave upward

x = 8 −16 0 + Relative minimum

8 < x < ∞ + + Increasing, concave upward

 

Figure 3.49

x

1

2 3−1

−1

−2−3

Horizontal
asymptote:

y = 1

Horizontal
asymptote:

y = −1

Point of
in	ection

(0, 0)

y

xf(x) = 
x2 + 2

Figure 3.50

x
4 8 12

(0, 0)

Point of
in�ection

Relative
maximum

Relative minimum

125
8

, 0))

−12

−16
(8, −16)

(1, −3)

y f(x) = 2x5/3 − 5x4/3
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 Sketching the Graph of a Polynomial Function

See LarsonCalculus.com for an interactive version of this type of example.

Analyze and sketch the graph of

f (x) = x4 − 12x3 + 48x2 − 64x.

Solution Begin by factoring to obtain

f (x) = x4 − 12x3 + 48x2 − 64x

 = x(x − 4)3.

Then, using the factored form of f (x), you can perform the following analysis.

 Domain: All real numbers

 Range: [−27, ∞)
x-intercepts: (0, 0), (4, 0)
y-intercept: (0, 0)

Vertical asymptotes: None

Horizontal asymptotes: None

Symmetry: None

End behavior: lim
x→−∞

 f (x) = ∞, lim
x→∞

 f (x) = ∞
First derivative: f′(x) = 4(x − 1)(x − 4)2

Second derivative: f ″(x) = 12(x − 4)(x − 2)
Critical numbers: x = 1, x = 4

Possible points of inflection: x = 2, x = 4

Test intervals: (−∞, 1), (1, 2), (2, 4), (4, ∞)

The analysis of the graph of f  is shown in the table, and the graph is shown in Figure 
3.51(a). Using a computer algebra system such as Maple [see Figure 3.51(b)] can help 
you verify your analysis.

f (x) f′(x) f ″(x) Characteristic of Graph

−∞ < x < 1 − + Decreasing, concave upward

x = 1 −27 0 + Relative minimum

1 < x < 2 + + Increasing, concave upward

x = 2 −16 + 0 Point of inflection

2 < x < 4 + − Increasing, concave downward

x = 4 0 0 0 Point of inflection

4 < x < ∞ + + Increasing, concave upward

 

The fourth-degree polynomial function in Example 5 has one relative minimum 
and no relative maxima. In general, a polynomial function of degree n can have at most 
n − 1 relative extrema and at most n − 2 points of inflection. Moreover,  polynomial 
functions of even degree must have at least one relative extremum.

Remember from the Leading Coefficient Test described in Section P.3 that the 
“end behavior” of the graph of a polynomial function is determined by its leading 
 coefficient and its degree. For instance, because the polynomial in Example 5 has a 
positive leading coefficient, the graph rises to the right. Moreover, because the degree 
is even, the graph also rises to the left.

(a)

x
1 2 4 5−1

−5

−10

−15

−20

−25

−30

Point of
in�ection

Point of
in�ection

(1, −27)
Relative minimum

(2, −16)

(0, 0)

(4, 0)

y f(x) = x4 − 12x3 + 48x2 − 64x

(b)
A polynomial function of even 
degree must have at least one relative 
extremum.
Figure 3.51
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 Sketching the Graph of a Trigonometric Function

Analyze and sketch the graph of f (x) = (cos x)�(1 + sin x).

Solution Because the function has a period of 2π, you can restrict the analysis of the 
graph to any interval of length 2π. For convenience, choose [−π�2, 3π�2].

Domain: All real numbers except x =
3 + 4n

2
π

Range: All real numbers

 Period: 2π

x-intercept: (π2, 0)
y-intercept: (0, 1)

Vertical asymptotes: x = −
π
2

, x =
3π
2

 See Remark below.

Horizontal asymptotes: None

Symmetry: None

First derivative: f′(x) = −
1

1 + sin x

Second derivative: f ″(x) = cos x
(1 + sin x)2

 Critical numbers: None

Possible points of inflection: x =
π
2

Test intervals: (−π
2

, 
π
2), (

π
2

, 
3π
2 )

The analysis of the graph of f  on the interval [−π�2, 3π�2] is shown in the table, and 
the graph is shown in Figure 3.52(a). Compare this with the graph generated by the 
computer algebra system Maple in Figure 3.52(b).

f (x) f′(x) f ″(x) Characteristic of Graph

x = −
π
2

Undef. Undef. Undef. Vertical asymptote

−
π
2

< x <
π
2

− + Decreasing, concave upward

x =
π
2

0 − 0 Point of inflection

π
2

< x <
3π
2

− − Decreasing, concave downward

x =
3π
2

Undef. Undef. Undef. Vertical asymptote

 

REMARK By substituting −π�2 or 3π�2 into the function, you obtain the 
indeterminate form 0�0, which you will study in Section 5.6. To determine that the 
function has vertical asymptotes at these two values, rewrite f  as

f (x) = cos x
1 + sin x

=
(cos x)(1 − sin x)

(1 + sin x)(1 − sin x) =
(cos x)(1 − sin x)

cos2 x
=

1 − sin x
cos x

.

In this form, it is clear that the graph of f  has vertical asymptotes at x = −π�2 and 3π�2.
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Figure 3.52
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3.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Analyzing the Graph of a Function Name 

several of the concepts you have learned that are useful 
for analyzing the graph of a function.

2.  Analyzing a Graph Explain how to create a table to 
determine characteristics of a graph. What elements do 
you include?

3.  Slant Asymptote Which type of function can have 
a slant asymptote? How do you determine the equation of 
a slant asymptote?

4.  Polynomial What are the maximum numbers of 
relative extrema and points of inflection that a fifth-degree 
polynomial can have? Explain.

Matching In Exercises 5–8, match the graph of the function 
with the graph of its derivative. [The graphs of the derivatives 
are labeled (a), (b), (c), and (d).]

(a) 

x
1 2

3

−1

−3
−2

y  (b) 

x

4

4

6

6

−6

−6

−4

−4 −2

y

(c) 

x
4

−4

−4 −2
−2

2

y  (d) 

x
1

2

1

2

3

3−1−2

−3

−3

y

5. 

x
1

2

2

3

3−1

−2

−2

−3

−3

y  6. 

x
1

1

2 3−1−2−3

y

7. 

x

1

2

3

3

−2
−1

−3

−3

y  8. 

x

1

1

2

2

3

3−2 −1

−3

−3

y

 Analyzing the Graph of a Function In 
Exercises 9–36, analyze and sketch a graph of the 
function. Label any intercepts, relative extrema, 
points of inflection, and asymptotes. Use a graphing 
utility to verify your results.

 9. y =
1

x − 2
− 3 10. y =

x
x2 + 1

11. y =
x

1 − x
 12. y =

x − 4
x − 3

13. y =
x + 1
x2 − 4

 14. y =
2x

9 − x2

15. y =
x2

x2 + 3
 16. y =

x2 + 1
x2 − 4

17. y = 3 +
2
x
 18. f (x) = x − 3

x

19. f (x) = x +
32
x2  20. y =

4
x2 + 1

21. y =
3x

x2 − 1
 22. f (x) = x3

x2 − 9

23. y =
x2 − 6x + 12

x − 4
 24. y =

−x2 − 4x − 7
x + 3

25. y =
x3

√x2 − 4
 26. y =

x

√x2 − 4

27. y = x√4 − x 28. g(x) = x√9 − x2

29. y = 3x2�3 − 2x 30. y = (x + 1)2 − 3(x + 1)2�3

31. y = 2 − x − x3 32. y = −1
3 (x3 − 3x + 2)

33. y = 3x4 + 4x3 34. y = −2x4 + 3x2

35. xy2 = 9 36. x2y = 9

 Analyzing the Graph of a Function In 
Exercises 37–44, analyze and sketch a graph of 
the function over the given interval. Label any 
intercepts, relative extrema, points of inflection, 
and asymptotes. Use a graphing utility to verify 
your results.

 Function Interval

37. f (x) = 2x − 4 sin x 0 ≤ x ≤ 2π

38. f (x) = −x + 2 cos x 0 ≤ x ≤ 2π

39. y = sin x − 1
18 sin 3x 0 ≤ x ≤ 2π

40. y = 2(x − 2) + cot x 0 < x < π

41. y = 2(csc x + sec x) 0 < x <
π
2

42. y = sec2 
πx
8

− 2 tan 
πx
8

− 1 −3 < x < 3

43. g(x) = x tan x −
3π
2

< x <
3π
2

44. g(x) = x cot x −2π < x < 2π
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Analyzing the Graph of a Function Using Technology
In Exercises 45–50, use a computer algebra system to analyze 
and graph the function. Identify any relative extrema, points 
of inflection, and asymptotes.

45. f (x) = 20x
x2 + 1

−
1
x

46. f (x) = x +
4

x2 + 1

47. f (x) = −2x

√x2 + 7

48. f (x) = 4x

√x2 + 15

49. y = cos x − 1
4 cos 2x, 0 ≤ x ≤ 2π

50. y = 2x − tan x, −
π
2

< x <
π
2

Identifying Graphs In Exercises 51 and 52, the graphs of 
f, f ′, and f ″ are shown on the same set of coordinate axes. 
Identify each graph. Explain your reasoning. To print an 
enlarged copy of the graph, go to MathGraphs.com.

51. 

x
1 2

−1
−1−2

−2

y  52. 

x
2 4−2−4

−4

4

y

 Graphical Reasoning In Exercises 53–56, use 
the graph of f ′ to sketch a graph of f  and the 
graph of f ″. To print an enlarged copy of the 
graph, go to MathGraphs.com.

53. 

x
−4 −3 1 3 4

4
3
2
1

y

f ′

 54. 

x
−8 −4 4 8 12 16

20

16

12

8

4

f ′

y

55. 

x
−9 −6 3 6

3

2

1

−2

−3

f ′

y  56. 

x
−3 −2 −1 1 2 3

3

2

1

−3

f ′

y

(Submitted by Bill Fox, Moberly Area Community College, 
Moberly, MO)

57. Graphical Reasoning Consider the function

 f (x) = cos2 πx

√x2 + 1
, 0 < x < 4.

(a)  Use a computer algebra system to graph the function and 
use the graph to approximate the critical numbers visually.

(b)  Use a computer algebra system to find f ′ and approximate 
the critical numbers. Are the results the same as the visual 
approximation in part (a)? Explain.

58. Graphical Reasoning Consider the function

 f (x) = tan(sin πx).

(a)  Use a graphing utility to graph the function.

(b) Identify any symmetry of the graph.

(c)  Is the function periodic? If so, what is the period?

(d) Identify any extrema on (−1, 1).
(e)  Use a graphing utility to determine the concavity of the 

graph on (0, 1).

EXPLORING CONCEPTS
59.  Sketching a Graph Sketch a graph of a 

differentiable function f  that satisfies the following 
conditions and has x = 2 as its only critical number.

 f ′(x) < 0 for x < 2

f ′(x) > 0 for x > 2

lim
x→−∞

 f (x) = 6

lim
x→∞

 f (x) = 6

60.  Points of Inflection Is it possible to sketch a graph 
of a function that satisfies the conditions of Exercise 59 
and has no points of inflection? Explain.

61.  Using a Derivative Let f ′(t) < 0 for all t in the 
interval (2, 8). Explain why f (3) > f (5).

62.  Using a Derivative Let f (0) = 3 and 2 ≤ f ′(x) ≤ 4 
for all x in the interval [−5, 5]. Determine the greatest 
and least possible values of f (2).

63.  A Function and Its Derivative The graph of a 
function f  is shown below. To print an enlarged copy of 
the graph, go to MathGraphs.com.

x
−4 −2 2 4

−2

2

4

6

f

y

(a) Sketch f ′.

(b) Use the graph to estimate lim
x→∞

 f (x) and lim
x→∞

 f ′(x).
(c) Explain the answers you gave in part (b).
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64.  HOW DO YOU SEE IT? The graph of f  is 
shown in the figure.

x

6

6

4

42

−4

−2

−6

−6

y

f

(a)  For which values of x is f ′(x) zero? Positive? 
Negative? What do these values mean?

(b)  For which values of x is f ″(x) zero? Positive? 
Negative? What do these values mean?

(c)  On what open interval is f ′ an increasing 
function?

(d)  For which value of x is f ′(x) minimum? For this 
value of x, how does the rate of change of f  
compare with the rates of change of f  for other 
values of x? Explain.

64.  

Horizontal and Vertical Asymptotes In Exercises 
65–68, use a graphing utility to graph the function. Use the 
graph to determine whether it is possible for the graph of 
a function to cross its horizontal asymptote. Do you think 
it is possible for the graph of a function to cross its vertical 
asymptote? Why or why not?

65. f (x) = 4(x − 1)2
x2 − 4x + 5

 66. g(x) = 3x4 − 5x + 3
x4 + 1

67. h(x) = sin 2x
x

 68. f (x) = cos 3x
4x

Examining a Function In Exercises 69 and 70, use a 
graphing utility to graph the function. Explain why there is 
no vertical asymptote when a superficial examination of the 
function may indicate that there should be one.

69. h(x) = 6 − 2x
3 − x

 70. g(x) = x2 + x − 2
x − 1

Slant Asymptote In Exercises 71–76, use a graphing 
utility to graph the function and determine the slant asymptote 
of the graph analytically. Zoom out repeatedly and describe 
how the graph on the display appears to change. Why does 
this occur?

71. f (x) = −
x2 − 3x − 1

x − 2
 72. g(x) = 2x2 − 8x − 15

x − 5

73. f (x) = 2x3

x2 + 1
 74. h(x) = −x3 + x2 + 4

x2

75. f (x) = x3 − 3x2 + 2
x(x − 3)  76. f (x) = −

x3 − 2x2 + 2
2x2

77.  Investigation Let P(x0, y0) be an arbitrary point on the 
graph of f  that f ′(x0) ≠ 0, as shown in the figure. Verify each 
statement.

x
O A B C

f

P(x0, y0)

y

(a) The x-intercept of the tangent line is

  (x0 −
f (x0)
f ′(x0)

, 0).
(b) The y-intercept of the tangent line is

  (0, f (x0) − x0 f ′(x0)).

(c) The x-intercept of the normal line is

  (x0 + f (x0) f ′(x0), 0).

(The normal line at a point is perpendicular to the tangent 
line at the point.)

(d) The y-intercept of the normal line is

  (0, y0 +
x0

f ′(x0)).

(e) ∣BC∣ = ∣ f (x0)
f ′(x0) ∣

(f ) ∣PC∣ = ∣ f (x0)√1 + [ f ′(x0)]2

f ′(x0) ∣
(g) ∣AB∣ = ∣ f (x0) f ′(x0)∣
(h) ∣AP∣ = ∣ f (x0)∣√1 + [ f ′(x0)]2

78.  Graphical Reasoning Identify the real numbers x0, x1,
x2, x3, and x4 in the figure such that each of the following is 
true.

xx0 x1 x2 x3 x4

f

y

(a) f ′(x) = 0

(b) f ″(x) = 0

(c) f ′(x) does not exist.

 (d) f  has a relative maximum.

(e) f  has a point of inflection.
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Think About It In Exercises 79–82, create a function whose 
graph has the given characteristics. (There is more than one 
correct answer.)

79. Vertical asymptote: x = 3

Horizontal asymptote: y = 0

80. Vertical asymptote: x = −5

Horizontal asymptote: None

81. Vertical asymptote: x = 3

Slant asymptote: y = 3x + 2

82. Vertical asymptote: x = 2

Slant asymptote: y = −x

True or False? In Exercises 83–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83.  If f ′(x) > 0 for all real numbers x, then f  increases without 
bound.

84.  If f ″(x) < 0 for all real numbers x, then f  decreases without 
bound.

85.  Every rational function has a slant asymptote.

86.  Every polynomial function has an absolute maximum and an 
absolute minimum on (−∞, ∞).

87.  Graphical Reasoning The graph of the first derivative of 
a function f  on the interval [−7, 5] is shown. Use the graph to 
answer each question.

 (a) On what interval(s) is f  decreasing?

 (b) On what interval(s) is the graph of f  concave downward?

 (c) At what x-value(s) does f  have relative extrema?

 (d)  At what x-value(s) does the graph of f  have a point of 
inflection?

  

x

y

−4−6−8 2 4 6−2

2

4

6

8

10

f ′

 

x

y

−2−4 2 4
−8

−16

8

16

24

f ′

 Figure for 87 Figure for 88

88.  Graphical Reasoning The graph of the first derivative of 
a function f  on the interval [−4, 2] is shown. Use the graph to 
answer each question.

 (a) On what interval(s) is f  increasing?

 (b) On what interval(s) is the graph of f  concave upward?

 (c) At what x-value(s) does f  have relative extrema?

 (d)  At what x-value(s) does the graph of f  have a point of 
inflection?

89. Graphical Reasoning Consider the function

 f (x) = ax
(x − b)2.

Determine the effect on the graph of f  as a and b are changed. 
Consider cases where a and b are both positive or both 
negative and cases where a and b have opposite signs.

90. Graphical Reasoning Consider the function

 f (x) = 1
2
(ax)2 − ax, a ≠ 0.

(a)  Determine the changes (if any) in the intercepts, extrema, 
and concavity of the graph of f  when a is varied.

 (b)  In the same viewing window, use a graphing utility to 
graph the function for four different values of a.

Slant Asymptotes In Exercises 91 and 92, the graph of 
the function has two slant asymptotes. Identify each slant 
asymptote. Then graph the function and its asymptotes.

91. y = √4 + 16x2 92. y = √x2 + 6x

93. Investigation Consider the function

 f (x) = 2xn

x4 + 1

for nonnegative integer values of n.

(a)  Discuss the relationship between the value of n and the 
symmetry of the graph.

 (b)  For which values of n will the x-axis be the horizontal 
asymptote?

 (c)  For which value of n will y = 2 be the horizontal 
asymptote?

 (d) What is the asymptote of the graph when n = 5?

(e)  Use a graphing utility to graph f  for the indicated values 
of n in the table. Use the graph to determine the number 
of extrema M and the number of inflection points N of the 
graph.

n 0 1 2 3 4 5

M

N

PUTNAM EXAM CHALLENGE
94.  Let f (x) be defined for a ≤ x ≤ b. Assuming appropriate 

properties of continuity and derivability, prove for 
a < x < b that

 

f (x) − f (a)
x − a

−
f (b) − f (a)

b − a
x − b

=
1
2

f ″(ε),

 where ε is some number between a and b.
This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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 Solve applied minimum and maximum problems.

Applied Minimum and Maximum Problems
One of the most common applications of calculus involves the determination of 
minimum and maximum values. Consider how frequently you hear or read terms such as 
greatest profit, least cost, least time, greatest voltage, optimum size, least size, greatest 
strength, and greatest distance. Before outlining a general problem-solving strategy for 
such problems, consider the next example.

 Finding Maximum Volume

A manufacturer wants to design an open box having a square base and a surface area 
of 108 square inches, as shown in Figure 3.53. What dimensions will produce a box 
with maximum volume?

Solution Because the box has a square base, its volume is

V = x2h. Primary equation

This equation is called the primary equation because it gives a formula for the 
quantity to be optimized. The surface area of the box is

 S = (area of base) + (area of four sides)
108 = x2 + 4xh. Secondary equation

Because V is to be maximized, you want to write V as a function of just one variable. 
To do this, you can solve the equation x2 + 4xh = 108 for h in terms of x to obtain 
h = (108 − x2)�(4x). Substituting into the primary equation produces

 V = x2h Function of two variables

 = x2(108 − x2

4x ) Substitute for h.

 = 27x −
x3

4
. Function of one variable

Before finding which x-value will yield a maximum value of V, you should determine 
the feasible domain. That is, what values of x make sense in this problem? You know 
that V ≥ 0. You also know that x must be nonnegative and that the area of the base 
(A = x2) is at most 108. So, the feasible domain is

0 ≤ x ≤ √108. Feasible domain

To maximize V, find its critical numbers on the interval (0, √108).

 
dV
dx

= 27 −
3x2

4
 Differentiate with respect to x.

 27 −
3x2

4
= 0 Set derivative equal to 0.

 3x2 = 108 Simplify.

 x = ±6 Critical numbers

So, the critical numbers are x = ±6. You do not need to consider x = −6 because it 
is outside the domain. Evaluating V at the critical number x = 6 and at the endpoints 
of the domain produces V(0) = 0, V(6) = 108, and V(√108) = 0. So, V is maximum 
when x = 6, and the dimensions of the box are 6 inches by 6 inches by 3 inches. 

TECHNOLOGY You can  
verify your answer in Example 1 
by using a graphing utility to  
graph the volume function

V = 27x −
x3

4
.

Use a viewing window in which 
0 ≤ x ≤ √108 ≈ 10.4 and 
0 ≤ y ≤ 120, and use the  
maximum or trace feature to  
determine the value of x that 
produces a maximum volume.

Open box with square base: 
S = x2 + 4xh = 108
Figure 3.53

x
x

h
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In Example 1, you should realize that there are infinitely many open boxes having 
108 square inches of surface area. To begin solving the problem, you might ask 
yourself which basic shape would seem to yield a maximum volume. Should the box 
be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 3.54, to 
determine whether you can get a better feeling for what the optimum dimensions should 
be. Remember that you are not ready to begin solving a problem until you have clearly 
identified what the problem is.

1
43 × 3 × 8

Volume = 741
4

   

3
44 × 4 × 5

Volume = 92    

3
205 × 5 × 4

Volume = 1033
4

6 × 6 × 3

Volume = 108    

8 × 8 × 13
8

Volume = 88

Which box has the greatest volume?
Figure 3.54

Example 1 illustrates the following guidelines for solving applied minimum and 
maximum problems.

GUIDELINES FOR SOLVING APPLIED MINIMUM AND  
MAXIMUM PROBLEMS

1. Identify all given quantities and all quantities to be determined. If possible, 
make a sketch.

2. Write a primary equation for the quantity that is to be maximized 
or minimized. (A review of several useful formulas from geometry is 
presented on the formula card inside the back cover.)

3. Reduce the primary equation to one having a single independent variable. 
This may involve the use of secondary equations relating the independent 
variables of the primary equation.

4. Determine the feasible domain of the primary equation. That is, determine 
the values for which the stated problem makes sense.

5. Determine the desired maximum or minimum value by the calculus 
techniques discussed in Sections 3.1 through 3.4.

REMARK For Step 5, recall that to determine the maximum or minimum value of 
a continuous function f  on a closed interval, you should compare the values of f  at its 
critical numbers with the values of f  at the endpoints of the interval.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



3.7 Optimization Problems 221

 Finding Minimum Distance

See LarsonCalculus.com for an interactive version of this type of example.

Which points on the graph of y = 4 − x2 are closest to the point (0, 2)?

Solution Figure 3.55 shows that there are two points at a minimum distance from 
the point (0, 2). The distance between the point (0, 2) and a point (x, y) on the graph of 
y = 4 − x2 is

d = √(x − 0)2 + (y − 2)2. Primary equation

Using the secondary equation y = 4 − x2, you can rewrite the primary equation as

d = √x2 + (4 − x2 − 2)2

 = √x4 − 3x2 + 4.

Because d is smallest when the expression inside the radical is smallest, you need only 
find the critical numbers of f (x) = x4 − 3x2 + 4. Note that the domain of f  is the 
entire real number line. So, there are no endpoints of the domain to consider. Moreover, 
the derivative of f

f′(x) = 4x3 − 6x

 = 2x(2x2 − 3)

is zero when

x = 0, √3
2

, −√3
2

.

Testing these critical numbers using the First Derivative Test verifies that x = 0 yields 
a relative maximum, whereas both x = √3�2 and x = −√3�2 yield a minimum 
distance. So, the closest points are (√3�2, 5�2) and (−√3�2, 5�2).

 Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and 
bottom of the page are to be 11

2 inches, and the margins on the left and right are to be 
1 inch (see Figure 3.56). What should the dimensions of the page be so that the least 
amount of paper is used?

Solution Let A be the area to be minimized.

A = (x + 3)(y + 2) Primary equation

The printed area inside the margins is

24 = xy. Secondary equation

Solving this equation for y produces y = 24�x. Substituting into the primary equation 
produces

A = (x + 3)(24
x

+ 2) = 30 + 2x +
72
x

. Function of one variable

Because x must be positive, you are interested only in values of A for x > 0. To find 
the critical numbers, differentiate with respect to x

dA
dx

= 2 −
72
x2

and note that the derivative is zero when x2 = 36, or x = ±6. So, the critical numbers 
are x = ±6. You do not have to consider x = −6 because it is outside the domain. The 
First Derivative Test confirms that A is a minimum when x = 6. So, y = 24

6 = 4 and 
the dimensions of the page should be x + 3 = 9 inches by y + 2 = 6 inches. 

The quantity to be minimized is  
distance: d = √(x − 0)2 + (y − 2)2.
Figure 3.55

3

1

1−1
x

d (x, y)

(0, 2)

y = 4 − x2

y

The quantity to be minimized is area: 
A = (x + 3)( y + 2).
Figure 3.56

Newton, Sir Isaac (1643-1727), English mathematician and physicist, who brought the
scienti�c revolution of the 17th century to its climax and established the principal outlines
of the system of natural science that has since dominated Western thought. In mathematics,
he was the �rst person to develop the calculus. In optics, he established the heterogeneity
of light and the periodicity of certain phenomena. In mechanics, his three laws of motion
became  the  foundation  of  modern  dynamics,  and  from  them  he  derived  the  law  of
universal gravitation.

Newton was born on January 4, 1643, at W oolsthorpe, near Grantham in Lincolnshire.
When he was three years old, his widowed mother remarried, leaving him to be reared by
her mother. Eventually, his mother, by then widowed a second time, was persuaded to
send him to grammar school in Grantham; then, in the summer of 1661, he was sent to
Trinity College, University of Cambridge.

After receiving his bachelor's degree in 1665, and after an intermission of nearly two
years caused by the plague, Newton stayed on at Trinity, which elected him to a
fellowship in 1667; he took his master's degree in 1668. Meanwhile, he had largely
ignored the established curriculum of the university to pursue his own interests:
mathematics and natural philosophy. Proceeding entirely on his own, Newton investigated
the latest developments in 17th-century mathematics and the new natural philosophy that
treated  nature  as  a  complicated  machine.  Almost  immediately, he  made  fundamental
discoveries that laid the foundation of his career in science.
The Fluxional Method

Newton's �rst achievement came in mathematics. He generalized the earlier methods
that were being used to draw tangents to curves (similar to differentiation) and to calculate
areas under curves (similar to integration), recognized that the two procedures were inverse
operations, and—joining them in what he called the �uxional method—developed in the
autumn of 1666 what is now known as the calculus. The calculus was a new and powerful
instrument that carried modern mathematics above the level of Greek geometry. Although
Newton was its inventor, he did not introduce it into European mathematics. Always
morbidly fearful of publication and criticism, he kept his discovery to himself, although
enough was known of his abilities to effect his appointment in 1669 as Lucasian Professor
of Mathematics at the University of Cambridge. In 1675 the German mathematician
Gottfried Wilhelm Leibniz arrived independently at virtually the same method, which he
called the differential calculus.  Leibniz proceeded to publish his method, and the world of
mathematics not only learned it from him but also accepted his name for it and his
notation. Newton himself did not publish any detailed exposition of his �uxional method
until 1704.
Optics

Optics was another of Newton's early interests. In trying to explain how phenomena of
colors arise, he arrived at the idea that sunlight is a heterogeneous mixture of different
rays—each of which provokes the sensation of a different color—and that re�ections and
refractions cause colors to appear by separating the mixture into its components. He
devised an experimental demonstration of this theory, one of the great early exhibitions of
the power of experimental investigation in science. His measurement of the rings re�ected
from  a  thin  �lm  of  air  con�ned  between  a  lens  and  a  sheet  of  glass  was  the  �rst
demonstration of periodicity in optical phenomena. In 1672 Newton sent a brief
exposition of his theory of colors to the Royal Society in London. Its appearance in the
Philosophical  Transactions led  to  a  number  of  criticisms  that  con�rmed  his  fear  of
publication, and he subsequently withdrew as much as possible into the solitude of his
Cambridge study. He did not publish his full Opticks until 1704.

x

y

1 in.1
2

1 in.1
2

1 in. 1 in.
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 Finding Minimum Length

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are to 
be stayed by two wires, attached to a single stake, running from ground level to the top 
of each post. Where should the stake be placed to use the least amount of wire?

Solution Let W  be the wire length to be 
minimized. Using Figure 3.57, you can write

W = y + z. Primary equation

In this problem, rather than solving for y in 
terms of z (or vice versa), you can solve for 
both y and z in terms of a third variable x, as 
shown in Figure 3.57. From the Pythagorean 
Theorem, you obtain

 x2 + 122 = y2

 (30 − x)2 + 282 = z2

which implies that

y = √x2 + 144

z = √x2 − 60x + 1684.

So, you can rewrite the primary equation as

 W = y + z

 = √x2 + 144 + √x2 − 60x + 1684, 0 ≤ x ≤ 30.

Differentiating W  with respect to x yields

dW
dx

=
x

√x2 + 144
+

x − 30

√x2 − 60x + 1684
.

By letting dW�dx = 0, you obtain

 
x

√x2 + 144
+

x − 30

√x2 − 60x + 1684
= 0

 
x

√x2 + 144
=

30 − x

√x2 − 60x + 1684
 x√x2 − 60x + 1684 = (30 − x)√x2 + 144

 x2(x2 − 60x + 1684) = (30 − x)2(x2 + 144)
 x4 − 60x3 + 1684x2 = x4 − 60x3 + 1044x2 − 8640x + 129,600

 640x2 + 8640x − 129,600 = 0

 320(x − 9)(2x + 45) = 0

 x = 9, −22.5.

Because x = −22.5 is not in the domain and

W(0) ≈ 53.04, W(9) = 50, and W(30) ≈ 60.31

you can conclude that the wires should be staked at 9 feet from the 12-foot pole. 

TECHNOLOGY From Example 4, you can see that applied optimization 
problems can involve a lot of algebra. If you have access to a graphing utility, you 
can confirm that x = 9 yields a minimum value of W  by graphing

W = √x2 + 144 + √x2 − 60x + 1684

as shown in Figure 3.58.

The quantity to be minimized is length. 
From the diagram, you can see that x 
varies between 0 and 30.
Figure 3.57

12 ft
y

28 ft
z

30 − xx

W = y + z

You can confirm the minimum value  
of W with a graphing utility.
Figure 3.58

30
45

0

60

Minimum
X=9 Y=50
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In each of the first four examples, the extreme value occurred at a critical number. 
Although this happens often, remember that an extreme value can also occur at an 
endpoint of an interval, as shown in Example 5.

 An Endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire 
should be used for the square and how much should be used for the circle to enclose 
the maximum total area?

Solution The total area (see Figure 3.59) is

A = (area of square) + (area of circle)
A = x2 + πr2. Primary equation

Because the total length of wire is 4 feet, you obtain

4 = (perimeter of square) + (circumference of circle)
4 = 4x + 2πr. Secondary equation

So, r = 2(1 − x)�π, and by substituting into the primary equation you have

A = x2 + π[2(1 − x)
π ]

2

 = x2 +
4(1 − x)2

π

 =
1
π (πx2 + 4 − 8x + 4x2)

 =
1
π [(π + 4)x2 − 8x + 4].

The feasible domain is 0 ≤ x ≤ 1, restricted by the square’s perimeter. Because

dA
dx

=
2(π + 4)x − 8

π

the only critical number in (0, 1) is x = 4�(π + 4) ≈ 0.56. So, using

A(0) ≈ 1.27, A(0.56) ≈ 0.56, and A(1) = 1

you can conclude that the maximum area occurs when x = 0. That is, all the wire is 
used for the circle. 

Before doing the section exercises, review the primary equations developed in 
Examples 1–5. As applications go, these five examples are fairly simple, and yet the 
resulting primary equations are quite complicated.

 V = 27x −
x3

4
 Example 1

 d = √x4 − 3x2 + 4 Example 2

 A = 30 + 2x +
72
x

 Example 3

 W = √x2 + 144 + √x2 − 60x + 1684 Example 4

 A =
1
π [(π + 4)x2 − 8x + 4] Example 5

You must expect that real-life applications often involve equations that are at least as 
complicated as these five. Remember that one of the main goals of this course is to 
learn to use calculus to analyze equations that initially seem formidable.

The quantity to be maximized is area: 
A = x2 + πr2.
Figure 3.59

4 feet

?
Perimeter: 4x

Area: x2

Area:   r2

x

Circumference: 2  r

r

π

π

x

Exploration
What would the answer 
be if Example 5 asked for 
the dimensions needed to 
enclose the minimum total 
area?
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3.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Writing In your own words, describe primary equation, 

secondary equation, and feasible domain.

2.  Optimization Problems In your own words, 
describe the guidelines for solving applied minimum and 
maximum problems.

3.  Numerical, Graphical, and Analytic Analysis Find 
two positive numbers whose sum is 110 and whose product is 
a maximum.

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum product.

First Number, x Second Number Product, P

10 110 − 10 10(110 − 10) = 1000

20 110 − 20 20(110 − 20) = 1800

 (b) Write the product P as a function of x.

 (c)  Use calculus to find the critical number of the function in 
part (b). Then find the two numbers.

 (d)  Use a graphing utility to graph the function in part (b) and 
verify the solution from the graph.

4.  Numerical, Graphical, and Analytic Analysis An 
open box of maximum volume is to be made from a square 
piece of material, 24 inches on a side, by cutting equal squares 
from the corners and turning up the sides (see figure).

24 − 2x

24
 −

 2
x

xx

x

x

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum volume.

 
Height, x Length and Width Volume, V

1 24 − 2(1) 1[24 − 2(1)]2 = 484

2 24 − 2(2) 2[24 − 2(2)]2 = 800

 (b) Write the volume V as a function of x.

 (c)  Use calculus to find the critical number of the function in 
part (b). Then find the maximum volume.

 (d)  Use a graphing utility to graph the function in part (b) and 
verify the maximum volume from the graph.

 Finding Numbers In Exercises 5–10, find 
two positive numbers that satisfy the given 
requirements.

 5. The sum is S and the product is a maximum.

 6. The product is 185 and the sum is a minimum.

 7.  The product is 147 and the sum of the first number plus three 
times the second number is a minimum.

 8.  The sum of the first number squared and the second number is 
54 and the product is a maximum.

 9.  The sum of the first number and twice the second number is 
108 and the product is a maximum.

10.  The sum of the first number cubed and the second number is 
500 and the product is a maximum.

 Maximum Area In Exercises 11 and 12, find 
the length and width of a rectangle that has the 
given perimeter and a maximum area.

11. Perimeter: 80 meters 12. Perimeter: P units

 Minimum Perimeter In Exercises 13 and 14, 
find the length and width of a rectangle that has 
the given area and a minimum perimeter.

13. Area: 49 square feet 14. Area: A square centimeters

 Minimum Distance In Exercises 15 and 16, 
find the points on the graph of the function that are 
closest to the given point.

15. y = x2, (0, 3) 16. y = x2 − 2, (0, −1)

17.  Minimum Area A rectangular poster is to contain 
648 square inches of print. The margins at the top and bottom 
of the poster are to be 2 inches, and the margins on the left 
and right are to be 1 inch. What should the dimensions of the 
poster be so that the least amount of poster is used?

18.   Minimum Area A rectangular page is to contain  
36 square inches of print. The margins on each side are to be 
11

2 inches. Find the dimensions of the page such that the least 
amount of paper is used.

19.  Minimum Length A farmer plans to fence a rectangular 
pasture adjacent to a river (see figure). The pasture must 
contain 405,000 square meters in order to provide enough 
grass for the herd. No fencing is needed along the river. What 
dimensions will require the least amount of fencing?

y y

x
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20.  Maximum Volume A rectangular solid (with a square 
base) has a surface area of 337.5 square centimeters. Find the 
dimensions that will result in a solid with maximum volume.

21.   Maximum Area A Norman window is constructed by 
adjoining a semicircle to the top of an ordinary rectangular 
window (see figure). Find the dimensions of a Norman 
window of maximum area when the total perimeter is 16 feet.

y

x

22.   Maximum Area A rectangle is bounded by the x- and  
y-axes and the graph of y = (6 − x)�2 (see figure). What 
length and width should the rectangle have so that its area is 
a maximum?

2
y = 6 − x

x

1

−1
1

2

2 3

5

5

4

4 6

(x, y)

y   

x

1

1

2

2

3

3

4

4

(x, 0)

(1, 2)

(0, y)

y

Figure for 22 Figure for 23

23.  Minimum Length and Minimum Area A right 
triangle is formed in the first quadrant by the x- and y-axes and 
a line through the point (1, 2) (see figure).

 (a) Write the length L of the hypotenuse as a function of x.

(b)  Use a graphing utility to approximate x graphically such 
that the length of the hypotenuse is a minimum.

 (c)  Find the vertices of the triangle such that its area is a 
minimum.

24.   Maximum Area Find the area of the largest isosceles 
triangle that can be inscribed in a circle of radius 6 (see figure).

 (a)  Solve by writing the area as a function of h.

(b) Solve by writing the area as a function of α.

(c) Identify the type of triangle of maximum area.

h
6

6
α

  
y =     25 − x2

x
−4 −2 42

6

(x, y)

y

 Figure for 24 Figure for 25

25.   Maximum Area A rectangle is bounded by the x-axis and 
the semicircle

 y = √25 − x2

  (see figure). What length and width should the rectangle have 
so that its area is a maximum?

26.  Maximum Area Find the dimensions of the largest 
rectangle that can be inscribed in a semicircle of radius r (see 
Exercise 25).

27.  Numerical, Graphical, and Analytic Analysis An 
exercise room consists of a rectangle with a semicircle on each 
end. A 200-meter running track runs around the outside of  
the room.

 (a)  Draw a figure to represent the problem. Let x and y represent 
the length and width of the rectangle, respectively.

 (b)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum area of the rectangular region.

Length, x Width, y Area, xy

10
2
π (100 − 10) (10) 2

π (100 − 10) ≈ 573

20
2
π (100 − 20) (20) 2

π (100 − 20) ≈ 1019

 (c)  Write the area A of the rectangular region as a function of x.

 (d)  Use calculus to find the critical number of the function in 
part (c). Then find the maximum area and the dimensions 
that yield the maximum area.

 (e)  Use a graphing utility to graph the function in part (c) and 
verify the maximum area from the graph.

28.  Numerical, Graphical, and Analytic Analysis A 
right circular cylinder is designed to hold 22 cubic inches of a 
soft drink (approximately 12 fluid ounces).

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.)

Radius, r Height Surface Area, S

0.2
22

π(0.2)2 2π(0.2)[0.2 +
22

π(0.2)2] ≈ 220.3

0.4
22

π(0.4)2 2π(0.4)[0.4 +
22

π(0.4)2] ≈ 111.0

 (b)  Use a graphing utility to generate additional rows of the 
table. Use the table to estimate the minimum surface area.

 (c) Write the surface area S as a function of r.

 (d)  Use calculus to find the critical number of the function 
in part (c). Then find the minimum surface area and the 
dimensions that yield the minimum surface area.

 (e)  Use a graphing utility to graph the function in part (c) and 
verify the minimum surface area from the graph.
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29.   Maximum Volume A rectangular package to be sent by 
a postal service can have a maximum combined length and 
girth (perimeter of a cross section) of 108 inches (see figure). 
Find the dimensions of the package of maximum volume that 
can be sent. (Assume the cross section is square.)

x

y

x

30.   Maximum Volume Rework Exercise 29 for a cylindrical 
package. (The cross section is circular.)

EXPLORING CONCEPTS
31.  Surface Area and Volume A shampoo bottle is 

a right circular cylinder. Because the surface area of the 
bottle does not change when it is squeezed, is it true that 
the volume remains the same? Explain.

32.  Area and Perimeter The perimeter of a rectangle 
is 20 feet. Of all possible dimensions, the maximum 
area is 25 square feet when its length and width are both  
5 feet. Are there dimensions that yield a minimum area? 
Explain.

33.  Minimum Surface Area A solid is formed by adjoining 
two hemispheres to the ends of a right circular cylinder. The 
total volume of the solid is 14 cubic centimeters. Find the 
radius of the cylinder that produces the minimum surface area.

34.   Minimum Cost An industrial tank of the shape described 
in Exercise 33 must have a volume of 4000 cubic feet. 
The hemispherical ends cost twice as much per square foot 
of surface area as the sides. Find the dimensions that will 
minimize cost.

35.   Minimum Area The sum of the perimeters of an 
equilateral triangle and a square is 10. Find the dimensions of 
the triangle and the square that produce a minimum total area.

36.  Maximum Area Twenty feet of wire is to be used to form 
two figures. In each of the following cases, how much wire 
should be used for each figure so that the total enclosed area is 
maximum?

 (a) Equilateral triangle and square

 (b) Square and regular pentagon

 (c) Regular pentagon and regular hexagon

 (d) Regular hexagon and circle

  What can you conclude from this pattern? {Hint: The 
area of a regular polygon with n sides of length x is 
A = (n�4)[cot(π�n)]x2.}

37.  Beam Strength A wooden beam has a rectangular cross 
section of height h and width w (see figure). The strength S of 
the beam is directly proportional to the width and the square 
of the height. What are the dimensions of the strongest beam 
that can be cut from a round log of diameter 20 inches? (Hint: 
S = kh2w, where k is the proportionality constant.)

20

w

h

  

x

(0, h)

(0, y)

(x, 0)(−x, 0)

y

 Figure for 37 Figure for 38

38.  Minimum Length Two factories are located at the 
coordinates (−x, 0) and (x, 0), and their power supply is at 
(0, h), as shown in the figure. Find y such that the total length 
of power line from the power supply to the factories is a 
minimum.

40.  Illumination A light source is located over the center of a 
circular table of diameter 4 feet (see figure). Find the height h
of the light source such that the illumination I at the perimeter 
of the table is maximum when

 I =
k sin α

s2

  where s is the slant height, α is the angle at which the light 
strikes the table, and k is a constant.

 

h
s

4 ft

α α

 

x

1

3 − x

2θ

1θ

Q

2 α

 Figure for 40 Figure for 41

41.  Minimum Time A man is in a boat 2 miles from the 
nearest point on the coast. He is traveling to a point Q, located 
3 miles down the coast and 1 mile inland (see figure). He can 
row at 2 miles per hour and walk at 4 miles per hour. Toward 
what point on the coast should he row in order to reach point 
Q in the least time?

 An offshore oil well is  
2 kilometers off the  
coast. The refinery is  
4 kilometers down the 
coast. Laying pipe in  
the ocean is twice as  
expensive as laying it  
on land. What path 
should the pipe follow  
in order to minimize  
the cost?

39. Minimum Cost

Kanok Sulaiman/Shutterstock.com
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42.  Minimum Time The conditions are the same as in 
Exercise 41 except that the man can row at v1 miles per hour 
and walk at v2 miles per hour. If θ1 and θ2 are the magnitudes 
of the angles, show that the man will reach point Q in the least 
time when

 
sin θ1

v1
=

sin θ2

v2
.

43.  Minimum Distance Sketch the graph of

 f (x) = 2 − 2 sin x

on the interval [0, π�2].
(a)  Find the distance from the origin to the y-intercept and the 

distance from the origin to the x-intercept.

 (b)  Write the distance d from the origin to a point on the graph 
of f  as a function of x.

(c)  Use calculus to find the value of x that minimizes the 
function d on the interval [0, π�2]. What is the minimum 
distance? Use a graphing utility to verify your results.

   (Submitted by Tim Chapell, Penn Valley Community 
College, Kansas City, MO)

44.  Minimum Time When light waves traveling in a 
transparent medium strike the surface of a second transparent 
medium, they change direction. This change of direction is 
called refraction and is defined by Snell’s Law of Refraction,

 
sin θ1

v1
=

sin θ2

v2

where θ1 and θ2 are the magnitudes of the angles shown in the 
figure and v1 and v2 are the velocities of light in the two media. 
Show that this problem is equivalent to that in Exercise 42, 
and that light waves traveling from P to Q follow the path of 
minimum time.

x

d1

a − x

2θ

1θ

Q

d2

Medium 1

Medium 2

P

45.  Maximum Volume A sector with central angle θ is cut 
from a circle of radius 12 inches (see figure), and the edges 
of the sector are brought together to form a cone. Find the 
magnitude of θ such that the volume of the cone is a maximum.

12 in.

12 in.
θ

   

8 ft 8 ft

8 ft

θ θ

 Figure for 45 Figure for 46

46.  Numerical, Graphical, and Analytic Analysis The 
cross sections of an irrigation canal are isosceles trapezoids of 
which three sides are 8 feet long (see figure). Determine the 
angle of elevation θ of the sides such that the area of the cross 
sections is a maximum by completing the following.

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.)

 
θ Base 1 Base 2 Altitude Area

10° 8 8 + 16 cos 10° 8 sin 10° ≈ 22.1

20° 8 8 + 16 cos 20° 8 sin 20° ≈ 42.5

 (b)  Use a graphing utility to generate additional rows 
of the table. Use the table to estimate the maximum  
cross-sectional area.

 (c)  Write the cross-sectional area A as a function of θ.

 (d)  Use calculus to find the critical number of the function in 
part (c). Then find the angle that will yield the maximum 
cross-sectional area. What is the maximum area?

 (e)  Use a graphing utility to graph the function in part (c) and 
verify the maximum cross-sectional area.

47.  Maximum Profit Assume that the amount of money 
deposited in a bank is proportional to the square of the interest 
rate the bank pays on this money. Furthermore, the bank can 
reinvest this money at 8%. Find the interest rate the bank 
should pay to maximize profit. (Use the simple interest formula.)

 48.  HOW DO YOU SEE IT? The graph shows 
the profit P (in thousands of dollars) of a 
company in terms of its advertising cost x (in 
thousands of dollars).

10 20 30 40 50 60 70

500

1000

1500

2000

2500

3000

3500

4000

x

P

Advertising cost (in thousands of dollars)

Pro�t of a Company

Pr
o�

t (
in

 th
ou

sa
nd

s 
of

 d
ol

la
rs

)

(a)  Estimate the interval on which the profit is 
increasing.

(b)  Estimate the interval on which the profit is 
decreasing.

(c)  Estimate the amount of money the company 
should spend on advertising in order to yield a 
maximum profit.

(d)  The point of diminishing returns is the point at which 
the rate of growth of the profit function begins to 
decline. Estimate the point of diminishing returns.

48.  
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Minimum Distance In Exercises 49–51, consider a fuel 
distribution center located at the origin of the rectangular 
coordinate system (units in miles; see figures). The center 
supplies three factories with coordinates (4, 1), (5, 6), and 
(10, 3). A trunk line will run from the distribution center along 
the line y = mx, and feeder lines will run to the three factories. 
The objective is to find m such that the lengths of the feeder 
lines are minimized.

49.  Minimize the sum of the squares of the lengths of the vertical 
feeder lines (see figure) given by

 S1 = (4m − 1)2 + (5m − 6)2 + (10m − 3)2.

Find the equation of the trunk line by this method and then 
determine the sum of the lengths of the feeder lines.

50.  Minimize the sum of the absolute values of the lengths of the 
vertical feeder lines (see figure) given by

S2 = ∣4m − 1∣ + ∣5m − 6∣ + ∣10m − 3∣.
Find the equation of the trunk line by this method and 
then determine the sum of the lengths of the feeder lines. 
(Hint: Use a graphing utility to graph the function S2 and 
approximate the required critical number.)

x
(4, 1)

(10, 3)

(5, 6)

(4, 4m)
(5, 5m)

(10, 10m)

y = mx

8

6

4

2

2 4 6 8 10

y  

x
(4, 1)

(10, 3)

(5, 6)
8

6

4

2

2 4 6 8 10

y

y = mx

Figure for 49 and 50 Figure for 51

51.  Minimize the sum of the lengths of the perpendicular feeder 
lines (see figure above and Exercise 77 in Section P.2) from 
the trunk line to the factories given by

S3 =
∣4m − 1∣
√m2 + 1

+ ∣5m − 6∣
√m2 + 1

+ ∣10m − 3∣
√m2 + 1

.

Find the equation of the trunk line by this method and then 
determine the sum of the lengths of the feeder lines. (Hint: Use 
a graphing utility to graph the function S3 and approximate the 
required critical number.)

52.  Maximum Area Consider 
a symmetric cross inscribed in a 
circle of radius r (see figure).

 (a)  Write the area A of the 
cross as a function of x 
and find the value of x that 
maximizes the area.

 (b)  Write the area A of the cross 
as a function of θ and find the value of θ that maximizes 
the area.

 (c)  Show that the critical numbers of parts (a) and (b) yield the 
same maximum area. What is that area?

53.  Minimum Distance Find the point on the graph of the 
equation 

 16x = y2

that is closest to the point (6, 0).

54.  Minimum Distance Find the point on the graph of the 
function

 x = √10y

that is closest to the point (0, 4). (Hint: Consider the domain 
of the function.)

PUTNAM EXAM CHALLENGE
55.  Find, with explanation, the maximum value of 

f (x) = x3 − 3x on the set of all real numbers x satisfying 
x4 + 36 ≤ 13x2.

56. Find the minimum value of

(x + 1�x)6 − (x6 + 1�x6) − 2
(x + 1�x)3 + (x3 + 1�x3)  for x > 0.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

xrx

θ

y

A woman is at point A on the shore of a circular lake of radius 
2 kilometers (see figure). She wants to walk around the lake to 
point B and then swim to point C in the least amount of time. 
Point C lies on the diameter through point A. Assume that she can 
walk at v1 kilometers per hour and swim at v2 kilometers per hour, 
and that 0 ≤ θ ≤ π.

2 km

θ
A

B

C

(a)  Find the distance walked from point A to point B in terms of θ.

(b)  Find the distance swam from point B to point C in terms of θ.

(c)  Write the function f (θ) that represents the total time to move 
from point A to point C.

(d)  Find f ′(θ).
(e)  If v1 = 5 and v2 = 2, approximate the critical number(s) of f.

Does the critical number(s) correspond to a relative maximum 
or a relative minimum? Where should point B be located in 
order to minimize the time for the trip from point A to point C?
Explain.

(f )  Repeat part (e) for v1 = 3 and v2 = 2.

Minimum Time
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3.8 Newton’s Method

 Approximate a zero of a function using Newton’s Method.

Newton’s Method
In this section, you will study a technique for approximating the real zeros of a function. 
The technique is called Newton’s Method, and it uses tangent lines to approximate the 
graph of the function near its x-intercepts.

To see how Newton’s Method works, consider a function f  that is continuous on 
the interval [a, b] and differentiable on the interval (a, b). If f (a) and f (b) differ in sign, 
then, by the Intermediate Value Theorem, f  must have at least one zero in the interval 
(a, b). To estimate this zero, you choose

x = x1 First estimate

as shown in Figure 3.60(a). Newton’s Method is based on the assumption that the 
graph of f  and the tangent line at (x1, f (x1)) both cross the x-axis at about the same 
point. Because you can easily calculate the x-intercept for this tangent line, you can use 
it as a second (and, usually, better) estimate of the zero of f. The tangent line passes 
through the point (x1, f (x1)) with a slope of f′(x1). In point-slope form, the equation of 
the tangent line is

y − f (x1) = f′(x1)(x − x1)
 y = f′(x1)(x − x1) + f (x1).

Letting y = 0 and solving for x produces

x = x1 −
f (x1)
f′(x1)

.

So, from the initial estimate x1, you obtain a new estimate

x2 = x1 −
f (x1)
f′(x1)

. Second estimate [See Figure 3.60(b).]

You can improve on x2 and calculate yet a third estimate

x3 = x2 −
f (x2)
f′(x2)

. Third estimate

Repeated application of this process is called Newton’s Method.

Newton’s Method for Approximating the Zeros of a Function

Let f (c) = 0, where f  is differentiable on an open interval containing c.  
Then, to approximate c, use these steps.

1. Make an initial estimate x1 that is close to c. (A graph is helpful.)

2. Determine a new approximation

xn+1 = xn −
f (xn)
f′(xn)

.

3.  When ∣xn − xn+1∣ is within the desired accuracy, let xn+1 serve as the  
final approx                              i                       mation. Otherwise, return to Step 2 and calculate a new  
approximation.

Each successive application of this procedure is called an iteration.

(a)

xa c
b

Tangent line

x1 x2

(x1,  f(x1))

y

(b)
The x-intercept of the tangent line  
approximates the zero of f.
Figure 3.60

x
a

c

Tangent line

b
x1 x3

x2

(x1,  f(x1))

y

NEWTON’S METHOD

Isaac Newton first described 
the method for approximating 
the real zeros of a function 
in his text Method of Fluxions. 
Although the book was written 
in 1671, it was not published 
until 1736. Meanwhile, in 1690, 
Joseph Raphson (1648–1715) 
published a paper describing a 
method for approximating the 
real zeros of a function that 
was very similar to Newton’s. 
For this reason, the method 
is often referred to as the 
Newton-Raphson method.
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 Using Newton’s Method

Calculate three iterations of Newton’s Method to approximate a zero of f (x) = x2 − 2. 
Use x1 = 1 as the initial guess.

Solution Because f (x) = x2 − 2, you have f′(x) = 2x, and the iterative formula is

xn+1 = xn −
f (xn)
f′(xn)

= xn −
xn

2 − 2

2xn

.

The calculations for three iterations are shown in the table.

n xn f (xn) f′(xn)
f (xn)
f′(xn)

xn −
f (xn)
f′(xn)

1 1.000000 −1.000000 2.000000 −0.500000 1.500000

2 1.500000 0.250000 3.000000 0.083333 1.416667

3 1.416667 0.006945 2.833334 0.002451 1.414216

4 1.414216

Of course, in this case you know that the two zeros of the function are ±√2. To six 
decimal places, √2 = 1.414214. So, after only three iterations of Newton’s Method, 
you have obtained an approximation that is within 0.000002 of an actual root. The first 
iteration of this process is shown in Figure 3.61.

 Using Newton’s Method

See LarsonCalculus.com for an interactive version of this type of example.

Use Newton’s Method to approximate the zeros of

f (x) = 2x3 + x2 − x + 1.

Continue the iterations until two successive approximations differ by less than 0.0001.

Solution Begin by sketching a graph of f, as shown in Figure 3.62. From the graph, 
you can observe that the function has only one zero, which occurs near x = −1.2. 
Next, differentiate f  and form the iterative formula

xn+1 = xn −
f (xn)
f′(xn)

= xn −
2xn

3 + xn
2 − xn + 1

6xn
2 + 2xn − 1

.

The calculations are shown in the table.

n xn f (xn) f′(xn)
f(xn)
f′(xn)

xn −
f(xn)
f′(xn)

1 −1.20000 0.18400 5.24000 0.03511 −1.23511

2 −1.23511 −0.00771 5.68276 −0.00136 −1.23375

3 −1.23375 0.00001 5.66533 0.00000 −1.23375

4 −1.23375

Because two successive approximations differ by less than the required 0.0001, you can 
estimate the zero of f  to be −1.23375. 

REMARK For many  
functions, just a few iterations 
of Newton’s Method will  
produce approximations having 
very small errors, as shown in 
Example 1.

The first iteration of Newton’s Method
Figure 3.61

−1

x
x2 = 1.5

x1 = 1

f (x) = x2 − 2

y

After three iterations of Newton’s 
Method, the zero of f  is approximated 
to the desired accuracy.
Figure 3.62

x
−2 −1

1

2f(x) = 2x3 + x2 − x + 1

y
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When, as in Examples 1 and 2, the approximations approach a limit, the sequence 
of approximations

x1, x2, x3, .  .  ., xn, .  .  .

is said to converge. Moreover, when the limit is c, it can be shown that c must be a 
zero of f.

Newton’s Method does not always yield a  

Newton’s Method fails to converge  
when f ′(xn) = 0.
Figure 3.63

x
x1

f ′(x1) = 0

y

a convergent sequence. One way it can fail to do 
so is shown in Figure 3.63. Because Newton’s 
Method involves division by f′(xn), it is clear  
that the method will fail when the derivative is 
zero for any xn in the sequence. When you 
encounter this problem, you can usually overcome 
it by choosing a different value for x1. Another 
way Newton’s Method can fail is shown in the 
next example.

 An Example in Which Newton’s Method Fails

The function f (x) = x1�3 is not differentiable at x = 0. Show that Newton’s Method 
fails to converge using x1 = 0.1.

Solution Because f′(x) = 1
3x−2�3, the iterative formula is

xn+1 = xn −
f (xn)
f′(xn)

= xn −
xn

1�3

1
3xn

−2�3
= xn − 3xn = −2xn.

The calculations are shown in the table. This table and Figure 3.64 indicate that xn

continues to increase in magnitude as n→∞, and so the limit of the sequence does 
not exist.

n xn f (xn) f′(xn)
f (xn)
f′(xn)

xn −
f (xn)
f′(xn)

1 0.10000 0.46416 1.54720 0.30000 −0.20000

2 −0.20000 −0.58480 0.97467 −0.60000 0.40000

3 0.40000 0.73681 0.61401 1.20000 −0.80000

4 −0.80000 −0.92832 0.38680 −2.40000 1.60000

x

−1

−1

1

x1
x2 x3 x5

x4

f(x) = x1/3

y

  Newton’s Method fails to converge for every  
x-value other than the actual zero of f.

 Figure 3.64 

REMARK In Example 3, the 
initial estimate x1 = 0.1 fails to 
produce a convergent sequence. 
Try showing that Newton’s 
Method also fails for every 
other choice of x1 (other than 
the actual zero).

 FOR FURTHER INFORMATION
For more on when Newton’s 
Method fails, see the article  
“No Fooling! Newton’s Method 
Can Be Fooled” by Peter Horton  
in Mathematics Magazine. To  
view this article, go to 
MathArticles.com.
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It can be shown that a condition sufficient to produce convergence of Newton’s 
Method to a zero of f  is that

 ∣ f (x) f ″(x)
[ f′(x)]2 ∣ < 1  Condition for convergence

on an open interval containing the zero. For instance, in Example 1, this test would 
yield

f (x) = x2 − 2, f′(x) = 2x, f ″(x) = 2,

and

∣ f (x) f ″(x)
[ f′(x)]2 ∣ = ∣(x2 − 2)(2)

4x2 ∣ = ∣12 −
1
x2∣. Example 1

On the interval (1, 3), this quantity is less than 1 and therefore the convergence of 
Newton’s Method is guaranteed. On the other hand, in Example 3, you have 

f (x) = x1�3, f′(x) = 1
3

x−2�3, f ″(x) = −
2
9

x−5�3

and

∣ f (x) f ″(x)
[ f′(x)]2 ∣ = ∣x1�3(−2�9)(x−5�3)

(1�9)(x−4�3) ∣ = 2 Example 3

which is not less than 1 for any value of x, so you cannot conclude that Newton’s 
Method will converge.

You have learned several techniques for finding the zeros of functions. The zeros 
of some functions, such as

f (x) = x3 − 2x2 − x + 2

can be found by simple algebraic techniques, such as factoring. The zeros of other 
functions, such as

f (x) = x3 − x + 1

cannot be found by elementary algebraic methods. This particular function has only 
one real zero, and by using more advanced algebraic techniques, you can determine 
the zero to be

x = − 3√3 − √23�3
6

− 3√3 + √23�3
6

.

Because the exact solution is written in terms of square roots and cube roots, it is called 
a solution by radicals.

The determination of radical solutions of a polynomial equation is one of the 
fundamental problems of algebra. The earliest such result is the Quadratic Formula, 
which dates back at least to Babylonian times. The general formula for the zeros 
of a cubic function was developed much later. In the sixteenth century, an Italian 
mathematician, Jerome Cardan, published a method for finding radical solutions to 
cubic and quartic equations. Then, for 300 years, the problem of finding a general 
quintic formula remained open. Finally, in the nineteenth century, the problem was 
answered independently by two young mathematicians. Niels Henrik Abel, a Norwegian 
mathematician, and Evariste Galois, a French mathematician, proved that it is not 
possible to solve a general fifth- (or higher-) degree polynomial equation by radicals. 
Of course, you can solve particular fifth-degree equations, such as x5 − 1 = 0, but Abel 
and Galois were able to show that no general radical solution exists.

NIELS HENRIK ABEL (1802–1829)

EVARISTE GALOIS (1811–1832)

Although the lives of both  
Abel and Galois were brief, 
their work in the fields of 
analysis and abstract algebra 
was far-reaching.
See LarsonCalculus.com to read 
a biography about each of these 
mathematicians.

The Granger Collection, NYC
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3.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Newton’s Method In your own words and using a 

sketch, describe Newton’s Method for approximating the 
zeros of a function.

2.  Failure of Newton’s Method Why does Newton’s 
Method fail when f ′(xn) = 0? What does this mean 
graphically?

 Using Newton’s Method In Exercises 3–6, 
calculate two iterations of Newton’s Method to 
approximate a zero of the function using the given 
initial guess.

 3. f (x) = x2 − 5, x1 = 2

4. f (x) = x3 − 3, x1 = 1.4

5. f (x) = cos x, x1 = 1.6

6. f (x) = tan x, x1 = 0.1

 Using Newton’s Method In Exercises 7–16, 
use Newton’s Method to approximate the zero(s) 
of the function. Continue the iterations until two 
successive approximations differ by less than 0.001. 
Then find the zero(s) using a graphing utility and 
compare the results.

 7. f (x) = x3 + 4  8. f (x) = 2 − x3

9. f (x) = x3 + x − 1 10. f (x) = x5 + x − 1

11. f (x) = 5√x − 1 − 2x 12. f (x) = x − 2√x + 1

13. f (x) = x3 − 3.9x2 + 4.79x − 1.881

14. f (x) = −x3 + 2.7x2 + 3.55x − 2.422

15. f (x) = 1 − x + sin x 16. f (x) = x3 − cos x

Points of Intersection In Exercises 17–20, apply Newton’s 
Method to approximate the x-value(s) of the indicated point(s) 
of intersection of the two graphs. Continue the iterations 
until two successive approximations differ by less than 0.001. 
[Hint: Let h(x) = f (x) − g(x).]

17. f (x) = 2x + 1 18. f (x) = 3 − x

 g(x) = √x + 4  g(x) = 1
x2 + 1

x

1

1 2

3

3

f
g

y   

x
1 2

3

2

3

f

g

y

19. f (x) = x 20. f (x) = x2

g(x) = tan x  g(x) = cos x

x

6

4

2

f

g

π
2

π
2
3

y   

x

2

3

f

g−1
π π−

y

21.  Using Newton’s Method Consider the function 
f (x) = x3 − 3x2 + 3.

 (a)  Use a graphing utility to graph f.

 (b)  Use Newton’s Method to approximate a zero with x1 = 1
as the initial guess.

 (c)  Repeat part (b) using x1 =
1
4 as the initial guess and 

observe that the result is different.

 (d)  To understand why the results in parts (b) and (c) are 
different, sketch the tangent lines to the graph of f  at the 
points (1, f (1)) and (1

4, f (1
4)). Describe why it is important 

to select the initial guess carefully.

22.  Using Newton’s Method Repeat the steps in 
Exercise 21 for the function f (x) = sin x with initial guesses 
of x1 = 1.8 and x1 = 3.

 Failure of Newton’s Method In Exercises 23 
and 24, apply Newton’s Method using the given 
initial guess, and explain why the method fails.

23. y = 2x3 − 6x2 + 6x − 1, x1 = 1

x

1

x1 2

2

y   y

1−1 2

−2

−3

x

 Figure for 23 Figure for 24

24. y = x3 − 2x − 2, x1 = 0

Fixed Point In Exercises 25 and 26, approximate the fixed 
point of the function to two decimal places. [A fixed point of a 
function f  is a real number c such that f (c) = c.]

25. f (x) = cos x

26. f (x) = cot x, 0 < x < π
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EXPLORING CONCEPTS
27.  Newton’s Method  What will be the values of 

future guesses for x if your initial guess is a zero of f ? 
Explain.

28.  Newton’s Method  Does Newton’s Method fail 
when the initial guess is a relative maximum of f ? 
Explain.

Using Newton’s Method Exercises 29–31 present 
problems similar to exercises from the previous sections of this 
chapter. In each case, use Newton’s Method to approximate 
the solution.

29.  Minimum Distance Find the point on the graph of 
f (x) = 4 − x2 that is closest to the point (1, 0).

30.  Medicine The concentration C of a chemical in the 
bloodstream t hours after injection into muscle tissue is  
given by

 C =
3t2 + t
50 + t3.

When is the concentration the greatest?

31.  Minimum Time You are in a boat 2 miles from the 
nearest point on the coast. You are traveling to a point Q that 
is 3 miles down the coast and 1 mile inland (see figure). You 
can row at 3 miles per hour and walk at 4 miles per hour. 
Toward what point on the coast should you row in order to 
reach point Q in the least time?

Q

2 mi

x 3 − x

3 mi

1 mi

 32.  HOW DO YOU SEE IT? For what value(s) 
will Newton’s Method fail to converge for the 
function shown in the graph? Explain your  
reasoning.

−2−4−6 2 4

−2

−4

4

x

y

32.  

33.  Mechanic’s Rule The Mechanic’s Rule for approximating 
√a, a > 0, is

 xn+1 =
1
2 (xn +

a
xn
), n = 1, 2, 3, .  .  .

where x1 is an approximation of √a.

(a)  Use Newton’s Method and the function f (x) = x2 − a to 
derive the Mechanic’s Rule.

 (b)  Use the Mechanic’s Rule to approximate √5 and √7 to 
three decimal places.

34. Approximating Radicals

 (a)  Use Newton’s Method and the function f (x) = xn − a to 
obtain a general rule for approximating x = n√a.

 (b)  Use the general rule found in part (a) to approximate 4√6  
and 3√15  to three decimal places.

35.  Approximating Reciprocals Use Newton’s Method 
to show that the equation xn+1 = xn(2 − axn) can be used to 
approximate 1�a when x1 is an initial guess of the reciprocal 
of a. Note that this method of approximating reciprocals 
uses only the operations of multiplication and subtraction. 
(Hint: Consider

 f (x) = 1
x
− a.)

36.  Approximating Reciprocals Use the result of Exercise 
35 to approximate (a) 13 and (b) 1

11 to three decimal places.

True or False? In Exercises 37–40, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

37. The zeros of f (x) = p(x)
q(x) coincide with the zeros of p(x).

38.  If the coefficients of a polynomial function are all positive, 
then the polynomial has no positive zeros.

39.  If f (x) is a cubic polynomial such that f ′(x) is never zero, then 
any initial guess will force Newton’s Method to converge to 
the zero of f.

40.  Newton’s Method fails when the initial guess x1 corresponds 
to a horizontal tangent line for the graph of f  at x1.

41.  Tangent Lines The graph of f (x) = −sin x has infinitely 
many tangent lines that pass through the origin. Use Newton’s 
Method to approximate to three decimal places the slope of the 
tangent line having the greatest slope.

42.  Point of Tangency The graph of f (x) = cos x and 
a tangent line to f  through the origin are shown. Find the 
coordinates of the point of tangency to three decimal places.

−1

f (x) = cos x

ππ 2
x

y
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3.9 Differentials

 Understand the concept of a tangent line approximation.
 Compare the value of the differential, dy, with the actual change in y, Δy.
 Estimate a propagated error using a differential.
 Find the differential of a function using differentiation formulas.

Tangent Line Approximations
Newton’s Method (see Section 3.8) is an example of the use of a tangent line to 
approximate the graph of a function. In this section, you will study other situations in 
which the graph of a function can be approximated by a straight line.

To begin, consider a function f  that is differentiable at c. The equation for the 
 tangent line at the point (c, f (c)) is

 y − f (c) = f′(c)(x − c)

y = f (c) + f ′(c)(x − c)

and is called the tangent line approximation (or linear approximation) of f  at c. 
Because c is a constant, y is a linear function of x. Moreover, by restricting the values 
of x to those sufficiently close to c, the values of y can be used as approximations (to 
any desired degree of accuracy) of the values of the function f. In other words, as x
approaches c, the limit of y is f (c).

 Using a Tangent Line Approximation

See LarsonCalculus.com for an interactive version of this type of example.

Find the tangent line approximation of f (x) = 1 + sin x at the point (0, 1). Then use 
a table to compare the y-values of the linear function with those of f (x) on an open 
interval containing x = 0.

Solution The derivative of f  is

f′(x) = cos x. First derivative

So, the equation of the tangent line to the graph of f  at the point (0, 1) is

 y = f (0) + f′(0)(x − 0)
 y = 1 + (1)(x − 0)
 y = 1 + x. Tangent line approximation

The table compares the values of y given by this linear approximation with the values 
of f (x) near x = 0. Notice that the closer x is to 0, the better the approximation. This 
conclusion is reinforced by the graph shown in Figure 3.65.

x −0.5 −0.1 −0.01 0 0.01 0.1 0.5

f (x) = 1 + sin x 0.521 0.9002 0.9900002 1 1.0099998 1.0998 1.479

y = 1 + x 0.5 0.9 0.99 1 1.01 1.1 1.5

 

REMARK Be sure you see that this linear approximation of f (x) = 1 + sin x 
depends on the point of tangency. At a different point on the graph of f, you would 
obtain a different tangent line approximation.

The tangent line approximation of f  at 
the point (0, 1)
Figure 3.65

Tangent line

πππ
244

−

−1

1

2

f(x) = 1 + sin x

x

y

Exploration
Tangent Line Approximation
Use a graphing utility to 
graph f (x) = x2. In the same 
viewing window, graph the 
tangent line to the graph 
of f  at the point (1, 1). 
Zoom in twice on the point 
of tangency. Does your 
graphing utility distinguish 
between the two graphs? Use 
the trace feature to compare 
the two graphs. As the 
x-values get closer to 1, 
what can you say about the 
y-values? 
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Differentials
When the tangent line to the graph of f  at the point (c, f (c))

y = f (c) + f′(c)(x − c) Tangent line at (c, f (c))

is used as an approximation of the graph of f, the quantity x − c is called the change 
in x, and is denoted by ∆x, as shown in Figure 3.66. When ∆x is small, the change in 
y (denoted by ∆y) can be approximated as shown.

∆y = f (c + ∆x) − f (c) Actual change in y

 ≈ f′(c)∆x Approximate change in y

For such an approximation, the quantity ∆x is traditionally denoted by dx and is 
called the differential of x. The expression f′(x) dx is denoted by dy and is called the 
differential of y.

Definition of Differentials

Let y = f (x) represent a function that is differentiable on an open interval 
containing x. The differential of x (denoted by dx) is any nonzero real number. 
The differential of y (denoted by dy) is

dy = f′(x) dx.

In many types of applications, the differential of y can be used as an approximation 
of the change in y. That is,

∆y ≈ dy  or  ∆y ≈ f′(x) dx.

 Comparing Δy and dy

Let y = x2. Find dy when x = 1 and dx = 0.01. Compare this value with ∆y for x = 1
and ∆x = 0.01.

Solution Because y = f (x) = x2, you have f′(x) = 2x, and the differential dy is

dy = f′(x) dx = f′(1)(0.01) = 2(0.01) = 0.02. Differential of y

Now, using ∆x = 0.01, the change in y is

∆y = f (x + ∆x) − f (x) = f (1.01) − f (1) = (1.01)2 − 12 = 0.0201.

Figure 3.67 shows the geometric comparison of dy and ∆y. Try comparing other values 
of dy and ∆y. You will see that the values become closer to each other as dx (or ∆x)
approaches 0. 

In Example 2, the tangent line to the graph of f (x) = x2 at x = 1 is

y = 2x − 1. Tangent line to the graph of f  at x = 1.

For x-values near 1, this line is close to the graph of f, as shown in Figure 3.67 and in 
the table.

x 0.5 0.9 0.99 1 1.01 1.1 1.5

f (x) = x2 0.25 0.81 0.9801 1 1.0201 1.21 2.25

y = 2x − 1 0 0.8 0.98 1 1.02 1.2 2

When ∆x is small, 
∆y = f (c + ∆x) − f (c) is  
approximated by f ′(c)∆x.
Figure 3.66

x

f(c + Δx)

f(c)

f ′(c)Δx(

f

c c + Δx

Δy

Δx

(c, f(c))

(c + Δx, f(c + Δx))

y

The change in y, ∆y, is approximated 
by the differential of y, dy.
Figure 3.67

Δy

dy

(1, 1)

y = x2

y = 2x − 1

Δx = 0.01
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Error Propagation
Physicists and engineers tend to make liberal use of the approximation of ∆y by dy.
One way this occurs in practice is in the estimation of errors propagated by physical 
measuring devices. For example, if you let x represent the measured value of a variable 
and let x + ∆x represent the exact value, then ∆x is the error in measurement. Finally, 
if the measured value x is used to compute another value f (x), then the difference 
between f (x + ∆x) and f (x) is the propagated error.

 Measurement Propagated
 error error

 
f (x + ∆x) − f (x) = ∆y

 
Exact Measured

 value value

 Estimation of Error

The measured radius of a ball bearing is 0.7 inch, 

Ball bearing with measured radius that 
is correct to within 0.01 inch.

0.7

 
as shown in the figure. The measurement is  
correct to within 0.01 inch. Estimate the  
propagated error in the volume V of the  
ball bearing.

Solution The formula for the volume of  
a sphere is

V =
4
3
πr3

where r is the radius of the sphere. So, you can write

r = 0.7 Measured radius

and

−0.01 ≤ ∆r ≤ 0.01. Possible error

To approximate the propagated error in the volume, differentiate V  to obtain 
dV�dr = 4πr2 and write

∆V ≈ dV Approximate ∆V  by dV.

 = 4πr2 dr

 = 4π(0.7)2(±0.01) Substitute for r and dr.

 ≈ ±0.06158 cubic inch.

So, the volume has a propagated error of about 0.06 cubic inch. 

Would you say that the propagated error in Example 3 is large or small? The 
answer is best given in relative terms by comparing dV with V. The ratio

 
dV
V

=
4πr2 dr

4
3πr3

 Ratio of dV  to V

 =
3 dr

r
 Simplify.

 ≈
3(±0.01)

0.7
 Substitute for dr and r.

 ≈ ±0.0429

is called the relative error. The corresponding percent error is approximately 4.29%.

The measured radius of a ball bearing is 0.7 inch,
as shown in the figure. The measurement is 
correct to within 0.01 inch. Estimate the 
propagated error in the volume 
ball bearing.

Solution
a sphere is

where 

and

To approximate the propagated error in the volume, differentiate 
d

Ball bearings are used to reduce 
friction between moving machine 
parts.

Christian Lagerek/Shutterstock.com
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Calculating Differentials
Each of the differentiation rules that you studied in Chapter 2 can be written in 
differential form. For example, let u and v be differentiable functions of x. By the 
definition of differentials, you have

du = u′ dx

and

dv = v′ dx.

So, you can write the differential form of the Product Rule as shown below.

d[uv] = d
dx

[uv] dx Differential of uv

 = [uv′ + vu′] dx Product Rule

 = uv′ dx + vu′ dx

 = u dv + v du

Differential Formulas

Let u and v be differentiable functions of x.

Constant multiple: d[cu] = c du

Sum or difference: d[u ± v] = du ± dv

Product: d[uv] = u dv + v du

Quotient: d[uv] =
v du − u dv

v2

 Finding Differentials

Function Derivative Differential

a. y = x2 
dy
dx

= 2x dy = 2x dx

b. y = √x 
dy
dx

=
1

2√x
 dy =

dx

2√x

c. y = 2 sin x 
dy
dx

= 2 cos x dy = 2 cos x dx

d. y = x cos x 
dy
dx

= −x sin x + cos x dy = (−x sin x + cos x) dx

e. y =
1
x
 

dy
dx

= −
1
x2 dy = −

dx
x2 

The notation in Example 4 is called the Leibniz notation for derivatives and 
differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The 
beauty of this notation is that it provides an easy way to remember several important 
calculus formulas by making it seem as though the formulas were derived from algebraic 
manipulations of differentials. For instance, in Leibniz notation, the Chain Rule

dy
dx

=
dy
du

 
du
dx

would appear to be true because the du’s divide out. Even though this reasoning is 
 incorrect, the notation does help one remember the Chain Rule.

GOTTFRIED WILHELM LEIBNIZ  
(1646–1716)

Both Leibniz and Newton are 
credited with creating calculus. 
It was Leibniz, however, who 
tried to broaden calculus by 
developing rules and formal 
notation. He often spent 
days choosing an appropriate 
notation for a new concept.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library/The Image Works
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 Finding the Differential of a Composite Function

 y = f (x) = sin 3x Original function

 f′(x) = 3 cos 3x Apply Chain Rule.

dy = f′(x) dx = 3 cos 3x dx Differential form

 Finding the Differential of a Composite Function

 y = f (x) = (x2 + 1)1�2 Original function

   f′(x) = 1
2
(x2 + 1)−1�2(2x) = x

√x2 + 1
 Apply Chain Rule.

 dy = f′(x) dx =
x

√x2 + 1
 dx Differential form

 

Differentials can be used to approximate function values. To do this for the 
function given by y = f (x), use the formula

f (x + ∆x) ≈ f (x) + dy = f (x) + f′(x) dx

which is derived from the approximation

∆y = f (x + ∆x) − f (x) ≈ dy.

The key to using this formula is to choose a value for x that makes the calculations 
easier, as shown in Example 7.

 Approximating Function Values

Use differentials to approximate √16.5.

Solution Using f (x) = √x, you can write

f (x + ∆x) ≈ f (x) + f′(x) dx = √x +
1

2√x
 dx.

Now, choosing x = 16 and dx = 0.5, you obtain the following approximation.

f (x + ∆x) = √16.5 ≈ √16 +
1

2√16
(0.5) = 4 + (18)(12) = 4.0625

So, √16.5 ≈ 4.0625. 

The tangent line approximation to f (x) = √x at x = 16 is the line g(x) = 1
8x + 2. 

For x-values near 16, the graphs of f  and g are close together, as shown in Figure 3.68. 
For instance,

f (16.5) = √16.5 ≈ 4.0620

and

g(16.5) = 1
8
(16.5) + 2 = 4.0625.

In fact, if you use a graphing utility to zoom in near the point of tangency (16, 4), you 
will see that the two graphs appear to coincide. Notice also that as you move farther 
away from the point of tangency, the linear approximation becomes less accurate.

REMARK This formula is 
equivalent to the tangent line 
approximation given earlier in 
this section. 

x
4

−2

2

4

6

8 12 16 20

(16, 4)
g(x) =    x + 21

8

f(x) =    x

y

Figure 3.68
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3.9 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Tangent Line Approximations What is the 

equation of the tangent line approximation to the graph of 
a function f  at the point (c, f (c))?

2.  Differentials What do the differentials of x and y 
mean?

3.  Describing Terms When using differentials, what is 
meant by the terms propagated error, relative error, and 
percent error?

4.  Finding Differentials Explain how to find a 
differential of a function.

 Using a Tangent Line Approximation In 
Exercises 5–10, find the tangent line approximation 
T to the graph of f  at the given point. Then 
complete the table.

x 1.9 1.99 2 2.01 2.1

f (x)

T(x)

 5. f (x) = x2, (2, 4)  6. f (x) = 6
x2, (2, 

3
2)

 7. f (x) = x5, (2, 32)  8. f (x) = √x, (2, √2)
 9. f (x) = sin x, (2, sin 2)
10. f (x) = csc x, (2, csc 2)

Verifying a Tangent Line Approximation In Exercises 
11 and 12, verify the tangent line approximation of the function 
at the given point. Then use a graphing utility to graph the 
function and its approximation in the same viewing window.

 Function Approximation Point

11. f (x) = √x + 4 y = 2 +
x
4

 (0, 2)

12. f (x) = tan x y = x (0, 0)

 Comparing ∆y  and dy  In Exercises 13–18, 
use the information to find and compare Δy and dy.

 Function x-Value Differential of x

13. y = 0.5x3 x = 1 ∆x = dx = 0.1

14. y = 6 − 2x2 x = −2 ∆x = dx = 0.1

15. y = x4 + 1 x = −1 ∆x = dx = 0.01

16. y = 2 − x4 x = 2 ∆x = dx = 0.01

17. y = x − 2x3 x = 3 ∆x = dx = 0.001

18. y = 7x2 − 5x x = −4 ∆x = dx = 0.001

 Finding a Differential In Exercises 19–28, find 
the differential dy of the given function.

19. y = 3x2 − 4 20. y = 3x2�3

21. y = x tan x 22. y = csc 2x

23. y =
x + 1
2x − 1

 24. y = √x +
1

√x

25. y = √9 − x2 26. y = x√1 − x2

27. y = 3x − sin2 x 28. y =
sec2 x
x2 + 1

Using Differentials In Exercises 29 and 30, use differentials 
and the graph of f  to approximate (a) f (1.9) and (b) f (2.04).
To print an enlarged copy of the graph, go to MathGraphs.com.

29. 

x
42

4

5

2

3

1

f

3 5

y

(2, 1)

 30. 

x
42

4

5

2

3

1

f

31 5

y

(2, 1)

Using Differentials In Exercises 31 and 32, use differentials 
and the graph of g′ to approximate (a) g(2.93) and (b) g(3.1) 
given that g(3) = 8.

31. 

x
1 2 4 5

4

2

3

1
g ′

y

(         )3, − 1
2

 32. 

x
1 42

4

2

3

1

g ′

3 5

y

(3, 3)

33.  Area The measurement of the side of a square floor tile is 
10 inches, with a possible error of 1

32 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the area of the square.

 (b)  Approximate the percent error in computing the area of 
the square.

34.  Area The measurements of the base and altitude of a  
triangle are found to be 36 and 50 centimeters, respectively. 
The possible error in each measurement is 0.25 centimeter.

 (a)  Use differentials to approximate the possible propagated 
error in computing the area of the triangle.

 (b)  Approximate the percent error in computing the area of 
the triangle.
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35.  Volume and Surface Area The measurement of the 
edge of a cube is found to be 15 inches, with a possible error 
of 0.03 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the cube.

 (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the cube.

 (c)  Approximate the percent errors in parts (a) and (b).

36.  Volume and Surface Area The radius of a spherical 
balloon is measured as 8 inches, with a possible error of  
0.02 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the sphere.

 (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the sphere.

 (c)  Approximate the percent errors in parts (a) and (b).

37.  Stopping Distance The total stopping distance T of a 
vehicle is

 T = 2.5x + 0.5x2

where T is in feet and x is the speed in miles per hour. 
Approximate the change and percent change in total stopping 
distance as speed changes from x = 25 to x = 26 miles per hour.

38.  HOW DO YOU SEE IT? The graph shows 
the profit P (in dollars) from selling x units of an 
item. Use the graph to determine which is greater, 
the change in profit when the production level 
changes from 400 to 401 units or the change in 
profit when the production level changes from 
900 to 901 units. Explain your reasoning.

Number of units

Pr
o�

t (
in

 d
ol

la
rs

)

P

x
100 200 300 400 500 600 700 800 900 1000

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

38.  

39. Pendulum The period of a pendulum is given by

 T = 2π√L
g

where L is the length of the pendulum in feet, g is the 
acceleration due to gravity, and T is the time in seconds. The 
pendulum has been subjected to an increase in temperature 
such that the length has increased by 12%.

(a) Find the approximate percent change in the period.

(b)  Using the result in part (a), find the approximate error in 
this pendulum clock in 1 day.

40.   Ohm’s Law A current of I amperes passes through a 
resistor of R ohms. Ohm’s Law states that the voltage E
applied to the resistor is

 E = IR.

The voltage is constant. Show that the magnitude of the relative 
error in R caused by a change in I is equal in magnitude to the 
relative error in I.

41. Projectile Motion The range R of a projectile is

 R =
v0

2

32
(sin 2θ)

where v0 is the initial velocity in feet per second and θ is the 
angle of elevation. Use differentials to approximate the change 
in the range when v0 = 2500 feet per second and θ is changed 
from 10° to 11°.

42.  Surveying A surveyor standing 50 feet from the base of a 
large tree measures the angle of elevation to the top of the tree 
as 71.5°. How accurately must the angle be measured if the 
percent error in estimating the height of the tree is to be less 
than 6%?

 Approximating Function Values In 
Exercises 43–46, use differentials to approximate 
the value of the expression. Compare your answer 
with that of a calculator.

43. √99.4

44. 3√26

45. 4√624

46. (2.99)3

EXPLORING CONCEPTS
47.  Comparing ∆y  and dy  Describe the change in 

accuracy of dy as an approximation for ∆y when ∆x 
approaches 0. Use a graph to support your answer.

48.  Using Differentials Give a short explanation of 
why each approximation is valid.

 (a) √4.02 ≈ 2 + 1
4 (0.02)

(b) tan 0.05 ≈ 0 + 1(0.05)

True or False? In Exercises 49–53, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

49. If y = x + c, then dy = dx.

50. If y = ax + b, then 
∆y
∆x

=
dy
dx

.

51. If y is differentiable, then lim
∆x→0

 (∆y − dy) = 0.

52.  If y = f (x), f  is increasing and differentiable, and ∆x > 0, 
then ∆y ≥ dy.

53.  The tangent line approximation at any point for any linear 
equation is the linear equation itself.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Extrema on a Closed Interval In Exercises 1–8, 
find the absolute extrema of the function on the closed interval. 

 1. f (x) = x2 + 5x, [−4, 0] 2. f (x) = x3 + 6x2, [−6, 1]
3. f (x) = √x − 2, [0, 4] 4. h(x) = x − 3√x, [0, 9]

5. f (x) = 4x
x2 + 9

, [−4, 4] 6. f (x) = x

√x2 + 1
, [0, 2]

7. g(x) = 2x + 5 cos x, [0, 2π]
8. f (x) = sin 2x, [0, 2π]

Using Rolle’s Theorem In Exercises 9–12, determine 
whether Rolle’s Theorem can be applied to f  on the closed 
interval [a, b]. If Rolle’s Theorem can be applied, find all 
values of c in the open interval (a, b) such that f ′(c) = 0. If 
Rolle’s Theorem cannot be applied, explain why not.

 9. f (x) = x3 − 3x − 6, [−1, 2]
10. f (x) = (x − 2)(x + 3)2, [−3, 2]

11. f (x) = x2

1 − x2, [−2, 2]

12. f (x) = sin 2x, [−π, π]

Using the Mean Value Theorem In Exercises 13–18, 
determine whether the Mean Value Theorem can be applied to 
f  on the closed interval [a, b]. If the Mean Value Theorem can 
be applied, find all values of c in the open interval (a, b) such that

f ′(c) = f (b) − f (a)
b − a

.

If the Mean Value Theorem cannot be applied, explain why not.

13. f (x) = x2�3, [1, 8]

14. f (x) = 1
x
, [1, 4]

15. f (x) = ∣5 − x∣, [2, 6]
16. f (x) = 2x − 3√x, [−1, 1]

17. f (x) = x − cos x, [−π
2

, 
π
2]

18. f (x) = √x − 2x, [0, 4]

19.  Mean Value Theorem Can the Mean Value Theorem be 
applied to the function

 f (x) = 1
x2

on the interval [−2, 1]? Explain.

20. Using the Mean Value Theorem

(a)  For the function f (x) = Ax2 + Bx + C, determine the 
value of c guaranteed by the Mean Value Theorem on the 
interval [x1, x2].

(b)  Demonstrate the result of part (a) for f (x) = 2x2 − 3x + 1
on the interval [0, 4].

Intervals on Which a Function Is Increasing or 
Decreasing In Exercises 21–26, find the open intervals on 
which the function is increasing or decreasing.

21. f (x) = x2 + 3x − 12 22. h(x) = (x + 2)1�3 + 8

23. f (x) = (x − 1)2(2x − 5) 24. g(x) = (x + 1)3

25. h(x) = √x(x − 3), x > 0

26. f (x) = sin x + cos x, 0 < x < 2π

Applying the First Derivative Test In Exercises 27–34, 
(a) find the critical numbers of f, if any, (b) find the open 
intervals on which the function is increasing or decreasing,  
(c) apply the First Derivative Test to identify all relative 
extrema, and (d) use a graphing utility to confirm your results.

27. f (x) = x2 − 6x + 5 28. f (x) = 4x3 − 5x

29. f (t) = 1
4

t4 − 8t 30. f (x) = x3 − 8x
4

31. f (x) = x + 4
x2  32. f (x) = x2 − 3x − 4

x − 2

33. f (x) = cos x − sin x, (0, 2π)

34. f (x) = 3
2

 sin(πx
2

− 1), (0, 4)

Motion Along a Line In Exercises 35 and 36, the function 
s(t) describes the motion of a particle along a line. (a) Find the 
velocity function of the particle at any time t ≥ 0. (b) Identify 
the time interval(s) on which the particle is moving in a positive 
direction. (c) Identify the time interval(s) on which the particle 
is moving in a negative direction. (d) Identify the time(s) at 
which the particle changes direction.

35. s(t) = 3t − 2t2 36. s(t) = 6t3 − 8t + 3

Finding Points of Inflection In Exercises 37–42, find the 
points of inflection and discuss the concavity of the graph of 
the function.

37. f (x) = x3 − 9x2

38. f (x) = 6x4 − x2

39. g(x) = x√x + 5

40. f (x) = 3x − 5x3

41. f (x) = x + cos x, [0, 2π]

42. f (x) = tan 
x
4

, (0, 2π)

Using the Second Derivative Test In Exercises 43–48, 
find all relative extrema of the function. Use the Second 
Derivative Test where applicable.

43. f (x) = (x + 9)2

44. f (x) = x4 − 2x2 + 6

45. g(x) = 2x2(1 − x2)
46. h(t) = t − 4√t + 1
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47. f (x) = 2x +
18
x

48. h(x) = x − 2 cos x, [0, 4π]

Think About It In Exercises 49 and 50, sketch the graph of 
a function f  having the given characteristics.

49. f (0) = f (6) = 0 50. f (0) = 4, f (6) = 0

  f ′(x) < 0 for x < 2 or 
x > 4

 f ′(2) does not exist.

 f ′(4) = 0

 f ′(x) > 0 for 2 < x < 4

 f ″(x) < 0 for x ≠ 2

 f ′(3) = f ′(5) = 0

 f ′(x) > 0 for x < 3

 f ′(x) > 0 for 3 < x < 5

 f ′(x) < 0 for x > 5

 f ″(x) < 0 for x < 3 or x > 4

 f ″(x) > 0 for 3 < x < 4

51.  Writing A newspaper headline states that “The rate of 
growth of the national deficit is decreasing.” What does this 
mean? What does it imply about the graph of the deficit as a 
function of time?

52.  Inventory Cost The cost of inventory C depends on the 
ordering and storage costs according to the inventory model

 C = (Qx )s + (x2)r.

   Determine the order size that will minimize the cost, assuming 
that sales occur at a constant rate, Q is the number of units sold 
per year, r is the cost of storing one unit for one year, s is the 
cost of placing an order, and x is the number of units per order.

53.  Modeling Data Outlays for national defense D (in 
billions of dollars) for 2006 through 2014 are shown in the 
table, where t is the time in years, with t = 6 corresponding to 
2006. (Source: U.S. Office of Management and Budget)

t 6 7 8 9 10

D 521.8 551.3 616.1 661.0 693.5

t 11 12 13 14

D 705.6 677.9 633.4 603.5

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form

  D = at4 + bt3 + ct2 + dt + e

  for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  For the years shown in the table, when does the model 
indicate that the outlay for national defense was at a  
maximum? When was it at a minimum?

 (d)  For the years shown in the table, when does the model 
indicate that the outlay for national defense was increasing 
at the greatest rate?

54.  Modeling Data The manager of a store recorded the 
annual sales S (in thousands of dollars) of a product over a 
period of 7 years, as shown in the table, where t is the time in 
years, with t = 8 corresponding to 2008.

t 8 9 10 11 12 13 14

S 8.1 7.3 7.8 9.2 11.3 12.8 12.9

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form

 S = at3 + bt2 + ct + d

  for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Use calculus and the model to find the time t when sales 
were increasing at the greatest rate.

 (d)  Do you think the model would be accurate for predicting 
future sales? Explain.

Finding a Limit In Exercises 55–64, find the limit, if it 
exists.

55. lim
x→∞

 (8 +
1
x) 56. lim

x→−∞
 
1 − 4x
x + 1

57. lim
x→∞

 
x2

1 − 8x2 58. lim
x→−∞

 
9x3 + 5

7x4

59. lim
x→−∞

 
3x2

x + 5
 60. lim

x→−∞
 
√x2 + x
−2x

61. lim
x→∞

 
5 cos x

x
 62. lim

x→∞
 

x3

√x2 + 2

63. lim
x→−∞

 
6x

x + cos x
 64. lim

x→−∞
 

x
2 sin x

Finding Horizontal Asymptotes Using Technology  
In Exercises 65–68, use a graphing utility to graph the function 
and identify any horizontal asymptotes.

65. f (x) = 3
x
+ 4 66. g(x) = 5x2

x2 + 2

67. f (x) = x

√x2 + 6
 68. f (x) = √4x2 − 1

8x + 1

Analyzing the Graph of a Function In Exercises 69–78, 
analyze and sketch a graph of the function. Label any intercepts, 
relative extrema, points of inflection, and asymptotes. Use a 
graphing utility to verify your results.

69. f (x) = 4x − x2 70. f (x) = x4 − 2x2 + 6

71. f (x) = x√16 − x2 72. f (x) = (x2 − 4)2

73. f (x) = x1�3(x + 3)2�3 74. f (x) = (x − 3)(x + 2)3

75. f (x) = 5 − 3x
x − 2

 76. f (x) = 2x
1 + x2

77. f (x) = x3 + x +
4
x
 78. f (x) = x2 +

1
x
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79.  Finding Numbers Find two positive numbers such that 
the sum of twice the first number and three times the second 
number is 216 and the product is a maximum.

80.  Minimum Distance Find the point on the graph of 
f (x) = √x that is closest to the point (6, 0).

81.  Maximum Area A rancher has 400 feet of fencing with 
which to enclose two adjacent rectangular corrals (see figure). 
What dimensions should be used so that the enclosed area will 
be a maximum?

x x

y

82.  Maximum Area Find the dimensions of the rectangle of 
maximum area, with sides parallel to the coordinate axes, that 
can be inscribed in the ellipse given by

 
x2

144
+

y2

16
= 1.

83.  Minimum Length A right triangle in the first quadrant 
has the coordinate axes as sides, and the hypotenuse passes 
through the point (1, 8). Find the vertices of the triangle such 
that the length of the hypotenuse is minimum.

84.  Minimum Length The wall of a building is to be braced 
by a beam that must pass over a parallel fence 5 feet high and 
4 feet from the building. Find the length of the shortest beam 
that can be used.

85.  Maximum Length Find the length of the longest pipe 
that can be carried level around a right-angle corner at the 
intersection of two corridors of widths 4 feet and 6 feet.

86.  Maximum Length A hallway of width 6 feet meets a 
hallway of width 9 feet at right angles. Find the length of the 
longest pipe that can be carried level around this corner. [Hint: 
If L is the length of the pipe, show that

 L = 6 csc θ + 9 csc(π2 − θ)
where θ is the angle between the pipe and the wall of the 
narrower hallway.]

87.   Maximum Volume Find the volume of the largest right 
circular cone that can be inscribed in a sphere of radius r.

r

r

88.   Maximum Volume Find the volume of the largest right 
circular cylinder that can be inscribed in a sphere of radius r.

Using Newton’s Method In Exercises 89–92, use 
Newton’s Method to approximate the zero(s) of the function. 
Continue the iterations until two successive approximations 
differ by less than 0.001. Then find the zero(s) using a graphing 
utility and compare the results.

 89. f (x) = x3 − 3x − 1

90. f (x) = x3 + 2x + 1

91. f (x) = x4 + x3 − 3x2 + 2

 92. f (x) = 3√x − 1 − x

Points of Intersection In Exercises 93 and 94, apply 
Newton’s Method to approximate the x-value(s) of the 
indicated point(s) of intersection of the two graphs. Continue 
the iterations until two successive approximations differ by less 
than 0.001. [Hint: Let h(x) = f (x) − g(x).]

 93. f (x) = 1 − x  94. f (x) = sin x

  g(x) = x5 + 2   g(x) = x2 − 2x + 1

  

x

f g

y

1 2−2
−1

1

3

  

x

f

g

y

1 2 3

1

3

Comparing ∆y and dy In Exercises 95 and 96, use the 
information to find and compare Δy and dy.

  Function x-Value Differential of x

 95. y = 4x3 x = 2 ∆x = dx = 0.1

 96. y = x2 − 5x x = −3 ∆x = dx = 0.01

Finding a Differential In Exercises 97 and 98, find the 
differential dy of the given function.

 97. y = x(1 − cos x)  98. y = √36 − x2

Approximating Function Values In Exercises 99 
and 100, use differentials to approximate the value of the  
expression. Compare your answer with that of a calculator.

 99. √63.9 100. (2.02)4

101.  Volume and Surface Area The radius of a sphere 
is measured as 9 centimeters, with a possible error of  
0.025 centimeter.

  (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the sphere.

  (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the sphere.

  (c) Approximate the percent errors in parts (a) and (b).
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Relative Extrema Graph the fourth-degree polynomial

 p(x) = x4 + ax2 + 1

 for various values of the constant a.

 (a)  Determine the values of a for which p has exactly one 
relative minimum.

 (b)  Determine the values of a for which p has exactly one  
relative maximum.

 (c)  Determine the values of a for which p has exactly two  
relative minima.

 (d)  Show that the graph of p cannot have exactly two relative 
extrema.

2. Relative Extrema

 (a)  Graph the fourth-degree polynomial p(x) = ax4 − 6x2 
for a = −3, −2, −1, 0, 1, 2, and 3. For what values of 
the constant a does p have a relative minimum or relative 
maximum?

 (b)  Show that p has a relative maximum for all values of the 
constant a.

 (c)  Determine analytically the values of a for which p has a 
relative minimum.

 (d)  Let (x, y) = (x, p(x)) be a relative extremum of p. Show 
that (x, y) lies on the graph of y = −3x2. Verify this result 
graphically by graphing y = −3x2 together with the seven 
curves from part (a).

3.  Relative Minimum Let

 f (x) = c
x
+ x2.

  Determine all values of the constant c such that f  has a relative 
minimum, but no relative maximum.

4. Points of Inflection

 (a)  Let f (x) = ax2 + bx + c, a ≠ 0, be a quadratic polynomial. 
How many points of inflection does the graph of f  have?

 (b)  Let f (x) = ax3 + bx2 + cx + d, a ≠ 0, be a cubic 
polynomial. How many points of inflection does the graph 
of f  have?

 (c)  Suppose the function y = f (x) satisfies the equation

  
dy
dx

= ky(1 −
y
L)

   where k and L are positive constants. Show that the graph of 
f  has a point of inflection at the point where y = L�2. (This 
equation is called the logistic differential equation.)

5.  Extended Mean Value Theorem Prove the Extended 
Mean Value Theorem: If f  and f ′ are continuous on the 
closed interval [a, b], and if f ″ exists in the open interval (a, b), 
then there exists a number c in (a, b) such that

 f (b) = f (a) + f ′(a)(b − a) + 1
2

f ″(c)(b − a)2.

 6.  Illumination The amount of illumination of a surface 
is proportional to the intensity of the light source, inversely 
proportional to the square of the distance from the light source, 
and proportional to sin θ, where θ is the angle at which the 
light strikes the surface. A rectangular room measures 10 feet 
by 24 feet, with a 10-foot ceiling (see figure). Determine the 
height at which the light should be placed to allow the corners 
of the floor to receive as much light as possible.

5 ft
12 ft

d

θ
x

13 ft

10 ft

 7.  Minimum Distance Consider a room in the shape of a 
cube, 4 meters on each side. A bug at point P wants to walk 
to point Q at the opposite corner, as shown in the figure. Use 
calculus to determine the shortest path. Explain how you can 
solve this problem without calculus. (Hint: Consider the two 
walls as one wall.)

 

4 m

4 m4 m

Q

P
  

RP
d

S Q

 Figure for 7 Figure for 8

 8.  Areas of Triangles The line joining P and Q crosses 
the two parallel lines, as shown in the figure. The point R is  
d units from P. How far from Q should the point S be 
positioned so that the sum of the areas of the two shaded 
triangles is a minimum? So that the sum is a maximum?

 9.  Mean Value Theorem Determine the values a, b, and c 
such that the function f  satisfies the hypotheses of the Mean 
Value Theorem on the interval [0, 3].

 f (x) = {1,
ax + b,
x2 + 4x + c,

     x = 0
     0 < x ≤ 1
     1 < x ≤ 3

10.   Mean Value Theorem Determine the values a, b, c, and 
d such that the function f  satisfies the hypotheses of the Mean 
Value Theorem on the interval [−1, 2].

 f (x) = {
a,
2,
bx2 + c,
dx + 4,

     x = −1
     −1 < x ≤ 0
     0 < x ≤ 1
     1 < x ≤ 2
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11.  Proof Let f  and g be functions that are continuous on [a, b]
and differentiable on (a, b). Prove that if f (a) = g(a) and 
g′(x) > f ′(x) for all x in (a, b), then g(b) > f (b).

12. Proof
(a) Prove that lim

x→∞
 x2 = ∞.

(b) Prove that lim
x→∞

 
1
x2 = 0.

(c) Let L be a real number. Prove that if lim
x→∞

 f (x) = L, then

  lim
y→0+

 f (1y) = L.

13. Tangent Lines Find the point on the graph of

 y =
1

1 + x2

(see figure) where the tangent line has the greatest slope, and 
the point where the tangent line has the least slope.

x
1 32−3 −1

1

−2

y = 1
1 + x2

y

14.  Stopping Distance The police department must 
determine the speed limit on a bridge such that the flow 
rate of cars is maximum per unit time. The greater the speed 
limit, the farther apart the cars must be in order to keep a safe 
stopping distance. Experimental data on the stopping distances 
d (in meters) for various speeds v (in kilometers per hour) are 
shown in the table.

v 20 40 60 80 100

d 5.1 13.7 27.2 44.2 66.4

 (a)  Convert the speeds v in the table to speeds s in meters 
per second. Use the regression capabilities of a graphing 
utility to find a model of the form d(s) = as2 + bs + c for 
the data.

 (b)  Consider two consecutive vehicles of average length  
5.5 meters, traveling at a safe speed on the bridge. Let T 
be the difference between the times (in seconds) when 
the front bumpers of the vehicles pass a given point on 
the bridge. Verify that this difference in times is given by

 T =
d(s)

s
+

5.5
s

.

 (c)   Use a graphing utility to graph the function T and estimate 
the speed s that minimizes the time between vehicles. 

 (d)  Use calculus to determine the speed that minimizes T. 
What is the minimum value of T? Convert the required 
speed to kilometers per hour.

 (e)  Find the optimal distance between vehicles for the speed 
found in part (d).

15.  Darboux’s Theorem Prove Darboux’s Theorem: Let 
f  be differentiable on the closed interval [a, b] such that 
f ′(a) = y1 and f ′(b) = y2. If d lies between y1 and y2, then 
there exists c in (a, b) such that f ′(c) = d.

16.  Maximum Area The figures show a rectangle, a circle, 
and a semicircle inscribed in a triangle bounded by the 
coordinate axes and the first-quadrant portion of the line 
with intercepts (3, 0) and (0, 4). Find the dimensions of each 
inscribed figure such that its area is maximum. State whether 
calculus was helpful in finding the required dimensions. 
Explain your reasoning.

x
1

1

2

2

3

3

4

4

y  

x
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1

2

2

3

3
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4

r r
r

y  

x
1

1

2

2

3

3

4

4

r

y

17.  Point of Inflection Show that the cubic polynomial 
p(x) = ax3 + bx2 + cx + d has exactly one point of inflection 
(x0, y0), where

 x0 =
−b
3a

 and y0 =
2b3

27a2 −
bc
3a

+ d.

  Use these formulas to find the point of inflection of
p(x) = x3 − 3x2 + 2.

18.  Minimum Length A legal-sized sheet of paper (8.5 inches 
by 14 inches) is folded so that corner P touches the opposite 
14-inch edge at R (see figure). (Note: PQ = √C 2 − x2.)

Rx

x

QP

C

8.5 in.

14 in.

 (a) Show that C 2 =
2x3

2x − 8.5
.

 (b) What is the domain of C?

 (c) Determine the x-value that minimizes C.

 (d) Determine the minimum length C.

19. Quadratic Approximation The polynomial

 P(x) = c0 + c1(x − a) + c2(x − a)2

  is the quadratic approximation of the function f  at (a, f (a))
when P(a) = f (a), P′(a) = f ′(a), and P ″(a) = f ″(a).

 (a) Find the quadratic approximation of

 f (x) = x
x + 1

  at (0, 0).
 (b)  Use a graphing utility to graph P(x) and f (x) in the same 

viewing window.
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248 Chapter 4 Integration

4.1 Antiderivatives and Indefinite Integration

  Write the general solution of a differential equation and use indefinite integral  
notation for antiderivatives.

 Use basic integration rules to find antiderivatives.
 Find a particular solution of a differential equation.

Antiderivatives
To find a function F whose derivative is f(x) = 3x2, you might use your knowledge of 
derivatives to conclude that

F(x) = x3 because 
d
dx

[x3] = 3x2.

The function F is an antiderivative of f.

Definition of Antiderivative

A function F is an antiderivative of f  on an interval I when F′(x) = f(x) for 
all x in I.

Note that F is called an antiderivative of f  rather than the antiderivative of f. To 
see why, observe that

F1(x) = x3, F2(x) = x3 − 5, and F3(x) = x3 + 97

are all antiderivatives of f(x) = 3x2. In fact, for any constant C, the function 
F(x) = x3 + C is an antiderivative of f.

THEOREM 4.1 Representation of Antiderivatives

If F is an antiderivative of f  on an interval I, then G is an  
antiderivative of f  on the interval I if and only if G is of the  
form G(x) = F(x) + C for all x in I, where C is a constant.

Proof The proof of Theorem 4.1 in one direction is straightforward. That is, if 
G(x) = F(x) + C, F′(x) = f(x), and C is a constant, then

G′(x) = d
dx

[F(x) + C] = F′(x) + 0 = f(x).

To prove this theorem in the other direction, assume that G is an antiderivative of f. 
Define a function H such that

H(x) = G(x) − F(x).

For any two points a and b (a < b) in the interval, H is continuous on [a, b] and 
differentiable on (a, b). By the Mean Value Theorem,

H′(c) = H(b) − H(a)
b − a

for some c in (a, b). However, H′(c) = 0, so H(a) = H(b). Because a and b are 
arbitrary points in the interval, you know that H is a constant function C. So, 
G(x) − F(x) = C and it follows that G(x) = F(x) + C. 

Exploration
Finding Antiderivatives  
For each derivative, describe 
the original function F.

a. F′(x) = 2x

b. F′(x) = x

c. F′(x) = x2

d. F′(x) = 1
x2

e. F′(x) = 1
x3

f. F′(x) = cos x

What strategy did you use to 
find F?
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4.1 Antiderivatives and Indefinite Integration 249

Using Theorem 4.1, you can represent the entire family of antiderivatives of a  
function by adding a constant to a known antiderivative. For example, knowing that

Dx[x2] = 2x

you can represent the family of all antiderivatives of f(x) = 2x by

G(x) = x2 + C Family of all antiderivatives of f (x) = 2x

where C is a constant. The constant C is called the constant of integration. The  
 family of functions represented by G is the general antiderivative of f, and 
G(x) = x2 + C is the general solution of the differential equation

G′(x) = 2x. Differential equation

A differential equation in x and y is an equation that involves x, y, and derivatives 
of y. For instance,

y′ = 3x and y′ = x2 + 1

are examples of differential equations.

 Solving a Differential Equation

Find the general solution of the differential equation dy�dx = 2.

Solution To begin, you need to find a function whose derivative is 2. One such 
function is

y = 2x. 2x is an antiderivative of 2.

Now, you can use Theorem 4.1 to conclude that the general solution of the differential 
equation is

y = 2x + C. General solution

The graphs of several functions of the form y = 2x + C are shown in Figure 4.1. 

When solving a differential equation of the form

dy
dx

= f(x)

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or 
indefinite integration) and is denoted by an integral sign ∫. The general solution is 
denoted by

 
Variable of 
integration

 
Constant of 
integration

y = ∫ f(x) dx = F(x) + C.

 

Integrand

 

An antiderivative 
of f (x)

The expression ∫ f(x) dx is read as the antiderivative of f  with respect to x. So, the 
differential dx serves to identify x as the variable of integration. The term indefinite 
integral is a synonym for antiderivative.

REMARK In this text, the  
notation ∫ f(x) dx = F(x) + C 
means that F is an antiderivative 
of f  on an interval.

x

−1

−2

2

2

1

1

C = 2

C = 0

C = −1

y

Functions of the form y = 2x + C
Figure 4.1
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250 Chapter 4 Integration

Basic Integration Rules
The inverse nature of integration and differentiation can be verified by substituting 
F′(x) for f(x) in the indefinite integration definition to obtain

∫F′(x) dx = F(x) + C.    Integration is the “inverse” of differentiation.

Moreover, if ∫ f(x) dx = F(x) + C, then

d
dx[∫ f(x) dx] = f(x).    Differentiation is the “inverse” of integration.

These two equations allow you to obtain integration formulas directly from  
differentiation formulas, as shown in the following summary.

Note that the Power Rule for Integration has the restriction that n ≠ −1. The 
integration formula for

∫1
x
 dx

must wait until the introduction of the natural logarithmic function in Chapter 5.

Basic Integration Rules

Differentiation Formula Integration Formula

d
dx

[C] = 0 ∫0 dx = C

d
dx

[kx] = k ∫k dx = kx + C

d
dx

[kf(x)] = kf ′(x) ∫kf(x) dx = k∫f(x) dx

d
dx

[ f(x) ± g(x)] = f′(x) ± g′(x) ∫[ f(x) ± g(x)] dx = ∫ f(x) dx ± ∫g(x) dx

d
dx

[xn] = nxn−1 ∫xn dx =
xn+1

n + 1
+ C, n ≠ −1   Power Rule

d
dx

[sin x] = cos x ∫cos x dx = sin x + C

d
dx

[cos x] = −sin x ∫sin x dx = −cos x + C

d
dx

[tan x] = sec2 x ∫sec2 x dx = tan x + C

d
dx

[sec x] = sec x tan x ∫sec x tan x dx = sec x + C

d
dx

[cot x] = −csc2 x ∫csc2 x dx = −cot x + C

d
dx

[csc x] = −csc x cot x ∫csc x cot x dx = −csc x + C
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 Describing Antiderivatives

 ∫3x dx = 3∫x dx Constant Multiple Rule

 = 3∫x1 dx Rewrite x as x1.

 = 3(x
2

2 ) + C Power Rule (n = 1)

 =
3
2

x2 + C Simplify.

The antiderivatives of 3x are of the form 32x2 + C, where C is any constant. 

When finding indefinite integrals, a strict application of the basic integration rules 
tends to produce complicated constants of integration. For instance, in Example 2, the 
solution could have been written as

∫3x dx = 3∫x dx = 3(x
2

2
+ C) = 3

2
x2 + 3C.

Because C represents any constant, it is both cumbersome and unnecessary to write 
3C as the constant of integration. So, 32x2 + 3C is written in the simpler form 32x2 + C.

 Rewriting Before Integrating

See LarsonCalculus.com for an interactive version of this type of example.

 Original Integral Rewrite Integrate Simplify

a. ∫ 1
x3 dx ∫x−3 dx 

x−2

−2
+ C −

1
2x2 + C

b. ∫√x dx ∫x1�2 dx 
x3�2

3�2
+ C 

2
3

x3�2 + C

c. ∫2 sin x dx 2∫sin x dx 2(−cos x) + C −2 cos x + C

 Integrating Polynomial Functions

a.  ∫dx = ∫1 dx Integrand is understood to be 1.

  = x + C Integrate.

b.  ∫(x + 2) dx = ∫x dx + ∫2 dx

  =
x2

2
+ C1 + 2x + C2 Integrate.

  =
x2

2
+ 2x + C C = C1 + C2

 The second line in the solution is usually omitted.

c.  ∫(3x4 − 5x2 + x) dx = 3(x
5

5 ) − 5(x
3

3 ) +
x2

2
+ C

  =
3
5

x5 −
5
3

x3 +
1
2

x2 + C 

REMARK In Example 2, 
note that the general pattern of 
integration is similar to that of 
differentiation.

Original integral

Rewrite

Integrate

Simplify

REMARK The basic 
integration rules allow you 
to integrate any polynomial 
function.

TECHNOLOGY Some 
software programs, such as 
Maple and Mathematica, 
are capable of performing 
integration symbolically. If  
you have access to such a 
symbolic integration utility,  
try using it to find the indefinite 
integrals in Example 3.
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 Rewriting Before Integrating

 ∫x + 1

√x
 dx = ∫( x

√x
+

1

√x) dx Rewrite as two fractions.

 = ∫(x1�2 + x−1�2) dx Rewrite with fractional exponents.

 =
x3�2

3�2
+

x1�2

1�2
+ C Integrate.

 =
2
3

x3�2 + 2x1�2 + C Simplify.

 =
2
3
√x(x + 3) + C 

When integrating quotients, do not integrate the numerator and denominator  
separately. This is no more valid in integration than it is in differentiation. For instance, 
in Example 5, be sure you understand that

∫ 
x + 1

√x
 dx =

2
3
√x(x + 3) + C

is not the same as

∫ (x + 1) dx

∫ √x dx
=

1
2x2 + x + C1

2
3x√x + C2

.

 Rewriting Before Integrating

 ∫ sin x
cos2 x

 dx = ∫( 1
cos x)(

sin x
cos x) dx Rewrite as a product.

 = ∫sec x tan x dx Rewrite using trigonometric identities.

 = sec x + C Integrate.

 Rewriting Before Integrating

 Original Integral Rewrite Integrate Simplify

a. ∫ 2

√x
 dx 2∫x−1�2 dx 2(x

1�2

1�2) + C 4x1�2 + C

b. ∫(t2 + 1)2 dt ∫(t4 + 2t2 + 1) dt 
t5

5
+ 2(t

3

3) + t + C 
1
5

t5 +
2
3

t3 + t + C

c. ∫x3 + 3
x2  dx ∫(x + 3x−2) dx 

x2

2
+ 3(x

−1

−1) + C 
1
2

x2 −
3
x
+ C

d. ∫ 3√x(x − 4) dx ∫(x4�3 − 4x1�3) dx 
x7�3

7�3
− 4(x

4�3

4�3) + C 
3
7

x7�3 − 3x4�3 + C

As you do the exercises, note that you can check your answer to an  
antidifferentiation problem by differentiating. For instance, in Example 7(a), you can 
check that 4x1�2 + C is the correct antiderivative by differentiating the answer to obtain

Dx [4x1�2 + C] = 4(12)x−1�2 =
2

√x
. Use differentiation to check antiderivative.

REMARK Before you begin 
the exercise set, be sure you 
realize that one of the most 
important steps in integration  
is rewriting the integrand in  
a form that fits one of the  
basic integration rules.
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4.1 Antiderivatives and Indefinite Integration 253

Initial Conditions and Particular Solutions
You have already seen that the equation y = ∫ f(x) dx has many solutions (each differing 
from the others by a constant). This means that the graphs of any two antiderivatives of 
f  are vertical translations of each other. For example, Figure 4.2 shows the graphs of 
several antiderivatives of the form

y = ∫(3x2 − 1) dx = x3 − x + C General solution

for various integer values of C. Each of these antiderivatives is a solution of the 
differential equation

dy
dx

= 3x2 − 1.

In many applications of integration, you are given enough information to  determine 
a particular solution. To do this, you need only know the value of y = F(x) for one 
value of x. This information is called an initial condition. For example, in Figure 4.2, 
only one curve passes through the point (2, 4). To find this curve, you can use the  
general solution

F(x) = x3 − x + C General solution

and the initial condition

F(2) = 4. Initial condition

By using the initial condition in the general solution, you can determine that

F(2) = 8 − 2 + C = 4

which implies that C = −2. So, you obtain

F(x) = x3 − x − 2. Particular solution

 Finding a Particular Solution

Find the general solution of

F′(x) = 1
x2, x > 0

and find the particular solution that satisfies the initial condition F(1) = 0.

Solution To find the general solution, integrate to obtain

 F(x) = ∫ 1
x2 dx F(x) = ∫F′(x) dx

 = ∫x−2 dx Rewrite as a power.

 =
x−1

−1
+ C Integrate.

 = −
1
x
+ C, x > 0. General solution

Using the initial condition F(1) = 0, you can solve for C as follows. 

F(1) = −
1
1
+ C = 0  C = 1

So, the particular solution, as shown in Figure 4.3, is

F(x) = −
1
x
+ 1, x > 0. Particular solution 

x

−1

−2

−3

−4

−2

2

3

4

2

1

1
C = 0

C = 1

C = 2

C = 3

C = 4

C = −1

C = −2

C = −3

C = −4

(2, 4)

F(x) = x3 − x + C

y

The particular solution that satisfies 
the initial condition F(2) = 4 is 
F(x) = x3 − x − 2.
Figure 4.2

x

−1

−2

−3

2

3

2

1

1
C = 0

C = 1

C = 2

C = 3

C = 4

C = −1

C = −2

C = −3

(1, 0)

F(x) = −    + C1
x

y

The particular solution that satisfies  
the initial condition F(1) = 0 is 
F(x) = −(1�x) + 1, x > 0.
Figure 4.3
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254 Chapter 4 Integration

So far in this section, you have been using x as the variable of integration. In 
 applications, it is often convenient to use a different variable. For instance, in the next 
example, involving time, the variable of integration is t.

 Solving a Vertical Motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial 
height of 80 feet. [Assume the acceleration is a(t) = −32 feet per second per second.]

a. Find the position function giving the height s as a function of the time t.

b. When does the ball hit the ground?

Solution

a.  Let t = 0 represent the initial time. The two given initial conditions can be written 
as follows.

 s(0) = 80 Initial height is 80 feet.

 s′(0) = 64 Initial velocity is 64 feet per second.

  Recall that a(t) = s ″(t). So, you can write

 s″(t) = −32

 s′(t) = ∫s″(t) dt = ∫−32 dt = −32t + C1.

  Using the initial velocity, you obtain s′(0) = 64 = −32(0) + C1, which implies 
that C1 = 64. Next, by integrating s′(t), you obtain

s(t) = ∫s′(t) dt = ∫(−32t + 64) dt = −16t2 + 64t + C2.

 Using the initial height, you obtain

s(0) = 80 = −16(02) + 64(0) + C2

 which implies that C2 = 80. So, the position function is

s(t) = −16t2 + 64t + 80. See Figure 4.4.

b.  Using the position function found in part (a), you can find the time at which the ball 
hits the ground by solving the equation s(t) = 0.

 −16t2 + 64t + 80 = 0

 −16(t + 1)(t − 5) = 0

 t = −1, 5

  Because t must be positive, you can conclude that the ball hits the ground 5 seconds 
after it was thrown. 

In Example 9, note that the position function has the form 

s(t) = −
1
2

gt2 + v0t + s0

where g is the acceleration due to gravity, v0 is the initial velocity, and s0 is the initial 
height, as presented in Section 2.2.

Example 9 shows how to use calculus to analyze vertical motion problems in which 
the acceleration is determined by a gravitational force. You can use a similar strategy to 
analyze other linear motion problems (vertical or horizontal) in which the acceleration 
(or deceleration) is the result of some other force, as you will see in Exercises 65–72.
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4.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Antiderivative What does it mean for a function F to 

be an antiderivative of a function f  on an interval I?

2.  Antiderivatives Can two different functions both be 
antiderivatives of the same function? Explain.

3.  Particular Solution What is a particular solution of 
a differential equation?

4.  General and Particular Solutions Describe the 
difference between the general solution and a particular 
solution of a differential equation.

Integration and Differentiation In Exercises 5 and 6, 
verify the statement by showing that the derivative of the right 
side equals the integrand on the left side.

 5. ∫(− 6
x4) dx =

2
x3 + C

6. ∫(8x3 +
1

2x2) dx = 2x4 −
1
2x

+ C

 Solving a Differential Equation In Exercises 
7–10, find the general solution of the differential 
equation and check the result by differentiation.

 7. 
dy
dt

= 9t2  8. 
dy
dt

= 5

9. 
dy
dx

= x3�2 10. 
dy
dx

= 2x−3

 Rewriting Before Integrating In Exercises 
11–14, complete the table to find the indefinite 
integral.

 Original Integral  Rewrite  Integrate  Simplify

11. ∫ 3√x dx   

12. ∫ 1
4x2 dx   

13. ∫ 1

x√x
 dx   

14. ∫ 1
(3x)2 dx   

 Finding an Indefinite Integral In Exercises 
15–36, find the indefinite integral and check the 
result by differentiation.

15. ∫(x + 7) dx 16. ∫(13 − x) dx

17. ∫(x5 + 1) dx 18. ∫(9x8 − 2x − 6) dx

19. ∫(x3�2 + 2x + 1) dx 20. ∫(√x +
1

2√x) dx

21. ∫ 3√x2 dx 22. ∫( 4√x3 + 1) dx

23. ∫ 1
x5 dx 24. ∫(2 −

3
x10) dx

25. ∫x + 6

√x
 dx 26. ∫x4 − 3x2 + 5

x4  dx

27. ∫(x + 1)(3x − 2) dx 28. ∫(4t2 + 3)2 dt

29. ∫(5 cos x + 4 sin x) dx 30. ∫(sin x − 6 cos x) dx

31. ∫(csc x cot x − 2x) dx 32. ∫(θ2 + sec2 θ) dθ

33. ∫(sec2 θ − sin θ) dθ 34. ∫ (sec y)(tan y − sec y) dy

35. ∫(tan2 y + 1) dy 36. ∫(4x − csc2 x) dx

 Finding a Particular Solution In Exercises 
37–44, find the particular solution of the differential 
equation that satisfies the initial condition(s).

37. f ′(x) = 6x, f (0) = 8 38. g′(x) = 4x2, g(−1) = 3

39. h′(x) = 7x6 + 5, h(1) = −1

40. f ′(s) = 10s − 12s3, f (3) = 2

41. f ″(x) = 2, f ′(2) = 5, f (2) = 10

42. f ″(x) = 3x2, f ′(−1) = −2, f (2) = 3

43. f ″(x) = x−3�2, f ′(4) = 2, f (0) = 0

44. f ″(x) = sin x, f ′(0) = 1, f (0) = 6

Slope Field In Exercises 45 and 46, a differential equation, a 
point, and a slope field are given. A slope field (or direction field) 
consists of line segments with slopes given by the differential 
equation. These line segments give a visual perspective of the 
slopes of the solutions of the differential equation. (a) Sketch two 
approximate solutions of the differential equation on the slope 
field, one of which passes through the indicated point. (To print 
an enlarged copy of the graph, go to MathGraphs.com.) (b) Use 
integration and the given point to find the particular solution 
of the differential equation and use a graphing utility to graph 
the solution. Compare the result with the sketch in part (a) that 
passes through the given point. 

45. 
dy
dx

= x2 − 1, (−1, 3) 46. 
dy
dx

= −
1
x2, x > 0, (1, 3)

x

y
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3
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y
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Slope Field In Exercises 47 and 48, (a) use a graphing 
utility to graph a slope field for the differential equation,  
(b) use integration and the given point to find the particular 
solution of the differential equation, and (c) graph the particular 
solution and the slope field in the same viewing window.

47. 
dy
dx

= 2x, (−2, −2)

48. 
dy
dx

= 2√x, (4, 12)

EXPLORING CONCEPTS
Sketching a Graph In Exercises 49 and 50, the graph 
of the derivative of a function is given. Sketch the graphs 
of two functions that have the given derivative. (There is 
more than one correct answer.) To print an enlarged copy 
of the graph, go to MathGraphs.com.

49. 

x

2

6

2 4
−2

−4 −2

f ′

y  50. 

x

1

1 2

2

−2

−2 −1

f ′

y

51.  Comparing Functions Consider f (x) = tan2 x and 
g(x) = sec2 x. What do you notice about the derivatives 
of f  and g? What can you conclude about the relationship 
between f  and g?

 52.   HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

2
3

3 5 721

4
5

8−2

f ′

y

(a) Approximate the slope of f  at x = 4. Explain.

(b) Is f (5) − f (4) > 0? Explain.

(c)  Approximate the value of x where f  is maximum. 
Explain.

(d)  Approximate any open intervals on which the 
graph of f  is  concave upward and any open 
intervals on which it is  concave downward. 
Approximate the x-coordinates of any points  
of inflection.

52.   

53.  Horizontal Tangent Find a function f  such that the 
graph of f  has a horizontal tangent at (2, 0) and f ″(x) = 2x.

54.  Sketching Graphs The graphs of f  and f ′ each pass 
through the origin. Use the graph of f ″ shown in the figure to 
sketch the graphs of f  and f ′. To print an enlarged copy of the 
graph, go to MathGraphs.com.

x

2

2

4

4−2−4

−4

−2

f ″

y

55.  Tree Growth An evergreen nursery usually sells a certain 
type of shrub after 6 years of growth and shaping. The growth 
rate during those 6 years is approximated by dh�dt = 1.5t + 5, 
where t is the time in years and h is the height in centimeters. 
The seedlings are 12 centimeters tall when planted (t = 0).

 (a) Find the height after t years.

 (b) How tall are the shrubs when they are sold?

56.  Population Growth The rate of growth dP�dt of a 
population of bacteria is proportional to the square root of 
t, where P is the population size and t is the time in days 
(0 ≤ t ≤ 10). That is,

 
dP
dt

= k√t.

  The initial size of the population is 500. After 1 day, the 
population has grown to 600. Estimate the population after  
7 days.

Vertical Motion In Exercises 57–59, assume the accleration 
of the object is a(t) = −32 feet per second per second. (Neglect 
air resistance.)

57.  A ball is thrown vertically upward from a height of 6 feet with an 
initial velocity of 60 feet per second. How high will the ball go?

58.   With what initial velocity must an object be thrown upward 
(from ground level) to reach the top of the Washington 
Monument (approximately 550 feet)?

59.  A balloon, rising vertically with a velocity of 16 feet per 
second, releases a sandbag at the instant it is 64 feet above the 
ground.

 (a)  How many seconds after its release will the bag strike the 
ground?

 (b) At what velocity will the bag hit the ground?

Vertical Motion In Exercises 60–62, assume the accleration 
of the object is a(t) = −9.8 meters per second per second. 
(Neglect air resistance.)

60.  A baseball is thrown upward from a height of 2 meters with 
an initial velocity of 10 meters per second. Determine its 
maximum height.

61.  With what initial velocity must an object be thrown upward 
(from a height of 2 meters) to reach a maximum height of  
200 meters?
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63.  Lunar Gravity On the moon, the acceleration of a 
free-falling object is a(t) = −1.6 meters per second per 
second. A stone is dropped from a cliff on the moon and hits 
the surface of the moon 20 seconds later. How far did it fall? 
What was its velocity at impact?

64.  Escape Velocity The minimum velocity required for an 
object to escape Earth’s gravitational pull is obtained from the 
solution of the equation

 ∫v dv = −GM∫ 1
y2 dy

where v is the velocity of the object projected from Earth, y
is the distance from the center of Earth, G is the gravitational 
constant, and M is the mass of Earth. Show that v and y are 
related by the equation

 v2 = v0
2 + 2GM(1y −

1
R)

where v0 is the initial velocity of the object and R is the radius 
of Earth.

Rectilinear Motion In Exercises 65–68, consider a particle 
moving along the x-axis, where x(t) is the position of the 
particle at time t, x′(t) is its velocity, and x″(t) is its acceleration.

65. x(t) = t3 − 6t2 + 9t − 2, 0 ≤ t ≤ 5

(a) Find the velocity and acceleration of the particle.

(b)  Find the open t-intervals on which the particle is moving 
to the right.

 (c) Find the velocity of the particle when the acceleration is 0.

66.  Repeat Exercise 65 for the position function 
x(t) = (t − 1)(t − 3)2, 0 ≤ t ≤ 5.

67.  A particle moves along the x-axis at a velocity of v(t) = 1�√t,
t > 0. At time t = 1, its position is x = 4. Find the acceleration 
and position functions for the particle.

68.  A particle, initially at rest, moves along the x-axis such that 
its acceleration at time t > 0 is given by a(t) = cos t. At time 
t = 0, its position is x = 3.

(a) Find the velocity and position functions for the particle.

(b) Find the values of t for which the particle is at rest.

69.  Acceleration The maker of an automobile advertises that 
it takes 13 seconds to accelerate from 25 kilometers per hour 
to 80 kilometers per hour. Assume the acceleration is constant.

 (a) Find the acceleration in meters per second per second.

 (b) Find the distance the car travels during the 13 seconds.

70.  Deceleration A car traveling at 45 miles per hour is 
brought to a stop, at constant deceleration, 132 feet from 
where the brakes are applied.

 (a)  How far has the car moved when its speed has been 
reduced to 30 miles per hour?

 (b)  How far has the car moved when its speed has been 
reduced to 15 miles per hour?

 (c)  Draw the real number line from 0 to 132. Plot the points 
found in parts (a) and (b). What can you conclude?

71.  Acceleration At the instant the traffic light turns green, 
a car that has been waiting at an intersection starts with a 
constant acceleration of 6 feet per second per second. At the 
same instant, a truck traveling with a constant velocity of  
30 feet per second passes the car.

 (a)  How far beyond its starting point will the car pass the 
truck?

 (b) How fast will the car be traveling when it passes the truck?

72.  Acceleration Assume that a fully loaded plane starting 
from rest has a constant acceleration while moving down a 
runway. The plane requires 0.7 mile of runway and a speed 
of 160 miles per hour in order to lift off. What is the plane’s 
acceleration?

True or False? In Exercises 73–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73. The antiderivative of f (x) is unique.

74.  Each antiderivative of an nth-degree polynomial function is an 
(n + 1)th-degree polynomial function.

75.  If p(x) is a polynomial function, then p has exactly one 
antiderivative whose graph contains the origin.

76. If F(x) and G(x) are antiderivatives of f (x), then

 F(x) = G(x) + C.

77. If f ′(x) = g(x), then ∫g(x) dx = f (x) + C.

78. ∫ f (x)g(x) dx = (∫ f (x) dx)(∫g(x) dx)

79.  Proof Let s(x) and c(x) be two functions satisfying 
s′(x) = c(x) and c′(x) = −s(x) for all x. If s(0) = 0 and 
c(0) = 1, prove that [s(x)]2 + [c(x)]2 = 1.

80.  Think About It Find the general solution of

 f ′(x) = −2x sin x2.

PUTNAM EXAM CHALLENGE
81.  Suppose f  and g are non-constant, differentiable, real-

valued functions defined on (−∞, ∞). Furthermore, 
suppose that for each pair of real numbers x and y,

f (x + y) = f (x) f (y) − g(x)g(y) and 
 g(x + y) = f (x)g(y) + g(x) f (y).

If f ′(0) = 0, prove that ( f (x))2 + (g(x))2 = 1 for all x.
This problem was composed by the Committee on the Putnam Prize Competition.  
© The Mathematical Association of America. All rights reserved.

The Grand Canyon is  
1800 meters deep at 
its deepest point. A 
rock is dropped from 
the rim above this 
point. How long will it 
take the rock to hit the 
canyon floor?

62. Grand Canyon

Francesco R. Iacomino/Shutterstock.com
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4.2 Area

 Use sigma notation to write and evaluate a sum.
 Understand the concept of area.
 Approximate the area of a plane region.
 Find the area of a plane region using limits.

Sigma Notation
In the preceding section, you studied antidifferentiation. In this section, you will look 
further into a problem introduced in Section 1.1—that of finding the area of a region in 
the plane. At first glance, these two ideas may seem unrelated, but you will discover in 
Section 4.4 that they are closely related by an extremely important theorem called the 
Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is 
called sigma notation because it uses the uppercase Greek letter sigma, written as ∑.

Sigma Notation

The sum of n terms a1, a2, a3, .  .  . , an is written as

∑
n

i=1
ai = a1 + a2 + a3 + .  .  . + an

where i is the index of summation, ai is the ith term of the sum, and the 
upper and lower bounds of summation are n and 1.

 Examples of Sigma Notation

a. ∑
6

i=1
i = 1 + 2 + 3 + 4 + 5 + 6

b. ∑
5

i=0
(i + 1) = 1 + 2 + 3 + 4 + 5 + 6

c. ∑
7

j=3
j2 = 32 + 42 + 52 + 62 + 72

d. ∑
5

j=1

1

√j 
=

1

√1
+

1

√2
+

1

√3
+

1

√4
+

1

√5

e. ∑
n

k=1

1
n
(k2 + 1) = 1

n
(12 + 1) + 1

n
(22 + 1) + .  .  . +

1
n
(n2 + 1)

f . ∑
n

i=1
f(xi) ∆x = f(x1) ∆x + f(x2) ∆x + .  .  . + f(xn) ∆x

From parts (a) and (b), notice that the same sum can be represented in different ways 
using sigma notation. 

Although any variable can be used as the index of summation, i, j, and k are often 
used. Notice in Example 1 that the index of summation does not appear in the terms of 
the expanded sum.

REMARK The upper and lower bounds must be constant with respect to the index 
of summation. However, the lower bound does not have to be 1. Any integer less than 
or equal to the upper bound is legitimate.
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The properties of summation shown below can be derived using the Associative 
and  Commutative Properties of Addition and the Distributive Property of Addition over 
 Multiplication. (In the first property, k is a constant.)

1. ∑
n

i=1
kai = k∑

n

i=1
ai 2. ∑

n

i=1
(ai ± bi) = ∑

n

i=1
ai ± ∑

n

i=1
bi

The next theorem lists some useful formulas for sums of powers.

THEOREM 4.2 Summation Formulas

1. ∑
n

i=1
c = cn, c is a constant 2. ∑

n

i=1
 i =

n(n + 1)
2

3. ∑
n

i=1
i2 =

n(n + 1)(2n + 1)
6

 4. ∑
n

i=1
i3 =

n2(n + 1)2
4

A proof of this theorem is given in Appendix A.

 Evaluating a Sum

Evaluate ∑
n

i=1

i + 1
n2  for n = 10, 100, 1000, and 10,000.

Solution

 ∑
n

i=1

i + 1
n2 =

1
n2∑

n

i=1
(i + 1) Factor the constant 1�n2 out of sum.

 =
1
n2 (∑

n

i=1
i + ∑

n

i=1
1) Write as two sums.

 =
1
n2[n(n + 1)

2
+ n] Apply Theorem 4.2.

 =
1
n2[n

2 + 3n
2 ] Simplify.

 =
n + 3

2n
 Simplify.

Now you can evaluate the sum by substituting the appropriate values of n, as shown in 
the table below.

 
n 10 100 1000 10,000

∑
n

i=1

i + 1
n2 =

n + 3
2n

0.65000 0.51500 0.50150 0.50015

 

In the table, note that the sum appears to approach a limit as n increases. Although 
the discussion of limits at infinity in Section 3.5 applies to a variable x, where x can be 
any real number, many of the same results hold true for limits involving the variable n, 
where n is restricted to positive integer values. So, to find the limit of (n + 3)�2n as n 
approaches infinity, you can write

lim
n→∞

 
n + 3

2n
= lim

n→∞
 ( n

2n
+

3
2n) = lim

n→∞
 (12 +

3
2n) =

1
2
+ 0 =

1
2

.

 FOR FURTHER INFORMATION

For a geometric interpretation  
of summation formulas, see the 

article “Looking at ∑
n

k=1
k and ∑

n

k=1
k2

Geometrically” by Eric Hegblom 
in Mathematics Teacher. To view 
this article, go to MathArticles.com.

THE SUM OF THE FIRST  
100 INTEGERS

A teacher of Carl Friedrich 
Gauss (1777–1855) asked him 
to add all the integers from 1 
to 100. When Gauss returned 
with the correct answer after 
only a few moments, the 
teacher could only look at him 
in astounded silence. This is 
what Gauss did.

1 + 2 + 3 + . . . + 100
100 + 99 + 98 + . . . + 1
101 + 101 + 101 + . . . + 101

100 × 101
2

= 5050

This is generalized by Theorem 
4.2, Property 2, where

∑
100

i=1
i =

100(101)
2

= 5050.
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Area
In Euclidean geometry, the simplest type of plane region is a rectangle.  
Although people often say that the formula for the area of a rectangle is

A = bh

it is actually more proper to say that this is the definition  

b

h

Triangle: A = 1
2bh

Figure 4.5

 
of the area of a rectangle.

From this definition, you can develop formulas for  
the areas of many other plane regions. For example, to  
determine the area of a triangle, you can form a rectangle  
whose area is twice that of the triangle, as shown in  
Figure 4.5. Once you know how to find the area of a  
triangle, you can determine the area of any polygon by  
subdividing the polygon into triangular regions, as  
shown in Figure 4.6.

      

 Parallelogram Hexagon Polygon
 Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient 
Greeks were able to determine formulas for the areas of some general regions 
(principally those bounded by conics) by the exhaustion method. The clearest 
description of this method was given by Archimedes. Essentially, the method is a 
limiting process in which the area is squeezed between two polygons—one inscribed 
in the region and one circumscribed about the region.

For instance, in Figure 4.7, the area of a circular region is approximated by an  
n-sided inscribed polygon and an n-sided circumscribed polygon. For each value of n, 
the area of the inscribed polygon is less than the area of the circle, and the area of the 
circumscribed polygon is greater than the area of the circle. Moreover, as n increases, 
the areas of both polygons become better and better approximations of the area of  
the circle.

n = 6

   

n = 12

 The exhaustion method for finding the area of a circular region
 Figure 4.7

A process that is similar to that used by Archimedes to determine the area of a 
plane region is used in the remaining examples in this section.

 FOR FURTHER INFORMATION

For an alternative development of 
the formula for the area of a circle, 
see the article “Proof Without 
Words: Area of a Disk is πR2” by 
Russell Jay Hendel in Mathematics 
Magazine. To view this article, go 
to MathArticles.com.

ARCHIMEDES (287–212 B.C.)

Archimedes used the method 
of exhaustion to derive 
formulas for the areas of 
ellipses, parabolic segments, 
and sectors of a spiral. He is 
considered to have been the 
greatest applied mathematician 
of antiquity.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library / Alamy Stock Photo
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The Area of a Plane Region
Recall from Section 1.1 that the origins of calculus are connected to two classic 
 problems: the tangent line problem and the area problem. Example 3 begins the 
 investigation of the area problem.

 Approximating the Area of a Plane Region

Use the five rectangles in Figures 4.8(a) and (b) to find two approximations of the area 
of the region lying between the graph of

f(x) = −x2 + 5

and the x-axis between x = 0 and x = 2.

Solution

a. The right endpoints of the five intervals are

2
5

i Right endpoints

  where i = 1, 2, 3, 4, 5. The width of each rectangle is 2
5, and the height of each  

rectangle can be obtained by evaluating f  at the right endpoint of each interval.

[0, 
2
5], [

2
5

, 
4
5], [

4
5

, 
6
5], [

6
5

, 
8
5], [

8
5

, 
10
5 ]

 
 Evaluate f  at the right endpoints of these intervals.

 The sum of the areas of the five rectangles is

 Height Width

 

∑
5

i=1
f (2i

5 )(
2
5) = ∑

5

i=1
[−(2i

5 )
2

+ 5](25) =
162
25

= 6.48.

  Because each of the five rectangles lies inside the parabolic region, you can conclude 
that the area of the parabolic region is greater than 6.48.

b. The left endpoints of the five intervals are

2
5
(i − 1) Left endpoints

  where i = 1, 2, 3, 4, 5. The width of each rectangle is 25, and the height of each rectangle 
can be obtained by evaluating f  at the left endpoint of each interval. So, the sum is

 Height Width

 

∑
5

i=1
f (2i − 2

5 )(25) = ∑
5

i=1
[−(2i − 2

5 )
2

+ 5](25) =
202
25

= 8.08.

  Because the parabolic region lies within the union of the five rectangular regions,  
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

6.48 < (Area of region) < 8.08. 

By increasing the number of rectangles used in Example 3, you can obtain closer 
and closer approximations of the area of the region. For instance, using 25 rectangles 
of width 2

25 each, you can conclude that

7.1712 < (Area of region) < 7.4912.

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

f(x) = −x2 + 5

y

(a)  The area of the parabolic region is 
greater than the area of the rectangles.

f(x) = −x2 + 5

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

y

(b)  The area of the parabolic region is less 
than the area of the rectangles.

Figure 4.8
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Finding Area by the Limit Definition
The procedure used in Example 3 can be generalized as follows. Consider a plane 
region bounded above by the graph of a nonnegative, continuous function

y = f(x)

as shown in Figure 4.9. The region is bounded below by the x-axis, and the left and 
right boundaries of the region are the vertical lines x = a and x = b.

To approximate the area of the region, begin by subdividing the interval [a, b] into 
n subintervals, each of width

∆x =
b − a

n

as shown in Figure 4.10. The endpoints of the intervals are

 a = x0 x1 x2 xn = b

a + 0(∆x) < a + 1(∆x) < a + 2(∆x) < .  .  . < a + n(∆x).

Because f  is continuous, the Extreme Value Theorem guarantees the existence of a  
minimum and a maximum value of f(x) in each subinterval.

 f(mi) = Minimum value of f(x) in ith subinterval

 f(Mi) = Maximum value of f(x) in ith subinterval

Next, define an inscribed rectangle lying inside the ith subregion and a  circumscribed 
rectangle extending outside the ith subregion. The height of the ith inscribed rectangle 
is f(mi) and the height of the ith circumscribed rectangle is f(Mi). For each i, the area 
of the inscribed rectangle is less than or equal to the area of the circumscribed rectangle.

(Area of inscribed
rectangle ) = f(mi) ∆x ≤ f(Mi) ∆x = (Area of circumscribed

rectangle )
The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of 
the areas of the circumscribed rectangles is called an upper sum.

Lower sum = s(n) = ∑
n

i=1
f(mi) ∆x Area of inscribed rectangles

Upper sum = S(n) = ∑
n

i=1
f(Mi) ∆x Area of circumscribed rectangles

From Figure 4.11, you can see that the lower sum s(n) is less than or equal to the upper 
sum S(n). Moreover, the actual area of the region lies between these two sums.

s(n) ≤ (Area of region) ≤ S(n)

s(n)

a b
x

y = f(x)
y   

a b
x

y

y = f (x)

  y = f (x)

S(n)

a b
x

y

 Area of inscribed rectangles Area of region Area of circumscribed 
 is less than area of region.  rectangles is greater than 
   area of region.
 Figure 4.11

a b
x

f

y

The region under a curve
Figure 4.9

a b
x

f

Δx

f (mi)
f (Mi)

y

The interval [a, b] is divided into n

subintervals of width ∆x =
b − a

n
.

Figure 4.10
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 Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(x) = x2 and 
the x-axis between x = 0 and x = 2.

Solution To begin, partition the interval [0, 2] into n subintervals, each of width

∆x =
b − a

n
=

2 − 0
n

=
2
n

.

Figure 4.12 shows the endpoints of the subintervals and several inscribed and 
 circumscribed rectangles. Because f  is increasing on the interval [0, 2], the minimum 
value on each subinterval occurs at the left endpoint, and the maximum value occurs 
at the right endpoint.

 Left Endpoints Right Endpoints

mi = 0 + (i − 1)(2n) =
2(i − 1)

n
 Mi = 0 + i(2n) =

2i
n

Using the left endpoints, the lower sum is

 s(n) = ∑
n

i=1
f(mi) ∆x

 = ∑
n

i=1
f [2(i − 1)

n ](2n)
 = ∑

n

i=1
[2(i − 1)

n ]
2

(2n)
 = ∑

n

i=1
( 8

n3)(i2 − 2i + 1)

 =
8
n3 (∑

n

i=1
i2 − 2∑

n

i=1
i + ∑

n

i=1
1)

 =
8
n3{n(n + 1)(2n + 1)

6
− 2[n(n + 1)

2 ] + n}
 =

4
3n3(2n3 − 3n2 + n)

 =
8
3
−

4
n
+

4
3n2. Lower sum

Using the right endpoints, the upper sum is

 S(n) = ∑
n

i=1
f(Mi) ∆x

 = ∑
n

i=1
f(2i

n )(
2
n)

 = ∑
n

i=1
(2i

n )
2(2n)

 = ∑
n

i=1
( 8

n3)i2

 =
8
n3[n(n + 1)(2n + 1)

6 ]
 =

4
3n3 (2n3 + 3n2 + n)

 =
8
3
+

4
n
+

4
3n2. Upper sum 

x

1

1

2

2 3

3

4

−1

f (x) = x2

y

Inscribed rectangles

1 2 3
x

1

2

3

4

−1

y

f (x) = x2

Circumscribed rectangles
Figure 4.12
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Example 4 illustrates some important things about lower and upper sums. First, 
notice that for any value of n, the lower sum is less than (or equal to) the upper sum.

s(n) = 8
3
−

4
n
+

4
3n2 <

8
3
+

4
n
+

4
3n2 = S(n)

Second, the difference between these two sums lessens as n increases. In fact, when you 
take the limits as n→∞, both the lower sum and the upper sum approach 83.

lim
n→∞

 s(n) = lim
n→∞

 (83 −
4
n
+

4
3n2) = 8

3
 Lower sum limit

and

lim
n→∞

 S(n) = lim
n→∞

 (83 +
4
n
+

4
3n2) = 8

3
 Upper sum limit

The next theorem shows that the equivalence of the limits (as n→∞) of the upper 
and lower sums is not mere coincidence. It is true for all functions that are continuous 
and nonnegative on the closed interval [a, b]. The proof of this theorem is best left to 
a course in advanced calculus.

THEOREM 4.3 Limits of the Lower and Upper Sums

Let f  be continuous and nonnegative on the interval [a, b]. The limits as 
n→∞ of both the lower and upper sums exist and are equal to each other. 
That is,

 lim
n→∞

 s(n) = lim
n→∞

 ∑
n

i=1
f(mi) ∆x

 = lim
n→∞

 ∑
n

i=1
f(Mi) ∆x

 = lim
n→∞

 S(n)

where ∆x = (b − a)�n and f(mi) and f(Mi) are the minimum and maximum  
values of f  on the ith subinterval.

In Theorem 4.3, the same limit is attained for both the minimum value f(mi) and 
the  maximum value f(Mi). So, it follows from the Squeeze Theorem (Theorem 1.8) that 
the choice of x in the ith subinterval does not affect the limit. This means that you are 
free to choose an arbitrary x-value in the ith subinterval, as shown in the definition of 
the area of a region in the plane.

Definition of the Area of a Region in the Plane

Let f  be continuous and nonnegative on the  

x

f

a b
xixi−1

ci

f (ci)

y

The width of the ith subinterval 
is ∆x = xi − xi−1.
Figure 4.13

 
interval [a, b]. (See Figure 4.13.) The area  
of the region bounded by the graph of f,  
the x-axis, and the vertical lines x = a and  
x = b is

Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

where xi−1 ≤ ci ≤ xi and

∆x =
b − a

n
.

Exploration
For the region given in 
Example 4, evaluate the 
lower sum

s(n) = 8
3
−

4
n
+

4
3n2

and the upper sum

S(n) = 8
3
+

4
n
+

4
3n2

for n = 10, 100, and 1000. 
Use your results to determine 
the area of the region.
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 Finding Area by the Limit Definition

Find the area of the region bounded by the graph of f(x) = x3, the x-axis, and the 
vertical lines x = 0 and x = 1, as shown in Figure 4.14.

Solution Begin by noting that f  is continuous and nonnegative on the interval 
[0, 1]. Next, partition the interval [0, 1] into n subintervals, each of width ∆x = 1�n. 
According to the definition of area, you can choose any x-value in the ith subinterval. 
For this example, the right endpoints ci = i�n are convenient.

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

 = lim
n→∞

 ∑
n

i=1
( i

n)
3(1n) Right endpoints: ci =

i
n

 = lim
n→∞

1
n4∑

n

i=1
i3

 = lim
n→∞

 
1
n4[n

2(n + 1)2
4 ]

 = lim
n→∞

 (14 +
1
2n

+
1

4n2)
 =

1
4

The area of the region is 14.

 Finding Area by the Limit Definition

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region bounded by the graph of f(x) = 4 − x2, the x-axis, and the 
vertical lines x = 1 and x = 2, as shown in Figure 4.15.

Solution Note that the function f  is continuous and nonnegative on the interval 
[1, 2]. So, begin by partitioning the interval into n subintervals, each of width 
∆x = 1�n. Choosing the right endpoint

ci = a + i∆x = 1 +
i
n

 Right endpoints

of each subinterval, you obtain

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

 = lim
n→∞

 ∑
n

i=1
[4 − (1 +

i
n)

2

](1n)
 = lim

n→∞
 ∑

n

i=1
(3 −

2i
n
−

i2

n2)(1n)
 = lim

n→∞(
1
n

 ∑
n

i=1
3 −

2
n2∑

n

i=1
i −

1
n3∑

n

i=1
i2)

 = lim
n→∞[3 − (1 +

1
n) − (

1
3
+

1
2n

+
1

6n2)]
 = 3 − 1 −

1
3

 =
5
3

.

The area of the region is 53. 

x
1

1

(0, 0)

(1, 1)

f (x) = x3

y

The area of the region bounded by  
the graph of f, the x-axis, x = 0, and 
x = 1 is 14.
Figure 4.14

x

1

1

2

2

3

4
f (x) = 4 − x2

y

The area of the region bounded by  
the graph of f, the x-axis, x = 1, and 
x = 2 is 53.
Figure 4.15
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The next example looks at a region that is bounded by the y-axis (rather than by 
the x-axis).

 A Region Bounded by the y-axis

Find the area of the region bounded by the graph of f(y) = y2 and the y-axis for 
0 ≤ y ≤ 1, as shown in Figure 4.16.

Solution When f  is a continuous, nonnegative function of y, you can still use the 
same basic procedure shown in Examples 5 and 6. Begin by partitioning the interval 
[0, 1] into n subintervals, each of width ∆y = 1�n. Then, using the upper endpoints 
ci = i�n, you obtain

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆y

 = lim
n→∞

 ∑
n

i=1
( i

n)
2(1n) Upper endpoints: ci =

i
n

 = lim
n→∞

 
1
n3∑

n

i=1
i2

 = lim
n→∞

 
1
n3[n(n + 1)(2n + 1)

6 ]
 = lim

n→∞
 (13 +

1
2n

+
1

6n2)
 =

1
3

.

The area of the region is 13. 

In Examples 5, 6, and 7, ci is chosen to be a value that is convenient for calculating 
the limit. Because each limit gives the exact area for any ci, there is no need to find  
values that give good approximations when n is small. For an approximation, however, 
you should try to find a value of ci that gives a good approximation of the area of the  
ith subregion. In general, a good value to choose is the midpoint of the interval, 
ci = (xi−1 + xi)�2, and apply the Midpoint Rule.

Area ≈ ∑
n

i=1
 f (xi−1 + xi

2 ) ∆x. Midpoint Rule

 Approximating Area with the Midpoint Rule

Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the 
graph of f(x) = sin x and the x-axis for 0 ≤ x ≤ π, as shown in Figure 4.17.

Solution For n = 4, ∆x = π�4. The midpoints of the subregions are shown below.

c1 =
0 + (π�4)

2
=

π
8

 c2 =
(π�4) + (π�2)

2
=

3π
8

c3 =
(π�2) + (3π�4)

2
=

5π
8

 c4 =
(3π�4) + π

2
=

7π
8

So, the area is approximated by

Area ≈ ∑
n

i=1
f(ci) ∆x = ∑

4

i=1
(sin ci)(π4) =

π
4(sin

π
8
+ sin

3π
8

+ sin
5π
8

+ sin
7π
8 )

which is about 2.052. 

1

1

x

(1, 1)

(0, 0)

y

f(y) = y2

The area of the region bounded by 
the graph of f  and the y-axis for 
0 ≤ y ≤ 1 is 13.
Figure 4.16

REMARK You will study 
other approximation methods 
in Section 8.6. One of the 
methods, the Trapezoidal  
Rule, is similar to the  
Midpoint Rule.

c1 c2 c3 c4

f(x) = sin x

x

y

π
4

1

π3
4
π

2
π

The area of the region bounded by the 
graph of f (x) = sin x and the x-axis for 
0 ≤ x ≤ π  is about 2.052.
Figure 4.17
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4.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Sigma Notation What are the index of summation, 

the upper bound of summation, and the lower bound of

 summation for ∑
8

i=3
 (i − 4)?

2.  Sums What is the value of n?

 (a)  ∑
n

i=1
i =

5(5 + 1)
2

 (b) ∑
n

i=1
i2 =

20(20 + 1)[2(20) + 1]
6

3.  Upper and Lower Sums In your own words and 
using appropriate figures, describe the methods of upper 
sums and lower sums in approximating the area of a region.

4.  Finding Area by the Limit Definition Explain 
how to find the area of a plane region using limits.

 Finding a Sum In Exercises 5–10, find the sum 
by adding each term together. Use the summation 
capabilities of a graphing utility to verify your result.

 5. ∑
6

i=1
(3i + 2)  6. ∑

9

k=3
(k2 + 1)

 7. ∑
4

k=0
 

1
k2 + 1

  8. ∑
5

j=2
 
1
2j

 9. ∑
7

k=0
 c 10. ∑

4

i=1
[(i − 1)2 + (i + 1)3]

Using Sigma Notation In Exercises 11–16, use sigma 
notation to write the sum.

11. 
1

5(1) +
1

5(2) +
1

5(3) +
.  .  . +

1
5(11)

12. 
6

2 + 1
+

6
2 + 2

+
6

2 + 3
+ .  .  . +

6
2 + 11

13. [7(16) + 5] + [7(26) + 5] + .  .  . + [7(66) + 5]
14. [1 − (14)

2

] + [1 − (24)
2

] + .  .  . + [1 − (44)
2

]
15. [(2n)

3

−
2
n](

2
n) + .  .  . + [(2n

n )
3

−
2n
n ](

2
n)

16. [2(1 +
3
n)

2

](3n) + .  .  . + [2(1 +
3n
n )

2

](3n)
 Evaluating a Sum In Exercises 17–24, use 
the properties of summation and Theorem 4.2 to 
evaluate the sum. Use the summation capabilities 
of a graphing utility to verify your result.

17. ∑
12

i=1
7 18. ∑

20

i=1
−8

19. ∑
24

i=1
4i 20. ∑

16

i=1
(5i − 4)

21. ∑
20

i=1
(i − 1)2 22. ∑

10

i=1
(i2 − 1)

23. ∑
7

i=1
 i(i + 3)2 24. ∑

25

i=1
(i3 − 2i)

 Evaluating a Sum In Exercises 25–28, use 
the summation formulas to rewrite the expression 
without the summation notation. Use the result to 
find the sums for n = 10, 100, 1000, and 10,000.

25. ∑
n

i=1

2i + 1
n2  26. ∑

n

j=1

7j + 4
n2

27. ∑
n

k=1

6k(k − 1)
n3  28. ∑

n

i=1

2i3 − 3i
n4

 Approximating the Area of a Plane 
Region In Exercises 29–34, use left and right 
endpoints and the given number of rectangles to 
find two approximations of the area of the region 
between the graph of the function and the x-axis 
over the given interval.

29. f (x) = 2x + 5, [0, 2], 4 rectangles

30. f (x) = 9 − x, [2, 4], 6 rectangles

31. g(x) = 2x2 − x − 1, [2, 5], 6 rectangles

32. g(x) = x2 + 1, [1, 3], 8 rectangles

33. f (x) = cos x, [0, 
π
2], 4 rectangles

34. g(x) = sin x, [0, π], 6 rectangles

Using Upper and Lower Sums In Exercises 35 and 36, 
bound the area of the shaded region by approximating the 
upper and lower sums. Use rectangles of width 1.

35. 

x
1 2 3 4 5

1

2

3

4

5
f

y  36. 

x
1 2 3 4 5

1

2

3

4

5
f

y

 Finding Upper and Lower Sums for a 
Region In Exercises 37–40, use upper and lower 
sums to approximate the area of the region using 
the given number of subintervals (of equal width).

37. y = √x 38. y = √x + 2

 

x

1

1

y   

1 2

1

2

x

3

y
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39. y =
1
x
 40. y = √1 − x2

 

x
1 2

1

y   

x

1

1

y

 Finding Upper and Lower Sums for a 
Region In Exercises 41–44, find the upper and 
lower sums for the region bounded by the graph of 
the function and the x-axis on the given interval. 
Leave your answer in terms of n, the number of 
subintervals.

 Function Interval

41. f (x) = 3x [0, 4]
42. f (x) = 6 − 2x [1, 2]
43. f (x) = 5x2 [0, 1]

44. f (x) = 9 − x2 [0, 2] 

45.  Numerical Reasoning Consider a triangle of area 2 
bounded by the graphs of y = x, y = 0, and x = 2.

 (a) Sketch the region.

 (b)  Divide the interval [0, 2] into n subintervals of equal width 
and show that the endpoints are

  0 < 1(2n) < .  .  . < (n − 1)(2n) < n(2n).

 (c) Show that s(n) = ∑
n

i=1
[(i − 1)(2n)](

2
n).

 (d) Show that S(n) = ∑
n

i=1
[i(2n)](

2
n).

 (e) Find s(n) and S(n) for n = 5, 10, 50, and 100.

 (f ) Show that lim
n→∞ 

s(n) = lim
n→∞

 S(n) = 2.

46.  Numerical Reasoning Consider a trapezoid of area 4 
bounded by the graphs of y = x, y = 0, x = 1, and x = 3.

 (a) Sketch the region.

 (b)  Divide the interval [1, 3] into n subintervals of equal width 
and show that the endpoints are

 1 < 1 + 1(2n) < .  .  . < 1 + (n − 1)(2n) < 1 + n(2n).

 (c) Show that s(n) = ∑
n

i=1
[1 + (i − 1)(2n)](

2
n).

 (d) Show that S(n) = ∑
n

i=1
[1 + i(2n)](

2
n).

 (e) Find s(n) and S(n) for n = 5, 10, 50, and 100.

 (f ) Show that lim
n→∞

 s(n) = lim
n→∞

 S(n) = 4.

 Finding Area by the Limit Definition In 
Exercises 47–56, use the limit process to find the 
area of the region bounded by the graph of the 
function and the x-axis over the given interval. 
Sketch the region.

47. y = −4x + 5, [0, 1] 48. y = 3x − 2, [2, 5]
49. y = x2 + 2, [0, 1] 50. y = 5x2 + 1, [0, 2]
51. y = 25 − x2, [1, 4] 52. y = 4 − x2, [−2, 2]
53. y = 27 − x3, [1, 3] 54. y = 2x − x3, [0, 1]
55. y = x2 − x3, [−1, 1] 56. y = 2x3 − x2, [1, 2]

 Finding Area by the Limit Definition In 
Exercises 57–62, use the limit process to find the 
area of the region bounded by the graph of the 
function and the y-axis over the given y-interval. 
Sketch the region.

57. f (y) = 4y, 0 ≤ y ≤ 2

58. g(y) = 1
2y, 2 ≤ y ≤ 4

59. f (y) = y2, 0 ≤ y ≤ 5

60. y = 3y − y2, 2 ≤ y ≤ 3

61. g(y) = 4y2 − y3, 1 ≤ y ≤ 3

62. h(y) = y3 + 1, 1 ≤ y ≤ 2

 Approximating Area with the Midpoint 
Rule In Exercises 63–66, use the Midpoint Rule 
with n = 4 to approximate the area of the region 
bounded by the graph of the function and the 
x-axis over the given interval.

63. f (x) = x2 + 3, [0, 2] 64. f (x) = x2 + 4x, [0, 4]

65. f (x) = tan x, [0, 
π
4] 66. f (x) = cos x, [0, 

π
2]

EXPLORING CONCEPTS
67.  Approximation Determine which value best 

approximates the area of the region bounded by the 
graph of f (x) = 4 − x2 and the x-axis over the interval 
[0, 2]. Make your selection on the basis of a sketch of the 
region, not by performing calculations.

 (a) −2  (b) 6  (c) 10  (d) 3  (e) 8

68.  Approximation A function is continuous, 
nonnegative, concave upward, and decreasing on the 
interval [0, a]. Does using the right endpoints of the 
subintervals produce an overestimate or an underestimate 
of the area of the region bounded by the function and the 
x-axis?

69.  Midpoint Rule Explain why the Midpoint Rule 
almost always results in a better area approximation in 
comparison to the endpoint method.

70.  Midpoint Rule Does the Midpoint Rule ever give 
the exact area between a function and the x-axis? Explain.
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71.  Graphical Reasoning Consider the region bounded by 
the graphs of f (x) = 8x�(x + 1), x = 0, x = 4, and y = 0, as 
shown in the figure. To print an enlarged copy of the graph, go 
to MathGraphs.com.

 (a)  Redraw the figure, and  

x
1

2

2 3

4

4

6

8

y

f

 
complete and shade the  
rectangles representing the  
lower sum when n = 4.  
Find this lower sum.

 (b)  Redraw the figure, and  
complete and shade the  
rectangles representing the  
upper sum when n = 4.  
Find this upper sum.

 (c)  Redraw the figure, and complete and shade the rectangles 
whose heights are determined by the function values at the 
midpoint of each subinterval when n = 4. Find this sum 
using the Midpoint Rule.

 (d)  Verify the following formulas for approximating the area 
of the region using n subintervals of equal width.

  Lower sum: s(n) = ∑
n

i=1
f [(i − 1)4

n](
4
n)

  Upper sum: S(n) = ∑
n

i=1
f [(i)4

n](
4
n)

  Midpoint Rule: M(n) = ∑
n

i=1
f [(i − 1

2)
4
n](

4
n)

 (e)  Use a graphing utility to create a table of values of s(n), 
S(n), and M(n) for n = 4, 8, 20, 100, and 200.

 (f )  Explain why s(n) increases and S(n) decreases for  
increasing values of n, as shown in the table in part (e).

 72.  HOW DO YOU SEE IT? The function 
shown in the graph below is increasing on the 
interval [1, 4]. The interval will be divided into 
12 subintervals.

1 2 3 4 5

2

3

4

5

x

y

(a)  What are the left endpoints of the first and last 
subintervals?

(b)  What are the right endpoints of the first two  
subintervals?

(c)  When using the right endpoints, do the rectangles  
lie above or below the graph of the function?

(d)  What can you conclude about the heights of the  
rectangles when the function is constant on the 
given interval?

72.  

True or False? In Exercises 73 and 74, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

73. The sum of the first n positive integers is n(n + 1)�2.

74.  If f  is continuous and nonnegative on [a, b], then the limits as 
n→∞ of its lower sum s(n) and upper sum S(n) both exist and 
are equal.

75.  Writing Use the figure to write a short paragraph explaining 
why the formula 1 + 2 + .  .  . + n = 1

2n(n + 1) is valid for 
all positive integers n.

    

θ

 Figure for 75 Figure for 76

76.  Graphical Reasoning Consider an n-sided regular 
polygon inscribed in a circle of radius r. Join the vertices of 
the polygon to the center of the circle, forming n congruent 
triangles (see figure).

 (a) Determine the central angle θ in terms of n.

 (b) Show that the area of each triangle is 12r2 sin θ.

 (c)  Let An be the sum of the areas of the n triangles. Find 
lim

n→∞
 An.

78.  Proof Prove each formula by mathematical induction. (You 
may need to review the method of proof by induction from a 
precalculus text.)

 (a) ∑
n

i=1
2i = n(n + 1)  (b) ∑

n

i=1
i3 =

n2(n + 1)2
4

PUTNAM EXAM CHALLENGE
79.  A dart, thrown at random, hits a square target. Assuming 

that any two parts of the target of equal area are equally 
likely to be hit, find the probability that the point hit is 
nearer to the center than to any edge. Write your answer in 
the form (a√b + c)�d, where a, b, c, and d are integers.

This problem was composed by the Committee on the Putnam Prize Competition.  
© The Mathematical Association of America. All rights reserved.

A teacher places n seats 
to form the back row 
of a classroom layout. 
Each successive row 
contains two fewer  
seats than the preceding 
row. Find a formula for 
the number of seats used 
in the layout. (Hint: The 
number of seats in the 
layout depends on whether n is odd or even.)

77. Seating Capacity

PongMoji/Shutterstock.com
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4.3 Riemann Sums and Definite Integrals

 Understand the definition of a Riemann sum.
 Evaluate a definite integral using limits and geometric formulas.
 Evaluate a definite integral using properties of definite integrals.

Riemann Sums
In the definition of area given in Section 4.2, the partitions have subintervals of equal 
width. This was done only for computational convenience. The next example shows 
that it is not necessary to have subintervals of equal width.

 A Partition with Subintervals of Unequal Widths

Consider the region bounded by the graph of f(x) = √x and the x-axis for 0 ≤ x ≤ 1, 
as shown in Figure 4.18. Evaluate the limit

lim
n→∞

 ∑
n

i=1
f(ci) ∆xi

where ci is the right endpoint of the partition given by ci = i2�n2 and ∆xi is the width 
of the ith interval.

Solution The width of the ith interval is

 ∆xi =
i2

n2 −
(i − 1)2

n2

 =
i2 − i2 + 2i − 1

n2

 =
2i − 1

n2 .

So, the limit is

 lim
n→∞

 ∑
n

i=1
f(ci) ∆xi = lim

n→∞
 ∑

n

i=1
 √ i2

n2 (2i − 1
n2 )

 = lim
n→∞

 
1
n3 ∑

n

i=1
 (2i2 − i)

 = lim
n→∞

 
1
n3 [2(n(n + 1)(2n + 1)

6 ) − n(n + 1)
2 ]

 = lim
n→∞

 
4n3 + 3n2 − n

6n3

 = lim
n→∞

 (23 +
1
2n

−
1

6n2)
 =

2
3

. 

From Example 7 in Section 4.2, you know that the region shown in Figure 4.19 has 
an area of 13. Because the square bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 has an area of 1, 
you can conclude that the area of the region shown in Figure 4.18 has an area of 23. This 
agrees with the limit found in Example 1, even though that example used a partition 
having subintervals of unequal widths. The reason this particular partition gave the 
proper area is that as n increases, the width of the largest subinterval approaches zero. 
This is a key feature of the development of definite integrals.

x

n2 n2 n2

n

n

n

1

1

1

2

22
. . .

. .
 .

1
(n − 1)2

n − 1

y f (x) =    x

The subintervals do not have equal 
widths.
Figure 4.18

x
1

1 (1, 1)

(0, 0)

Area = 1
3

y

x = y2

The area of the region bounded by  
the graph of x = y2 and the y-axis  
for 0 ≤ y ≤ 1 is 13.
Figure 4.19
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In Section 4.2, the limit of a sum was used to define the area of a region in the  
plane. Finding area by this method is only one of many applications involving the limit of 
a sum. A similar approach can be used to determine quantities as diverse as arc lengths, 
average values, centroids, volumes, work, and surface areas. The next definition is  
named after Georg Friedrich Bernhard Riemann. Although the definite integral had been 
defined and used long before Riemann’s time, he generalized the concept to cover a 
broader category of functions.

In the definition of a Riemann sum below, note that the function f  has no restrictions 
other than being defined on the interval [a, b]. (In Section 4.2, the function f  was assumed 
to be continuous and nonnegative because you were finding the area under a curve.)

Definition of Riemann Sum

Let f  be defined on the closed interval [a, b], and let ∆ be a partition of [a, b] 
given by

a = x0 < x1 < x2 < .  .  . < xn−1 < xn = b

where ∆xi is the width of the ith subinterval

[xi−1, xi]. ith subinterval

If ci is any point in the ith subinterval, then the sum

∑
n

i=1
f(ci) ∆xi , xi−1 ≤ ci ≤ xi

is called a Riemann sum of f  for the partition ∆. (The sums in Section 4.2 are 
examples of Riemann sums, but there are more general Riemann sums than 
those covered there.)

The width of the largest subinterval of a partition ∆ is the norm of the partition and 
is denoted by 
∆
. If every subinterval is of equal width, then the partition is regular 
and the norm is denoted by


∆
 = ∆x =
b − a

n
.    Regular partition

For a general partition, the norm is related to the number of subintervals of [a, b] in 
the following way.

b − a

∆
 ≤ n General partition

So, the number of subintervals in a partition approaches infinity as the norm of the  
partition approaches 0. That is, 
∆
→0 implies that n→∞.

The converse of this statement is not true. For example, let ∆n be the partition of 
the interval [0, 1] given by

0 <
1
2n <

1
2n−1 < .  .  . <

1
8

<
1
4

<
1
2

< 1.

As shown in Figure 4.20, for any positive value of n, the norm of the partition ∆n is 12. 
So, letting n approach infinity does not force 
∆
 to approach 0. In a regular partition, 
however, the statements


∆
→0 and n→∞
are equivalent.

10

1
2n

1
8

1
4

1
2

1
2⏐⏐Δ⏐⏐ =

n→∞ does not imply that 
∆
→ 0.
Figure 4.20

GEORG FRIEDRICH BERNHARD 
RIEMANN (1826-1866)

German mathematician 
Riemann did his most famous 
work in the areas of  
non-Euclidean geometry, 
differential equations, and 
number theory. It was 
Riemann’s results in physics 
and mathematics that formed 
the structure on which 
Einstein’s General Theory of 
Relativity is based.
See LarsonCalculus.com to read 
more of this biography.

Interfoto/Alamy Stock Photo
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Definite Integrals
To define the definite integral, consider the limit

lim

∆
→0

 ∑
n

i=1
f(ci) ∆xi = L.

 To say that this limit exists means there exists a real number L such that for each ε > 0, 
there exists a δ > 0 such that for every partition with 
∆
 < δ, it follows that

∣L − ∑
n

i=1
f(ci) ∆xi∣ < ε

regardless of the choice of ci in the ith subinterval of each partition ∆.

Definition of Definite Integral

If f  is defined on the closed interval [a, b] and the limit of Riemann sums over 
partitions ∆

lim

∆
→0

 ∑
n

i=1
f(ci) ∆xi

exists (as described above), then f  is said to be integrable on [a, b] and the 
limit is denoted by

lim

∆
→0

 ∑
n

i=1
f(ci) ∆xi = ∫b

a

f(x) dx.

The limit is called the definite integral of f  from a to b. The number a is the 
lower limit of integration, and the number b is the upper limit of integration.

It is not a coincidence that the notation for definite integrals is similar to that used 
for indefinite integrals. You will see why in the next section when the Fundamental 
Theorem of Calculus is introduced. For now, it is important to see that definite  integrals 
and indefinite integrals are different concepts. A definite integral is a number, whereas 
an indefinite integral is a family of functions.

Though Riemann sums were defined for functions with very few restrictions, a 
sufficient condition for a function f  to be integrable on [a, b] is that it is continuous on 
[a, b]. A proof of this theorem is beyond the scope of this text.

THEOREM 4.4 Continuity Implies Integrability

If a function f  is continuous on the closed interval [a, b], then f  is integrable  
on [a, b]. That is, ∫b

a f(x) dx exists.

Exploration
The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That 
is, when a function is integrable, does it have to be continuous? Explain your 
reasoning and give examples.

Describe the relationships among continuity, differentiability, and 
integrability. Which is the strongest condition? Which is the weakest? Which 
conditions imply other conditions?

REMARK Later in this  
chapter, you will learn  
convenient methods for  
calculating ∫b

a f(x) dx for  
continuous functions. For now, 
you must use the limit definition.

 FOR FURTHER INFORMATION
For insight into the history of the 
definite integral, see the article 
“The Evolution of Integration” by 
A. Shenitzer and J. Steprans in  
The American Mathematical 
Monthly. To view this article,  
go to MathArticles.com.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



4.3 Riemann Sums and Definite Integrals 273

 Evaluating a Definite Integral as a Limit

Evaluate the definite integral ∫1

−2
 2x dx.

Solution The function f(x) = 2x is integrable on the interval [−2, 1] because it 
is continuous on [−2, 1]. Moreover, the definition of integrability implies that any 
partition whose norm approaches 0 can be used to determine the limit. For computational 
convenience, define ∆ by subdividing [−2, 1] into n subintervals of equal width

∆xi = ∆x =
b − a

n
=

3
n

.

Choosing ci as the right endpoint of each subinterval produces

ci = a + i(∆x) = −2 +
3i
n

.

So, the definite integral is

 ∫1

−2
2x dx = lim


∆
→0
 ∑

n

i=1
f(ci) ∆xi

 = lim
n→∞

  ∑
n

i=1
f(ci) ∆x

 = lim
n→∞ ∑

n

i=1
2(−2 +

3i
n )(

3
n)

 = lim
n→∞

  
6
n

 ∑
n

i=1
(−2 +

3i
n )

 = lim
n→∞

 
6
n (−2∑

n

i=1
1 +

3
n∑

n

i=1
i)

 = lim
n→∞

 
6
n

 {−2n +
3
n [

n(n + 1)
2 ]}

 = lim
n→∞(−12 + 9 +

9
n)

 = −3. 

Because the definite integral in Example 2 is negative, it does not represent the 
area of the region shown in Figure 4.21. Definite integrals can be positive, negative, or 
zero. For a definite integral to be interpreted as an area (as defined in Section 4.2), the 
function f  must be continuous and nonnegative on [a, b], as stated in the next theorem. 
The proof of this theorem is straightforward—you simply use the definition of area 
given in Section 4.2, because it is a Riemann sum.

THEOREM 4.5 The Definite Integral as the Area of a Region

If f  is continuous and nonnegative on the closed interval [a, b], then the area 
of the region bounded by the graph of f, the x-axis, and the vertical lines x = a 
and x = b is

Area = ∫b

a

f(x) dx.

(See Figure 4.22.)

x
1

2

1

−2

−3

−4

f (x) = 2x

y

Because the definite integral is  
negative, it does not represent the  
area of the region.
Figure 4.21

a b

f

x

y

You can use a definite integral to find 
the area of the region bounded by 
the graph of f, the x-axis, x = a, and 
x = b.
Figure 4.22
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As an example of Theorem 4.5, consider the region bounded by the graph of

f(x) = 4x − x2

and the x-axis, as shown in Figure 4.23. Because f  is continuous and nonnegative on 
the closed interval [0, 4], the area of the region is

Area = ∫4

0
(4x − x2) dx.

A straightforward technique for evaluating a definite integral such as this will be 
 discussed in Section 4.4. For now, however, you can evaluate a definite integral in two 
ways—you can use the limit definition or you can check to see whether the definite 
integral represents the area of a common geometric region, such as a rectangle, triangle, 
or semicircle.

 Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral 
using a geometric formula.

a. ∫3

1
 4 dx  b. ∫3

0
 (x + 2) dx  c. ∫2

−2
 √4 − x2 dx

Solution A sketch of each region is shown in Figure 4.24.

a. This region is a rectangle of height 4 and width 2.

∫3

1
 4 dx = (Area of rectangle) = 4(2) = 8

b.  This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and 
5. The formula for the area of a trapezoid is 12h(b1 + b2).

∫3

0
 (x + 2) dx = (Area of trapezoid) = 1

2
(3)(2 + 5) = 21

2

c.  This region is a semicircle of radius 2. The formula for the area of a semicircle is 
1
2πr2.

∫2

−2
 √4 − x2 dx = (Area of semicircle) = 1

2
π(22) = 2π

x

4

3

2

1

1 2 3 4

f(x) = 4
y   

x

4

3

5

2

1

1 2 3 4 5

f(x) = x + 2
y   

x

f (x) =     4 − x2
4

3

1

−2 −1 1 2

y

 (a) (b) (c)

 Figure 4.24 

The variable of integration in a definite integral is sometimes called a dummy 
variable because it can be replaced by any other variable without changing the value of 
the integral. For instance, the definite integrals

∫3

0
 (x + 2) dx and ∫3

0
 (t + 2) dt

have the same value.

x

4

3

2

1

1 2 3 4

y
f (x) = 4x − x2

Area = ∫4

0
 (4x − x2) dx

Figure 4.23
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Properties of Definite Integrals
The definition of the definite integral of f  on the interval [a, b] specifies that a < b. 
Now, however, it is convenient to extend the definition to cover cases in which a = b 
or a > b. Geometrically, the next two definitions seem reasonable. For instance, it 
makes sense to define the area of a region of zero width and finite height to be 0.

Definitions of Two Special Definite Integrals

1. If f  is defined at x = a, then ∫a

a
 f(x) dx = 0.

2. If f  is integrable on [a, b], then ∫a

b

 f(x) dx = −∫b

a

 f(x) dx.

 Evaluating Definite Integrals

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a. ∫π
π

 sin x dx  b. ∫0

3
 (x + 2) dx

Solution

a.  Because the sine function is defined at x = π, and the upper and lower limits of  
integration are equal, you can write

∫π
π

 sin x dx = 0.

b.  The integral ∫0
3 (x + 2) dx is the same as that given in Example 3(b) except that the 

upper and lower limits are interchanged. Because the integral in Example 3(b) has 
a value of 21

2 , you can write

∫0

3
 (x + 2) dx = −∫3

0
 (x + 2) dx = −

21
2

. 

In Figure 4.25, the larger region can be divided at x = c into two subregions whose 
intersection is a line segment. Because the line segment has zero area, it  follows that 
the area of the larger region is equal to the sum of the areas of the two smaller regions.

THEOREM 4.6 Additive Interval Property

If f  is integrable on the three closed intervals determined by a, b, and c, then

∫b

a

 f(x) dx = ∫c

a

 f(x) dx + ∫b

c

 f(x) dx. See Figure 4.25.

 Using the Additive Interval Property

 ∫1

−1
∣x∣ dx = ∫0

−1
−x dx + ∫1

0
 x dx Theorem 4.6

 =
1
2
+

1
2

 Area of a triangle

 = 1 

∫

∫

∫c

b

b

a

a

c
+

f (x) dx

x
a c b

f

f (x) dx f (x) dx

y

Figure 4.25
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Because the definite integral is defined as the limit of a sum, it inherits the 
properties of summation given at the top of page 259.

THEOREM 4.7 Properties of Definite Integrals

If f  and g are integrable on [a, b] and k is a constant, then the functions kf  and  
f ± g are integrable on [a, b], and

1. ∫b

a

 kf(x) dx = k∫b

a

 f(x) dx

2. ∫b

a

 [ f(x) ± g(x)] dx = ∫b

a

 f(x) dx ± ∫b

a

 g(x) dx.

 Evaluation of a Definite Integral

Evaluate ∫3

1
 (−x2 + 4x − 3) dx using each of the following values.

∫3

1
 x2 dx =

26
3

,  ∫3

1
 x dx = 4,  ∫3

1
 dx = 2

Solution

 ∫3

1
 (−x2 + 4x − 3) dx = ∫3

1
 (−x2) dx + ∫3

1
 4x dx + ∫3

1
 (−3) dx

 = −∫3

1
 x2 dx + 4∫3

1
 x dx − 3∫3

1
 dx

 = −(26
3 ) + 4(4) − 3(2)

 =
4
3

 

If f  and g are continuous on the closed interval [a, b] and 0 ≤ f(x) ≤ g(x) for 
a ≤ x ≤ b, then the following properties are true. First, the area of the region bounded 
by the graph of f  and the x-axis (between a and b) must be nonnegative. Second, this 
area must be less than or equal to the area of the region bounded by the graph of g 
and the x-axis (between a and b), as shown in Figure 4.26. These two properties are 
generalized in Theorem 4.8.

THEOREM 4.8 Preservation of Inequality

1. If f  is integrable and nonnegative on the closed interval [a, b], then

0 ≤ ∫b

a

 f (x) dx.

2.  If f  and g are integrable on the closed interval [a, b] and f(x) ≤ g(x) for  
every x in [a, b], then

∫b

a

 f (x) dx ≤ ∫b

a

 g(x) dx.

A proof of this theorem is given in Appendix A.

REMARK Property 2 of 
Theorem 4.7 can be extended  
to cover any finite number of  
functions (see Example 6). 

x

g

a b

f

y

∫b

a

 f (x) dx ≤ ∫b

a

 g(x) dx

Figure 4.26
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4.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Riemann Sum What does a Riemann sum represent?

2.  Definite Integral Explain how to find the area of a 
region using a definite integral in your own words.

 Evaluating a Limit In Exercises 3 and 4, use 
Example 1 as a model to evaluate the limit

 lim
n→∞

 ∑
n

i=1
f (ci) Δxi

  over the region bounded by the graphs of the 
equations.

 3. f (x) = √x, y = 0, x = 0, x = 3 (Hint: Let ci =
3i2

n2 .)
 4. f (x) = 3√x, y = 0, x = 0, x = 1 (Hint: Let ci =

i3

n3.)
 Evaluating a Definite Integral as a Limit In 
Exercises 5–10, evaluate the definite integral by 
the limit definition.

 5. ∫6

2
 8 dx  6. ∫3

−2
 x dx

 7. ∫1

−1
 x3 dx  8. ∫4

1
 4x2 dx

 9. ∫2

1
 (x2 + 1) dx 10. ∫1

−2
 (2x2 + 3) dx

Writing a Limit as a Definite Integral In Exercises 
11 and 12, write the limit as a definite integral on the given 
interval, where ci is any point in the ith subinterval.

 Limit Interval

11. lim

∆
→0

 ∑
n

i=1
 (3ci + 10) ∆xi [−1, 5]

12. lim

∆
→0

 ∑
n

i=1
 √ci

2 + 4 ∆xi [0, 3]

Writing a Definite Integral In Exercises 13–22, write a 
definite integral that represents the area of the region. (Do not 
evaluate the integral.)

13. f (x) = 5 14. f (x) = 6 − 3x

 

x
1 2 3 4 5

5

4

3

2

1

y   

1 2 3 4 5−1−2

1

2

3

4

5

6

x

y

15. f (x) = 4 − ∣x∣ 16. f (x) = x2

 

x

8

6

4

2

−2−4 2 4

y   

x

4

3

2

1

−1 1 2 3

y

17. f (x) = 25 − x2 18. f (x) = 4
x2 + 2

 

x

y

−2−4−6 2 4 6

5

10

15

  

x

y

−1 1

1

19. f (x) = cos x 20. f (x) = tan x

 

x

1

π π
4 2

y   

x

1

π π
4 2

y

21. g(y) = y3 22. f (y) = (y − 2)2

 

x

4

3

2

1

42 6 8

y   

x

4

3

2

1

21 3 4

y

 Evaluating a Definite Integral Using a 
Geometric Formula In Exercises 23–32, 
sketch the region whose area is given by the 
definite integral. Then use a geometric formula to 
evaluate the integral (a > 0, r > 0).

23. ∫3

0
 4 dx 24. ∫4

−3
 9 dx

25. ∫4

0
 x dx 26. ∫8

0
 
x
4

 dx
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27. ∫2

0
 (3x + 4) dx 28. ∫3

0
 (8 − 2x) dx

29. ∫1

−1
 (1 − ∣x∣) dx 30. ∫a

−a

 (a − ∣x∣) dx

31. ∫7

−7
 √49 − x2 dx 32. ∫r

−r

 √r2 − x2 dx

 Using Properties of Definite Integrals In 
Exercises 33–40, evaluate the definite integral 
using the values below.

 ∫6

2
 x3 dx = 320,  ∫6

2
 x dx = 16,  ∫6

2
 dx = 4

33. ∫2

6
x3 dx 34. ∫2

2
 x dx

35. ∫6

2
 
1
4

x3 dx 36. ∫6

2
 −3x dx

37. ∫6

2
 (x − 14) dx 38. ∫6

2
 (6x −

1
8

x3) dx

39. ∫6

2
 (2x3 − 10x + 7) dx 40. ∫6

2
 (21 − 5x − x3) dx

41. Using Properties of Definite Integrals Given

 ∫5

0
 f (x) dx = 10 and ∫7

5
 f (x) dx = 3

 evaluate

 (a) ∫7

0
 f (x) dx. (b) ∫0

5
 f (x) dx.

 (c) ∫5

5
 f (x) dx. (d) ∫5

0
 3f (x) dx.

42. Using Properties of Definite Integrals Given

 ∫3

0
 f (x) dx = 4 and ∫6

3
 f (x) dx = −1

 evaluate

 (a) ∫6

0
 f (x) dx. (b) ∫3

6
 f (x) dx.

 (c) ∫3

3
 f (x) dx. (d) ∫6

3
 −5f (x) dx.

43. Using Properties of Definite Integrals Given

 ∫6

2
 f (x) dx = 10 and ∫6

2
 g(x) dx = −2

 evaluate

 (a) ∫6

2
 [ f (x) + g(x)] dx.

 (b) ∫6

2
 [g(x) − f (x)] dx.

 (c) ∫6

2
 2g(x) dx.

 (d) ∫6

2
 3f (x) dx.

44. Using Properties of Definite Integrals Given

 ∫1

−1
 f (x) dx = 0 and ∫1

0
 f (x) dx = 5

 evaluate

 (a) ∫0

−1
 f (x) dx. (b) ∫1

0
 f (x) dx − ∫0

−1
 f (x) dx.

 (c) ∫1

−1
 3f (x) dx. (d) ∫1

0
 3f (x) dx.

45.   Estimating a Definite Integral Use the table of values 
to find lower and upper estimates of

 ∫10

0
 f (x) dx.

 Assume that f  is a decreasing function.

 
x 0 2 4 6 8 10

f (x) 32 24 12 −4 −20 −36

46.  Estimating a Definite Integral Use the table of values 
to estimate

 ∫6

0
 f (x) dx.

  Use three equal subintervals and the (a) left endpoints,  
(b) right endpoints, and (c) midpoints. When f  is an increasing 
function, how does each estimate compare with the actual 
value? Explain your reasoning.

 
x 0 1 2 3 4 5 6

f (x) −6 0 8 18 30 50 80

47.  Think About It The graph of f  consists of line  segments 
and a semicircle, as shown in the figure. Evaluate each definite 
integral by using geometric formulas.

x

(4, 2)

−4 −1 1 3 4 5 6

2

1

−1
(−4, −1)

y

f

 (a) ∫2

0
 f (x) dx (b) ∫6

2
 f (x) dx

 (c) ∫2

−4
 f (x) dx

 (d) ∫6

−4
 f (x) dx

 (e) ∫6

−4
 ∣ f (x)∣ dx

 (f ) ∫6

−4
 [ f (x) + 2] dx
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48.  Think About It The graph of f  consists of line segments, 
as shown in the figure. Evaluate each definite integral by using 
geometric formulas.

x

(4, 2)
(11, 1)

(8, −2)

(3, 2)

−1 1 2 3 4 5 6 8 10 11

−2

1

y

−3
−4

2
3
4

f

 (a) ∫1

0
−f (x) dx (b) ∫4

3
 3 f (x) dx

 (c) ∫7

0
 f (x) dx (d) ∫11

5
 f (x) dx

 (e) ∫11

0
 f (x) dx (f ) ∫10

4
 f (x) dx

49.  Think About It Consider a function f  that is continuous 
on the interval [−5, 5] and for which 

 ∫5

0
 f (x) dx = 4.

 Evaluate each integral.

 (a) ∫5

0
 [ f (x) + 2] dx (b) ∫3

−2
 f (x + 2) dx

 (c) ∫5

−5
 f (x) dx, f  is even (d) ∫5

−5
 f (x) dx, f  is odd

50.  HOW DO YOU SEE IT? Use the figure to 
fill in the blank with the symbol <, >, or =. 
Explain your reasoning.

x
1 2 3 4 5 6

6

5

4

3

2

1

y

(a)  The interval [1, 5] is partitioned into n 
subintervals of equal width ∆x, and xi is the left 
endpoint of the ith subinterval.

 ∑
n

i=1
 f (xi) ∆x ■ ∫5

1
 f (x) dx

(b)  The interval [1, 5] is partitioned into n 
subintervals of equal width ∆x, and xi is the right 
endpoint of the ith subinterval.

 ∑
n

i=1
 f (xi) ∆x ■ ∫5

1
 f (x) dx

50.

51.  Think About It  A function f  is defined below. Use  
geometric formulas to find ∫8

0  f (x) dx.

 f (x) = {4,
x,

x < 4
x ≥ 4

52.  Think About It  A function f  is defined below. Use  
geometric formulas to find ∫12

0  f (x) dx.

 f (x) = {6,
−1

2x + 9,
x > 6
x ≤ 6

EXPLORING CONCEPTS
Approximation In Exercises 53 and 54, determine 
which value best approximates the definite integral. 
Make your selection on the basis of a sketch.

53. ∫4

0
 √x dx

 (a) 5 (b) −3 (c) 10 (d) 2 (e) 8

54. ∫1�2

0
 4 cos πx dx

 (a) 4 (b) 4
3 (c) 16 (d) 2π  (e) −6

55.  Verifying a Rule Use a graph to explain why

 ∫a

a

 f (x) dx = 0

  if f  is defined at x = a.

56.  Verifying a Property Use a graph to explain why

 ∫b

a

 kf (x) dx = k∫b

a

 f (x) dx

  if f  is integrable on [a, b] and k is a constant.

57.  Using Different Methods Describe two ways to 
evaluate

 ∫3

−1
 (x + 2) dx.

  Verify that each method gives the same result.

58.  Finding a Function Give an example of a function 
that is integrable on the interval [−1, 1] but not 
continuous on [−1, 1].

Finding Values In Exercises 59–62, find possible values of  
a and b that make the statement true. If possible, use a graph 
to support your answer. (There may be more than one correct 
answer.)

59. ∫1

−2
 f (x) dx + ∫5

1
 f (x) dx = ∫b

a

 f (x) dx

60. ∫3

−3
 f (x) dx + ∫6

3
 f (x) dx − ∫b

a

 f (x) dx = ∫6

−1
 f (x) dx

61. ∫b

a

 sin x dx < 0 62. ∫b

a

 cos x dx = 0
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True or False? In Exercises 63–68, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

63. ∫b

a

 [ f (x) + g(x)] dx = ∫b

a

 f (x) dx + ∫b

a

 g(x) dx

64. ∫b

a

 f (x)g(x) dx = [∫b

a

 f (x) dx][∫b

a

 g(x) dx]
65.  If the norm of a partition approaches zero, then the number of 

subintervals approaches infinity.

66.  If f  is increasing on [a, b], then the minimum value of f  on 
[a, b] is f (a).

67. The value of

 ∫b

a
 f (x) dx

 must be positive.

68. The value of

 ∫2

2
 sin x2 dx

 is 0.

69.  Finding a Riemann Sum Find the Riemann sum for 
f (x) = x2 + 3x over the interval [0, 8], where

 x0 = 0, x1 = 1, x2 = 3, x3 = 7, and x4 = 8

 and where

 c1 = 1, c2 = 2, c3 = 5, and c4 = 8.

−2 2 4 6 8 10

20

40

60

80

100

x

y

70.  Finding a Riemann Sum Find the Riemann sum for 
f (x) = sin x over the interval [0, 2π], where

 x0 = 0, x1 =
π
4

, x2 =
π
3

, x3 = π, and x4 = 2π

 and where

 c1 =
π
6

, c2 =
π
3

, c3 =
2π
3

, and c4 =
3π
2

.

−1.5

0.5

1.0

1.5

π
2

π
2
3

y

x

71. Proof Prove that ∫b

a

 x dx =
b2 − a2

2
.

72. Proof Prove that ∫b

a

 x2 dx =
b3 − a3

3
.

73. Think About It Determine whether the Dirichlet function

 f (x) = {1,
0,

x is rational
x is irrational

 is integrable on the interval [0, 1]. Explain.

74. Finding a Definite Integral The function

 f (x) = {0,
1
x,

x = 0

0 < x ≤ 1

 is defined on [0, 1], as shown in the figure. Show that

 ∫1

0
 f (x) dx

  does not exist. Does this contradict Theorem 4.4? Why or 
why not?

−0.5 0.5 1.0 1.5 2.0

1.0

2.0

3.0

4.0

5.0

y

x

75.  Finding Values Find the constants a and b that maximize 
the value of

 ∫b

a

 (1 − x2) dx.

 Explain your reasoning.

76.  Finding Values Find the constants a and b, where 
a < 4 < b, such that

 ∣∫b

a

 (x − 4) dx∣ = 16 and ∫b

a

 ∣x − 4∣ dx = 20.

77.  Think About It When is

 ∫b

a

 f (x) dx = ∫b

a

 ∣ f (x)∣ dx?

 Explain.

78. Step Function Evaluate, if possible, the integral

 ∫2

0
 ⟨x⟩ dx.

79. Using a Riemann Sum Determine

 lim
n→∞

 
1
n3 (12 + 22 + 32 + .  .  . + n2)

 by using an appropriate Riemann sum.
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4.4 The Fundamental Theorem of Calculus 281

4.4 The Fundamental Theorem of Calculus

 Evaluate a definite integral using the Fundamental Theorem of Calculus.
 Understand and use the Mean Value Theorem for Integrals.
 Find the average value of a function over a closed interval.
 Understand and use the Second Fundamental Theorem of Calculus.
 Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus
You have now been introduced to the two major branches of calculus: differential 
 calculus (introduced with the tangent line problem) and integral calculus (introduced 
with the area problem). So far, these two problems might seem unrelated—but there is a 
very close connection. The connection was discovered independently by Isaac Newton 
and Gottfried Leibniz and is stated in the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are 
inverse operations, in the same sense that division and multiplication are inverse 
 operations. To see how Newton and Leibniz might have anticipated this relationship, 
consider the approximations shown in Figure 4.27. The slope of the tangent line was 
defined using the quotient ∆y�∆x (the slope of the secant line). Similarly, the area of a 
region under a curve was defined using the product ∆y∆x (the area of a rectangle). So, 
at least in the primitive approximation stage, the operations of differentiation and definite 
integration appear to have an inverse relationship in the same sense that  division and 
multiplication are inverse operations. The Fundamental Theorem of Calculus states 
that the limit processes (used to define the derivative and definite  integral) preserve 
this inverse relationship.

Δx Δx

Δy

Δy Δy

Secant
line

Tangent
line

Slope = Slope ≈

Δx   

Δy

Area = ΔyΔx Area ≈ ΔyΔx

Area of
rectangle

Area of
region
under
curve

Δx

 (a) Differentiation (b) Definite integration
 Differentiation and definite integration have an “inverse” relationship.
 Figure 4.27

ANTIDIFFERENTIATION AND DEFINITE INTEGRATION

Throughout this chapter, you have been using the integral sign to denote an 
antiderivative (a family of functions) and a definite integral (a number).

Antidifferentiation: ∫ f (x) dx   Definite integration: ∫b
a

 f (x) dx

The use of the same symbol for both operations makes it appear that they are related.  
In the early work with calculus, however, it was not known that the two operations 
were related. The symbol ∫ was first applied to the definite integral by Leibniz and was 
derived from the letter S. (Leibniz calculated area as an infinite sum, thus, the letter S.)
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THEOREM 4.9 The Fundamental Theorem of Calculus

If a function f  is continuous on the closed interval [a, b] and F is an 
antiderivative of f  on the interval [a, b], then

∫b

a

 f(x) dx = F(b) − F(a).

Proof The key to the proof is writing the difference F(b) − F(a) in a convenient 
form. Let ∆ be any partition of [a, b].

a = x0 < x1 < x2 < .  .  . < xn−1 < xn = b

By pairwise subtraction and addition of like terms, you can write

 F(b) − F(a) = F(xn) − F(xn−1) + F(xn−1) − .  .  . − F(x1) + F(x1) − F(x0)

 = ∑
n

i=1
 [F(xi) − F(xi−1)].

By the Mean Value Theorem, you know that there exists a number ci in the ith  
subinterval such that

F′(ci) =
F(xi) − F(xi−1)

xi − xi−1
.

Because F′(ci) = f(ci), you can let ∆xi = xi − xi−1 and obtain

F(b) − F(a) = ∑
n

i=1
f(ci) ∆xi.

This important equation tells you that by repeatedly applying the Mean Value Theorem, 
you can always find a collection of ci’s such that the constant F(b) − F(a) is a Riemann 
sum of f  on [a, b] for any partition. Theorem 4.4 guarantees that the limit of Riemann 
sums over the partition with �∆�→0 exists. So, taking the limit (as �∆�→0) produces

F(b) − F(a) = ∫b

a

 f(x) dx. 

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF 
CALCULUS

1.  Provided you can find an antiderivative of f, you now have a way to 
evaluate a definite integral without having to use the limit of a sum.

2.  When applying the Fundamental Theorem of Calculus, the notation shown 
below is convenient.

∫b

a

 f(x) dx = F(x)]
b

a
= F(b) − F(a)

 For instance, to evaluate ∫3
1  x3 dx, you can write

∫3

1
 x3 dx =

x4

4 ]
3

1
=

34

4
−

14

4
=

81
4

−
1
4
= 20.

3. It is not necessary to include a constant of integration C in the antiderivative.

∫b

a

 f(x) dx = [F(x) + C]
b

a
= [F(b) + C] − [F(a) + C] = F(b) − F(a)
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 Evaluating a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a. ∫2

1
 (x2 − 3) dx  b. ∫4

1
 3√x dx  c. ∫π�4

0
 sec2x dx

Solution

a. ∫2

1
 (x2 − 3) dx = [x

3

3
− 3x]

2

1
= (83 − 6) − (13 − 3) = −

2
3

b. ∫4

1
 3√x dx = 3∫4

1
 x1�2 dx = 3[x

3�2

3�2]
4

1
= 2(4)3�2 − 2(1)3�2 = 14

c. ∫π�4
0

 sec2 x dx = tan x]
π�4

0
= 1 − 0 = 1 

 A Definite Integral Involving Absolute Value

Evaluate ∫2

0
 ∣2x − 1∣ dx.

Solution Using Figure 4.28 and the definition of absolute value, you can rewrite the 
integrand as shown.

∣2x − 1∣ = {−(2x − 1),

2x − 1,

x < 1
2

x ≥ 1
2

From this, you can rewrite the integral in two parts.

 ∫2

0
 ∣2x − 1∣ dx = ∫1�2

0
 −(2x − 1) dx + ∫2

1�2
 (2x − 1) dx

 = [−x2 + x]
1�2

0
+ [x2 − x]

2

1�2

 = (−1
4
+

1
2) − (0 + 0) + (4 − 2) − (14 −

1
2)

 =
5
2

 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

y = 2x2 − 3x + 2

the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

Solution Note that y > 0 on the interval [0, 2].

 Area = ∫2

0
 (2x2 − 3x + 2) dx Integrate between x = 0 and x = 2.

 = [2x3

3
−

3x2

2
+ 2x]

2

0
 Find antiderivative.

 = (16
3

− 6 + 4) − (0 − 0 + 0) Apply Fundamental Theorem.

 =
10
3

 Simplify. 

x
−1 1 2

3

2

1

y = 2x − 1y = − (2x − 1)

y = |2x − 1 |y

The definite integral of y on [0, 2] is 52.
Figure 4.28

x
1 2 3 4

4

3

2

1

y = 2x2 − 3x + 2
y

The area of the region bounded by the 
graph of y, the x-axis, x = 0, and 

x = 2 is 10
3 .

Figure 4.29
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The Mean Value Theorem for Integrals
In Section 4.2, you saw that the area of a region under a curve is greater than the area 
of an inscribed rectangle and less than the area of a circumscribed rectangle. The 
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and 
circumscribed rectangles, there is a rectangle whose area is precisely equal to the area 
of the region under the curve, as shown in Figure 4.30.

THEOREM 4.10 Mean Value Theorem for Integrals

If f  is continuous on the closed interval [a, b], then there exists a number c in 
the closed interval [a, b] such that

∫b

a

 f(x) dx = f(c)(b − a).

Proof

Case 1: If f  is constant on the interval [a, b], then the theorem is clearly valid because 
c can be any point in [a, b].
Case 2: If f  is not constant on [a, b], then, by the Extreme Value Theorem, you can 
choose f(m) and f(M) to be the minimum and maximum values of f  on [a, b]. Because

f(m) ≤ f(x) ≤ f(M)

for all x in [a, b], you can apply Theorem 4.8 to write the following.

 ∫b

a

 f(m) dx ≤  ∫b

a

 f(x) dx ≤ ∫b

a

 f (M) dx See Figure 4.31.

 f(m)(b − a) ≤  ∫b

a

 f(x) dx ≤ f(M)(b − a) Apply Fundamental Theorem.

 f(m) ≤
1

b − a∫
b

a

 f(x) dx ≤ f(M) Divide by b − a.

From the third inequality, you can apply the Intermediate Value Theorem to conclude 
that there exists some c in [a, b] such that

f(c) = 1
b − a∫

b

a

 f(x) dx or f(c)(b − a) = ∫b

a

 f(x) dx.

f

a b

f (m)

  

f

a b

  

f

a b

f (M)

 Inscribed rectangle Mean value rectangle Circumscribed rectangle 
 (less than actual area) (equal to actual area) (greater than actual area)

 ∫b

a

 f (m) dx = f (m)(b − a) ∫b

a

 f (x) dx ∫b

a

 f (M) dx = f (M)(b − a)

 Figure 4.31 

Notice that Theorem 4.10 does not specify how to determine c. It merely guarantees 
the existence of at least one number c in the interval.

x

f (c)
f

a c b

y

Mean value rectangle:

f (c)(b − a) = ∫b

a

 f (x) dx

Figure 4.30
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Average Value of a Function
The value of f(c) given in the Mean Value Theorem for Integrals is called the average 
value of f  on the interval [a, b].

Definition of the Average Value of a Function on an Interval

If f  is integrable on the closed interval [a, b], then the average value of f  on the 
interval is

1
b − a∫

b

a

 f(x) dx. See Figure 4.32.

To see why the average value of f  is defined in this way, partition [a, b] into n 
subintervals of equal width ∆x = (b − a)�n. If ci is any point in the ith subinterval, 
then the arithmetic average (or mean) of the function values at the ci’s is 

an =
1
n
[ f(c1) + f(c2) + .  .  . + f(cn)]. Average of f (c1), .  .  . , f (cn)

By writing the sum using summation notation and then multiplying and dividing by 
(b − a), you can write the average as

 an =
1
n

 ∑
n

i=1
 f (ci)  Rewrite using summation notation.

 =
1
n

 ∑
n

i=1
f(ci)(b − a

b − a)  Multiply and divide by (b − a).

 =
1

b − a
 ∑

n

i=1
f(ci)(b − a

n ) Rewrite.

 =
1

b − a
 ∑

n

i=1
f(ci) ∆x.  ∆x =

b − a
n

Finally, taking the limit as n→∞ produces the average value of f  on the interval [a, b], 
as given in the definition above. In Figure 4.32, notice that the area of the region under 
the graph of f  is equal to the area of the rectangle whose height is the average value.

This development of the average value of a function on an interval is only one 
of many practical uses of definite integrals to represent summation processes. In 
Chapter 7, you will study other applications, such as volume, arc length, centers of 
mass, and work.

 Finding the Average Value of a Function

Find the average value of f(x) = 3x2 − 2x on the interval [1, 4].

Solution The average value is

 
1

b − a∫
b

a

 f(x) dx =
1

4 − 1
 ∫4

1
 (3x2 − 2x) dx

 =
1
3[x3 − x2]

4

1

 =
1
3
[64 − 16 − (1 − 1)]

 =
48
3

 = 16. See Figure 4.33. 

x
1 2 3 4

40

30

20

10 Average
value = 16

(4, 40)

(1, 1)

f(x) = 3x2 − 2x

y

Figure 4.33

x

f

a b

Average value

y

Average value =
1

b − a∫
b

a

 f (x) dx

Figure 4.32
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 The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The 
speed of sound s(x), in meters per second, can be modeled by

s(x) = {
−4x + 341,

295,
3
4x + 278.5,
3
2x + 254.5,

−3
2x + 404.5,

0 ≤ x < 11.5

11.5 ≤ x < 22

22 ≤ x < 32

32 ≤ x < 50

50 ≤ x ≤ 80

where x is the altitude in kilometers (see Figure 4.34). What is the average speed of 
sound over the interval [0, 80]?

Sp
ee

d 
of

 s
ou

nd
 (

in
 m

/s
ec

)

Altitude (in km)

x
10 20 30 40 50 60 70 80 90

350

340

330

320

310

300

290

280

s

 Speed of sound depends on altitude.
 Figure 4.34

Solution Begin by integrating s(x) over the interval [0, 80]. To do this, you can 
break the integral into five parts.

∫11.5

0
 s(x) dx = ∫11.5

0
 (−4x + 341) dx = [−2x2 + 341x]

11.5

0
= 3657

∫22

11.5
 s(x) dx = ∫22

11.5
 295 dx = [295x]

22

11.5
= 3097.5

∫32

22
 s(x) dx = ∫32

22
 (3

4x + 278.5) dx = [38x2 + 278.5x]
32

22
= 2987.5

∫50

32
 s(x) dx = ∫50

32
 (3

2x + 254.5) dx = [3
4x2 + 254.5x]

50

32
= 5688

∫80

50
 s(x) dx = ∫80

50
 (−3

2x + 404.5) dx = [−3
4x2 + 404.5x]

80

50
= 9210

By adding the values of the five integrals, you have

∫80

0
 s(x) dx = 24,640.

So, the average speed of sound from an altitude of 0 kilometers to an altitude of 
80 kilometers is

Average speed =
1

80
 ∫80

0
 s(x) dx =

24,640
80

= 308 meters per second. 

The first person to fly at a speed 
greater than the speed of sound 
was Charles Yeager. On October 
14, 1947, Yeager was clocked 
at 295.9 meters per second at 
an altitude of 12.2 kilometers. If 
Yeager had been flying at an  
altitude below 11.275 kilometers, 
this speed would not have  
“broken the sound barrier.” The 
photo shows an F/A-18F Super 
Hornet, a supersonic twin-engine 
strike fighter. A “green Hornet” 
using a 50/50 mixture of biofuel 
made from camelina oil became 
the first U.S. naval tactical  
aircraft to exceed 1 mach (the 
speed of sound).

Anatoliy Lukich/Shutterstock.com
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The Second Fundamental Theorem of Calculus
Earlier you saw that the definite integral of f  on the interval [a, b] was defined using the 
constant b as the upper limit of integration and x as the variable of integration. However, 
a slightly different situation may arise in which the variable x is used in the upper limit 
of integration. To avoid the confusion of using x in two different ways, t is temporarily 
used as the variable of integration. (Remember that the definite integral is not a  
function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

∫b

a

 f(x) dx F(x) = ∫x

a

 f(t) dt

 The Definite Integral as a Function

Evaluate the function

F(x) = ∫x

0
 cos t dt

at x = 0, 
π
6

, 
π
4

, 
π
3

, and 
π
2

.

Solution You could evaluate five different definite integrals, one for each of the 
given upper limits. However, it is much simpler to fix x (as a constant) temporarily 
to obtain

 ∫x

0
 cos t dt = sin t]

x

0

 = sin x − sin 0

 = sin x.

Now, using F(x) = sin x, you can obtain the results shown in Figure 4.35.

You can think of the function F(x) as accumulating the area under the curve 
f(t) = cos t from t = 0 to t = x. For x = 0, the area is 0 and F(0) = 0. For x = π�2, 
F(π�2) = 1 gives the accumulated area under the cosine curve on the entire interval 
[0, π�2]. This interpretation of an integral as an accumulation function is used often 
in applications of integration.

Constant

Constant
f is a  

function of x.

F is a function of x.

Constant
f is a  

function of t.

t

F(0) = 0

x = 0

y

F(x) = ∫x

0
 cos t dt is the area under the curve f (t) = cos t from 0 to x.

Figure 4.35 

t

F =

x =

π

π

6 2
1

6

( )

y

t

F =

x =

π

π

4 2
2

4

( )

y

t

F =

x =

π

π

3 2
3

3

( )

y

t

F = 1

x =

π

π

2

2

( )

y

Exploration
Use a graphing utility to graph 
the function

F(x) = ∫x

0
 cos t dt

for 0 ≤ x ≤ 2π. Do you 
recognize this graph? Explain.
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In Example 6, note that the derivative of F is the original integrand (with only the 
variable changed). That is,

d
dx

[F(x)] = d
dx

[sin x] = d
dx[∫

x

0
 cos t dt] = cos x.

This result is generalized in the next theorem, called the Second Fundamental 
Theorem of Calculus.

THEOREM 4.11 The Second Fundamental Theorem of Calculus

If f  is continuous on an open interval I containing a, then, for every x in the  
interval,

d
dx[∫

x

a

 f(t) dt] = f(x).

Proof Begin by defining F as

F(x) = ∫x

a

 f(t) dt.

Then, by the definition of the derivative, you can write

 F′(x) = lim
∆x→0

 
F(x + ∆x) − F(x)

∆x

 = lim
∆x→0

 
1
∆x [∫

x+∆x

a

 f(t) dt − ∫x

a

 f(t) dt]
 = lim

∆x→0
 

1
∆x [∫

x+∆x

a

 f(t) dt + ∫a

x

 f(t) dt]
 = lim

∆x→0
 

1
∆x[∫

x+∆x

x

 f(t) dt].
From the Mean Value Theorem for Integrals (assuming ∆x > 0), you know there exists 
a number c in the interval [x, x + ∆x] such that the integral in the expression above is 
equal to f(c) ∆x. Moreover, because x ≤ c ≤ x + ∆x, it follows that c→ x as ∆x→0. 
So, you obtain

F′(x) = lim
∆x→0

 [ 1
∆x

 f(c) ∆x] = lim
∆x→0

 f(c) = f(x).

A similar argument can be made for ∆x < 0. 

Using the area model for definite integrals,  

t
x x + Δx

f (x)

Δx

f (t)

f (x) ∆x ≈ ∫x+∆x

x

 f (t) dt

 
the approximation

f(x) ∆x ≈ ∫x+∆x

x

 f(t) dt

can be viewed as saying that the area of the  
rectangle of height f(x) and width ∆x is  
approximately equal to the area of the region  
lying between the graph of f  and the x-axis  
on the interval

[x, x + ∆x]

as shown in the figure at the right.
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Note that the Second Fundamental Theorem of Calculus tells you that when a 
function is continuous, you can be sure that it has an antiderivative. This antiderivative 
need not, however, be an elementary function. (Recall the discussion of elementary 
functions in Section P.3.)

 The Second Fundamental Theorem of Calculus

Evaluate 
d
dx[∫

x

0
 √t2 + 1 dt].

Solution Note that f(t) = √t2 + 1 is continuous on the entire real number line. So, 
using the Second Fundamental Theorem of Calculus, you can write

d
dx[∫

x

0
√t2 + 1 dt] = √x2 + 1. 

The differentiation shown in Example 7 is a straightforward application of the 
Second Fundamental Theorem of Calculus. The next example shows how this theorem 
can be combined with the Chain Rule to find the derivative of a function.

 The Second Fundamental Theorem of Calculus

Find the derivative of F(x) = ∫x3

π�2
 cos t dt.

Solution Using u = x3, you can apply the Second Fundamental Theorem of 
Calculus with the Chain Rule as shown.

 F′(x) = dF
du

du
dx

 Chain Rule

 =
d
du

[F(x)]du
dx

 Definition of dF
du

 =
d
du[∫

x3

π�2
 cos t dt]du

dx
 Substitute ∫x3

π�2
 cos t dt for F(x).

 =
d
du[∫

u

π�2
 cos t dt]du

dx
 Substitute u for x3.

 = (cos u)(3x2) Apply Second Fundamental Theorem of Calculus.

 = (cos x3)(3x2) Rewrite as function of x. 

Because the integrand in Example 8 is easily integrated, you can verify the 
 derivative as follows.

 F(x) = ∫x3

π�2
 cos t dt

 = sin t]
x3

π�2

 = sin x3 − sin 
π
2

 = sin x3 − 1

In this form, you can apply the Chain Rule to verify that the derivative of F is the same 
as that obtained in Example 8.

d
dx

[sin x3 − 1] = (cos x3)(3x2) Derivative of F
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Net Change Theorem
The Fundamental Theorem of Calculus (Theorem 4.9) states that if f  is continuous on 
the closed interval [a, b] and F is an antiderivative of f  on [a, b], then

∫b

a

 f(x) dx = F(b) − F(a).

But because F′(x) = f(x), this statement can be rewritten as

∫b

a

 F′(x) dx = F(b) − F(a)

where the quantity F(b) − F(a) represents the net change of F(x) on the interval [a, b].

THEOREM 4.12 The Net Change Theorem

If F′(x) is the rate of change of a quantity F(x), then the definite integral of 
F′(x) from a to b gives the total change, or net change, of F(x) on the  
interval [a, b].

∫b

a

 F′(x) dx = F(b) − F(a) Net change of F(x)

 Using the Net Change Theorem

A chemical flows into a storage tank at a rate   
of (180 + 3t) liters per minute, where t is the  
time in minutes and  0 ≤ t ≤ 60. Find the  
amount of the chemical that flows into the  
tank during the first 20 minutes.

Solution Let c(t) be the amount of the  
chemical in the tank at time t. Then c′(t)  
represents the rate at which the chemical  
flows into the tank at time t. During the  
first 20 minutes, the amount that flows  
into the tank is

 ∫20

0
 c′(t) dt = ∫20

0
 (180 + 3t) dt

 = [180t +
3
2

t2]
20

0

 = 3600 + 600

 = 4200.

So, the amount of the chemical that flows  
into the tank during the first 20 minutes is 4200 liters. 

Another way to illustrate the Net Change Theorem is to examine the velocity of 
a particle moving along a straight line, where s(t) is the position at time t. Then its  
velocity is v(t) = s′(t) and 

∫b

a

 v(t) dt = s(b) − s(a).

This definite integral represents the net change in position, or displacement, of the  
particle.

Christian Lagerek/Shutterstock.com
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4.4 The Fundamental Theorem of Calculus 291

When calculating the total distance traveled by the particle, you must consider 
the intervals where v(t) ≤ 0 and the intervals where v(t) ≥ 0. When v(t) ≤ 0, the  
particle moves to the left, and when v(t) ≥ 0, the particle moves to the right. To  
calculate the total distance traveled, integrate the absolute value of velocity ∣v(t)∣. So, 
the displacement of the particle on the interval [a, b] is 

Displacement on [a, b] = ∫b

a

 v(t) dt = A1 − A2 + A3

and the total distance traveled by the particle on [a, b] is

Total distance traveled on [a, b] = ∫b

a

 ∣v(t)∣ dt = A1 + A2 + A3.

(See Figure 4.36.)

 Solving a Particle Motion Problem

The velocity (in feet per second) of a particle moving along a line is

v(t) = t3 − 10t2 + 29t − 20

where t is the time in seconds. 

a. What is the displacement of the particle on the time interval 1 ≤ t ≤ 5?

b. What is the total distance traveled by the particle on the time interval 1 ≤ t ≤ 5?

Solution

a. By definition, you know that the displacement is

 ∫5

1
 v(t) dt = ∫5

1
 (t3 − 10t2 + 29t − 20) dt

 = [t
4

4
−

10
3

t3 +
29
2

t2 − 20t]
5

1

 =
25
12

− (−103
12 )

 =
128
12

 =
32
3

.

 So, the particle moves 32
3  feet to the right.

b.  To find the total distance traveled, calculate ∫5
1 ∣v(t)∣ dt. Using Figure 4.37  

and the fact that v(t) can be factored as (t − 1)(t − 4)(t − 5), you can determine 
that v(t) ≥ 0 on [1, 4] and v(t) ≤ 0 on [4, 5]. So, the total distance traveled is

 ∫5

1
 ∣v(t)∣ dt = ∫4

1
 v(t) dt − ∫5

4
 v(t) dt

 = ∫4

1
 (t3 − 10t2 + 29t − 20) dt − ∫5

4
 (t3 − 10t2 + 29t − 20) dt

 = [t
4

4
−

10
3

t3 +
29
2

t2 − 20t]
4

1
− [t

4

4
−

10
3

t3 +
29
2

t2 − 20t]
5

4

 =
45
4

− (− 7
12)

 =
71
6

 feet. 

t

A1

A2

A3

a

v

b

v(t)

A1, A2, and A3 are the areas of the  
shaded regions.
Figure 4.36

t

v

1 2 3 4 5

2

−2

4

6

8

v(t)

Figure 4.37
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4.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Fundamental Theorem of Calculus Explain how 

to evaluate a definite integral using the Fundamental 
Theorem of Calculus.

2.  Mean Value Theorem Describe the Mean Value 
Theorem for Integrals in your own words.

3.  Average Value of a Function Describe the average 
value of a function on an interval in your own words.

4.  Accumulation Function Why is

 F(x) = ∫x

0
 f (t) dt

 considered an accumulation function?

Graphical Reasoning In Exercises 5–8, use a graphing 
utility to graph the integrand. Use the graph to determine 
whether the definite integral is positive, negative, or zero.

 5. ∫π
0

 
4

x2 + 1
 dx  6. ∫π

0
 cos x dx

 7. ∫2

−2
 x√x2 + 1 dx  8. ∫2

−2
 x√2 − x dx

 Evaluating a Definite Integral In Exercises 
9–36, evaluate the definite integral. Use a graphing 
utility to verify your result.

 9. ∫0

−1
 (2x − 1) dx 10. ∫2

−1
 (7 − 3t) dt

11. ∫1

−1
 (t2 − 5) dt 12. ∫2

1
 (6x2 − 3x) dx

13. ∫1

0
 (2t − 1)2 dt 14. ∫4

1
 (8x3 − x) dx

15. ∫2

1
 ( 3

x2 − 1) dx 16. ∫−1

−2
 (u −

1
u2) du

17. ∫4

1
 
u − 2

√u
 du 18. ∫8

−8
 x1�3 dx

19. ∫1

−1
 ( 3√t − 2) dt 20. ∫8

1
 √2

x
  dx

21. ∫1

0
 
x − √x

3
 dx 22. ∫2

0
 (6 − t)√t dt

23. ∫0

−1
 (t1�3 − t2�3) dt 24. ∫−1

−8
 
x − x2

2 3√x
 dx

25. ∫5

0
 ∣2x − 5∣ dx 26. ∫4

1
 (3 − ∣x − 3∣) dx

27. ∫4

0
 ∣x2 − 9∣ dx 28. ∫4

0
 ∣x2 − 4x + 3∣ dx

29. ∫π
0

 (sin x − 7) dx 30. ∫π
0

 (2 + cos x) dx

31. ∫π�4

0
 
1 − sin2 θ

cos2 θ  dθ 32. ∫π�4

0
 

sec2 θ
tan2 θ + 1

 dθ

33. ∫π�6

−π�6
 sec2 x dx 34. ∫π�2

π�4
 (2 − csc2 x) dx

35. ∫π�3

−π�3
 4 sec θ tan θ dθ 36. ∫π�2

−π�2
 (2t + cos t) dt

 Finding the Area of a Region In Exercises 
37–40, find the area of the given region.

37. y = x − x2 38. y =
1
x2

 

x
1

1
4

y

x
1 2

1

y

39. y = cos x 40. y = x + sin x

 

x
ππ
24

1

y   

x
π

2

3

4

1

y

π
2

 Finding the Area of a Region  In Exercises 
41– 46, find the area of the region bounded by the 
graphs of the equations.

41. y = 5x2 + 2, x = 0, x = 2, y = 0

42. y = x3 + 6x, x = 2, y = 0

43. y = 1 + 3√x, x = 0, x = 8, y = 0

44. y = 2√x − x, y = 0

45. y = −x2 + 4x, y = 0 46. y = 1 − x4, y = 0

 Using the Mean Value Theorem for 
Integrals  In Exercises 47–52, find the value(s) 
of c guaranteed by the Mean Value Theorem for 
Integrals for the function over the given interval.

47. f (x) = x3, [0, 3] 48. f (x) = √x, [4, 9]

49. y =
x2

4
, [0, 6] 50. f (x) = 9

x3, [1, 3]

51. f (x) = 2 sec2 x, [−π
4

, 
π
4] 52. f (x) = cos x, [−π

3
, 
π
3]
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4.4 The Fundamental Theorem of Calculus 293

 Finding the Average Value of a Function  
In Exercises 53–58, find the average value of the 
function over the given interval and all values of 
x in the interval for which the  function equals its 
average value.

53. f (x) = 4 − x2, [−2, 2] 54. f (x) = 4(x2 + 1)
x2 , [1, 3]

55. f (x) = x4 + 7, [0, 2] 56. f (x) = 4x3 − 3x2, [0, 1]

57. f (x) = sin x, [0, π] 58. f (x) = cos x, [0, 
π
2]

59.  Force The force F (in newtons) of a hydraulic cylinder in 
a press is proportional to the square of sec x, where x is the 
 distance (in meters) that the cylinder is extended in its cycle. 
The domain of F is [0, π�3], and F(0) = 500.

 (a) Find F as a function of x.

 (b)  Find the average force exerted by the press over the 
interval [0, π�3].

60.  Respiratory Cycle The volume V, in liters, of air in the 
lungs during a five-second respiratory cycle is approximated 
by the model V = 0.1729t + 0.1522t2 − 0.0374t3, where t is 
the time in seconds. Approximate the average volume of air in 
the lungs during one cycle.

61.  Buffon’s Needle Experiment A horizontal plane is 
ruled with parallel lines 2 inches apart. A two-inch needle 
is tossed randomly onto the plane. The probability that the  
needle will touch a line is

 P =
2
π  ∫π�2

0
 sin θ dθ

   where θ is the acute angle between the needle and any one of 
the parallel lines. Find this probability.

θ

62.  HOW DO YOU SEE IT? The graph of f  is 
shown in the figure. The shaded region A has 
an area of 1.5, and ∫6

0  f (x) dx = 3.5. Use this  
information to fill in the blanks.

(a) ∫2

0
 f (x) dx =■ 

x
2 3 4 5 6

A
B

y

f

(b) ∫6

2
 f (x) dx =■

(c) ∫6

0
 ∣ f (x)∣ dx =■

(d) ∫2

0
 −2 f (x) dx =■

(e) ∫6

0
 [2 + f (x)] dx =■

(f) The average value of f  over the interval [0, 6] is ■.

62.  

 Evaluating a Definite Integral  In Exercises 63 
and 64, find F as a function of x and evaluate it at 
x = 2, x = 5, and x = 8.

63. F(x) = ∫x

1
 
20
v2  dv 64. F(x) = ∫x

2
 (t3 + 2t − 2) dt

Evaluating a Definite Integral In Exercises 65 and 66, 
find F as a function of x and evaluate it at x = 0, x = π�4, and 
x = π�2.

65. F(x) = ∫x

0
 cos θ dθ 66. F(x) = ∫x

−π
 sin θ dθ

67. Analyzing a Function Let

 g(x) = ∫x

0
 f (t) dt

 where f  is the function whose graph is shown in the figure.

 (a) Estimate g(0), g(2), g(4), g(6), and g(8).
 (b)  Find the largest open interval on which g is increasing. 

Find the largest open interval on which g is decreasing.

 (c) Identify any extrema of g.

 (d) Sketch a rough graph of g.

y

t
21 3 7 84

−2
−1

6
5
4
3
2
1

f

  y

t
21 3 7 84 5 6

−2
−3
−4

−1

4
3
2
1

f

 Figure for 67 Figure for 68

68. Analyzing a Function Let

 g(x) = ∫x

0
 f (t) dt

 where f  is the function whose graph is shown in the figure.

 (a) Estimate g(0), g(2), g(4), g(6), and g(8).
 (b)  Find the largest open interval on which g is increasing. 

Find the largest open interval on which g is decreasing.

 (c) Identify any extrema of g.

 (d) Sketch a rough graph of g.

 Finding and Checking an Integral In 
Exercises 69–74, (a) integrate to find F as a function 
of x, and (b) demonstrate the Second Fundamental 
Theorem of Calculus by differentiating the result 
in part (a).

69. F(x) = ∫x

0
 (t + 2) dt 70. F(x) = ∫x

0
 t(t2 + 1) dt

71. F(x) = ∫x

8
 3√t dt 72. F(x) = ∫x

4
 t3�2 dt

73. F(x) = ∫x

π�4
 sec2 t dt 74. F(x) = ∫x

π�3
 sec t tan t dt
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 Using the Second Fundamental Theorem 
of Calculus  In Exercises 75–80, use the Second 
Fundamental Theorem of Calculus to find F′(x).

75. F(x) = ∫x

−2
 (t2 − 2t) dt 76. F(x) = ∫x

1
 

t2

t2 + 1
 dt

77. F(x) = ∫x

−1
 √t 4 + 1 dt 78. F(x) = ∫x

1
 4√t dt

79. F(x) = ∫x

1
 √t csc t dt 80. F(x) = ∫x

0
 sec3 t dt

Finding a Derivative In Exercises 81–86, find F′(x).

81. F(x) = ∫x+2

x

 (4t + 1) dt 82. F(x) = ∫x

−x

 t3 dt

83. F(x) = ∫sin x

0
 √t dt 84. F(x) = ∫x2

2
 
1
t3 dt

85. F(x) = ∫x3

0
 sin t2 dt 86. F(x) = ∫2x

0
 cos t 4 dt

87.  Graphical Analysis Sketch an approximate graph of g on 
the  interval 0 ≤ x ≤ 4, where 

 g(x) = ∫x

0
 f (t) dt.

  Identify the x-coordinate of an extremum of g. To print an 
enlarged copy of the graph, go to MathGraphs.com.

t

f

42

2

1

−2

−1

y

88. Area The area A between the graph of the function

 g(t) = 4 −
4
t2

 and the t-axis over the interval [1, x] is

 A(x) = ∫x

1
 (4 −

4
t2) dt.

 (a) Find the horizontal asymptote of the graph of g.

 (b)  Integrate to find A as a function of x. Does the graph of A 
have a horizontal asymptote? Explain.

89.  Water Flow Water flows from a storage tank at a rate of 
(500 − 5t) liters per minute. Find the amount of water that 
flows out of the tank during the first 18 minutes.

90.  Oil Leak At 1:00 p.m., oil begins leaking from a tank at a 
rate of (4 + 0.75t) gallons per hour.

 (a) How much oil is lost from 1:00 p.m. to 4:00 p.m.?

 (b) How much oil is lost from 4:00 p.m. to 7:00 p.m.?

 (c)  Compare your answers to parts (a) and (b). What do you 
notice?

 91.  Velocity The graph shows the velocity, in feet per second, 
of a car accelerating from rest. Use the graph to estimate the 
distance the car travels in 8 seconds.

 

t

v
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 92.  Velocity The graph shows the velocity, in feet per second, 
of a decelerating car after the driver applies the brakes. Use 
the graph to estimate how far the car travels before it comes 
to a stop.

 

t
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 Particle Motion In Exercises 93–98, the 
velocity function, in feet per second, is given for a 
particle moving along a straight line, where t is the 
time in seconds. Find (a) the displacement and (b) 
the total distance that the particle travels over the 
given interval.

 93. v(t) = 5t − 7, 0 ≤ t ≤ 3

 94. v(t) = t2 − t − 12, 1 ≤ t ≤ 5

 95. v(t) = t3 − 10t2 + 27t − 18, 1 ≤ t ≤ 7

 96. v(t) = t3 − 8t2 + 15t, 0 ≤ t ≤ 5

 97. v(t) = 1

√t
, 1 ≤ t ≤ 4 98. v(t) = cos t, 0 ≤ t ≤ 3π

EXPLORING CONCEPTS
 99.  Particle Motion Describe a situation where the 

displacement and the total distance traveled for a 
particle are equal.

100.  Rate of Growth Let r′(t) represent the rate of 
growth of a dog, in pounds per year. What does r(t) 
represent? What does ∫6

2  r′(t) dt represent about the dog?

101.  Fundamental Theorem of Calculus Explain 
why the Fundamental Theorem of Calculus cannot be 
used to integrate

  f (x) = 1
x − c

   on any interval containing c.
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102.  Modeling Data An experimental vehicle is tested on  
a straight track. It starts from rest, and its velocity v (in 
meters per second) is recorded every 10 seconds for 1 minute 
(see table).

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

 (a)  Use a graphing utility to find a model of the form 
v = at3 + bt2 + ct + d for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Approximate the distance traveled by the vehicle during 
the test.

103.  Particle Motion A particle is moving along the x-axis. 
The position of the particle at time t is given by

  x(t) = t3 − 6t2 + 9t − 2, 0 ≤ t ≤ 5.

  Find the total distance the particle travels in 5 units of time.

104.  Particle Motion Repeat Exercise 103 for the position 
function given by 

  x(t) = (t − 1)(t − 3)2, 0 ≤ t ≤ 5.

Error Analysis In Exercises 105–108, describe why the 
statement is incorrect.

105. ∫1

−1
 x−2 dx = [−x−1]1−1 = (−1) − 1 = −2

106. ∫1

−2
 
2
x3 dx = [− 1

x2]
1

−2
= −

3
4

107. ∫3π�4

π�4
 sec2 x dx = [tan x]3π�4

π�4 = −2

108. ∫3π�2

π�2
 csc x cot x dx = [−csc x]3π�2

π�2 = 2

True or False? In Exercises 109 and 110, determine 
whether the statement is true or false. If it is false, explain why 
or give an example that shows it is false.

109. If F′(x) = G′(x) on the interval [a, b], then

  F(b) − F(a) = G(b) − G(a).

110.  If F(b) − F(a) = G(b) − G(a), then F′(x) = G′(x) on the 
interval [a, b].

111. Analyzing a Function Show that the function

  f (x) = ∫1�x

0
 

1
t2 + 1

 dt + ∫x

0
 

1
t2 + 1

 dt

  is constant for x > 0.

112.  Finding a Function Find the function f (x) and all 
values of c such that

  ∫x

c

 f (t) dt = x2 + x − 2.

113. Finding Values Let

  G(x) = ∫x

0
[s∫s

0
 f (t) dt] ds

   where f  is continuous for all real t. Find (a) G(0), (b) G′(0), 
(c) G″(x), and (d) G″(0).

114. Proof Prove that

  
d
dx[∫

v(x)

u(x)
 f (t) dt] = f (v(x))v′(x) − f (u(x))u′(x).

PUTNAM EXAM CHALLENGE
115.  For each continuous function f : [0, 1]→R, let

  I( f ) = ∫1

0
 x2f (x) dx

  and

  J(x) = ∫1

0
 x( f (x))2 dx.

   Find the maximum value of I( f ) − J( f ) over all such 
functions f.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

Use a graphing utility to graph the function

y1 = sin2 t

on the interval 0 ≤ t ≤ π. Let F be the following function of x.

F(x) = ∫x

0
 sin2 t dt

(a) Complete the table. Explain why the values of F are increasing.

x 0
π
6

π
3

π
2

2π
3

5π
6

π

F(x)

(b) Use the integration capabilities of a graphing utility to graph F.

(c)  Use the differentiation capabilities of a graphing utility to 
graph F′. How is this graph related to the graph in part (b)?

(d) Verify that the derivative of

 y =
1
2

t −
1
4

 sin 2t

  is sin2 t. Graph y and write a short paragraph about how this 
graph is related to those in parts (b) and (c).

Demonstrating the Fundamental Theorem
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4.5 Integration by Substitution

 Use pattern recognition to find an indefinite integral.
 Use a change of variables to find an indefinite integral.
 Use the General Power Rule for Integration to find an indefinite integral.
 Use a change of variables to evaluate a definite integral.
 Evaluate a definite integral involving an even or odd function.

Pattern Recognition
In this section, you will study techniques for integrating composite functions. The 
 discussion is split into two parts—pattern recognition and change of variables. 
Both techniques involve a u-substitution. With pattern recognition, you perform the 
 substitution mentally, and with change of variables, you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule 
in differentiation. Recall that for the differentiable functions

y = F(u) and u = g(x)

the Chain Rule states that

d
dx

[F(g(x))] = F′(g(x))g′(x).

From the definition of an antiderivative, it follows that

∫F′(g(x))g′(x) dx = F(g(x)) + C.

These results are summarized in the next theorem.

THEOREM 4.13 Antidifferentiation of a Composite Function

Let g be a function whose range is an interval I, and let f  be a function that is 
continuous on I. If g is differentiable on its domain and F is an antiderivative 
of f  on I, then

∫ f(g(x))g′(x) dx = F(g(x)) + C.

Letting u = g(x) gives du = g′(x) dx and

∫ f(u) du = F(u) + C.

Examples 1 and 2 show how to apply Theorem 4.13 directly, by recognizing the 
presence of f(g(x)) and g′(x). Note that the composite function in the integrand has an 
outside function f  and an inside function g. Moreover, the derivative g′(x) is present as 
a factor of the integrand.

∫ f(g(x))g′(x) dx = F(g(x)) + C

REMARK The statement of 
Theorem 4.13 does not tell how 
to distinguish between f(g(x)) 
and g′(x) in the integrand. As 
you become more experienced 
at integration, your skill in 
doing this will increase. Of 
course, part of the key is  
familiarity with derivatives.

Outside function

Inside function
Derivative of 

inside function
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 Recognizing the f(g(x))g′(x) Pattern

Find ∫(x2 + 1)2(2x) dx.

Solution Letting g(x) = x2 + 1, you obtain

g′(x) = 2x

and

f(g(x)) = f(x2 + 1) = (x2 + 1)2.

From this, you can recognize that the integrand follows the f(g(x))g′(x) pattern. Using 
the Power Rule for Integration and Theorem 4.13, you can write

 f (g(x)) g′(x)

∫(x2 + 1)2(2x) dx =
1
3
(x2 + 1)3 + C.

Try using the Chain Rule to check that the derivative of 13(x2 + 1)3 + C is the integrand 
of the original integral.

 Recognizing the f(g(x))g′(x) Pattern

Find ∫5 cos 5x dx.

Solution Letting g(x) = 5x, you obtain

g′(x) = 5

and

f(g(x)) = f(5x) = cos 5x.

From this, you can recognize that the integrand follows the f(g(x))g′(x) pattern. Using 
the Cosine Rule for Integration and Theorem 4.13, you can write

 f (g(x)) g′(x)

∫(cos 5x)(5) dx = sin 5x + C.

You can check this by differentiating sin 5x + C to obtain the original integrand.
  

Exploration
Recognizing Patterns The integrand in each of the integrals labeled (a)–(c) 
fits the pattern f(g(x))g′(x). Identify the pattern and use the result to find the 
integral.

a. ∫2x(x2 + 1)4 dx  b. ∫3x2√x3 + 1 dx  c. ∫(sec2 x)(tan x + 3) dx

The integrals labeled (d)–(f) are similar to (a)–(c). Show how you can multiply 
and divide by a constant to find these integrals.

d. ∫x(x2 + 1)4 dx e. ∫x2√x3 + 1 dx f. ∫(2 sec2 x)(tan x + 3) dx

TECHNOLOGY Try using  
a computer algebra system,  
such as Maple, Mathematica,  
or the TI-Nspire, to find the 
integrals given in Examples 1 
and 2. Do you obtain the same  
antiderivatives that are listed in 
the examples?
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The integrands in Examples 1 and 2 fit the f(g(x))g′(x) pattern exactly—you only 
had to recognize the pattern. You can extend this technique considerably with the 
Constant Multiple Rule

∫kf(x) dx = k∫f(x) dx.

Many integrands contain the essential part (the variable part) of g′(x) but are missing a 
constant multiple. In such cases, you can multiply and divide by the necessary  constant 
multiple, as shown in Example 3.

 Multiplying and Dividing by a Constant

Find the indefinite integral.

∫x(x2 + 1)2 dx

Solution This is similar to the integral given in Example 1, except that the integrand 
is missing a factor of 2. Recognizing that 2x is the derivative of x2 + 1, you can let

g(x) = x2 + 1

and supply the 2x as shown.

 ∫x(x2 + 1)2 dx = ∫(x2 + 1)2 (12)(2x) dx Multiply and divide by 2.

 f (g(x)) g′(x)
  

 =
1
2

 ∫(x2 + 1)2(2x) dx Constant Multiple Rule

 =
1
2[

(x2 + 1)3
3 ] + C Integrate.

 =
1
6
(x2 + 1)3 + C Simplify.  

In practice, most people would not write as many steps as are shown in Example 3.  
For instance, you could evaluate the integral by simply writing

 ∫x(x2 + 1)2 dx =
1
2∫(x2 + 1)2 (2x) dx

 =
1
2[

(x2 + 1)3
3 ] + C

 =
1
6
(x2 + 1)3 + C.

Be sure you see that the Constant Multiple Rule applies only to constants. You 
cannot multiply and divide by a variable and then move the variable outside the integral 
sign. For instance,

∫(x2 + 1)2 dx ≠
1
2x∫(x2 + 1)2 (2x) dx.

After all, if it were legitimate to move variable quantities outside the integral sign, 
you could move the entire integrand out and simplify the whole process. But the result 
would be incorrect.
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Change of Variables for Indefinite Integrals
With a formal change of variables, you completely rewrite the integral in terms of u 
and du (or any other convenient variable). Although this procedure can involve more 
written steps than the pattern recognition illustrated in Examples 1 through 3, it is 
useful for complicated integrands. The change of variables technique uses the Leibniz 
notation for the differential. That is, if u = g(x), then du = g′(x) dx, and the integral in 
Theorem 4.13 takes the form

∫ f(g(x))g′(x) dx = ∫f(u) du = F(u) + C.

 Change of Variables

Find ∫√2x − 1 dx.

Solution First, let u be the inner function, u = 2x − 1. Then calculate the differential 
du to be du = 2 dx. Now, using √2x − 1 = √u and dx = du�2, substitute to obtain

 ∫√2x − 1 dx = ∫√u (du
2 ) Integral in terms of u

 =
1
2∫u1�2 du Constant Multiple Rule

 =
1
2(

u3�2

3�2) + C Antiderivative in terms of u

 =
1
3

u3�2 + C Simplify.

 =
1
3
(2x − 1)3�2 + C. Antiderivative in terms of x

 Change of Variables

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x√2x − 1 dx.

Solution As in the previous example, let u = 2x − 1 and obtain dx = du�2. 
Because the integrand contains a factor of x, you must also solve for x in terms of u, 
as shown.

u = 2x − 1  x =
u + 1

2
 Solve for x in terms of u.

Now, using substitution, you obtain

 ∫x√2x − 1 dx = ∫(u + 1
2 )u1�2 (du

2 )
 =

1
4∫(u3�2 + u1�2) du

 =
1
4 (

u5�2

5�2
+

u3�2

3�2) + C

 =
1
10

 (2x − 1)5�2 +
1
6

 (2x − 1)3�2 + C. 

REMARK Because  
integration is usually more  
difficult than differentiation,  
you should always check your 
answer to an integration  
problem by differentiating.  
For instance, in Example 4,  
you should differentiate
1
3(2x − 1)3�2 + C to verify that 
you obtain the original integrand.
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To complete the change of variables in Example 5, you solved for x in terms of u. 
Sometimes this is very difficult. Fortunately, it is not always necessary, as shown in 
the next example.

 Change of Variables

Find ∫sin2 3x cos 3x dx.

Solution Because sin2 3x = (sin 3x)2, you can let u = sin 3x. Then

du = (cos 3x)(3) dx.

Now, because cos 3x dx is part of the original integral, you can write

du
3

= cos 3x dx.

Substituting u and du�3 in the original integral yields

 ∫sin2 3x cos 3x dx = ∫u2 
du
3

 =
1
3∫u2 du

 =
1
3(

u3

3 ) + C

 =
1
9

 sin3 3x + C.

You can check this by differentiating.

 
d
dx[

1
9

 sin3 3x + C] = (19)(3)(sin 3x)2(cos 3x)(3)

 = sin2 3x cos 3x

Because differentiation produces the original integrand, you know that you have 
obtained the correct antiderivative. 

The steps used for integration by substitution are summarized in the following 
guidelines.

GUIDELINES FOR MAKING A CHANGE OF VARIABLES

1.  Choose a substitution u = g(x). Usually, it is best to choose the inner part  
of a composite function, such as a quantity raised to a power.

2. Compute du = g′(x) dx.

3. Rewrite the integral in terms of the variable u.

4. Find the resulting integral in terms of u.

5. Replace u by g(x) to obtain an antiderivative in terms of x.

6. Check your answer by differentiating.

So far, you have seen two techniques for applying substitution, and you will  
see more techniques in the remainder of this section. Each technique differs slightly 
from the others. You should remember, however, that the goal is the same with each  
technique—you are trying to find an antiderivative of the integrand.

REMARK When making a 
change of variables, be sure that 
your answer is written using  
the same variables as in the 
original integrand. For instance, 
in Example 6, you should not 
leave your answer as

1
9

u3 + C

but rather, you should replace u 
by sin 3x.
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The General Power Rule for Integration
One of the most common u-substitutions involves quantities in the integrand that are 
raised to a power. Because of the importance of this type of substitution, it is given a 
special name—the General Power Rule for Integration. A proof of this rule follows 
directly from the (simple) Power Rule for Integration, together with Theorem 4.13.

THEOREM 4.14 The General Power Rule for Integration

If g is a differentiable function of x, then

∫[g(x)]n g′(x) dx =
[g(x)]n+1

n + 1
+ C, n ≠ −1.

Equivalently, if u = g(x), then

∫un du =
un+1

n + 1
+ C, n ≠ −1.

 Substitution and the General Power Rule

 u4 du u5�5

a. ∫3(3x − 1)4 dx = ∫(3x − 1)4(3) dx =
(3x − 1)5

5
+ C

 u1 du u2�2

b. ∫(2x + 1)(x2 + x) dx = ∫(x2 + x)1(2x + 1) dx =
(x2 + x)2

2
+ C

 u1�2 du u3�2�(3�2)

c. ∫3x2√x3 − 2 dx = ∫(x3 − 2)1�2(3x2) dx =
(x3 − 2)3�2

3�2
+ C =

2
3
(x3 − 2)3�2 + C

 u−2 du u−1�(−1)

d. ∫ −4x
(1 − 2x2)2 dx = ∫(1 − 2x2)−2(−4x) dx =

(1 − 2x2)−1

−1
+ C = −

1
1 − 2x2 + C

 u2 du u3�3

e. ∫cos2 x sin x dx = −∫(cos x)2(−sin x) dx = −
(cos x)3

3
+ C 

Some integrals whose integrands involve quantities raised to powers cannot be 
found by the General Power Rule. Consider the two integrals

∫x(x2 + 1)2 dx and ∫(x2 + 1)2 dx.

The substitution

u = x2 + 1

works in the first integral but not in the second. In the second, the substitution fails 
because the integrand lacks the factor x needed for du. Fortunately, for this particular 
integral, you can expand the integrand as

(x2 + 1)2 = x4 + 2x2 + 1

and use the (simple) Power Rule to integrate each term.
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Change of Variables for Definite Integrals
When using u-substitution with a definite integral, it is often convenient to determine 
the limits of integration for the variable u rather than to convert the antiderivative back 
to the variable x and evaluate at the original limits. This change of variables is stated 
explicitly in the next theorem. The proof follows from Theorem 4.13 combined with 
the Fundamental Theorem of Calculus.

THEOREM 4.15 Change of Variables for Definite Integrals

If the function u = g(x) has a continuous derivative on the closed interval 
[a, b] and f  is continuous on the range of g, then

∫b

a

 f (g(x))g′(x) dx = ∫g(b)

g(a)
 f (u) du.

 Change of Variables

Evaluate ∫1

0
 x(x2 + 1)3 dx.

Solution To evaluate this integral, let u = x2 + 1. Then, you obtain

du = 2x dx.

Before substituting, determine the new upper and lower limits of integration.

 Lower Limit Upper Limit

When x = 0, u = 02 + 1 = 1. When x = 1, u = 12 + 1 = 2.

Now, you can substitute to obtain

 ∫1

0
x(x2 + 1)3 dx =

1
2∫

1

0
(x2 + 1)3(2x) dx Integration limits for x

 =
1
2∫

2

1
 u3 du Integration limits for u

 =
1
2[

u4

4 ]
2

1

 =
1
2(4 −

1
4)

 =
15
8

.

Notice that you obtain the same result when you rewrite the antiderivative 1
2(u4�4) 

in terms of the variable x and evaluate the  definite integral at the original limits of  
integration, as shown below.

 
1
2[

u4

4 ]
2

1
=

1
2[

(x2 + 1)4
4 ]

1

0

 =
1
2 (4 −

1
4)

 =
15
8

 

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



4.5 Integration by Substitution 303

 Change of Variables

Evaluate the definite integral.

∫5

1

x

√2x − 1
 dx

Solution To evaluate this integral, let u = √2x − 1. Then, you obtain

 u2 = 2x − 1

 u2 + 1 = 2x

 
u2 + 1

2
= x

 u du = dx. Differentiate each side.

Before substituting, determine the new upper and lower limits of integration.

 Lower Limit Upper Limit

When x = 1, u = √2 − 1 = 1. When x = 5, u = √10 − 1 = 3.

Now, substitute to obtain

 ∫5

1
 

x

√2x − 1
 dx = ∫3

1
 
1
u (

u2 + 1
2 )u du

 =
1
2

 ∫3

1
 (u2 + 1) du

 =
1
2[

u3

3
+ u]

3

1

 =
1
2 (9 + 3 −

1
3
− 1)

 =
16
3

. 

Geometrically, you can interpret the equation

∫5

1
 

x

√2x − 1
 dx = ∫3

1
 
u2 + 1

2
 du

to mean that the two different regions shown in Figures 4.38 and 4.39 have the same 
area.

When evaluating definite integrals by substitution, it is possible for the upper 
limit of integration of the u-variable form to be smaller than the lower limit. When 
this happens, do not rearrange the limits. Simply evaluate as usual. For example, after 
substituting u = √1 − x in the integral

∫1

0
 x2(1 − x)1�2 dx

you obtain u = √1 − 0 = 1 when x = 0, and u = √1 − 1 = 0 when x = 1. So, the 
correct u-variable form of this integral is

−2∫0

1
 (1 − u2)2u2 du.

Expanding the integrand, you can evaluate this integral as shown.

−2∫0

1
(u2 − 2u4 + u6) du = −2[u

3

3
−

2u5

5
+

u7

7 ]
0

1
= −2(−1

3
+

2
5
−

1
7) =

16
105

x

5, 5
3( )(1, 1)

−1 1 2 3 4 5

5

4

3

2

1

y

y = x
2x − 1

The region before substitution has an 
area of 16

3 .
Figure 4.38

u

f(u)

(1, 1)

(3, 5)

−1

−1

1 2 3 4 5

5

4

3

2

1

f(u) =
2

u2 + 1

The region after substitution has an 
area of 16

3 .
Figure 4.39
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Integration of Even and Odd Functions
Even with a change of variables, integration can be difficult. Occasionally, you can 
simplify the evaluation of a definite integral over an interval that is symmetric about 
the y-axis or about the origin by recognizing the integrand to be an even or odd function 
(see Figure 4.40).

THEOREM 4.16 Integration of Even and Odd Functions

Let f  be integrable on the closed interval [−a, a].

1. If f  is an even function, then ∫a

−a

 f(x) dx = 2∫a

0
 f(x) dx.

2. If f  is an odd function, then ∫a

−a

 f(x) dx = 0.

Proof Here is the proof of the first property. (The proof of the second property is left 
to you [see Exercise 101].) Because f  is even, you know that

f(x) = f(−x).

Using Theorem 4.13 with the substitution u = −x produces

∫0

−a

 f(x) dx = ∫0

a

 f(−u)(−du) = −∫0

a

 f(u) du = ∫a

0
 f(u) du = ∫a

0
 f(x) dx.

Finally, using Theorem 4.6, you obtain

 ∫a

−a

 f(x) dx = ∫0

−a

 f(x) dx + ∫a

0
 f(x) dx

 = ∫a

0
 f(x) dx + ∫a

0
 f(x) dx

 = 2∫a

0
 f(x) dx. 

 Integration of an Odd Function

Evaluate the definite integral.

∫π�2

−π�2
 (sin3 x cos x + sin x cos x) dx

Solution Letting f(x) = sin3 x cos x + sin x cos x produces

 f(−x) = sin3(−x) cos(−x) + sin(−x) cos(−x)
 = −sin3 x cos x − sin x cos x

 = −f(x).

So, f  is an odd function, and because f  is symmetric about the origin over [−π�2, π�2], 
you can apply Theorem 4.16 to conclude that

∫π�2

−π�2
 (sin3 x cos x + sin x cos x) dx = 0.

From Figure 4.41, you can see that the two regions on either side of the y-axis have the 
same area. However, because one lies below the x-axis and one lies above it, integration 
produces a cancellation effect. (More will be said about areas below the x-axis in 
Section 7.1.) 

−a a
x

y

Even function

−a a
x

y

Odd function
Figure 4.40

x

y

1

−1

π
4

−

f (x) = sin3 x  cos x + sin x cos x

π
4

π
2

Because f  is an odd function,

∫π�2

−π�2
 f (x) dx = 0.

Figure 4.41
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4.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Constant Multiple Rule Explain how to use the 

Constant Multiple Rule when finding an indefinite integral.

2.  Change of Variables In your own words, summarize 
the guidelines for making a change of variables when 
finding an indefinite integral.

3.  The General Power Rule for Integration  
Describe the General Power Rule for Integration in your 
own words.

4.  Analyzing the Integrand Without integrating, 
explain why

 ∫2

−2
 x(x2 + 1)2 dx = 0.

 Recognizing Patterns In Exercises 5–8, 
complete the table by identifying u and du for the 
integral.

 ∫ f (g(x))g′(x) dx u = g(x) du = g′(x) dx

 5. ∫ (5x2 + 1)2 (10x) dx ■  ■

 6. ∫x2√x3 + 1 dx ■  ■

 7. ∫ tan2 x sec2 x dx ■  ■

 8. ∫cos x
sin2 x

 dx ■  ■

 Finding an Indefinite Integral In Exercises 
9–30, find the indefinite integral and check the 
result by differentiation.

 9. ∫(1 + 6x)4(6) dx 10. ∫(x2 − 9)3(2x) dx

11. ∫√25 − x2 (−2x) dx 12. ∫ 3√3 − 4x2(−8x) dx

13. ∫x3(x4 + 3)2 dx 14. ∫x2(6 − x3)5 dx

15. ∫ x2(2x3 − 1)4 dx 16. ∫x(5x2 + 4)3 dx

17. ∫ t√t2 + 2 dt 18. ∫ t3√2t4 + 3 dt

19. ∫5x 3√1 − x2 dx 20. ∫ 6u6√u7 + 8 du

21. ∫ 
7x

(1 − x2)3 dx 22. ∫ x3

(1 + x4)2 dx

23. ∫ x2

(1 + x3)2 dx 24. ∫ 6x2

(4x3 − 9)3 dx

25. ∫ x

√1 − x2
 dx 26. ∫ x3

√1 + x4
 dx

27. ∫(1 +
1
t )

3

(1
t2) dt 28. ∫ (8 −

1
t 4)

2

(1
t5) dt

29. ∫ 1

√2x
 dx 30. ∫ x

3√5x2
 dx

 Differential Equation In Exercises 31–34, find 
the general solution of the differential equation.

31. 
dy
dx

= 4x +
4x

√16 − x2
 32. 

dy
dx

=
10x2

√1 + x3

33. 
dy
dx

=
x + 1

(x2 + 2x − 3)2 34. 
dy
dx

=
18 − 6x2

√x3 − 9x + 7

Slope Field In Exercises 35 and 36, a differential equation, a 
point, and a slope field are given. A slope field (or direction field)
consists of line  segments with slopes given by the differential 
equation. These line segments give a visual perspective of the 
slopes of the  solutions of the differential equation. (a) Sketch 
two approximate solutions of the differential equation on the 
slope field, one of which passes through the given point. (To 
print an enlarged copy of the graph, go to MathGraphs.com.) 
(b) Use integration and the given point to find the particular 
solution of the differential equation and use a graphing utility 
to graph the solution. Compare the result with the sketch in 
part (a) that passes through the given point.

35. 
dy
dx

= x√4 − x2, (2, 2) 36. 
dy
dx

= x2(x3 − 1)2, (1, 0)

 

x

y

3

−1
2−2

 

x

y

2

−2

2−2

Differential Equation In Exercises 37 and 38, the graph 
of a  function f  is shown. Use the differential equation and the 
given point to find an equation of the function.

37. 
dy
dx

= 18x2(2x3 + 1)2 38. 
dy
dx

=
−48

(3x + 5)3

 y

x
−2−3−4 1 2 3 4

1
2

4
5
6
7

(0, 4)

f

  y

x
−2 −1−3−4−5−6 1 2

−2

4
5
6

(−1, 3)

f
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 Finding an Indefinite Integral In Exercises 
39– 48, find the indefinite integral.

39. ∫π sin πx dx 40. ∫sin 4x dx

41. ∫ cos 6x dx 42. ∫csc2(x2) dx

43. ∫ 1
θ2 cos 

1
θ  dθ 44. ∫x sin x2 dx

45. ∫sin 2x cos 2x dx 46. ∫  3√tan x sec2 x dx

47. ∫ csc2 x
cot3 x

 dx 48. ∫ sin x
cos3 x

 dx

 Finding an Equation In Exercises 49–52, find 
an equation for the function f  that has the given 
derivative and whose graph passes through the 
given point.

 Derivative Point

49. f ′(x) = −sin 
x
2

 (0, 6)

50. f ′(x) = sec2 2x (π2, 2)
51. f ′(x) = 2x(4x2 − 10)2 (2, 10)
52. f ′(x) = −2x√8 − x2 (2, 7)

 Change of Variables In Exercises 53–60, find 
the indefinite integral by making a change of 
variables.

53. ∫x√x + 6 dx 54. ∫x√3x − 4 dx

55. ∫x2√1 − x dx 56. ∫(x + 1)√2 − x dx

57. ∫ x2 − 1

√2x − 1
 dx 58. ∫ 2x + 1

√x + 4
 dx

59. ∫ cos3 2x sin 2x dx 60. ∫ sec5 7x tan 7x dx

 Evaluating a Definite Integral In Exercises 
61–68, evaluate the definite integral. Use a 
graphing utility to verify your result.

61. ∫1

−1
 x(x2 + 1)3 dx 62. ∫1

0
 x

3(2x4 + 1)2 dx

63. ∫2

1
 2x2√x3 + 1 dx 64. ∫0

−1
 x√1 − x2 dx

65. ∫4

0
 

1

√2x + 1
 dx 66. ∫2

0
 

x

√1 + 2x2
 dx

67. ∫9

1
 

1

√x(1 + √x)2 dx 68. ∫5

4
 

x

√2x − 6
 dx

 Finding the Area of a Region In Exercises 
69–72, find the area of the region. Use a graphing 
utility to verify your result.

69. ∫7

0
 x

3√x + 1 dx 70. ∫6

−2
 x

2 3√x + 2 dx

 

2 4 6 8

16

12

8

4

x

y   

x
−2 2 4 6

80

60

40

20

y

71. ∫2π�3

π�2
 sec2(x2) dx 72. ∫π�4

π�12
 csc 2x cot 2x dx

 

x

2

3

4

ππ π
24

y

π
4
3

  

x
π ππ π
8 1616 4

2

1

3

4

3

y

 Even and Odd Functions In Exercises 73–76, 
evaluate the integral using the properties of even 
and odd functions as an aid.

73. ∫2

−2
 x2(x2 + 1) dx 74. ∫2

−2
 x(x2 + 1)3 dx

75. ∫π�2

−π�2
 sin x cos x dx 76. ∫π�2

−π�2
 sin2 x cos x dx

77.  Using an Even Function Use ∫6
0  x2 dx = 72 to evaluate 

each definite integral without using the Fundamental Theorem 
of Calculus.

 (a) ∫6

−6
 x2 dx (b) ∫0

−6
 x2 dx

 (c) ∫6

0
 −2x2 dx (d) ∫6

−6
 3x2 dx

78.  Using Symmetry Use the symmetry of the graphs of the 
sine and cosine functions as an aid in evaluating each definite 
integral.

 (a) ∫π�4

−π�4
 sin x dx (b) ∫π�4

−π�4
 cos x dx

 (c) ∫π�2

−π�2
 cos x dx (d) ∫π�2

−π�2
 sin x cos x dx

Even and Odd Functions  In Exercises 79 and 80, write the 
integral as the sum of the integral of an odd function and the 
integral of an even function. Use this simplification to evaluate 
the integral.

79. ∫3

−3
 (x3 + 4x2 − 3x − 6) dx 80. ∫π�2

−π�2
 (sin 4x + cos 4x) dx
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EXPLORING CONCEPTS
81.  Choosing an Integral You are asked to find one of 

the integrals. Which one would you choose? Explain. 

 (a) ∫√x3 + 1 dx or ∫x2√x3 + 1 dx

 (b) ∫ cot 2x dx or ∫ cot3 2x csc2 2x dx

82.  Comparing Methods Find the indefinite integral 
in two ways. Explain any difference in the forms of the 
answers.

 (a) ∫(2x − 1)2 dx (b) ∫ sin x cos x dx

83.  Depreciation The rate of depreciation dV�dt of a machine 
is inversely proportional to the square of (t + 1), where V 
is the value of the machine t years after it was purchased. 
The initial value of the machine was $500,000, and its value 
decreased $100,000 in the first year. Estimate its value after 
4 years.

 84.  HOW DO YOU SEE IT? The graph shows 
the flow rate of water at a pumping station for 
one day.

Fl
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(a)  Approximate the maximum flow rate at the 
pumping station. At what time does this occur?

(b)  Explain how you can find the amount of water 
used during the day.

(c)  Approximate the two-hour period when the least 
amount of water is used. Explain your reasoning.

84.

85.  Sales The sales S (in thousands of units) of a seasonal 
product are given by the model

 S = 74.50 + 43.75 sin 
πt
6

  where t is the time in months, with t = 1 corresponding to 
January. Find the  average sales for each time period.

 (a) The first quarter (0 ≤ t ≤ 3)
 (b) The second quarter (3 ≤ t ≤ 6)
 (c) The entire year (0 ≤ t ≤ 12)

87. Graphical Analysis Consider the functions f  and g, where

 f (x) = 6 sin x cos2 x and g(t) = ∫t

0
 f (x) dx.

 (a)  Use a graphing utility to graph f  and g in the same  viewing 
window.

 (b) Explain why g is nonnegative.

 (c)  Identify the points on the graph of g that correspond to the 
extrema of f.

 (d)  Does each of the zeros of f  correspond to an extremum of 
g? Explain.

 (e) Consider the function

 h(t) = ∫t

π�2
 f (x) dx.

   Use a graphing utility to graph h. What is the relationship  
between g and h? Verify your conjecture.

88. Finding a Limit Using a Definite Integral Find

 lim
n→∞

 ∑
n

i=1
 
sin(iπ�n)

n

  by evaluating an appropriate definite integral over the interval 
[0, 1].

89. Rewriting Integrals

 (a) Show that ∫1

0
 x3(1 − x)8 dx = ∫1

0
 x8(1 − x)3 dx

 (b) Show that ∫1

0
 xa(1 − x)b dx = ∫1

0
 xb(1 − x)a dx.

90. Rewriting Integrals

 (a) Show that ∫π�2

0
sin2 x dx = ∫π�2

0
cos2 x dx.

 (b) Show that

  ∫π�2

0
sinn x dx = ∫π�2

0
cosn x dx

  where n is a positive integer.

The oscillating current in an electrical circuit is

I = 2 sin(60πt) + cos(120πt)
 where I is measured in amperes and t is measured in seconds. 
Find the average current for each time interval.

(a) 0 ≤ t ≤
1
60

(b) 0 ≤ t ≤
1

240

(c) 0 ≤ t ≤
1
30

86. Electricity

Stephan Zabel/E+/Getty Images
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Probability In Exercises 91 and 92, the function

f (x) = kxn(1 − x)m, 0 ≤ x ≤ 1

where n > 0, m > 0, and k is a constant, can be used to 
represent various probability distributions. If k is chosen such 
that

∫1

0
 f (x) dx = 1

then the probability that x will fall between a and b 
(0 ≤ a ≤ b ≤ 1) is

Pa, b = ∫b

a
 f (x) dx.

91.  The probability that a person will remember between 100a% 
and 100b% of material learned in an experiment is

 Pa, b = ∫b

a

15
4

x√1 − x dx

 where x represents the proportion remembered. (See figure.)

x
0.5 1.5

0.5

1.5

1.0

1.0

a b

y

Pa, b

 (a)  For a randomly chosen individual, what is the probability 
that he or she will recall between 50% and 75% of the 
material?

 (b)  What is the median percent recall? That is, for what value 
of b is it true that the probability of recalling 0 to b is 0.5?

92.  The probability that ore samples taken from a region contain 
between 100a% and 100b% iron is

 Pa, b = ∫b

a

1155
32

x3(1 − x)3�2 dx

  where x represents the proportion of iron. (See figure.)

 

x

2

1 2

1

a b

y

Pa, b

 (a)  What is the probability that a sample will contain between 
0% and 25% iron?

 (b)  What is the probability that a sample will contain between 
50% and 100% iron?

True or False? In Exercises 93–98, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 93. ∫ 3x2(x3 + 5)−2 dx = −(x3 + 5)−1 + C

 94. ∫x(x2 + 1) dx = 1
2x2(1

3x3 + x) + C

 95. ∫10

−10
(ax3 + bx2 + cx + d) dx = 2∫10

0
(bx2 + d) dx

 96. ∫b

a

 sin x dx = ∫b+2π

a

sin x dx

 97. 4∫sin x cos x dx = −cos 2x + C

 98. ∫sin2 2x cos 2x dx = 1
3 sin3 2x + C

 99.  Rewriting Integrals Assume that f  is continuous  
everywhere and that c is a  constant. Show that

  ∫cb

ca

 f (x) dx = c∫b

a

 f (cx) dx.

100. Integration and Differentiation

  (a) Verify that sin u − u cos u + C = ∫u sin u du.

  (b) Use part (a) to show that ∫π2

0
 sin√x dx = 2π.

101. Proof Prove the second property of Theorem 4.16.

102.  Rewriting Integrals Show that if f  is continuous on the 
entire real number line, then

  ∫b

a

 f (x + h) dx = ∫b+h

a+h

 f (x) dx.

PUTNAM EXAM CHALLENGE
103. If a0, a1, .  .  ., an are real numbers satisfying

  
a0

1
+

a1

2
+ .  .  . +

an

n + 1
= 0,

  show that the equation

  a0 + a1x + a2x2 + .  .  . + anxn = 0

  has at least one real root.

104.  Find all the continuous positive functions f (x), for 
0 ≤ x ≤ 1, such that

  ∫1

0
 f (x) dx = 1

  ∫1

0
 f (x)x dx = α

  ∫1

0
 f (x)x2 dx = α2

  where α is a given real number.
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding an Indefinite Integral In Exercises 1–8, find the 
indefinite integral.

 1. ∫ (x3 + 4) dx  2. ∫(x4 + 3) dx

 3. ∫(4x2 + x + 3) dx  4. ∫ 6
3√x

 dx

 5. ∫x4 + 8
x3  dx  6. ∫x2 + 2x − 6

x4  dx

 7. ∫ (2 csc2 x − 9 sin x) dx  8. ∫(5 cos x − 2 sec2 x) dx

Finding a Particular Solution In Exercises 9–12, find the 
particular solution of the differential equation that satisfies the 
initial condition(s).

 9. f ′(x) = −6x, f (1) = −2 10. f ′(x) = 9x2 + 1, f (0) = 7

11. f ″(x) = 24x, f ′(−1) = 7, f (1) = −4

12. f ″(x) = 2 cos x, f ′(0) = 4, f (0) = −5

13.  Vertical Motion A ball is thrown vertically upward from 
ground level with an initial velocity of 96 feet per second. 
Assume the acceleration of the ball is a(t) = −32 feet per 
second per second. (Neglect air resistance.)

 (a)  How long will it take the ball to rise to its maximum 
height? What is the maximum height?

 (b)  After how many seconds is the velocity of the ball one-half 
the initial velocity?

 (c)  What is the height of the ball when its velocity is one-half 
the initial velocity?

14.  Vertical Motion With what initial velocity must an 
object be thrown upward (from a height of 3 meters) to reach 
a maximum height of 150 meters? Assume the acceleration of 
the object is a(t) = 9.8 meters per second per second. (Neglect 
air resistance.)

Finding a Sum In Exercises 15 and 16, find the sum by 
adding each term together. Use the summation capabilities of 
a graphing utility to verify your result.

15. ∑
5

i=1
(5i − 3) 16. ∑

3

k=0
(k2 + 1)

Using Sigma Notation In Exercises 17 and 18, use sigma 
notation to write the sum.

17. 
1

5(3) +
2

5(4) +
3

5(5) +
.  .  . +

10
5(12)

18. (3n)(
1 + 1

n )2 + (3n)(
2 + 1

n )2 + .  .  . + (3n)(
n + 1

n )2

Evaluating a Sum In Exercises 19–24, use the properties 
of summation and Theorem 4.2 to evaluate the sum. Use the 
summation capabilities of a graphing utility to verify your 
result.

19. ∑
24

i=1
8 20. ∑

75

i=1
5i

21. ∑
20

i=1
2i 22. ∑

30

i=1
(3i − 4)

23. ∑
20

i=1
(i + 1)2 24. ∑

12

i=1
i(i2 − 1)

Finding Upper and Lower Sums for a Region In 
Exercises 25 and 26, use upper and lower sums to approximate 
the area of the region using the given number of subintervals 
(of equal width.)

25. y =
10

x2 + 1
 26. y = 9 −

1
4

x2

 

x

10

8

6

4

2

21

y   

x

10

8

6

4

2

42 6

y

Finding Upper and Lower Sums for a Region In 
Exercises 27 and 28, find the upper and lower sums for the 
region bounded by the graph of the function and the x-axis 
on the given interval. Leave your answer in terms of n, the 
number of subintervals.

 Function Interval

27. f (x) = 4x + 1 [2, 3]

28. f (x) = 7x2 [0, 3]

Finding Area by the Limit Definition In Exercises 
29–32, use the limit process to find the area of the region 
bounded by the graph of the function and the x-axis over the 
given interval. Sketch the region.

29. y = 8 − 2x, [0, 3] 30. y = x2 + 3, [0, 2]
31. y = 5 − x2, [−2, 1] 32. y = 1

4x3, [2, 4]

Approximating Area with the Midpoint Rule In 
Exercises 33 and 34, use the Midpoint Rule with n = 4 to 
approximate the area of the region bounded by the graph of 
the function and the x-axis over the given interval.

33. f (x) = 16 − x2, [0, 4] 34. f (x) = sin πx, [0, 1]

Evaluating a Definite Integral as a Limit In Exercises 
35 and 36, evaluate the definite integral by the limit definition.

35. ∫5

−3
 6x dx 36. ∫3

0
 (1 − 2x2) dx

Evaluating a Definite Integral Using a Geometric 
Formula In Exercises 37 and 38, sketch the region whose 
area is given by the definite integral. Then use a geometric 
formula to evaluate the integral.

37. ∫5

0
 (5 − ∣x − 5∣) dx 38. ∫6

−6
 √36 − x2 dx
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39. Using Properties of Definite Integrals Given

 ∫8

4
 f (x) dx = 12 and ∫8

4
 g(x) dx = 5, evaluate

 (a) ∫8

4
 [ f (x) + g(x)] dx. (b) ∫8

4
 [ f (x) − g(x)] dx.

 (c) ∫8

4
 [2 f (x) − 3g(x)] dx. (d) ∫8

4
7 f (x) dx.

40. Using Properties of Definite Integrals Given

 ∫2

0
 f (x) dx = 2 and ∫5

2
 f (x) = −5, evaluate

 (a) ∫5

0
 f (x) dx. (b) ∫2

5
 f (x) dx.

 (c) ∫3

3
 f (x) dx. (d) ∫5

2
 −8 f (x) dx.

Evaluating a Definite Integral In Exercises 41–46, use 
the Fundamental Theorem of Calculus to evaluate the definite 
integral. Use a graphing utility to verify your result.

41. ∫6

0
 (x − 1) dx 42. ∫1

−2
 (4x4 − x) dx

43. ∫9

4
 x√x dx 44. ∫4

1
 ( 1

x3 + x) dx

45. ∫3π�4

0
 sin θ dθ 46. ∫π�4

−π�4
 sec2 t dt

Finding the Area of a Region In Exercises 47 and 48, 
find the area of the given region.

47. y = sin x 48. y = x + cos x

 y

x

−1

1

π
4

π
2

π
4
3 π

 y

x

2

3

1

π
2

π
2
3π−π

2

Finding the Area of a Region  In Exercises 49–52, find 
the area of the region bounded by the graphs of the equations.

49. y = 8 − x, x = 0, x = 6, y = 0

50. y = −x2 + x + 6, y = 0

51. y = x − x3, x = 0, x = 1, y = 0

52. y = √x(1 − x), y = 0

Using the Mean Value Theorem for Integrals In 
Exercises 53 and 54, find the value(s) of c guaranteed by the 
Mean Value Theorem for Integrals for the function over the 
given interval.

53. f (x) = 3x2, [1, 3]
54. f (x) = sin x, [0, π]

Finding the Average Value of a Function In Exercises 
55 and 56, find the average value of the function over the 
given interval and all values of x in the interval for which the 
function equals its average value.

55. f (x) = 1

√x
, [4, 9] 56. f (x) = x3, [0, 2]

Using the Second Fundamental Theorem of Calculus  
In Exercises 57 and 58, use the Second Fundamental Theorem 
of Calculus to find F′(x).

57. F(x) = ∫x

0
 t2√1 + t3 dt 58. F(x) = ∫x

1
 
1
t2 dt

Finding an Indefinite Integral In Exercises 59–66, find 
the indefinite integral.

59. ∫x(1 − 3x2)4 dx 60. ∫6x3√3x 4 + 2 dx

61. ∫sin3 x cos x dx 62. ∫x sin 3x2 dx

63. ∫ cos θ
√1 − sin θ

 dθ 64. ∫ sin x

√cos x 
 dx

65. ∫ x√8 − x dx 66. ∫√1 + √x dx

Evaluating a Definite Integral In Exercises 67–72, 
evaluate the definite integral. Use a graphing utility to verify 
your result.

67. ∫1

0
 (3x + 1)5 dx 68. ∫1

0
 x2(x3 − 2)3 dx

69. ∫3

0
 

1

√1 + x
 dx 70. ∫6

3
 

x

3√x2 − 8
 dx

71. 2π∫1

0
 (y + 1)√1 − y dy 72. 2π∫0

−1
 x2√x + 1 dx

Finding the Area of a Region In Exercises 73 and 74, 
find the area of the region. Use a graphing utility to verify 
your result.

73. ∫9

1
x 3√x − 1 dx 74. ∫π�2

0
 (cos x + sin 2x) dx

 y

x
−3−6 3 6 9 12

12

15

6

9

18

  y

x

2

1

−1
π
2

−2

3 π2

Even and Odd Functions In Exercises 75 and 76, evaluate 
the integral using the properties of even and odd functions as 
an aid.

75. ∫2

−2
 (x3 − 2x) dx 76. ∫π

−π
 (cos x + x2) dx
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Using a Function Let L(x) = ∫x

1
 
1
t
 dt, x > 0.

 (a) Find L(1).
 (b) Find L′(x) and L′(1).
 (c)  Use a graphing utility to approximate the value of x (to three 

decimal places) for which L(x) = 1.

 (d)  Prove that L(x1x2) = L(x1) + L(x2) for all positive values 
of x1 and x2.

2.  Parabolic Arch Archimedes showed that the area of a  
parabolic arch is equal to 2

3 the product of the base and the 
height (see figure).

b

h

 (a)  Graph the parabolic arch bounded by y = 9 − x2 and the  
x-axis. Use an appropriate integral to find the area A.

 (b)  Find the base and height of the arch and verify Archimedes’ 
formula.

 (c) Prove Archimedes’ formula for a general parabola.

Evaluating a Sum and a Limit  In Exercises 3 and 4,  
(a) write the area under the graph of the given function defined 
on the given interval as a limit. Then (b) evaluate the sum in 
part (a), and (c) evaluate the limit using the result of part (b).

3. y = x4 − 4x3 + 4x2, [0, 2]

 (Hint: ∑
n

i=1
 i4 =

n(n + 1)(2n + 1)(3n2 + 3n − 1)
30 )

4. y =
1
2

x5 + 2x3, [0, 2]

 (Hint: ∑
n

i=1
i5 =

n2(n + 1)2(2n2 + 2n − 1)
12 )

5.  Fresnel Function The Fresnel function S is defined by 
the integral

 S(x) = ∫x

0
 sin 

πt2

2
 dt.

 (a) Graph the function y = sin 
πx2

2
 on the interval [0, 3].

 (b)  Use the graph in part (a) to sketch the graph of S on the 
interval [0, 3].

 (c) Locate all relative extrema of S on the interval (0, 3).
 (d) Locate all points of inflection of S on the interval (0, 3).

 6.  Approximation The Two-Point Gaussian Quadrature 
Approximation for f  is

 ∫1

−1
 f (x) dx ≈ f (− 1

√3) + f ( 1

√3).
 (a) Use this formula to approximate

 ∫1

−1
 cos x dx.

  Find the error of the approximation.

 (b) Use this formula to approximate 

 ∫1

−1
 

1
1 + x2 dx.

 (c)  Prove that the Two-Point Gaussian Quadrature  
Approximation is exact for all polynomials of degree 3 
or less.

 7.  Extrema and Points of Inflection The graph of the  
function f  consists of the three line segments joining the 
points (0, 0), (2, −2), (6, 2), and (8, 3). The function F is 
defined by the integral 

 F(x) = ∫x

0
 f (t) dt.

 (a) Sketch the graph of f.

 (b) Complete the table.

 
x 0 1 2 3 4 5 6 7 8

F(x)

 (c) Find the extrema of F on the interval [0, 8].
 (d)  Determine all points of inflection of F on the interval 

(0, 8).
 8.  Falling Objects  Galileo Galilei (1564–1642) stated the  

following proposition concerning falling objects: 

 The time in which any space is  traversed by a uniformly  
accelerating body is equal to the time in which that same 
space would be traversed by the same body moving at 
a uniform speed whose value is the mean of the highest 
speed of the accelerating body and the speed just before 
acceleration began.

 Use the techniques of this chapter to verify this proposition.

 9. Proof Prove ∫x

0
 f (t)(x − t) dt = ∫x

0
(∫t

0
 f (v) dv) dt.

10. Proof Prove ∫b

a
 f (x) f ′(x) dx = 1

2([ f (b)]2 − [ f (a)]2).

11.  Riemann Sum Use an appropriate Riemann sum to 
evaluate the limit

 lim
n→∞

√1 + √2 + √3 + .  .  . + √n
n3�2 .
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12.  Riemann Sum Use an appropriate Riemann sum to  
evaluate the limit

 lim
n→∞

15 + 25 + 35 + .  .  . + n5

n6 .

13.  Proof Suppose that f  is integrable on [a, b] and 
0 < m ≤ f (x) ≤ M for all x in the interval [a, b]. Prove that

 m(a − b) ≤ ∫b

a

 f (x) dx ≤ M(b − a).

 Use this result to estimate ∫1

0
√1 + x4 dx.

14.  Using a Continuous Function Let f  be continuous on 
the interval [0, b], where f (x) + f (b − x) ≠ 0 on [0, b].

 (a) Show that ∫b

0
 

f (x)
f (x) + f (b − x) dx =

b
2

.

 (b) Use the result in part (a) to evaluate

 ∫1

0
 

sin x
sin(1 − x) + sin x

 dx.

 (c) Use the result in part (a) to evaluate

 ∫3

0
 

√x

√x + √3 − x
 dx.

15.  Velocity and Acceleration A car travels in a straight 
line for 1 hour. Its velocity v in miles per hour at six-minute  
intervals is shown in the table.

t (hours) 0 0.1 0.2 0.3 0.4 0.5

v (mi/h) 0 10 20 40 60 50

t (hours) 0.6 0.7 0.8 0.9 1.0

v (mi/h) 40 35 40 50 65

 (a)  Produce a reasonable graph of the velocity function v by 
graphing these points and connecting them with a smooth 
curve.

 (b)  Find the open intervals over which the acceleration a is 
 positive.

 (c)  Find the average acceleration of the car (in miles per hour 
per hour) over the interval [0, 0.4].

 (d) What does the integral

 ∫1

0
 v(t) dt

   signify? Approximate this integral using the Midpoint 
Rule with five subintervals.

 (e) Approximate the acceleration at t = 0.8.

16.  Proof Prove that if f  is a continuous function on a closed 
interval [a, b], then

 ∣∫b

a

 f (x) dx∣ ≤ ∫b

a

 ∣ f (x)∣ dx.

17. Verifying a Sum Verify that

 ∑
n

i=1
i2 =

n(n + 1)(2n + 1)
6

 by showing the following.

 (a) (1 + i)3 − i3 = 3i 2 + 3i + 1

 (b) (n + 1)3 = ∑
n

i=1
(3i 2 + 3i + 1) + 1

 (c) ∑
n

i=1
i2 =

n(n + 1)(2n + 1)
6

18. Sine Integral Function The sine integral function

 Si(x) = ∫x

0
 
sin t

t
 dt

 is often used in engineering. The function

 f (t) = sin t
t

  is not defined at t = 0, but its limit is 1 as t→ 0. So, define 
f (0) = 1. Then f  is continuous everywhere.

 (a) Use a graphing utility to graph Si(x).
 (b) At what values of x does Si(x) have relative maxima?

 (c)  Find the coordinates of the first inflection point where 
x > 0.

 (d)  Decide whether Si(x) has any horizontal asymptotes. If so, 
identify each.

19.  Upper and Lower Sums Consider the region bounded 
by y = mx, y = 0, x = 0, and x = b.

 (a)  Find the upper and lower sums to approximate the area of 
the region when ∆x = b�4.

 (b)  Find the upper and lower sums to approximate the area of 
the region when ∆x = b�n.

 (c)  Find the area of the region by letting n approach infinity in 
both sums in part (b). Show that, in each case, you obtain 
the formula for the area of a triangle.

20.  Minimizing an Integral  Determine the limits of  
integration where a ≤ b such that

 ∫b

a

 (x 2 − 16) dx

 has minimal value.

21.  Finding a Function The graph of f ′ is shown. Find and 
sketch the graph of f  given that f  is continuous and f (0) = 1.

 y

x

2

1

1 2 3 4
−1

−2

f ′
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314 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

5.1 The Natural Logarithmic Function: Differentiation

 Develop and use properties of the natural logarithmic function.
 Understand the definition of the number e.
 Find derivatives of functions involving the natural logarithmic function.

The Natural Logarithmic Function
Recall that the General Power Rule

∫xn dx =
xn+1

n + 1
+ C, n ≠ −1 General Power Rule

has an important disclaimer—it does not apply when n = −1. Consequently, you 
have not yet found an antiderivative for the function f(x) = 1�x. In this section, you 
will use the Second Fundamental Theorem of Calculus to define such a function. This 
antiderivative is a function that you have not encountered previously in the text. It 
is neither algebraic nor trigonometric but falls into a new class of functions called 
logarithmic functions. This particular function is the natural logarithmic function.

Definition of the Natural Logarithmic Function

The natural logarithmic function is defined by 

ln x = ∫x

1
 
1
t
 dt, x > 0.

The domain of the natural logarithmic function is the set of all positive real 
numbers. 

From this definition, you can see that ln x is positive for x > 1 and negative for 
0 < x < 1, as shown in Figure 5.1. Moreover, ln 1 = 0, because the upper and lower 
limits of integration are equal when x = 1. 

tx
1

1

2

2

3

3

4

4

y = 1
t

If x > 1, then dt > 0.
x

1∫ 1
t

y   

tx
1

1

2

2

3

3

4

4

y

If 0 < x < 1, then dt < 0.
x

1∫ 1
t

y = 1
t

 If x > 1, then ln x > 0. If 0 < x < 1, then ln x < 0.
 Figure 5.1

Exploration
Graphing the Natural Logarithmic Function Using only the definition of 
the natural logarithmic function, sketch a graph of the function. Explain your 
reasoning.

The Granger Collection, NYC

JOHN NAPIER (1550–1617)

Logarithms were invented by 
the Scottish mathematician 
John Napier. Napier coined the 
term logarithm, from the two 
Greek words logos (or ratio) 
and arithmos (or number), to 
describe the theory that he 
spent 20 years developing and 
that first appeared in the book 
Mirifici Logarithmorum canonis 
descriptio (A Description of the 
Marvelous Rule of Logarithms). 
Although he did not introduce 
the natural logarithmic function, 
it is sometimes called the 
Napierian logarithm.
See LarsonCalculus.com to read 
more of this biography.
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5.1 The Natural Logarithmic Function: Differentiation 315

To sketch the graph of y = ln x, you can think of the natural logarithmic function 
as an antiderivative given by the differential equation

dy
dx

=
1
x
.

Figure 5.2 is a computer-generated graph, called a slope field (or direction field), 
showing small line segments of slope 1�x. The graph of y = ln x is the solution that 
passes through the point (1, 0). (You will study slope fields in Section 6.1.)

x

−1

−2

−3

1

1

2 3 4 5

(1, 0)

y = ln x

y

Each small line segment has a slope of 
1
x
.

Figure 5.2

THEOREM 5.1 Properties of the Natural Logarithmic Function

The natural logarithmic function has the following properties.

1. The domain is (0, ∞) and the range is (−∞, ∞).
2. The function is continuous, increasing, and one-to-one.

3. The graph is concave downward.

Proof The domain of f (x) = ln x is (0, ∞) by definition. Moreover, the function is 
continuous because it is differentiable. It is increasing because its derivative

f′(x) = 1
x
 First derivative

is positive for x > 0, as shown in Figure 5.3. It is concave downward because its 
second derivative

f ″(x) = −
1
x2 Second derivative

is negative for x > 0. The proof that f  is one-to-one is given in Appendix A. The 
following limits imply that its range is the entire real number line.

lim
x→0+

 ln x = −∞

and

lim
x→∞

 ln x = ∞

Verification of these two limits is given in Appendix A. 

Using the definition of the natural logarithmic function, you can prove several 
important properties involving operations with natural logarithms. If you are already 
familiar with logarithms, you will recognize that the properties listed on the next page 
are characteristic of all logarithms.

x

−1

−2

1

1

2 3 4

y ′ = 4
y ′ = 3

y ′ = 2

y ′ = 1

x = 1

x = 2
x = 3

x = 4y ′ = 1
2

x = 1
2

y ′ = 1
3

x = 1
3

y ′ = 1
4

x = 1
4

y = ln x

y

The natural logarithmic function is 
increasing, and its graph is concave 
downward.
Figure 5.3
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316 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

THEOREM 5.2 Logarithmic Properties

If a and b are positive numbers and n is rational, then the following properties 
are true.

1. ln 1 = 0 2. ln(ab) = ln a + ln b

3. ln(an) = n ln a 4. ln(ab) = ln a − ln b

Proof The first property has already been discussed. The proof of the second  
prop erty follows from the fact that two antiderivatives of the same function differ 
at most by a constant. From the Second Fundamental Theorem of Calculus and the 
 definition of the natural logarithmic function, you know that

d
dx

[ln x] = d
dx[∫

x

1

1
t
 dt] = 1

x
.

So, consider the two derivatives

d
dx

[ln(ax)] = a
ax

=
1
x

and

d
dx

[ln a + ln x] = 0 +
1
x
=

1
x
.

Because ln(ax) and (ln a + ln x) are both antiderivatives of 1�x, they must differ at most 
by a constant, ln(ax) = ln a + ln x + C. By letting x = 1, you can see that C = 0. The 
third property can be proved similarly by comparing the derivatives of ln(xn) and n lnx. 
Finally, using the second and third properties, you can prove the fourth property.

ln(ab) = ln[a(b−1)] = ln a + ln(b−1) = ln a − ln b 

 Expanding Logarithmic Expressions

a. ln 
10
9

= ln 10 − ln 9 Property 4

b.  ln√3x + 2 = ln(3x + 2)1�2 Rewrite with rational exponent.

  =
1
2

 ln(3x + 2) Property 3

c.  ln
6x
5

= ln(6x) − ln 5 Property 4

  = ln 6 + ln x − ln 5 Property 2

d.  ln 
(x2 + 3)2

x 3√x2 + 1
= ln(x2 + 3)2 − ln(x 3√x2 + 1 )

  = 2 ln(x2 + 3) − [ln x + ln(x2 + 1)1�3]
  = 2 ln(x2 + 3) − ln x − ln(x2 + 1)1�3

  = 2 ln(x2 + 3) − ln x −
1
3

 ln(x2 + 1) 

When using the properties of logarithms to rewrite logarithmic functions, you must 
check to see whether the domain of the rewritten function is the same as the domain of 
the original. For instance, the domain of f(x) = ln x2 is all real numbers except x = 0, 
and the domain of g(x) = 2 ln x is all positive real numbers. (See Figure 5.4.)

5

−5

−5

5
f(x) = ln x2

5

−5

−5

5
g(x) = 2 ln x

Figure 5.4
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The Number e
It is likely that you have studied logarithms in an  

t

1

1

2

2

3

3

Area = dt = 1

e ≈ 2.72

e

1∫

y

1
t

y = 1
t

e is the base for the natural  
logarithm because ln e = 1.
Figure 5.5

 
algebra course. There, without the benefit of calculus, 
logarithms would have been defined in terms of a  
base number. For example, common logarithms  
have a base of 10 and therefore log1010 = 1. (You  
will learn more about this in Section 5.5.)

The base for the natural logarithm is defined 
using the fact that the natural  logarithmic function  
is continuous, is one-to-one, and has a range of 
(−∞, ∞). So, there must be a unique real number 
x such that ln x = 1, as shown in Figure 5.5. This  
number is denoted by the letter e. It can be shown  
that e is irrational and has the following decimal  
approximation.

 e ≈ 2.71828182846 

Definition of e
The letter e denotes the positive real number such that

ln e = ∫e

1

1
t
 dt = 1.

Once you know that ln e = 1, you can use logarithmic properties to evaluate the 
natural logarithms of several other numbers. For example, by using the property 

 ln(en) = n ln e

 = n(1)
 = n

you can evaluate ln(en) for various values of n, as shown in the table and in Figure 5.6.

x
1
e3 ≈ 0.050

1
e2 ≈ 0.135

1
e
≈ 0.368 e0 = 1 e ≈ 2.718 e2 ≈ 7.389

ln x −3 −2 −1 0 1 2

The logarithms shown in the table above are convenient because the x-values are 
integer powers of e. Most logarithmic expressions are, however, best evaluated with a 
calculator.

 Evaluating Natural Logarithmic Expressions

a. ln 2 ≈ 0.693

b. ln 32 ≈ 3.466

c. ln 0.1 ≈ −2.303 

 FOR FURTHER INFORMATION To learn more about the number e, see the article 
“Unexpected Occurrences of the Number e” by Harris S. Shultz and Bill Leonard in 
Mathematics Magazine. To view this article, go to MathArticles.com.

y = ln x

x

1

−1

−2

−3

1

2

2 3 4 5 6 7 8

(e−3, −3)

(e−2, −2)

(e−1, −1)

(e0, 0)

(e2, 2)

(e, 1)

y

If x = en, then ln x = n.
Figure 5.6

THE NUMBER e

The symbol e was first used 
by mathematician Leonhard 
Euler to represent the base of 
natural logarithms in a letter 
to another mathematician, 
Christian Goldbach, in 1731.
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The Derivative of the Natural Logarithmic Function
The derivative of the natural logarithmic function is given in Theorem 5.3. The first 
part of the theorem follows from the definition of the natural logarithmic function as 
an antiderivative. The second part of the theorem is simply the Chain Rule version of 
the first part.

THEOREM 5.3 Derivative of the Natural Logarithmic Function

Let u be a differentiable function of x.

1. 
d
dx

 [ln x] = 1
x
, x > 0 

2. 
d
dx

 [ln u] = 1
u

 
du
dx

=
u′
u

, u > 0

 Differentiation of Logarithmic Functions

See LarsonCalculus.com for an interactive version of this type of example.

a. 
d
dx

[ln 2x] = u′
u
=

2
2x

=
1
x

 u = 2x

b. 
d
dx

[ln(x2 + 1)] = u′
u
=

2x
x2 + 1

 u = x2 + 1

c.  
d
dx

[x ln x] = x( d
dx

[ln x]) + (ln x)( d
dx

[x]) Product Rule

 = x(1x) + (ln x)(1)

 = 1 + ln x

d.  
d
dx

[(ln x)3] = 3(ln x)2 
d

dx
[ln x] Chain Rule

 = 3(ln x)2 1
x

 

Napier used logarithmic properties to simplify calculations involving products, 
quotients, and powers. Of course, given the availability of calculators, there is now 
little need for this particular application of logarithms. However, there is great value in 
using logarithmic properties to simplify differentiation involving products,  quotients, 
and powers.

 Logarithmic Properties as Aids to Differentiation

Differentiate

f(x) = ln√x + 1.

Solution Because

f(x) = ln√x + 1 = ln(x + 1)1�2 =
1
2

ln(x + 1) Rewrite before differentiating.

you can write 

f′(x) = 1
2 (

1
x + 1) =

1
2(x + 1). Differentiate. 
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5.1 The Natural Logarithmic Function: Differentiation 319

 Logarithmic Properties as Aids to Differentiation

Differentiate  f(x) = ln 
x(x2 + 1)2

√2x3 − 1
.

Solution Because

  f (x) = ln 
x(x2 + 1)2

√2x3 − 1
 Write original function.

 = ln x + 2 ln(x2 + 1) − 1
2

 ln(2x3 − 1) Rewrite before differentiating.

you can write

  f′(x) = 1
x
+ 2( 2x

x2 + 1) −
1
2 (

6x2

2x3 − 1) Differentiate.

 =
1
x
+

4x
x2 + 1

−
3x2

2x3 − 1
. Simplify. 

In Examples 4 and 5, be sure you see the benefit of applying logarithmic properties 
before differentiating. Consider, for instance, the difficulty of direct differentiation of 
the function given in Example 5.

On occasion, it is convenient to use logarithms as aids in differentiating 
nonlogarithmic functions. This procedure is called logarithmic differentiation. In 
general, use logarithmic differentiation when differentiating (1) a function involving 
many factors or (2) a function having both a variable base and a variable exponent [see 
Section 5.5, Example 5(d)].

 Logarithmic Differentiation

Find the derivative of y =
(x − 2)2

√x2 + 1
,    x ≠ 2.

Solution Note that y > 0 for all x ≠ 2. So, ln y is defined. Begin by  taking the 
natural logarithm of each side of the equation. Then apply logarithmic properties and 
differentiate implicitly. Finally, solve for y′.

 y =
(x − 2)2

√x2 + 1
,    x ≠ 2 Write original equation.

 ln y = ln 
(x − 2)2

√x2 + 1
 Take natural log of each side.

 ln y = 2 ln(x − 2) − 1
2

 ln(x2 + 1) Logarithmic properties

 
y′
y
= 2( 1

x − 2) −
1
2(

2x
x2 + 1) Differentiate.

 
y′
y
=

x2 + 2x + 2
(x − 2)(x2 + 1) Simplify.

 y′ = y[ x2 + 2x + 2
(x − 2)(x2 + 1)] Solve for y′.  

 y′ =
(x − 2)2

√x2 + 1
[ x2 + 2x + 2
(x − 2)(x2 + 1)] Substitute for y.  

 y′ =
(x − 2)(x2 + 2x + 2)

(x2 + 1)3�2  Simplify. 

REMARK You could also 
solve the problem in Example 6 
without using logarithmic 
differentiation by using the 
Power and Quotient Rules. 
Use these rules to find the 
derivative and show that the 
result is equivalent to the one in 
Example 6. Which method do 
you prefer?
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320 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Because the natural logarithm is undefined for negative numbers, you will 
often encounter expressions of the form ln∣u∣. The next theorem states that you can 
differentiate functions of the form y = ln∣u∣ as though the absolute value notation was 
not present.

THEOREM 5.4 Derivative Involving Absolute Value

If u is a differentiable function of x such that u ≠ 0, then

d
dx

 [ln∣u∣] = u′
u

.

Proof If u > 0, then ∣u∣ = u, and the result follows from Theorem 5.3. If u < 0, 
then ∣u∣ = −u, and you have

 
d
dx

 [ln∣u∣] = d
dx

 [ln(−u)]

 =
−u′
−u

 =
u′
u

. 

 Derivative Involving Absolute Value

Find the derivative of

f(x) = ln∣cos x∣.
Solution Using Theorem 5.4, let u = cos x and write

 
d
dx

[ln∣cos x∣] = u′
u

 d
dx

[ln∣u∣] = u′
u

 =
−sin x
cos x

 u = cos x

 = −tan x. Simplify.

 Finding Relative Extrema

Locate the relative extrema of 

x

2

−1−2

Relative minimum

(−1, ln 2)

y = ln(x2 + 2x + 3)

y

The derivative of y changes from  
negative to positive at x = −1. 

y = ln(x2 + 2x + 3).

Solution Differentiating y, you obtain

dy
dx

=
2x + 2

x2 + 2x + 3
.

Because dy�dx = 0 when x = −1, you  
can apply the First Derivative Test and  
conclude that a relative minimum occurs 
at the point (−1, ln 2). Because there are  
no other critical points, it follows that  
this is the only relative extremum, as shown 
in the figure.
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5.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Natural Logarithmic Function Explain why ln x

is positive for x > 1 and negative for 0 < x < 1.

2.  Logarithmic Properties What is the value of n?

ln 4 + ln(n−1) = ln 4 − ln 7

3.  The Number e How is the number e defined?

4.  Differentiation of Logarithmic Functions State 
the Chain Rule version of the derivative of the natural 
logarithmic function in your own words.

Evaluating a Logarithm Using Technology In 
Exercises 5–8, use a graphing utility to evaluate the logarithm 
by (a) using the natural logarithm key and (b) using the 
 integration capabilities to evaluate the integral ∫x

1 (1/t) dt.

5. ln 45  6. ln 8.3

7. ln 0.8  8. ln 0.6

Matching In Exercises 9–12, match the function with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x

1

2

−1

−3

−2

2 3 4 5

y  (b) 

x

1

2

3

4

y

1 2 3 4 5

(c) 

x

2

−1
−1−3−4

−2

y  (d) 

x

1

2

−1

−3

−2

31 4 5

y

9. f(x) = ln x + 1 10. f(x) = −ln x

11. f(x) = ln(x − 1) 12. f(x) = −ln(−x)

 Sketching a Graph In Exercises 13–18, sketch 
the graph of the function and state its domain.

13. f(x) = 3 ln x

14. f(x) = −2 ln x

15. f(x) = ln 2x

16. f(x) = ln∣x∣
17. f (x) = ln(x − 3)
18. f (x) = ln x − 4

 Using Properties of Logarithms In  
Exercises 19 and 20, use the properties of logarithms 
to approximate the indicated logarithms, given 
that ln 2 ≈ 0.6931 and ln 3 ≈ 1.0986.

19. (a) ln 6 (b) ln 23 (c) ln 81 (d) ln √3

20. (a) ln 0.25 (b) ln 24 (c) ln 3√12 (d) ln 1
72

 Expanding a Logarithmic Expression In 
Exercises 21–30, use the properties of logarithms 
to expand the logarithmic expression.

21. ln 
x
4

 22. ln√x5

23. ln 
xy
z

 24. ln(xyz)

25. ln(x√x2 + 5) 26. x ln√x − 4

27. ln√x − 1
x

 28. ln(3e2)

29. ln z(z − 1)2 30. ln 
z
e

 Condensing a Logarithmic Expression In 
Exercises 31–36, write the expression as a logarithm 
of a single quantity.

31. ln(x − 2) − ln(x + 2) 32. 3 ln x + 2 ln y − 4 ln z

33. 1
3[2 ln(x + 3) + ln x − ln(x 2 − 1)]

34. 2[ln x − ln(x + 1) − ln(x − 1)]
35. 4 ln 2 − 1

2 ln(x3 + 6x)
36. 3

2[ln(x 2 + 1) − ln(x + 1) − ln(x − 1)]

Verifying Properties of Logarithms In Exercises 37 and 
38, (a) verify that f = g by using a graphing utility to graph 
f  and g in the same viewing window and (b) verify that f = g 
algebraically.

37. f (x) = ln  
x 2

4
, x > 0, g(x) = 2 ln x − ln 4

38. f (x) = ln√x(x 2 + 1), g(x) = 1
2[ln x + ln(x 2 + 1)]

Finding a Limit In Exercises 39–42, find the limit.

39. lim
x→3+

 ln(x − 3) 40. lim
x→6−

 ln(6 − x)

41. lim
x→2−

 ln[x 2(3 − x)] 42. lim
x→5+

 ln 
x

√x − 4

 Finding a Derivative In Exercises 43–66, find 
the derivative of the function.

43. f (x) = ln 3x 44. f (x) = ln(x − 1)
45. f (x) = ln(x2 + 3) 46. h(x) = ln(2x2 + 1)
47. y = (ln x)4 48. y = x2 ln x

49. y = ln(t + 1)2 50. y = ln√x2 − 4

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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51. y = ln(x√x2 − 1 ) 52. y = ln[t(t2 + 3)3]

53. f (x) = ln 
x

x2 + 1
 54. f (x) = ln 

2x
x + 3

55. g(t) = ln t
t 2  56. h(t) = ln t

t3 + 5

57. y = ln(ln x2) 58. y = ln(ln x)

59. y = ln√x + 1
x − 1

 60. y = ln 3√x − 1
x + 1

61. f (x) = ln 
√4 + x2

x
 62. f (x) = ln(x +√4 + x 2 )

63. y = ln∣sin x∣ 64. y = ln∣csc x∣
65. y = ln∣ cos x

cos x − 1∣ 66. y = ln∣sec x + tan x∣

Finding an Equation of a Tangent Line In Exercises 
67–74, (a) find an equation of the tangent line to the graph 
of the function at the given point, (b) use a graphing utility 
to graph the function and its tangent line at the point, and  
(c) use the tangent feature of a graphing utility to confirm your 
results.

67. y = ln x4, (1, 0)
68. y = ln x2�3, (−1, 0)
69. f (x) = 3x2 − ln x, (1, 3) 
70. f (x) = 4 − x2 − ln(1

2 x + 1), (0, 4)

71. f (x) = ln√1 + sin2 x, (π4, ln √3
2)

72. f (x) = sin 2x ln x2, (1, 0)
73. y = x3 ln x4, (−1, 0)

74. f (x) = 1
2

x ln x2, (−1, 0)

 Logarithmic Differentiation In Exercises 
75–80, use logarithmic differentiation to find 
dy�dx.

75. y = x√x2 + 1,    x > 0

76. y = √x2(x + 1)(x + 2),    x > 0

77. y =
x2√3x − 2
(x + 1)2 ,    x >

2
3

 78. y =√x2 − 1
x2 + 1

,    x > 1

79. y =
x(x − 1)3�2

√x + 1
,    x > 1 80. y =

(x + 1)(x − 2)
(x − 1)(x + 2),    x > 2

 Implicit Differentiation In Exercises 81–84, 
use implicit differentiation to find dy�dx.

81. x2 − 3 ln y + y2 = 10 82. ln xy + 5x = 30

83. 4x3 + ln y2 + 2y = 2x 84. 4xy + ln x2y = 7

Differential Equation In Exercises 85 and 86, verify that 
the function is a solution of the differential equation.

 Function Differential Equation

85. y = 2 ln x + 3 xy ″ + y′ = 0

86. y = x ln x − 4x x + y − xy′ = 0

 Relative Extrema and Points of Inflection 
In Exercises 87–92, locate any relative extrema 
and points of inflection. Use a graphing utility to 
confirm your results.

 87. y =
x2

2
− ln x 88. y = 2x − ln 2x

 89. y = x ln x 90. y =
ln x

x

 91. y =
x

ln x
 92. y = x2 ln 

x
4

Using Newton’s Method In Exercises 93 and 94, use 
Newton’s Method to approximate, to three decimal places, the 
x-coordinate of the point of intersection of the graphs of the 
two equations. Use a graphing utility to verify your result.

 93. y = ln x, y = −x 94. y = ln x, y = 3 − x

EXPLORING CONCEPTS
 Comparing Functions In Exercises 95 and 96, let 
f  be a function that is positive and differentiable on the 
entire real number line and let g(x) = ln f (x).

95. When g is increasing, must f  be increasing? Explain.

96.  When the graph of f  is concave upward, must the graph 
of g be  concave upward? Explain.

97.  Think About It Is ln xy = ln x ln y a valid property 
of logarithms, where x > 0 and y > 0? Explain.

 98.  HOW DO YOU SEE IT? The graph shows 
the temperature T (in degrees Celsius) of an 
object h hours after it is removed from a furnace.

T
em

pe
ra

tu
re

 (
in

 °C
)

Hours

h

T

1 2 3 4 5 6 7 8

20

40

60

80

100

120

140

160

(a) Find lim
h→∞

 T. What does this limit represent?

(b) When is the temperature changing most rapidly?

98.  

True or False? In Exercises 99–102, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 99.  ln(an+m) = n ln a + m ln a, where a > 0 and m and n are 
rational.

100. 
d
dx

[ln(cx)] = d
dx

[ln x], where c > 0

101. If y = ln π, then y′ = 1�π. 102. If y = ln e, then y′ = 1.
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103.  Home Mortgage The term t (in years) of a $200,000 
home mortgage at 7.5% interest can be approximated by

t = 13.375 ln( x
x − 1250), x > 1250

where x is the monthly payment in dollars.

  (a) Use a graphing utility to graph the model.

  (b)  Use the model to approximate the term of a home 
mortgage for which the monthly payment is $1398.43. 
What is the total amount paid?

  (c)  Use the model to approximate the term of a home 
mortgage for which the monthly payment is $1611.19. 
What is the total amount paid?

  (d)  Find the instantaneous rates of change of t with respect 
to x when x = $1398.43 and x = $1611.19.

(e)  Write a short paragraph describing the benefit of the 
higher monthly payment.

105.  Modeling Data The table shows the temperatures T (in 
degrees Fahrenheit) at which water boils at selected pressures 
p (in pounds per square inch). (Source: Standard Handbook 
of Mechanical Engineers)

  
p 5 10 14.696 (1 atm) 20

T 162.24 193.21 212.00 227.96

p 30 40 60 80 100

T 250.33 267.25 292.71 312.03 327.81

 A model that approximates the data is

  T = 87.97 + 34.96 ln p + 7.91√p.

  (a)  Use a graphing utility to plot the data and graph the 
model.

  (b)  Find the rates of change of T with respect to p when 
p = 10 and p = 70.

  (c)  Use a graphing utility to graph T′. Find lim
p→∞

 T′(p) and

  interpret the result in the context of the problem.

106.  Modeling Data The atmospheric pressure decreases 
with increasing altitude. At sea level, the average air pressure 
is one atmosphere (1.033227 kilograms per square centimeter). 
The table shows the pressures p (in atmospheres) at selected 
altitudes h (in kilometers).

h 0 5 10 15 20 25

p 1 0.55 0.25 0.12 0.06 0.02

  (a)  Use a graphing utility to find a model of the form 
p = a + b ln h for the data. Explain why the result is an 
error message.

  (b)  Use a graphing utility to find the logarithmic model 
h = a + b ln p for the data.

  (c)  Use a graphing utility to plot the data and graph the 
model from part (b).

  (d) Use the model to estimate the altitude when p = 0.75.

(e) Use the model to estimate the pressure when h = 13.

(f)  Use the model to find the rates of change of pressure 
when h = 5 and h = 20. Interpret the results.

107.  Tractrix A person walking along a dock drags a boat by 
a 10-meter rope. The boat travels along a path known as a 
 tractrix (see figure). The equation of this path is

  y = 10 ln(10 + √100 − x2

x ) − √100 − x2.

(a)  Use a graphing utility to 

x

5

5

10

10

Tractrix

y

 graph the function.

  (b)  What are the slopes of  
this path when x = 5 and 
x = 9?

  (c)  What does the slope of  
the path approach as  
x approaches 10 from 
the left?

108.  Prime Number Theorem There are 25 prime numbers 
less than 100. The Prime Number Theorem states that the 
number of primes less than x approaches

  p(x) ≈ x
ln x

.

   Use this approximation to estimate the rate (in primes per  
100 integers) at which the prime numbers occur when

  (a) x = 1000.

  (b) x = 1,000,000.

  (c) x = 1,000,000,000.

109.  Conjecture Use a graphing utility to graph f  and g in the 
same viewing window and determine which is increasing at 
the greater rate for large values of x. What can you conclude 
about the rate of growth of the natural logarithmic function?

  (a) f (x) = ln x, g(x) = √x

  (b) f (x) = ln x, g(x) = 4√x

The relationship between  
the number of decibels  
β and the intensity of  
a sound I in watts per  
centimeter squared is 

β =
10

ln 10
 ln( I

10−16).
(a)  Use the properties of 

logarithms to write  
the formula in simpler form.

(b)  Determine the number of decibels of a sound with an 
intensity of 10−5 watt per square centimeter.

104. Sound Intensity

Aceshot1/Shutterstock.com
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5.2 The Natural Logarithmic Function: Integration

 Use the Log Rule for Integration to integrate a rational function.
 Integrate trigonometric functions.

Log Rule for Integration
The differentiation rules

d
dx

[ln∣x∣] = 1
x
  and  

d
dx

[ln∣u∣] = u′
u

that you studied in the preceding section produce the following integration rule.

THEOREM 5.5 Log Rule for Integration

Let u be a differentiable function of x.

1. ∫1
x
 dx = ln∣x∣ + C 2. ∫1

u
 du = ln∣u∣ + C

Because du = u′ dx, the second formula can also be written as

∫u′
u

 dx = ln∣u∣ + C.    Alternative form of Log Rule

 Using the Log Rule for Integration

 ∫2
x
 dx = 2∫1

x
 dx  Constant Multiple Rule

 = 2 ln∣x∣ + C Log Rule for Integration

 = ln x2 + C  Property of logarithms

Because x2 cannot be negative, the absolute value notation is unnecessary in the final 
form of the antiderivative.

 Using the Log Rule with a Change of Variables

Find ∫ 1
4x − 1

 dx.

Solution If you let u = 4x − 1, then du = 4 dx.

 ∫ 1
4x − 1

 dx =
1
4∫( 1

4x − 1)4 dx Multiply and divide by 4.

 =
1
4∫1

u
 du Substitute: u = 4x − 1.  

 =
1
4

 ln∣u∣ + C Apply Log Rule.

 =
1
4

 ln∣4x − 1∣ + C Back-substitute. 

Exploration
Integrating Rational 
Functions
Early in Chapter 4, you 
learned rules that allowed 
you to integrate any  
polynomial function. The 
Log Rule presented in this 
section goes a long way 
toward enabling you to  
integrate rational functions. 
For instance, each of the  
following functions can be 
integrated with the 
Log Rule.

2
x
 Example 1

1
4x − 1

 Example 2

x
x2 + 1

 Example 3

3x2 + 1
x3 + x

 Example 4(a)

x + 1
x2 + 2x

 Example 4(c)

1
3x + 2

 Example 4(d)

x2 + x + 1
x2 + 1

 Example 5

2x
(x + 1)2 Example 6

There are still some rational 
functions that cannot be 
integrated using the  
Log Rule. Give examples  
of these functions and 
explain your reasoning.
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Example 3 uses the alternative form of the Log Rule. To apply this rule, look for 
quotients in which the numerator is the derivative of the denominator.

 Finding Area with the Log Rule

Find the area of the region bounded by the graph of 

y =
x

x2 + 1

the x-axis, and the line x = 3.

Solution In Figure 5.7, you can see that the area of the region is given by the  
definite integral

∫3

0

x
x2 + 1

 dx.

If you let u = x2 + 1, then u′ = 2x. To apply the Log Rule, multiply and divide by 2 
as shown.

 ∫3

0

x
x2 + 1

 dx =
1
2∫

3

0

2x
x2 + 1

 dx  Multiply and divide by 2.

 =
1
2[ln(x2 + 1)]

3

0
 ∫u′

u
 dx = ln∣u∣ + C

 =
1
2
(ln 10 − ln 1)

 =
1
2

 ln 10  ln 1 = 0

 ≈ 1.151

 Recognizing Quotient Forms of the Log Rule

a. ∫3x2 + 1
x3 + x

 dx = ln∣x3 + x∣ + C u = x3 + x

b. ∫sec2 x
tan x

 dx = ln∣tan x∣ + C u = tan x

c.  ∫ x + 1
x2 + 2x

 dx =
1
2∫ 2x + 2

x2 + 2x
 dx u = x2 + 2x

  =
1
2

 ln∣x2 + 2x∣ + C

d.  ∫ 1
3x + 2

 dx =
1
3∫ 3

3x + 2
 dx u = 3x + 2

  =
1
3

 ln∣3x + 2∣ + C 

With antiderivatives involving logarithms, it is easy to obtain forms that look quite 
different but are still equivalent. For instance, both 

ln∣(3x + 2)1�3∣ + C

and

ln∣3x + 2∣1�3 + C

are equivalent to the antiderivative listed in Example 4(d).

x

0.1

0.2

0.3

0.4

0.5

1 2 3

xy = 
x2 + 1

y

Area = ∫3

0

x
x2 + 1

 dx

The area of the region bounded by the 
graph of y, the x-axis, and x = 3 is 
1
2 ln 10.
Figure 5.7
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Integrals to which the Log Rule can be applied often appear in disguised form. For 
instance, when a rational function has a numerator of degree greater than or equal to 
that of the denominator, division may reveal a form to which you can apply the Log 
Rule. This is shown in Example 5.

 Using Long Division Before Integrating

See LarsonCalculus.com for an interactive version of this type of example.

Find the indefinite integral.

∫x2 + x + 1
x2 + 1

 dx

Solution Begin by using long division to rewrite the integrand.

x2 + x + 1
x2 + 1

   1 +
x

x2 + 1

Now, you can integrate to obtain

 ∫x2 + x + 1
x2 + 1

 dx = ∫(1 +
x

x2 + 1) dx Rewrite using long division.

 = ∫dx +
1
2∫ 2x

x2 + 1
 dx Rewrite as two integrals.

 = x +
1
2

 ln(x2 + 1) + C. Integrate.

Check this result by differentiating to obtain the original integrand. 

The next example presents another instance in which the use of the Log Rule is 
disguised. In this case, a change of variables helps you recognize the Log Rule.

 Change of Variables with the Log Rule

Find the indefinite integral.

∫ 2x
(x + 1)2 dx

Solution If you let u = x + 1, then du = dx and x = u − 1.

 ∫ 2x
(x + 1)2 dx = ∫2(u − 1)

u2  du Substitute.

 = 2∫( u
u2 −

1
u2) du Rewrite as two fractions.

 = 2∫du
u

− 2∫u−2 du Rewrite as two integrals.

 = 2 ln∣u∣ − 2(u
−1

−1) + C Integrate.

 = 2 ln∣u∣ + 2
u
+ C Simplify.

 = 2 ln∣x + 1∣ + 2
x + 1

+ C Back-substitute.

Check this result by differentiating to obtain the original integrand. 

TECHNOLOGY If you  
have access to a computer  
algebra system, use it to find  
the indefinite integrals in 
Examples 5 and 6. How does 
the form of the antiderivative 
that it gives you compare with 
that given in Examples 5 and 6?

 1
x2 + 1 )  x2 + x + 1
 x2           + 1
 x
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As you study the methods shown in Examples 5 and 6, be aware that both 
methods involve rewriting a disguised integrand so that it fits one or more of the basic  
integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter 8, 
much time will be devoted to integration techniques. To master these techniques, you 
must recognize the “form-fitting” nature of integration. In this sense, integration is not 
nearly as straightforward as differentiation. Differentiation takes the form

“Here is the question; what is the answer?”

Integration is more like

“Here is the answer; what is the question?”

Here are some guidelines you can use for integration.

GUIDELINES FOR INTEGRATION

1.  Learn a basic list of integration formulas. 

2.  Find an integration formula that resembles all or part of the integrand and, 
by trial and error, find a choice of u that will make the integrand conform to 
the formula.

3.  When you cannot find a u-substitution that works, try altering the integrand. 
You might try a trigonometric identity, multiplication and division by the 
same quantity, addition and subtraction of the same quantity, or long division. 
Be creative.

4.  If you have access to computer software that will find antiderivatives 
symbolically, use it.

5.  Check your result by differentiating to obtain the original integrand.

 u-Substitution and the Log Rule

Solve the differential equation

dy
dx

=
1

x ln x
.

Solution The solution can be written as an indefinite integral.

y = ∫ 1
x ln x

 dx

Because the integrand is a quotient whose denominator is raised to the first power, you 
should try the Log Rule. There are three basic choices for u. The choices

u = x and u = x ln x

fail to fit the u′�u form of the Log Rule. However, the third choice does fit. Letting 
u = ln x produces u′ = 1�x, and you obtain the following.

 ∫ 1
x ln x

 dx = ∫1�x
ln x

 dx Divide numerator and denominator by x.

 = ∫u′
u

 dx Substitute: u = ln x.

 = ln∣u∣ + C Apply Log Rule.

 = ln∣ln x∣ + C Back-substitute.

So, the solution is y = ln∣ln x∣ + C. 

REMARK Keep in mind  
that you can check your answer 
to an integration problem by  
differentiating the answer. For 
instance, in Example 7, the 
derivative of y = ln∣ln x∣ + C  
is y′ = 1�(x ln x).
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Integrals of Trigonometric Functions
In Section 4.1, you looked at six trigonometric integration rules—the six that correspond 
directly to differentiation rules. With the Log Rule, you can now complete the set of 
basic trigonometric integration formulas.

 Using a Trigonometric Identity

Find ∫tan x dx.

Solution This integral does not seem to fit any formulas on our basic list. However, 
by using a trigonometric identity, you obtain

∫tan x dx = ∫sin x
cos x

 dx.

Knowing that Dx [cos x] = −sin x, you can let u = cos x and write

 ∫tan x dx = −∫−sin x
cos x

 dx 
Apply trigonometric identity and 
multiply and divide by −1.

 = −∫u′
u

 dx Substitute: u = cos x.

 = −ln∣u∣ + C Apply Log Rule.

 = −ln∣cos x∣ + C. Back-substitute. 

Example 8 used a trigonometric identity to derive an integration rule for the tangent 
function. The next example takes a rather unusual step (multiplying and dividing by the 
same quantity) to derive an integration rule for the secant function.

 Derivation of the Secant Formula

Find ∫sec x dx.

Solution Consider the following procedure.

 ∫sec x dx = ∫ (sec x)(sec x + tan x
sec x + tan x) dx Multiply and divide by sec x + tan x.

 = ∫sec2 x + sec x tan x
sec x + tan x

 dx

Letting u be the denominator of this quotient produces

u = sec x + tan x

and

u′ = sec x tan x + sec2 x.

So, you can conclude that

 ∫sec x dx = ∫sec2 x + sec x tan x
sec x + tan x

 dx Rewrite integrand.

 = ∫u′
u

 dx Substitute: u = sec x + tan x.

 = ln∣u∣ + C Apply Log Rule.

 = ln∣sec x + tan x∣ + C.  Back-substitute. 
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With the results of Examples 8 and 9, you now have integration formulas for 
sin x, cos x, tan x, and sec x. The integrals of the six basic trigonometric functions are 
summarized below. (For proofs of cot u and csc u, see Exercises 85 and 86.)

INTEGRALS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS

∫sin u du = −cos u + C ∫cos u du = sin u + C

∫tan u du = −ln∣cos u∣ + C ∫cot u du = ln∣sin u∣ + C

∫sec u du = ln∣sec u + tan u∣ + C ∫csc u du =−ln∣csc u + cot u∣ + C

 Integrating Trigonometric Functions

Evaluate ∫π�4

0
√1 + tan2 x dx.

Solution Using 1 + tan2 x = sec2 x, you can write

 ∫π�4

0
√1 + tan2 x dx = ∫π�4

0
√sec2 x dx

 = ∫π�4

0
sec x dx sec x ≥ 0 for 0 ≤ x ≤

π
4

.

 = ln∣sec x + tan x∣]
π�4

0

 = ln(√2 + 1) − ln 1

 ≈ 0.881.

 Finding an Average Value

Find the average value of

 f (x) = tan x

on the interval [0, π�4].

Solution

 Average value =
1

(π�4) − 0
 ∫π�4

0
tan x dx Average value =

1
b − a∫

b

a

 f (x) dx

 =
4
π∫

π�4

0
tan x dx Simplify.

 =
4
π[−ln∣cos x∣]

π�4

0
 Integrate.

 = −
4
π [ln 

√2
2

− ln 1]
 = −

4
π  ln 
√2
2

 ≈ 0.441

The average value is about 0.441, as shown in Figure 5.8. 

REMARK Using  
trigonometric identities and 
properties of logarithms,  
you could rewrite these six  
integration rules in other forms. 
For instance, you could write

∫csc u du

= ln∣csc u − cot u∣ + C.

(See Exercises 87–90.)

x

1

2

π
4

Average value ≈ 0.441

y

f (x) = tan x

Figure 5.8
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5.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Log Rule for Integration Can you use the Log Rule 

to find the integral below? Explain.

 ∫ 
x

(x2 − 4)3 dx

2.  Long Division Explain when to use long division 
before applying the Log Rule.

3.  Guidelines for Integration Describe two ways to 
alter an integrand so that it fits an integration formula.

4.  Trigonometric Functions Integrating which 
trigonometric function results in ln∣sin x∣ + C?

 Finding an Indefinite Integral  In Exercises 
5–28, find the indefinite integral.

 5. ∫5
x
 dx  6. ∫ 1

x − 5
 dx

 7. ∫ 
1

2x + 5
 dx  8. ∫ 9

5 − 4x
 dx

 9. ∫ x
x2 − 3

 dx 10. ∫ x2

5 − x3 dx

11. ∫4x3 + 3
x4 + 3x

 dx 12. ∫ 
x2 − 2x
x3 − 3x2 dx

13. ∫ 
x2 − 7

7x
 dx 14. ∫x3 − 8x

x2  dx

15. ∫ x2 + 2x + 3
x3 + 3x2 + 9x

 dx 16. ∫ x2 + 4x
x3 + 6x2 + 5

 dx

17. ∫x2 − 3x + 2
x + 1

 dx 18. ∫2x2 + 7x − 3
x − 2

 dx

19. ∫x3 − 3x2 + 5
x − 3

 dx 20. ∫x3 − 6x − 20
x + 5

 dx

21. ∫x 4 + x − 4
x2 + 2

 dx 22. ∫x3 − 4x2 − 4x + 20
x2 − 5

 dx

23. ∫(ln x)2
x

 dx 24. ∫ 
dx

x(ln x2)3

25. ∫ 1

√x(1 − 3√x)
 dx 26. ∫ 1

x2�3(1 + x1�3) dx

27. ∫ 
6x

(x − 5)2 dx 28. ∫x(x − 2)
(x − 1)3 dx

 Change of Variables In Exercises 29–32, find 
the indefinite integral by making a change of 
variables (Hint: Let u be the denominator of the 
integrand.)

29. ∫ 1

1 + √2x
 dx 30. ∫ 

4

1 + √5x
 dx

31. ∫ √x

√x − 3
 dx 32. ∫ 3√x

3√x − 1
 dx

 Finding an Indefinite Integral of a 
Trigonometric Function In Exercises 33–42, 
find the indefinite integral.

33. ∫ cot 
θ
3

 dθ 34. ∫ θ tan 2θ2 dθ

35. ∫csc 2x dx 36. ∫sec 
x
2

 dx

37. ∫ (5 − cos 3θ) dθ 38. ∫(2 − tan 
θ
4) dθ

39. ∫ cos t
1 + sin t

 dt 40. ∫csc2 t
cot t

 dt

41. ∫sec x tan x
sec x − 1

 dx 42. ∫(sec 2x + tan 2x) dx

Differential Equation In Exercises 43–46, find the general 
solution of the differential equation. Use a graphing utility 
to graph three solutions, one of which passes through the 
given point.

43. 
dy
dx

=
3

2 − x
, (1, 0) 44. 

dy
dx

=
x − 2

x
, (−1, 0)

45. 
dy
dx

=
2x

x2 − 9
, (0, 4) 46. 

dr
dt

=
sec2 t

tan t + 1
,  (π, 4)

Finding a Particular Solution In Exercises 47 and 48, 
find the particular solution of the differential equation that 
satisfies the initial conditions.  

47. f ″(x) = 2
x2, f ′(1) = 1, f (1) = 1, x > 0

48. f ″(x) = −
4

(x − 1)2 − 2, f ′(2) = 0, f (2) = 3, x > 1

Slope Field In Exercises 49 and 50, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point. 

49. 
dy
dx

=
1

x + 2
, (0, 1) 50. 

dy
dx

=
ln x

x
, (1, −2)

 

x

3

4−2

−3

y  

x

1

2

3

−1

−2

−1

−3

y

5
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 Evaluating a Definite Integral  In Exercises 
51–58, evaluate the definite integral. Use a 
graphing utility to verify your result.

51. ∫4

0
 

5
3x + 1

 dx 52. ∫1

−1
 

1
2x + 3

 dx

53. ∫e

1
 
(1 + ln x)2

x
 dx 54. ∫e2

e

 
1

x ln x
 dx

55. ∫2

0
 
x2 − 2
x + 1

 dx 56. ∫1

0
 
x − 1
x + 1

 dx

57. ∫2

1
 
1 − cos θ
θ − sin θ  dθ 58. ∫π�4

π�8
(csc 2θ − cot 2θ) dθ

Finding an Integral Using Technology In Exercises 59 
and 60, use a computer algebra system to find or evaluate the 
integral.

59. ∫ 
1 − √x

1 + √x
 dx 60. ∫π�4

−π�4
 
sin2 x − cos2 x

cos x
 dx

Finding a Derivative In Exercises 61–64, find F′(x).

61. F(x) = ∫x

1
 
1
t
 dt 62. F(x) = ∫x

0
 tan t dt

63. F(x) = ∫4x

1
 cot t dt 64. F(x) = ∫x2

0
 

3
t + 1

 dt

 Area In Exercises 65–68, find the area of the 
given region. Use a graphing utility to verify your 
result.

65. y =
6
x
 66. y =

1 + ln x3

x

 y

x
−2 2 4 6

−2

2

4

6

  y

x
1 2 3 4

1

−1

−2

2

67. y = csc(x + 1) 68. y =
sin x

1 + cos x

 y

x
−1 1 2

1

3

  y

x

−1

1

2

π− π
2

π

 Area In Exercises 69–72, find the area of the 
region bounded by the graphs of the equations. Use 
a graphing utility to verify your result.

69. y =
x2 + 4

x
, x = 1, x = 4, y = 0

70. y =
5x

x2 + 2
, x = 1, x = 5, y = 0

71. y = 2 sec 
πx
6

, x = 0, x = 2, y = 0

72. y = 2x − tan 0.3x, x = 1, x = 4, y = 0

 Finding the Average Value of a Function  
In Exercises 73–76, find the average value of the 
function over the given interval.

73. f (x) = 8
x2, [2, 4] 74. f (x) = 4(x + 1)

x2 , [2, 4]

75. f (x) = 2 ln x
x

, [1, e]

76. f (x) = sec 
πx
6

, [0, 2]

Midpoint Rule In Exercises 77 and 78, use the Midpoint 
Rule with n = 4 to approximate the value of the definite 
integral. Use a graphing utility to verify your result.

77. ∫3

1
 
12
x

 dx 78. ∫π�4

0
 sec x dx

EXPLORING CONCEPTS
Approximation In Exercises 79 and 80, determine 
which value best approximates the area of the region 
between the x-axis and the graph of the function over the 
given interval. Make your selection on the basis of a sketch 
of the region, not by performing calculations.

79. f (x) = sec x, [0, 1]
 (a) 6 (b) −6 (c) 1

2 (d) 1.25 (e) 3

80. f (x) = 2x
x2 + 1

, [0, 4]

 (a) 3 (b) 7 (c) −2 (d) 5 (e) 1

81.  Napier’s Inequality For 0 < x < y, use the Mean Value 
Theorem to show that

 
1
y

<
ln y − ln x

y − x
<

1
x
.

82.  Think About It Is the function

 F(x) = ∫2x

x

 
1
t
 dt

  constant, increasing, or decreasing on the interval (0, ∞)? 
Explain.

83. Finding a Value Find a value of x such that 

 ∫x

1
 
3
t
 dt = ∫x

1�4
 
1
t
 dt.

84. Finding a Value Find a value of x such that 

 ∫x

1
 
1
t
 dt

 is equal to (a) ln 5 and (b) 1.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



332 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

85. Proof Prove that

 ∫ cot u du = ln∣sin u∣ + C.

86. Proof Prove that

 ∫ csc u du = −ln∣csc u + cot u∣ + C.

Using Properties of Logarithms and Trigonometric 
Identities In Exercises 87–90, show that the two formulas 
are equivalent.

87. ∫tan x dx = −ln∣cos x∣ + C

 ∫tan x dx = ln∣sec x∣ + C

88. ∫cot x dx = ln∣sin x∣ + C

 ∫cot x dx = −ln∣csc x∣ + C

89. ∫sec x dx = ln∣sec x + tan x∣ + C

 ∫sec x dx = −ln∣sec x − tan x∣ + C

90. ∫csc x dx = −ln∣csc x + cot x∣ + C

 ∫csc x dx = ln∣csc x − cot x∣ + C

91.  Population Growth A population of bacteria P is  
changing at a rate of 

 
dP
dt

=
3000

1 + 0.25t

  where t is the time in days. The initial population (when t = 0) 
is 1000.

 (a) Write an equation that gives the population at any time t.

 (b)  Find the population when t = 3 days.

92.  Sales The rate of change in sales S is inversely proportional 
to time t (t > 1), measured in weeks. Find S as a function of t 
when the sales after 2 and 4 weeks are 200 units and 300 units, 
respectively.

 94. Average Price The demand equation for a product is 

  p =
90,000

400 + 3x

   where p is the price (in dollars) and x is the number of units 
(in thousands). Find the average price p on the interval 
40 ≤ x ≤ 50.

 95. Area and Slope Graph the function

  f (x) = x
1 + x2

  on the interval [0, ∞).
  (a)  Find the area bounded by the graph of f  and the line 

y = 1
2x.

  (b)  Determine the values of the slope m such that the line 
y = mx and the graph of f  enclose a finite region. 

  (c) Calculate the area of this region as a function of m.

 96.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

y

x
−1−4−5 1

−2
−3

1

2

3f ′

(a) Approximate the slope of f  at x = −1. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals on 
which it is decreasing. Explain. 

96.  

True or False? In Exercises 97–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 97. ln∣x4∣ = ln x4 98. ln∣cos θ2∣ = ln(cos θ2)

 99. ∫ 
1
x
 dx = ln∣cx∣, c ≠ 0

100. ∫2

−1
 
1
x
 dx = [ln∣x∣]

2

−1
= ln 2 − ln 1 = ln 2

PUTNAM EXAM CHALLENGE
101.  Suppose that f  is a function on the interval [1, 3] such 

  that −1 ≤ f (x) ≤ 1 for all x and ∫3

1
 f (x) dx = 0. How

  large can ∫3

1
  

f (x)
x

 dx be?

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

Find the time required  
for an object to cool 
from 300°F to 250°F  
by evaluating

 t =
10
ln 2∫

300

250
 

1
T − 100

 dT

where t is time in  
minutes.

93. Heat Transfer

Marijus Auruskevicius/Shutterstock.com
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5.3 Inverse Functions

 Verify that one function is the inverse function of another function.
 Determine whether a function has an inverse function.
 Find the derivative of an inverse function.

Inverse Functions
Recall from Section P.3 that a function can be represented by a set of ordered pairs. 
For instance, the function f (x) = x + 3 from A = {1, 2, 3, 4} to B = {4, 5, 6, 7} can 
be written as

f : {(1, 4), (2, 5), (3, 6), (4, 7)}.

By interchanging the first and second 

f B

A

f −1

Domain of f = range of f −1

Domain of f −1 = range of f
Figure 5.9

coordinates of each ordered pair, you can  
form the inverse function of f. This function 
is denoted by f−1. It is a function from B to A 
and can be written as

f−1: {(4, 1), (5, 2), (6, 3), (7, 4)}.

Note that the domain of f  is equal to the range  
of f−1, and vice versa, as shown in Figure 5.9. 
The functions f  and f−1 have the effect of  
“undoing” each other. That is, when you form  
the composition of f  with f−1 or the composition  
of f−1 with f, you obtain the identity function.

f ( f−1(x)) = x and f−1( f (x)) = x

Definition of Inverse Function

A function g is the inverse function of the function f  when

f (g(x)) = x for each x in the domain of g

and

g( f (x)) = x for each x in the domain of f.

The function g is denoted by f−1 (read “ f  inverse”).

Here are some important observations about inverse functions.

1. If g is the inverse function of f, then f  is the inverse function of g.

2.  The domain of f−1 is equal to the range of f, and the range of f−1 is equal to the 
domain of f.

3.  A function need not have an inverse function, but when it does, the inverse function 
is unique (see Exercise 94).

You can think of f−1 as undoing what has been done by f. For example, subtraction 
can be used to undo addition, and division can be used to undo multiplication. So,

f (x) = x + c and f−1(x) = x − c Subtraction can be used to undo addition.

are inverse functions of each other and

f (x) = cx and f−1(x) = x
c
, c ≠ 0 Division can be used to undo multiplication.

are inverse functions of each other.

REMARK Although the 
notation used to denote an 
inverse function resembles  
exponential notation, it is  
a different use of −1 as a  
superscript. That is, in general,

f−1(x) ≠ 1
f(x).

Exploration
Finding Inverse Functions 
Explain how to “undo” each 
of the functions below. Then 
use your explanation to write 
the inverse function of f.

a. f (x) = x − 5

b. f (x) = 6x

c. f (x) = x
2

d. f (x) = 3x + 2

e. f (x) = x3

f. f (x) = 4(x − 2)

Use a graphing utility to 
graph each function and its 
inverse function in the same 
“square” viewing window. 
What observation can you 
make about each pair of 
graphs?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



334 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

 Verifying Inverse Functions

Show that the functions are inverse functions of each other.

f (x) = 2x3 − 1 and g(x) = 3√x + 1
2

Solution Because the domains and ranges of both f  and g consist of all real  numbers, 
you can conclude that both composite functions exist for all x. The composition of f  
with g is

 f (g(x)) = 2( 3√x + 1
2
)3 − 1

 = 2(x + 1
2 ) − 1

 = x + 1 − 1

 = x.

The composition of g with f  is 

 g( f (x)) = 3√(2x3 − 1) + 1
2

= 3√2x3

2
= 3√x3 = x.

Because f (g(x)) = x and g( f (x)) = x, you can conclude that f  and g are inverse 
functions of each other (see Figure 5.10).

x

−2

−2

1

1

2

2

y = x

f(x) = 2x3 − 1

g(x) = 3
x + 1

2

y

f  and g are inverse functions of each other.
Figure 5.10

In Figure 5.10, the graphs of f  and g = f−1 appear to be mirror images of each 
other with respect to the line y = x. The graph of f−1 is a reflection of the graph of f  
in the line y = x. This idea is generalized in the next theorem.

THEOREM 5.6 Reflective Property of Inverse Functions

The graph of f  contains the point (a, b) if and only if the graph 
of f−1 contains the point (b, a).

Proof If (a, b) is on the graph of f, then f (a) = b, and you can write 

f−1(b) = f−1( f(a)) = a.

So, (b, a) is on the graph of f−1, as shown in Figure 5.11. A similar argument will prove 
the theorem in the other direction. 

x

(b, a)

(a, b)

y = f(x)

y = x
y

y = f −1(x)

The graph of f −1 is a reflection of  
the graph of f  in the line y = x.
Figure 5.11

REMARK In Example 1, try 
comparing the functions f  and g 
verbally.

For f : First cube x, then 
multiply by 2, then subtract 1.

For g: First add 1, then 
divide by 2, then take the  
cube root.
Do you see the “undoing  
pattern”?
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Existence of an Inverse Function
Not every function has an inverse function, and Theorem 5.6 suggests a graphical test 
for those that do—the Horizontal Line Test for an inverse function. This test states 
that a  function f  has an inverse function if and only if every horizontal line intersects 
the graph of f  at most once (see Figure 5.12). The next theorem formally states why 
the Horizontal Line Test is valid. (Recall from Section 3.3 that a function is strictly 
monotonic when it is either increasing on its entire domain or decreasing on its entire 
domain.)

THEOREM 5.7 The Existence of an Inverse Function

1. A function has an inverse function if and only if it is one-to-one.

2.  If f  is strictly monotonic on its entire domain, then it is 
one-to-one and therefore has an inverse function.

Proof The proof of the first part of the theorem is left as an exercise (see Exercise 95). 
To prove the second part of the theorem, recall from Section P.3 that f  is one-to-one 
when for x1 and x2 in its domain

x1 ≠ x2  f (x1) ≠ f (x2).

Now, choose x1 and x2 in the domain of f. If x1≠ x2, then, because f  is strictly 
monotonic, it follows that either f (x1) < f (x2) or f (x1) > f (x2). In either case, 
f (x1) ≠ f (x2). So, f  is one-to-one on the interval. 

 The Existence of an Inverse Function

a.  From the graph of f (x) = x3 + x − 1 shown in Figure 5.13(a), it appears that 
f  is increasing over its entire domain. To verify this, note that the derivative, 
f′(x) = 3x2 + 1, is positive for all real values of x. So, f  is strictly monotonic, and 
it must have an inverse function.

b.  From the graph of f (x) = x3 − x + 1 shown in Figure 5.13(b), you can see that  
the function does not pass the Horizontal Line Test. In other words, it is not  
one-to-one. For instance, f  has the same value when x = −1, 0, and 1.

 f (−1) = f (1) = f (0) = 1 Not one-to-one

 So, by Theorem 5.7, f does not have an inverse function. 

Often, it is easier to prove that a function has an inverse function than to find the 
inverse function. For instance, it would be difficult algebraically to find the inverse 
function of the function in Example 2(a).

GUIDELINES FOR FINDING AN INVERSE FUNCTION 

1.  Use Theorem 5.7 to determine whether the function y = f (x) has an inverse 
function.

2. Solve for x as a function of y: x = g(y) = f−1(y).
3. Interchange x and y. The resulting equation is y = f−1(x).
4. Define the domain of f−1 as the range of f.

5. Verify that f( f−1(x)) = x and f−1( f (x)) = x.

y = f(x)

x
a b

f(a) = f(b)

y

If a horizontal line intersects the graph 
of f  twice, then f  is not one-to-one.
Figure 5.12

x

−3

−2

−2

−1

−1

1

1

2

2

3

f (x) = x3 + x − 1

y

(a)  Because f  is increasing over its entire 
domain, it has an inverse function.

x
−2 −1

−1

1 2

3

f(x) = x3 − x + 1

(0, 1)(−1, 1)

(1, 1)

y

(b)  Because f  is not one-to-one, it does not 
have an inverse function.

Figure 5.13
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 Finding an Inverse Function

Find the inverse function of f (x) = √2x − 3.

Solution From the graph of f  in Figure 5.14, it appears that f  is increasing over its 
entire domain, [3�2, ∞). To verify this, note that

 f′(x) = 1

√2x − 3

is positive on the domain of f. So, f  is strictly monotonic, and it must have an inverse 
function. To find an equation for the inverse function, let y = f (x), and solve for x in 
terms of y.

 √2x − 3 = y Let y = f (x).

 2x − 3 = y2 Square each side.

 x =
y2 + 3

2
 Solve for x.

 y =
x2 + 3

2
 Interchange x and y.

 f−1(x) = x2 + 3
2

 Replace y by f−1(x).

The domain of f−1 is the range of f, which is [0, ∞). You can verify this result as 
shown.

f ( f−1(x)) =√2(x
2 + 3

2 ) − 3 = √x2 = x, x ≥ 0

f−1( f (x)) = (√2x − 3 )2 + 3
2

=
2x − 3 + 3

2
= x, x ≥

3
2

 

Theorem 5.7 is useful in the next type of problem. You are given a function that 
is not one-to-one on its domain. By restricting the domain to an interval on which the 
function is strictly monotonic, you can conclude that the new function is one-to-one on 
the restricted domain.

 Testing Whether a Function Is One-to-One

See LarsonCalculus.com for an interactive version of this type of example.

Show that the sine function

f (x) = sin x

is not one-to-one on the entire real number line. Then show that [−π�2, π�2] is the 
largest interval, centered at the origin, on which f  is strictly monotonic.

Solution It is clear that f  is not one-to-one, because many different x-values yield 
the same y-value. For instance, 

sin 0 = 0 = sin π.

Moreover, f  is increasing on the open interval (−π�2, π�2), because its derivative

 f′(x) = cos x

is positive there. Finally, because the left and right endpoints correspond to relative 
extrema of the sine function, you can conclude that f  is increasing on the closed   
interval [−π�2, π�2] and that on any larger interval the function is not strictly  
monotonic (see Figure 5.15). 

x
1

1

2

2

3

3

4

4

y = x

f(x) =     2x − 3

f −1(x) =
2

x2 + 3

(2, 1)

(1, 2)

0,( (3
2

, 0( (3
2

y

The domain of f−1, [0, ∞), is the 
range of f.
Figure 5.14

x

1

−1

π π

( (, 1
2

−

f(x) = sin x

y

π

( (−   , −1
2
π

f  is one-to-one on the interval 
[−π�2, π�2].
Figure 5.15
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Derivative of an Inverse Function
The next two theorems discuss the derivative of an inverse function. The reasonableness 
of Theorem 5.8 follows from the reflective property of inverse functions, as shown in 
Figure 5.11.

THEOREM 5.8  Continuity and Differentiability of  
Inverse Functions

Let f  be a function whose domain is an interval I. If f  has an inverse function,  
then the following statements are true.

1. If f  is continuous on its domain, then f−1 is continuous on its domain.

2. If f  is increasing on its domain, then f−1 is increasing on its domain.

3. If f  is decreasing on its domain, then f−1 is decreasing on its domain.

4.  If f  is differentiable on an interval containing c and 
f′(c) ≠ 0, then f−1 is differentiable at f (c).

A proof of this theorem is given in Appendix A.

Exploration
Graph the inverse functions f (x) = x3 and g(x) = x1�3. Calculate the slopes of  
f  at (1, 1), (2, 8), and (3, 27), and the slopes of g at (1, 1), (8, 2), and (27, 3). 
What do you observe? What happens at (0, 0)?

THEOREM 5.9 The Derivative of an Inverse Function

Let f  be a function that is differentiable on an interval I. If f  has an inverse 
function g, then g is differentiable at any x for which f′(g(x)) ≠ 0. Moreover,

g′(x) = 1
f′(g(x)), f′(g(x)) ≠ 0.

A proof of this theorem is given in Appendix A.

 Evaluating the Derivative of an Inverse Function

Let f (x) = 1
4x3 + x − 1. 

a. What is the value of f−1(x) when x = 3? 

b. What is the value of ( f−1)′(x) when x = 3?

Solution Notice that f  is one-to-one and therefore has an inverse function.

a. Because f (x) = 3 when x = 2, you know that f−1(3) = 2.

b.  Because the function f  is differentiable and has an inverse function, you can apply 
Theorem 5.9 (with g = f−1) to write

( f−1)′(3) = 1
f′( f−1(3)) =

1
f′(2) .

 Moreover, using f′(x) = 3
4x2 + 1, you can conclude that

( f−1)′(3) = 1
f′(2) =

1
3
4(22) + 1

=
1
4

. 
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In Example 5, note that at the point (2, 3), the slope of the graph of f  is m = 4, and 
at the point (3, 2), the slope of the graph of f−1 is

m =
1
4

as shown in Figure 5.16. In general, if y = g(x) = f−1(x), then f ( y) = x and f′( y) = dx
dy

. 
It follows from Theorem 5.9 that

g′(x) = dy
dx

=
1

f′(g(x)) =
1

f′( y) =
1

(dx�dy).

This reciprocal relationship is sometimes written as

dy
dx

=
1

dx/dy
.

 Graphs of Inverse Functions Have Reciprocal Slopes

Let f (x) = x2 (for x ≥ 0), and let f−1(x) = √x . Show that the slopes of the graphs of 
f  and f−1 are reciprocals at each of the following points.

a. (2, 4) and (4, 2)  b. (3, 9) and (9, 3)

Solution The derivatives of f  and f−1 are

f′(x) = 2x and ( f−1)′(x) = 1

2√x
.

a.  At (2, 4), the slope of the graph of f  is f′(2) = 2(2) = 4. At (4, 2), the slope of the 
graph of f−1 is

( f−1)′(4) = 1

2√4
=

1
2(2) =

1
4

.

b.  At (3, 9), the slope of the graph of f  is f′(3) = 2(3) = 6. At (9, 3), the slope of the 
graph of f−1 is

( f−1)′(9) = 1

2√9
=

1
2(3) =

1
6

.

So, in both cases, the slopes are reciprocals, as shown in Figure 5.17.

x
2

2

4

4

(4, 2)

(2, 4)

(3, 9)

6

6

8

8

10

10

(9, 3)

m = 4

m = 6

m =

m =

f −1(x) =    x

f (x) = x2

y

1
4

1
6

  At (0, 0), the derivative of f  is 0, and  
the derivative of f−1 does not exist.

 Figure 5.17 

x
−2

−2

−1

−1

1

1

2

2

3

3

m = 4

m = 1
4

(2, 3)

(3, 2)

y

y = f −1(x)

y = f (x)

The graphs of the inverse functions 
f  and f −1 have reciprocal slopes at 
points (a, b) and (b, a).
Figure 5.16
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5.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Inverse Functions In your own words, describe 

what it means to say that the function g is the inverse 
function of the function f.

2.  Reflective Property of Inverse Functions 
Describe the relationship between the graph of a function 
and the graph of its inverse function.

3.  Domain of an Inverse Function The function f  
has an inverse function, f −1. Is the domain of f  the same 
as the domain of f −1? Explain.

4.  Behavior of an Inverse Function The function f  
is decreasing on its domain and has an inverse function, 
f −1. Is f −1 increasing, decreasing, or constant on its 
domain?

Matching In Exercises 5–8, match the graph of the function 
with the graph of its inverse function. [The graphs of the 
inverse functions are labeled (a), (b), (c), and (d).]

(a) 

1

2

3

4

5

1

2 3−2 −1−3
x

y  (b) 

2

4

4

6

6

8

−4

x
−2−4

y

(c)  

x

2

3

4

21−1

−2

−2−4

y  (d) 

1

2

3

1

2 3−2−3

−3

x

−2

y

5. 

1

2

2 3 4−1

−2

−2

−4

x

y  6. 

42

4

6

6

8

8

−4

x
−2−4

y

7. 

1

2

3

1

2 3−2 −1−3

−3

x

−2

y  8. 

1

2

3

1

2 3−2−3
x

y

 Verifying Inverse Functions In Exercises 
9–16, show that f  and g are inverse functions 
(a) analytically and (b) graphically.

 9. f (x) = 5x + 1, g(x) = x − 1
5

10. f (x) = 3 − 4x, g(x) = 3 − x
4

11. f (x) = x3, g(x) = 3√x

12. f (x) = 1 − x3, g(x) = 3√1 − x

13. f (x) = √x − 4, g(x) = x2 + 4, x ≥ 0

14. f (x) = 16 − x2, x ≥ 0, g(x) = √16 − x

15. f (x) = 1
x
, g(x) = 1

x

16. f (x) = 1
1 + x

, x ≥ 0, g(x) = 1 − x
x

, 0 < x ≤ 1

Using the Horizontal Line Test In Exercises 17–24, use a 
graphing utility to graph the function. Then use the Horizontal 
Line Test to determine whether the function is one-to-one on 
its entire domain and therefore has an inverse function.

17. f (x) = 3
4x + 6 18. f (x) = 1 − x3

19. f (θ) = sin θ 20. f (x) = x cos x

21. h(s) = 1
s − 2

− 3 22. g(t) = 1

√t2 + 1
23. f (x) = ln x 24. h(x) = ln x2

 Determining Whether a Function Has an 
Inverse Function In Exercises 25–30, use 
the derivative to determine whether the function 
is strictly monotonic on its entire domain and 
therefore has an inverse function.

25. f (x) = 2 − x − x3 26. f (x) = x3 − 6x2 + 12x

27. f (x) = 8x3 + x2 − 1 28. f (x) = 1 − x3 − 6x5

29. f (x) = ln(x − 3)

30. f (x) = cos 
3x
2

 Verifying a Function Has an Inverse 
Function  In Exercises 31–34, show that f  is 
strictly monotonic on the given interval and 
therefore has an inverse function on that interval.

31. f (x) = (x − 4)2, [4, ∞)
32. f (x) = ∣x + 2∣, [−2, ∞)
33. f (x) = cot x, (0, π)

34. f (x) = sec x, [0, 
π
2 )
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340 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

 Finding an Inverse Function In Exercises 
35–46, (a) find the inverse function of f, (b) graph 
f  and f −1 on the same set of coordinate axes,  
(c) describe the relationship between the graphs, 
and (d) state the domains and ranges of f  and f −1.

35. f (x) = 2x − 3 36. f (x) = 9 − 5x

37. f (x) = x5 38. f (x) = x3 − 1

39. f (x) = √x 40. f (x) = x4, x ≥ 0

41. f (x) = √4 − x2 , 0 ≤ x ≤ 2

42. f (x) = √x2 − 4, x ≥ 2

43. f (x) = 3√x − 1 44. f (x) = x2�3, x ≥ 0

45. f (x) = x

√x2 + 7
 46. f (x) = x + 2

x

Finding an Inverse Function In Exercises 47 and 48, use 
the graph of the function f  to make a table of values for the 
given points. Then make a second table that can be used to find 
f −1 and sketch the graph of f −1. To print an enlarged copy of 
the graph, go to MathGraphs.com.

47. 

x
1

1

4

4

3

3

2

2

y

f

 48. 

x
1

1

4 5 6

6

4

3

3

2

2

y

f

49.  Cost You need a total of 50 pounds of two commodities 
costing $1.25 and $2.75 per pound.

 (a)  Verify that the total cost is y = 1.25x + 2.75(50 − x), 
where x is the number of pounds of the less expensive 
commodity.

 (b)  Find the inverse function of the cost function. What does 
each  variable represent in the inverse function?

 (c)  What is the domain of the inverse function? Validate or 
explain your answer using the context of the problem.

 (d)  Determine the number of pounds of the less expensive 
commodity purchased when the total cost is $73.

50.  Temperature The formula C = 5
9 (F − 32), where 

F ≥ −459.6, represents Celsius temperature C as a function 
of Fahrenheit temperature F.

 (a) Find the inverse function of C.

 (b) What does the inverse function represent?

 (c)  What is the domain of the inverse function? Validate or 
explain your answer using the context of the problem.

 (d)  The temperature is 22°C. What is the corresponding 
 temperature in degrees Fahrenheit?

 Testing Whether a Function Is One-to-One 
In Exercises 51–54, determine whether the function is 
one-to-one. If it is, find its inverse function.

51. f (x) = √x − 2 52. f (x) = −3

53. f (x) = ∣x − 2∣, x ≤ 2 54. f (x) = ax + b, a ≠ 0

Making a Function One-to-One In Exercises 55–58, the 
function is not one-to-one. Delete part of the domain so that the 
function that remains is one-to-one. Find the inverse function 
of the remaining function and give the domain of the inverse 
function. (Note: There is more than one correct answer.)

55. f (x) = (x − 3)2 56. f (x) = ∣x − 3∣
 

x
1

1

2

2

3

3

4

4

5

5

y   

x
1

1

2

2

3

3

4

4

5

5

y

57. f (x) = ∣x + 3∣ 58. f (x) = 16 − x4

Think About It In Exercises 59–62, decide whether the 
function has an inverse function. If so, describe what the 
inverse function represents.

59.  g(t) is the volume of water that has passed through a water line 
t minutes after a control valve is opened.

60.  h(t) is the height of the tide t hours after midnight, where 
0 ≤ t < 24.

61. C(t) is the cost of a long-distance phone call lasting t minutes.

62. A(r) is the area of a circle of radius r.

 Evaluating the Derivative of an Inverse 
Function In Exercises 63–70, verify that f  has 
an inverse function. Then use the function f  and the 
given real number a to find ( f −1)′(a). (Hint: See 
Example 5.)

63. f (x) = 5 − 2x3, a = 7 64. f (x) = x3 + 3x− 1, a =−5

65. f (x) = 1
27(x5 + 2x3), a = −11

66. f (x) = √x − 4, a = 2

67. f (x) = sin x, −
π
2

≤ x ≤
π
2

, a =
1
2

68. f (x) = cos 2x, 0 ≤ x ≤
π
2

, a = 1

69. f (x) = x + 6
x − 2

, x > 2, a = 3

70. f (x) = x + 3
x + 1

, x > −1, a = 2

 Using Inverse Functions In Exercises 71–74, 
(a) find the domains of f  and f −1, (b) find the 
ranges of f  and f −1, (c) graph f  and f −1, and  
(d) show that the slopes of the graphs of f  and f −1 
are reciprocals at the given points.

 Functions Point

71. f (x) = x3 (1
2, 18)

 f−1(x) = 3√x (1
8, 12)

72. f (x) = 3 − 4x (1, −1)

 f−1(x) = 3 − x
4

 (−1, 1)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.3 Inverse Functions 341

 Functions Point

73. f (x) = √x − 4 (5, 1)
 f−1(x) = x2 + 4, x ≥ 0 (1, 5)

74. f (x) = 4
1 + x2 , x ≥ 0 (1, 2)

 f−1(x) =√4 − x
x

 (2, 1)

Using Composite and Inverse Functions In Exercises 
75–78, use the functions f (x) = 1

8 x − 3 and g(x) = x3 to find 
the given value.

75. ( f−1 ∘ g−1)(1) 76. (g−1 ∘ f−1)(−3)
77. ( f−1 ∘ f−1)(−2) 78. (g−1 ∘ g−1)(8)

Using Composite and Inverse Functions  In Exercises 
79–82, use the functions f (x) = x + 4 and g(x) = 2x − 5 to 
find the given function.

79. g−1 ∘ f−1 80. f−1 ∘ g−1

81. ( f ∘ g)−1 82. (g ∘ f )−1

EXPLORING CONCEPTS
83.  Inverse Function Consider the function f (x) = xn, 

where n is odd. Does f −1 exist? Explain.

84.  Think About It Does adding a constant term to a 
function affect the existence of an inverse function? 
Explain.

Explaining Why a Function Is Not One-to-One  
In Exercises 85 and 86, the derivative of the function has 
the same sign for all x in its domain, but the function is 
not one-to-one. Explain why the function is not one-to-one.

85. f (x) = tan x 86. f (x) = x
x2 − 4

87.  Think About It The function  f (x) = k(2 − x − x3) is  
one-to-one and f−1(3) = −2. Find k.

 88.  HOW DO YOU SEE IT? Use the 
information in the graph of f  below.

y

x

m =

m = 2

1
2

−1, −( (1
2

(2, 1)

−2−3 1 2 3

−2

−3

1

2

3 f

(a)  What is the slope of the tangent line to the graph

 of f −1 at the point (−1
2, −1)? Explain.

(b)  What is the slope of the tangent line to the graph 
of f −1 at the point (1, 2)? Explain.

88.  

True or False? In Exercises 89 and 90, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

 89. If f  is an even function, then f−1 exists.

 90.  If the inverse function of f  exists, then the y-intercept of f  is 
an x-intercept of f−1.

 91. Making a Function One-to-One

  (a)  Show that f (x) = 2x3 + 3x2 − 36x is not one-to-one on 
(−∞, ∞).

  (b)  Determine the greatest value c such that f  is one-to-one 
on (−c, c).

 92. Proof Let f  and g be one-to-one functions. Prove that

  (a) f ∘ g is one-to-one.

  (b) ( f ∘ g)−1(x) = (g−1 ∘ f−1)(x).
 93. Proof Prove that if f  has an inverse function, then ( f−1)−1 = f.

 94.  Proof Prove that if a function has an inverse function, then 
the inverse function is unique.

 95.  Proof Prove that a function has an inverse function if and 
only if it is one-to-one.

 96.  Using Theorem 5.7 Is the converse of the second part 
of Theorem 5.7 true? That is, if a function is one-to-one (and 
therefore has an inverse function), then must the function be 
strictly monotonic? If so, prove it. If not, give a counterexample.

 97. Derivative of an Inverse Function Show that

   f (x) = ∫x

2
√1 + t2 dt

  is one-to-one and find ( f−1)′(0).
 98. Derivative of an Inverse Function Show that

   f (x) = ∫x

2
 

dt

√1 + t 4

  is one-to-one and find ( f −1)′(0).
 99. Inverse Function Let

  f (x) = x − 2
x − 1

.

   Show that f  is its own inverse function. What can you 
conclude about the graph of f ? Explain.

100. Using a Function Let f (x) = ax + b
cx + d

.

  (a) Show that f  is one-to-one if and only if bc − ad ≠ 0.

  (b) Given bc − ad ≠ 0, find f−1.

  (c) Determine the values of a, b, c, and d such that f = f−1.

101.  Concavity Let f  be twice-differentiable and one-to-one 
on an open interval I. Show that its inverse function g satisfies

  g″(x) = −
f ″(g(x))

[ f ′(g(x))]3.

   When f  is increasing and concave downward, what is the 
concavity of g?
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5.4 Exponential Functions: Differentiation and Integration

 Develop properties of the natural exponential function.
 Differentiate natural exponential functions.
 Integrate natural exponential functions.

The Natural Exponential Function
The function f (x) = ln x is increasing on its entire domain, and therefore it has an 
inverse function f−1. The domain of f−1 is the set of all real numbers, and the range 
is the set of positive real numbers, as shown in Figure 5.18. So, for any real number x,

f ( f−1(x)) = ln[ f−1(x)] = x. x is any real number.

If x is rational, then

ln(ex) = x ln e = x(1) = x. x is a rational number.

Because the natural logarithmic function is one-to-one, you can conclude that f−1(x) 
and ex agree for rational values of x. The next definition extends the meaning of ex to 
include all real values of x.

Definition of the Natural Exponential Function

The inverse function of the natural logarithmic function f (x) = ln x is called 
the natural exponential function and is denoted by

f−1(x) = ex.

That is,

y = ex if and only if x = ln y.

The inverse relationship between the natural logarithmic function and the nat ural 
exponential function can be summarized as shown.

ln(ex) = x    and    eln x = x    Inverse relationship

 Solving an Exponential Equation

Solve 7 = ex+1.

Solution You can convert from exponential form to logarithmic form by taking the 
natural logarithm of each side of the equation.

 7 = ex+1 Write original equation.

 ln 7 = ln(ex+1) Take natural logarithm of each side.

 ln 7 = x + 1 Apply inverse property.

−1 + ln 7 = x Solve for x.

So, the solution is −1 + ln 7 ≈ 0.946. You can check this solution as shown.

 7 = ex+1 Write original equation.

  7 =? e(−1+ ln 7)+1 Substitute −1 + ln 7 for x in original equation.

 7 =? eln 7 Simplify.

 7 = 7 3 Solution checks. 

3

2

−1

−2

321−2 −1

y

x

f (x) = ln x

f −1(x) = ex

The inverse function of the natural  
logarithmic function is the natural 
exponential function.
Figure 5.18
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 Solving a Logarithmic Equation

Solve ln(2x − 3) = 5.

Solution To convert from logarithmic form to exponential form, you can  
exponentiate each side of the logarithmic equation.

 ln(2x − 3) = 5 Write original equation.

 eln(2x−3) = e5 Exponentiate each side.

 2x − 3 = e5 Apply inverse property.

 x = 1
2(e5 + 3) Solve for x.

 x ≈ 75.707 Use a calculator. 

The familiar rules for operating with rational exponents can be extended to the 
natural exponential function, as shown in the next theorem.

THEOREM 5.10 Operations with Exponential Functions

Let a and b be any real numbers.

1. eaeb = ea+b 2. 
ea

eb = ea−b

Proof To prove Property 1, you can write

ln(eaeb) = ln(ea) + ln(eb) = a + b = ln(ea+b).

Because the natural logarithmic function is one-to-one, you can conclude that 

eaeb = ea+b.

The proof of the other property is given in Appendix A. 

In Section 5.3, you learned that an inverse function f−1 shares many properties 
with f. So, the natural exponential function inherits the properties listed below from the 
natural logarithmic function.

Properties of the Natural Exponential Function

1.  The domain of f (x) = ex is  

x
−1−2

1

1

2

3

(0, 1)

))−2, 1
e2

))−1,
1
e

y = ex

(1, e)

y

The natural exponential function is 
increasing, and its graph is concave 
upward.

 (−∞, ∞)

 and the range is

 (0, ∞).

2. The function f (x) = ex is continuous,  
 increasing, and one-to-one on its entire 
 domain.

3. The graph of f (x) = ex is concave  
 upward on its entire domain.

4. lim
x→−∞

ex = 0

5. lim
x→∞

ex = ∞

TECHNOLOGY You can 
use a graphing utility to check 
a solution of an equation. One 
way to do this is to graph the 
left- and right-hand sides of 
the equation and then use the 
intersect feature. For instance, to 
check the solution to Example 2, 
enter y1 = ln(2x − 3) and 
y2 = 5. The solution of the 
original equation is the x-value 
of each point of intersection (see 
figure). So the solution of the 
original equation is x ≈ 75.707.

150

−2

0

8

Intersection
X=75.70658 Y=5
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Derivatives of Exponential Functions
One of the most intriguing (and useful) characteristics of the natural exponential 
function is that it is its own derivative. In other words, it is a solution of the differential 
equation y′ = y. This result is stated in the next theorem.

THEOREM 5.11 Derivatives of the Natural Exponential Function

Let u be a differentiable function of x.

1. 
d
dx

 [ex] = ex

2. 
d
dx

 [eu] = eu 
du
dx

Proof To prove Property 1, use the fact that ln ex = x and differentiate each side of 
the equation.

 ln ex = x  Definition of exponential function

 
d
dx

 [ln ex] = d
dx

 [x] Differentiate each side with respect to x.

 
1
ex 

d
dx

 [ex] = 1

 
d
dx

 [ex] = ex  Multiply each side by e x.

The derivative of eu follows from the Chain Rule. 

 Differentiating Exponential Functions

a. 
d
dx

[e2x−1] = eu 
du
dx

= 2e2x−1 u = 2x − 1

b. 
d
dx

[e−3�x] = eu 
du
dx

= ( 3
x2)e−3�x =

3e−3�x

x2
 u = −

3
x

c. 
d
dx

[x2ex] = x2(ex) + ex(2x) = xex(x + 2) Product Rule and Theorem 5.11

d. 
d
dx[

e3x

ex + 1] =
(ex + 1)(3e3x) − e3x(ex)

(ex + 1)2 =
3e4x + 3e3x − e4x

(ex + 1)2 =
e3x(2ex + 3)
(ex + 1)2

 Locating Relative Extrema

Find the relative extrema of

f (x) = xex.

Solution The derivative of f  is 

 f′(x) = x(ex) + ex(1) Product Rule

 = ex(x + 1).

Because ex is never 0, the derivative is 0 only when x = −1. Moreover, by the First 
Derivative Test, you can determine that this corresponds to a relative minimum, as 
shown in Figure 5.19. Because the derivative f′(x) = ex(x + 1) is defined for all x, 
there are no other critical points. 

REMARK You can interpret 
this theorem geometrically by 
saying that the slope of the 
graph of f (x) = ex at any point 
(x, ex) is equal to the  
y-coordinate of the point.

x

1

1

2

3

Relative minimum
(−1, −e−1)

y

f (x) = xex

The derivative of f  changes from  
negative to positive at x = −1.
Figure 5.19
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 Finding an Equation of a Tangent Line

Find an equation of the tangent line to the graph of f (x) = 2 + e1−x at the point (1, 3).

Solution Begin by finding f′(x).

 f (x) = 2 + e1−x Write original function.

 f′(x) = e1−x(−1) u = 1 − x

 = −e1−x First derivative

To find the slope of the tangent line at (1, 3), evaluate f′(1).

f′(1) = −e1−1 = −e0 = −1 Slope of tangent line at (1, 3)

Now, using the point-slope form of the equation of a line, you can write

 y − y1 = m(x − x1) Point-slope form

 y − 3 = −1(x − 1) Substitute for y1, m, and x1.

 y = −x + 4. Equation of tangent line at (1, 3)

The graph of f  and its tangent line at (1, 3) are shown in Figure 5.20.

 The Standard Normal Probability Density Function

See LarsonCalculus.com for an interactive version of this type of example.

Show that the standard normal probability density function

f(x) = 1

√2π
e−x2�2

has points of inflection when x = ±1.

Solution To locate possible points of inflection, find the x-values for which the  
second derivative is 0.

 f(x) = 1

√2π
e−x2�2  Write original function.

 f′(x) = 1

√2π
(−x)e−x2�2  First derivative

 f ″(x) = 1

√2π
[(−x) (−x)e−x2�2 + (−1)e−x2�2] Product Rule

 =
1

√2π
(e−x2�2)(x2 − 1)  Second derivative

So, f ″(x) = 0 when x = ±1, and you can apply the techniques of Chapter 3 to 
 conclude that these values yield the two points of inflection shown in the figure below.

x
1 2−1−2

0.1

0.2

0.3

Two points of
in�ection

1
2π

f(x) = e−x
2/2

y

  The bell-shaped curve given by a standard  
normal probability density function 

REMARK The general form 
of a normal probability density 
function (whose mean is 0) is

f(x) = 1

σ√2π
 e−x2�(2σ2)

where σ  is the standard  
deviation (σ  is the lowercase 
Greek letter sigma). This  
“bell-shaped curve” has points 
of inflection when x = ±σ.

 FOR FURTHER INFORMATION
To learn about derivatives of 
exponential functions of order 
1�2, see the article “A Child’s 
Garden of Fractional Derivatives” 
by Marcia Kleinz and Thomas J. 
Osler in The College Mathematics 
Journal. To view this article, go to 
MathArticles.com.

f(x) = 2 + e1 − x

−1−2−3 1 2 3 4 5
−1

1

2

3

4

5

(1, 3)

y

x

Figure 5.20
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Integrals of Exponential Functions
Each differentiation formula in Theorem 5.11 has a corresponding integration formula.

THEOREM 5.12 Integration Rules for Exponential Functions

Let u be a differentiable function of x.

1. ∫ex dx = ex + C 2. ∫eu du = eu + C

 Integrating Exponential Functions

Find the indefinite integral.

∫e3x+1 dx

Solution If you let u = 3x + 1, then du = 3 dx.

 ∫e3x+1 dx =
1
3∫e3x+1(3) dx Multiply and divide by 3.

 =
1
3∫ e

u du  Substitute: u = 3x + 1.

 =
1
3

eu + C  Apply Exponential Rule.

 =
e3x+1

3
+ C  Back-substitute. 

 Integrating Exponential Functions

Find the indefinite integral.

∫5xe−x2 dx

Solution If you let u = −x2, then du = −2x dx or x dx = −du�2.

 ∫ 5xe−x 2
 dx = ∫ 5e−x2(x dx) Regroup integrand.

 = ∫ 5eu (−du
2 ) Substitute: u = −x2.

 = −
5
2

 ∫ eu du Constant Multiple Rule

 = −
5
2

eu + C Apply Exponential Rule.

 = −
5
2

e−x2 + C Back-substitute. 

REMARK In Example 7, the missing constant factor 3 was introduced to create 
du = 3 dx. However, remember that you cannot introduce a missing variable factor in 
the integrand. For instance,

∫e−x2 dx ≠
1
x
 ∫e−x2(x dx).
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 Integrating Exponential Functions

Find each indefinite integral.

a. ∫ 
e1�x

x2  dx  b. ∫ sin x ecos x dx

Solution

 eu du
  

a.  ∫ 
e1�x

x2  dx = −∫ e1�x(− 1
x2) dx u =

1
x

  = −e1�x + C

  eu du
   

b.  ∫ sin x ecos x dx = −∫ ecos x (−sin x) dx u = cos x

  = −ecos x + C

 Finding Areas Bounded by Exponential Functions

Evaluate each definite integral.

a. ∫1

0
e−x dx  b. ∫1

0
 

ex

1 + ex dx  c. ∫0

−1 
ex cos(ex) dx

Solution

a.  ∫1

0
 e−x dx = −e−x]

1

0
 See Figure 5.21(a).

  = −e−1 − (−1)

  = 1 −
1
e

  ≈ 0.632

b.  ∫1

0
 

ex

1 + ex dx = ln(1 + ex)]
1

0
 See Figure 5.21(b).

  = ln(1 + e) − ln 2

  ≈ 0.620

c.  ∫0

−1
 ex cos(ex) dx = sin(ex)]

0

−1
 See Figure 5.21(c).

  = sin 1 − sin(e−1)
  ≈ 0.482

x
1

1 y = e−x

y  

x
1

1

ex

1 + ex
y =

y  

x

1

−1

y = ex cos(ex)

y

(a) (b) (c)

Figure 5.21 
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5.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Natural Exponential Function Describe the graph 

of f (x) = ex.

2.  A Function and Its Derivative Which of the 
following functions are their own derivative?

 y = ex + 4  y = ex  y = e4x  y = 4ex

 Solving an Exponential or Logarithmic 
Equation In Exercises 3–18, solve for x accurate 
to three decimal places.

 3. eln x = 4  4. eln 3x = 24

 5. ex = 12  6. 5ex = 36

 7. 9 − 2ex = 7  8. 8ex − 12 = 7

 9. 50e−x = 30 10. 100e−2x = 35

11. 
800

100 − ex�2 = 50 12. 
5000

1 + e2x = 2

13. ln x = 2 14. ln x2 = −8

15. ln(x − 3) = 2 16. ln 4x = 1

17. ln√x + 2 = 1 18. ln(x − 2)2 = 12

Sketching a Graph In Exercises 19–24, sketch the graph 
of the function.

19. y = e−x 20. y = 1
3ex

21. y = ex + 1 22. y = −ex−1

23. y = e−x2 24. y = e−x�2

Matching In Exercises 25–28, match the equation with the 
correct graph. Assume that a and C are positive real numbers. 
[The graphs are labeled (a), (b), (c), and (d).]

(a) 

x

1

1

2

2
−1

−1−2

y  (b) 

x

1

1

2

2
−1

−1−2

−2

y

(c) 

x
1

2

−1
−1−2

y  (d) 

x
1

1

2

2

−1
−1

y

25. y = Ceax 26. y = Ce−ax

27. y = C(1 − e−ax) 28. y =
C

1 + e−ax

 Inverse Functions In Exercises 29–32, 
illustrate that the functions are inverse functions of 
each other by sketching their graphs on the same 
set of coordinate axes.

29. f (x) = e2x 30. f (x) = ex�3

 g(x) = ln√x  g(x) = ln x3

31. f (x) = ex − 1 32. f (x) = ex−1

 g(x) = ln(x + 1)  g(x) = 1 + ln x

 Finding a Derivative In Exercises 33–54, find 
the derivative of the function.

33. y = e5x 34. y = e−8x

35. y = e√x 36. y = e−2x3

37. y = ex−4 38. y = 5ex2+5

39. y = ex ln x 40. y = xe4x

41. y = (x + 1)2ex 42. y = x2e−x

43. g(t) = (e−t + e t)3 44. g(t) = e−3�t2

45. y = ln(2 − e5x) 46. y = ln(1 + ex

1 − ex)
47. y =

2
ex + e−x 48. y =

ex − e−x

2

49. y =
ex + 1
ex − 1

 50. y =
e2x

e2x + 1

51. y = ex(sin x + cos x) 52. y = e2x tan 2x

53. F(x) = ∫ln x

π
cos et dt 54. F(x) = ∫e2x

0
 ln(t + 1) dt

 Finding an Equation of a Tangent Line  In 
Exercises 55–62, find an equation of the tangent 
line to the graph of the function at the given point.

55.  f (x) = e3x,  (0, 1) 56. f (x) = e−x − 6, (0, −5)
57. y = e3x−x2, (3, 1) 58. y = e−2x+x2

, (2, 1)

59.  f (x) = e−x ln x, (1, 0) 60. y = ln 
ex + e−x

2
, (0, 0)

61. y = x2ex − 2xex + 2ex, (1, e)
62. y = xex − ex, (1, 0)

Implicit Differentiation In Exercises 63 and 64, use 
implicit differentiation to find dy�dx.

63. xey − 10x + 3y = 0 64. exy + x2 − y 2 = 10

Finding the Equation of a Tangent Line In Exercises 
65 and 66, use implicit differentiation to find an equation of 
the tangent line to the graph of the equation at the given point.

65. xe y + yex = 1,    (0, 1)
66. 1 + ln xy = ex−y,    (1, 1)
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5.4 Exponential Functions: Differentiation and Integration 349

Finding a Second Derivative In Exercises 67 and 68, find 
the second derivative of the  function.

67. f (x) = (3 + 2x)e−3x 68. g(x) = √x + ex ln x

Differential Equation In Exercises 69 and 70, show that 
the function y = f (x) is a solution of the differential equation.

69. y = 4e−x 70. y = e3x + e−3x

 y ″ − y = 0  y ″ − 9y = 0

 Relative Extrema and Points of Inflection 
In Exercises 71–78, find the relative extrema and 
the points of inflection (if any exist) of the function. 
Use a graphing utility to graph the function and 
confirm your results.

71. f (x) = ex + e−x

2
 72. f (x) = ex − e−x

2

73. g(x) = 1

√2π
e−(x−2)2�2 74. g(x) = 1

√2π
e−(x−3)2�2

75. f (x) = (2 − x)ex 76. f (x) = xe−x

77. g(t) = 1 + (2 + t)e−t 78. f (x) = −2 + e3x(4 − 2x)

79.  Area Find the area of the largest rectangle that can be 
inscribed under the curve y = e−x2

 in the first and second 
 quadrants.

80.  Area Perform the following steps to find the maximum area 
of the rectangle shown in the figure.

x
1

1

2

3

4

4

5 6c c + x

f (x) = 10xe−x

y

 (a) Solve for c in the equation f (c) = f (c + x).
 (b)  Use the result in part (a) to write the area A as a function 

of x. [Hint: A = x f (c)]
 (c)  Use a graphing utility to graph the area function. Use the 

graph to approximate the dimensions of the rectangle of 
maximum area. Determine the maximum area.

 (d)  Use a graphing utility to graph the expression for c found 
in part (a). Use the graph to approximate

 lim
x→0+

 c and lim
x→∞

 c.

    Use this result to describe the changes in dimensions and 
position of the rectangle for 0 < x < ∞.

81.  Finding an Equation of a Tangent Line Find the 
point on the graph of the function f (x) = e2x such that the 
tangent line to the graph at that point passes through the  origin. 
Use a graphing utility to graph f  and the tangent line in the 
same viewing window.

 82.  HOW DO YOU SEE IT? The figure shows 
the graphs of f  and g, where a is a positive real 
number. Identify the open interval(s) on which 
the graphs of f  and g are (a) increasing or 
decreasing and (b) concave upward or concave 
downward.

y

x

f (x) = eaxg(x) = e−ax

82.  

83.  Depreciation The value V of an item t years after it is 
purchased is V = 15,000e−0.6286t, 0 ≤ t ≤ 10.

 (a) Use a graphing utility to graph the function.

 (b)  Find the rates of change of V with respect to t when t = 1 
and t = 5.

 (c)  Use a graphing utility to graph the tangent lines to the 
function when t = 1 and t = 5.

84.  Harmonic Motion The displacement from equilibrium of 
a mass oscillating on the end of a spring suspended from a 
ceiling is y = 1.56e−0.22t cos 4.9t, where y is the displacement 
(in feet) and t is the time (in seconds). Use a graphing utility 
to graph the displacement function on the interval [0, 10]. Find 
a value of t past which the displacement is less than 3 inches 
from equilibrium.

A meteorologist measures the atmospheric pressure P  
(in millibars) at altitude h (in kilometers). The data are 
shown below.

h 0 5 10 15 20

P 1013.2 547.5 233.0 121.6 50.7

(a)  Use a graphing  
utility to plot the 
points (h, ln P).  
Use the regression 
capabilities of the 
graphing utility to 
find a linear model  
for the revised data 
points.

(b)  The line in part (a) has the form ln P = ah + b. Write  
the equation in exponential form.

(c)  Use a graphing utility to plot the original data and graph 
the exponential model in part (b).

(d)  Find the rates of change of the pressure when h = 5 and 
h = 18.

85. Atmospheric Pressure

Robert Adrian Hillman/Shutterstock.com
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350 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

86.  Modeling Data The table lists the approximate values 
V of a mid-sized sedan for the years 2010 through 2016. 
The variable t represents the time (in years), with t = 10 
corresponding to 2010.

t 14 15 16

V $15,226 $14,101 $12,841

t 10 11 12 13

V $23,046 $20,596 $18,851 $17,001

 (a)  Use the regression capabilities of a graphing utility to fit 
linear and  quadratic models to the data. Plot the data and 
graph the models.

 (b)  What does the slope represent in the linear model in  
part (a)?

 (c)  Use the regression capabilities of a graphing utility to fit 
an exponential model to the data.

 (d)  Determine the horizontal asymptote of the exponential 
model found in part (c). Interpret its meaning in the 
context of the problem.

 (e)  Use the exponential model to find the rates of decrease in 
the value of the sedan when t = 12 and t = 15.

Linear and Quadratic Approximation In Exercises 87 
and 88, use a graphing utility to graph the function. Then 
graph

P1(x) = f (0) + f ′(0)(x − 0) and

P2(x) = f (0) + f ′(0)(x − 0) + 1
2 f ″(0)(x − 0)2

in the same viewing window. Compare the values of f, P1, P2, 
and their first derivatives at x = 0.

87. f (x) = ex 88. f (x) = ex�2

Stirling’s Formula For large values of n,

n! = 1 ∙ 2 ∙ 3 ∙ 4 .  .  . (n − 1) ∙ n

can be approximated by Stirling’s Formula,

n! ≈ (n3)
n

√2πn.

In Exercises 89 and 90, find the exact value of n! and then 
approximate n! using Stirling’s Formula.

89. n = 12 90. n = 15

 Finding an Indefinite Integral In Exercises 
91–108, find the indefinite integral.

91. ∫ e5x(5) dx 92. ∫ e−x 4
 (−4x3) dx

93. ∫ e5x−3 dx 94. ∫ e1−3x dx

95. ∫ (2x + 1)ex2+x dx 96. ∫ ex(ex + 1)2 dx

 97. ∫ 
e√x

√x
 dx  98. ∫ e1�x2

x3  dx

 99. ∫ 

 
e−x

1 + e−x dx 100. ∫ e2x

1 + e2x dx

101. ∫ ex√1 − ex dx 102. ∫ 
ex − e−x

ex + e−x dx

103. ∫ 
ex + e−x

ex − e−x dx 104. ∫ 
2ex − 2e−x

(ex + e−x)2 dx

105. ∫ 
5 − ex

e2x  dx 106. ∫ 
e−3x + 2e2x + 3

ex  dx

107. ∫ e−x tan(e−x) dx 108. ∫e2x csc(e2x) dx

 Evaluating a Definite Integral In Exercises 
109–118, evaluate the definite integral. Use a 
graphing utility to verify your result.

109. ∫1

0
 e−2x dx 110. ∫1

−1
 e1+4x dx

111. ∫1

0
 xe−x2

 dx 112. ∫0

−2
 x2ex3�2 dx

113. ∫3

1
 
e3�x

x2  dx 114. ∫√2

0
xe−x2�2 dx

115. ∫2

0
 

e4x

1 + e4x dx 116. ∫0

−2
 

ex+1

7 − ex+1 dx

117. ∫π�2

0
esin πx cos πx dx 118. ∫π�2

π�3
esec 2x sec 2x tan 2x dx

Differential Equation In Exercises 119 and 120, find the 
general solution of the differential equation.

119. 
dy
dx

= xe9x2
 120. 

dy
dx

= (ex − e−x)2

Differential Equation In Exercises 121 and 122, find the 
particular solution of the differential equation that satisfies the 
initial conditions.

121. f ″(x) = 1
2(ex + e−x), f (0) = 1, f ′(0) = 0

122. f ″(x) = sin x + e2x, f (0) = 1
4, f ′(0) = 1

2

 Area In Exercises 123–126, find the area of the 
region bounded by the graphs of the equations. Use 
a graphing utility to verify your result.

123. y = ex, y = 0, x = 0, x = 6

124. y = e−2x, y = 0, x = −1, x = 3

125. y = xe−x2�4, y = 0, x = 0, x = √6

126. y = e−2x + 2, y = 0, x = 0, x = 2

Midpoint Rule In Exercises 127 and 128, use the Midpoint 
Rule with n = 12 to approximate the value of the definite 
integral. Use a graphing utility to verify your result.

127. ∫4

0
√x ex dx 128. ∫2

0
2xe−x dx
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EXPLORING CONCEPTS
129.  Asymptotes Compare the asymptotes of the 

natural exponential function with those of the natural 
logarithmic function.

130.  Comparing Graphs Use a graphing utility to 
graph f (x) = ex and the given function in the same 
viewing window. How are the two graphs related?

 (a) g(x) = ex−2 (b) h(x) = −1
2ex (c) q(x) = e−x + 3

True or False? In Exercises 131–134, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

131. If f (x) = g(x)ex, then f ′(x) = g′(x)ex.

132. If f (x) = ln x, then f (en+1) − f (en) = 1 for any value of n.

133.  The graphs of f (x) = ex and g(x) = e−x meet at right angles.

134. If f (x) = g(x)ex, then the only zeros of f  are the zeros of g.

135.  Probability A car battery has an average lifetime of  
48 months with a standard deviation of 6 months. The battery 
lives are normally distributed. The probability that a given 
battery will last between 48 months and 60 months is

  0.0065 ∫60

48
e−0.0139(t−48)2 dt.

   Use the integration capabilities of a graphing utility to 
approximate the integral. Interpret the resulting probability.

136.  Probability The median waiting time (in minutes) for 
people waiting for service in a convenience store is given by 
the solution of the equation

  ∫x

0
 0.3e−0.3t dt =

1
2

.

  What is the median waiting time?

137.  Modeling Data A valve on a storage tank is opened for  
4 hours to release a chemical in a manufacturing process. The 
flow rate R (in liters per hour) at time t (in hours) is given 
in the table.

t 0 1 2 3 4

R 425 240 118 71 36

  (a)  Use the regression capabilities of a graphing utility to find 
a linear model for the points (t, ln R). Write the resulting 
equation of the form ln R = at + b in exponential form.

  (b)  Use a graphing utility to plot the data and graph the 
exponential model.

  (c)  Use a definite integral to approximate the number of 
liters of chemical released during the 4 hours.

138.  Using the Area of a Region Find the value of a such 
that the area bounded by y = e−x, the x-axis, x = −a, and 
x = a is 83.

139. Analyzing a Graph Consider the function

  f (x) = 2
1 + e1�x .

  (a) Use a graphing utility to graph f.

  (b)  Write a short paragraph explaining why the graph has a 
horizontal asymptote at y = 1 and why the function has 
a nonremovable discontinuity at x = 0.

140. Analyzing a Function Let f (x) = ln x
x

.

  (a)  Graph f  on (0, ∞) and show that f  is strictly decreasing 
on (e, ∞).

  (b) Show that if e ≤ A < B, then AB > BA.

  (c) Use part (b) to show that eπ > π e.

141.  Deriving an Inequality  Given ex ≥ 1 for x ≥ 0, it  
follows that

  ∫x

0
 et dt ≥ ∫x

0
1 dt.

  Perform this integration to derive the inequality

  ex ≥ 1 + x

  for x ≥ 0.

142.  Solving an Equation Find, to three decimal places, the 
value of x such that e−x = x. (Use Newton’s Method or the 
zero or root feature of a  graphing utility.)

143.  Analyzing a Graph Consider

  f (x) = xe−kx

   for k > 0. Find the relative extrema and the points of 
inflection of the function.

144.  Finding the Maximum Rate of Change  Verify that 
the function

  y =
L

1 + ae−x�b , a > 0,    b > 0,    L > 0

  increases at a maximum rate when y =
L
2

.

PUTNAM EXAM CHALLENGE
145.  Let S be a class of functions from [0, ∞) to [0, ∞) that 

satisfies:

  (i)  The functions f1(x) = ex − 1 and f2(x) = ln(x + 1) 
are in S;

  (ii)  If f (x) and g(x) are in S, the functions f (x) + g(x) 
and f (g(x)) are in S;

  (iii)  If f (x) and g(x) are in S and f (x) ≥ g(x) for all 
x ≥ 0, then the function f (x) − g(x) is in S.

   Prove that if f (x) and g(x) are in S, then the function 
f (x)g(x) is also in S.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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5.5 Bases Other than e and Applications

 Define exponential functions that have bases other than e.
 Differentiate and integrate exponential functions that have bases other than e.
 Use exponential functions to model compound interest and exponential growth.

Bases Other than e
The base of the natural exponential function is e. This “natural” base can be used to 
assign a meaning to a general base a.

Definition of Exponential Function to Base a
If a is a positive real number (a ≠ 1) and x is any real number, then the 
exponential function to the base a is denoted by ax and is defined by

ax = e(ln a)x.

If a = 1, then y = 1x = 1 is a constant function.

Exponential functions obey the usual laws of exponents. For instance, here are 
some familiar properties.

1. a0 = 1  2. axay = ax+y  3. 
ax

ay = ax−y  4. (ax)y = axy

When modeling the half-life of a radioactive sample, it is convenient to use 12 as the 
base of the exponential model. (Half-life is the number of years required for half of the 
atoms in a sample of radioactive material to decay.)

 Radioactive Half-Life Model

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14. 
How much will be present in 10,000 years?

Solution Let t = 0 represent the present time and let y represent the amount (in 
grams) of carbon-14 in the sample. Using a base of 12, you can model y by the equation

y = (12)
t�5715

.

Notice that when t = 5715, the amount is  

t

C
ar

bo
n-

14
 (

in
 g

ra
m

s)

Time (in years)

2,000 4,000 6,000 8,000 10,000

0.2

0.4

0.6

0.8

1.0

1.2

(5715, 0.50)

(10,000, 0.30)

y

y = 1
2

t/5715( )

The half-life of carbon-14 is about 
5715 years.

 
reduced to half of the original amount.

y = (12)
5715�5715

=
1
2

 gram

When t = 11,430, the amount is reduced to a 
quarter of the original amount and so on. To  
find the amount of carbon-14 after 10,000 years, 
substitute 10,000 for t.

 y = (12)
10,000�5715

 ≈ 0.30 gram

The graph of y is shown at the right. 

base of the exponential model. (
atoms in a sample of radioactive material to decay.)

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14. 
How much will be present in 10,000 years?

Solution
grams) of carbon-14 in the sample. Using a base of 

Notice that when 
reduced to half of the original amount.

When 
quarter of the original amount and so on. To 
find the amount of carbon-14 after 10,000 years, Carbon dating uses the  

radioactive isotope carbon-14 to  
estimate the age of dead organic 
materials. The method is based 
on the decay rate of carbon-14 
(see Example 1), a compound 
organisms take in when they  
are alive.

Michal Ninger/Shutterstock.com
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Logarithmic functions to bases other than e can be defined in much the same way 
as exponential functions to other bases are defined.

Definition of Logarithmic Function to Base a
If a is a positive real number (a ≠ 1) and x is any positive real number, then 
the logarithmic function to the base a is denoted by loga x and is defined as

loga x =
1

ln a
 ln x.

Logarithmic functions to the base a have properties similar to those of the natural 
logarithmic function given in Theorem 5.2. (Assume x and y are positive numbers and 
n is rational.)

1. loga 1 = 0 Log of 1

2. loga xy = loga x + loga y Log of a product

3. loga x
n = n loga x Log of a power

4. loga 
x
y
= loga x − loga y Log of a quotient

From the definitions of the exponential and logarithmic functions to the base a, it 
follows that f(x) = ax and g(x) = loga x are inverse functions of each other.

Properties of Inverse Functions

1. y = ax if and only if x = loga y

2. aloga x = x, for x > 0

3. loga a
x = x, for all x

The logarithmic function to the base 10 is called the common logarithmic 
function. So, for common logarithms,

y = 10x if and only if x = log10 y. Property of inverse functions

 Bases Other than e  

Solve for x in each equation.

a. 3x =
1
81

 b. log2 x = −4

Solution
a.  To solve this equation, you can apply 

the logarithmic function to the base 3 
to each side of the equation.

 3x =
1
81

 log3 3
x = log3 

1
81

 x = log3 3
−4

 x = −4

b.  To solve this equation, you can apply 
the exponential function to the base 2 
to each side of the equation.

 log2 x = −4

 2log2 x = 2−4

 x =
1
24

 x =
1
16 

REMARK In precalculus, 
you learned that loga x is the 
value to which a must be 
raised to produce x. This agrees 
with the definition at the right 
because

 a loga x = a(1�ln a)ln x

 = (e ln a)(1�ln a)ln x

 = e (ln a�ln a)ln x

 = e ln x

 = x.
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Differentiation and Integration
To differentiate exponential and logarithmic functions to other bases, you have three 
options: (1) use the definitions of ax and loga x and differentiate using the rules for the 
natural exponential and logarithmic functions, (2) use logarithmic differentiation, or  
(3) use the differentiation rules for bases other than e given in the next theorem.

THEOREM 5.13 Derivatives for Bases Other than e
Let a be a positive real number (a ≠ 1), and let u be a differentiable function of x.

1. 
d
dx

 [ax] = (ln a)ax 2. 
d
dx

 [au] = (ln a)au 
du
dx

3. 
d
dx

 [loga x] = 1
(ln a)x 4. 

d
dx

 [loga u] =
1

(ln a)u 
du
dx

Proof By definition, ax = e(ln a)x. So, you can prove the first rule by letting 
u = (ln a)x and differentiating with base e to obtain

d
dx

[ax] = d
dx

[e(ln a)x] = eu du
dx

= e(ln a)x(ln a) = (ln a)ax.

To prove the third rule, you can write

d
dx

[loga x] =
d
dx [

1
ln a

ln x] = 1
ln a (

1
x) =

1
(ln a)x.

The second and fourth rules are simply the Chain Rule versions of the first and third rules.
 

 Differentiating Functions to Other Bases

Find the derivative of each function.

a. y = 2x  b. y = 23x  c. y = log10 cos x  d. y = log3 
√x

x + 5

Solution

a. y′ =
d
dx

[2x] = (ln 2)2x

b. y′ =
d
dx

[23x] = (ln 2)23x(3) = (3 ln 2)23x

c. y′ =
d
dx

[log10 cos x] = −sin x
(ln 10)cos x

= −
1

ln 10
 tan x

d. Before differentiating, rewrite the function using logarithmic properties.

 y = log3 
√x

x + 5
=

1
2

 log3 x − log3(x + 5)

 Next, apply Theorem 5.13 to differentiate the function.

  y′ =
d
dx

 [12 log3 x − log3(x + 5)]
  =

1
2(ln 3)x −

1
(ln 3)(x + 5)

  =
5 − x

2(ln 3)x(x + 5) 

REMARK These  
differentiation rules are similar 
to those for the natural  
exponential function and the 
natural logarithmic function.  
In fact, they differ only by the  
constant factors ln a and 1�ln a. 
This points out one reason why, 
for calculus, e is the most  
convenient base.

REMARK Try writing 23x  
as 8x and differentiating to see 
that you obtain the same result.
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Occasionally, an integrand involves an exponential function to a base other than e. 
When this occurs, there are two options: (1) convert to base e using the formula 
ax = e(ln a)x and then integrate, or (2) integrate directly, using the integration formula

∫ax dx = ( 1
ln a)ax + C

which follows from Theorem 5.13.

 Integrating an Exponential Function to Another Base

Find ∫2x dx.

Solution

∫2x dx =
1

ln 2
2x + C 

When the Power Rule, Dx [xn] = nxn−1, was introduced in Chapter 2, the exponent 
n was required to be a rational number. Now the rule is extended to cover any real value 
of n. Try to prove this theorem using logarithmic differentiation.

THEOREM 5.14 The Power Rule for Real Exponents

Let n be any real number, and let u be a differentiable function of x.

1. 
d
dx

 [xn] = nxn−1 2. 
d
dx

 [un] = nun−1 
du
dx

The next example compares the derivatives of four types of functions. Each  
function uses a different differentiation formula, depending on whether the base and the 
exponent are constants or variables.

 Comparing Variables and Constants

a. 
d
dx

[ee] = 0 Constant Rule

b. 
d
dx

[ex] = ex Exponential Rule

c. 
d
dx

[xe] = exe−1 Power Rule

d.  y = xx Use logarithmic differentiation.

  ln y = ln xx

  ln y = x ln x

  
y′
y
= x(1x) + (ln x)(1)

  
y′
y
= 1 + ln x

  y′ = y(1 + ln x)
  y′ = xx(1 + ln x) 

REMARK Be sure you  
see that there is no simple  
differentiation rule for calculating 
the derivative of y = xx. In  
general, when y = u(x)v(x),  
you need to use logarithmic  
differentiation.
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Applications of Exponential Functions
An amount of P dollars is deposited in an account at an annual n A

1 $1080.00

2 $1081.60

4 $1082.43

12 $1083.00

365 $1083.28

 
interest rate r (in decimal form). What is the balance in the 
account at the end of 1 year? The answer depends on the  
number of times n the interest is  compounded according to the  
formula

A = P(1 +
r
n)

n

.

For instance, the result for a deposit of $1000 at 8% interest  
compounded n times a year is shown in the table at the right. 

As n increases, the balance A approaches a limit. To  
develop this limit, use the next theorem. To test the  
reasonableness of this theorem, try evaluating

(x + 1
x )

x

for several values of x, as shown in the table at the left. 

THEOREM 5.15 A Limit Involving e

lim
x→∞

 (1 +
1
x)

x

= lim
x→∞

 (x + 1
x )

x

= e

A proof of this theorem is given in Appendix A.

Given Theorem 5.15, take another look at the formula for the balance A in an 
account in which the interest is compounded n times per year. By taking the limit as n  
ap proaches infinity, you obtain

 A = lim
n→∞

 P(1 +
r
n)

n

 Take limit as n→∞.

 = P lim
n→∞

 [(1 +
1

n�r)
n�r

]
r

 Rewrite.

 = P[ lim
x→∞

 (1 +
1
x)

x

]
r

 Let x = n�r. Then x→∞ as n→∞.

 = Per. Apply Theorem 5.15.

This limit produces the balance after 1 year of continuous compounding. So, for a 
deposit of $1000 at 8% interest compounded continuously, the balance at the end of 
1 year would be

A = 1000e0.08 ≈ $1083.29.

SUMMARY OF COMPOUND INTEREST FORMULAS

Let P = amount of deposit, t = number of years, A = balance after t years, 
r = annual interest rate (in decimal form), and n = number of compoundings 
per year.

1. Compounded n times per year: A = P(1 +
r
n)

nt

2. Compounded continuously: A = Pert

x (x + 1
x )

x

10 2.59374

100 2.70481

1000 2.71692

10,000 2.71815

100,000 2.71827

1,000,000 2.71828
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 Continuous, Quarterly, and Monthly Compounding

See LarsonCalculus.com for an interactive version of this type of example.

A deposit of $2500 is made in an account that pays an annual interest rate of 5%. 
Find the balance in the account at the end of 5 years when the interest is compounded  
(a) quarterly, (b) monthly, and (c) continuously.

Solution

a.  A = P (1 +
r
n)

nt

 Compounded quarterly

  = 2500 (1 +
0.05

4 )
4(5)

  = 2500(1.0125)20

  = $3205.09

b.   A = P(1 +
r
n)

nt

 Compounded monthly

  = 2500 (1 +
0.05
12 )

12(5)

  ≈ 2500(1.0041667)60

  = $3208.40

c.   A = Pert Compounded continuously

  = 2500 [e0.05(5)]
  = 2500e0.25

  = $3210.06

 Bacterial Culture Growth

A bacterial culture is growing according to the logistic growth function

y =
1.25

1 + 0.25e−0.4t, t ≥ 0

where y is the weight of the culture in grams and t is the time in hours. Find the weight 
of the culture after (a) 0 hours, (b) 1 hour, and (c) 10 hours. (d) What is the limit as t
approaches infinity?

Solution

a. When t = 0,  y =
1.25

1 + 0.25e−0.4(0)

  = 1 gram.

b. When t = 1,  y =
1.25

1 + 0.25e−0.4(1)

  ≈ 1.071 grams.

c. When t = 10, y =
1.25

1 + 0.25e−0.4(10)

  ≈ 1.244 grams.

d. Taking the limit as t approaches infinity, you obtain

lim
t→∞

 
1.25

1 + 0.25e−0.4t =
1.25

1 + 0
= 1.25 grams.

 The graph of the function is shown in Figure 5.22. 
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 (
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Time (in hours)

1 2 3 4 5 7 8 9 106

1.05

1.00

1.10

1.15

1.20

1.25

t

y

y = 1.25
1 + 0.25e−0.4t

The limit of the weight of the culture 
as t→∞ is 1.25 grams.
Figure 5.22
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5.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Derivatives for Bases Other than e What are the 

values of a and b?

 
d
dx

[64x] = a(ln b)64x

2.  Integration for Bases Other than e What are 
two options for finding the indefinite integral below?

 ∫ 5t dt

3.  Logarithmic Differentiation Explain when it is 
necessary to use logarithmic differentiation to find the 
derivative of an exponential function.

4.  Compound Interest Formulas Explain how to 
choose which compound interest formula to use to find 
the balance of a deposit.

Evaluating a Logarithmic Expression In Exercises 5–10, 
evaluate the expression without using a  calculator.

 5. log2 
1
8  6. log3 81

 7. log7 1  8. loga 
1
a

 9. log64 32 10. log27 
1
9

Exponential and Logarithmic Forms of Equations In 
Exercises 11–14, write the exponential equation as a logarithmic 
equation or vice versa.

11. (a) 23 = 8 12. (a) 272�3 = 9

 (b) 3−1 = 1
3  (b) 163�4 = 8

13. (a) log10 0.01 = −2 14. (a) log3 
1
9 = −2

 (b) log0.5 8 = −3  (b) 491�2 = 7

Sketching a Graph In Exercises 15–20, sketch the graph 
of the function.

15. y = 2x 16. y = 4x−1

17. y = (1
3)

x
 18. y = 2x2

19. h(x) = 5x−2 20. y = 3−∣x∣

Solving an Equation In Exercises 21–26, solve for x.

21. (a) log10 1000 = x 22. (a) log3 
1
81 = x

 (b) log10 0.1 = x  (b) log6 36 = x

23. (a) log3 x = −1 24. (a) log4 x = −2

 (b) log2 x = −4  (b) log5 x = 3

25. (a) x2 − x = log5 25 

 (b) 3x + 5 = log2 64

26. (a) log3 x + log3(x − 2) = 1

 (b) log10(x + 3) − log10 x = 1

 Solving an Equation In Exercises 27–36, solve 
the equation accurate to three decimal places.

27. 32x = 75 28. 6−2x = 74

29. 23−z = 625 30. 3(5x−1) = 86

31. (1 +
0.09
12 )

12t

= 3 32. (1 +
0.10
365 )

365t

= 2

33. log2(x − 1) = 5 34. log10(t − 3) = 2.6

35. log7 x
3 = 1.9 36. log5√x − 4 = 3.2

Inverse Functions In Exercises 37 and 38, illustrate that 
the functions are inverse functions of each other by sketching 
their graphs on the same set of coordinate axes.

37. f (x) = 4x 38. f (x) = 3x

 g(x) = log4 x  g(x) = log3 x

 Finding a Derivative In Exercises 39–60, find 
the derivative of the function.

39. f (x) = 4x 40. f (x) = 34x

41. y = 5−4x 42. y = 63x−4

43. f (x) = x 9x 44. y = −7x(8−2x)

45. f (t) = −2t2

8t  46. f (t) = 32t

t

47. h(θ) = 2−θ cos πθ 48. g(α) = 5−α�2 sin 2α

49. y = log4 (6x + 1) 50. y = log3(x2 − 3x)
51. h(t) = log5(4 − t)2 52. g(t) = log2(t2 + 7)3

53. y = log5 √x2 − 1 54. f (x) = log2
3√2x + 1

55. f (x) = log2 
x2

x − 1
 56. y = log10 

x2 − 1
x

57. h(x) = log3 
x√x − 1

2
 58. g(x) = log5 

4

x2√1 − x

59. g(t) = 10 log4 t
t

60. f (t) = t 3�2 log2 √t + 1

Finding an Equation of a Tangent Line In Exercises 
61–64, find an equation of the tangent line to the graph of the 
function at the given point.

61. y = 2−x, (−1, 2) 62. y = 5x−2, (2, 1)
63. y = log3 x, (27, 3) 64. y = log10 2x, (5, 1)

 Logarithmic Differentiation In Exercises 
65–68, use logarithmic differentiation to find 
dy�dx.

65. y = x2�x 66. y = xx−1

67. y = (x − 2)x+1 68. y = (1 + x)1�x
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 Finding an Indefinite Integral In Exercises 
69–76, find the indefinite integral.

69. ∫ 3x dx 70. ∫ 2−x dx

71. ∫ (x2 + 2−x) dx 72. ∫(x4 + 5x) dx

73. ∫ 

x(5−x2) dx 74. ∫ (4 − x)6(4−x)2 dx

75. ∫ 
32x

1 + 32x dx 76. ∫ 2sin x cos x dx

Evaluating a Definite Integral In Exercises 77–80, 
evaluate the definite integral. Use a graphing utility to verify 
your result.

77. ∫2

−1
 2x dx 78. ∫4

−4
3x�4 dx

79. ∫1

0
 (5x − 3x) dx 80. ∫3

1
 (4x+1 + 2x) dx

Area In Exercises 81 and 82, find the area of the region 
bounded by the graphs of the equations. Use a graphing utility 
to verify your result.

81. y =
log4 x

x
, y = 0, x = 1, x = 5

82. y = 3cos x sin x, y = 0, x = 0, x = π

EXPLORING CONCEPTS
83.  Exponential Function What happens to the rate 

of change of the exponential function y = ax as a
becomes larger?

84.  Logarithmic Function What happens to the rate 
of change of the logarithmic function y = loga x as a
becomes larger?

85.  Analyzing a Logarithmic Equation  Consider the 
function f (x) = log10 x.

 (a) What is the domain of f ?

 (b) Find f −1.

 (c)  Let x be a real number between 1000 and 10,000. 
Determine the interval in which f (x) will be found.

 (d)  Determine the interval in which x will be found if f (x) is 
negative.

 (e)  When f (x) is increased by one unit, x must have been 
increased by what factor?

 (f)  Find the ratio of x1 to x2 given that f (x1) = 3n and 
f (x2) = n.

86. Comparing Rates of Growth Order the functions

 f (x) = log2 x, g(x) = xx, h(x) = x2, and k(x) = 2x

  from the one with the greatest rate of growth to the one with 
the least rate of growth for large values of x.

87.  Inflation When the annual rate of inflation averages 5% 
over the next 10 years, the approximate cost C of goods or 
services during any year in that decade is

 C(t) = P(1.05)t

 where t is the time in years and P is the present cost.

 (a)  The price of an oil change for your car is presently $24.95. 
Estimate the price 10 years from now.

 (b)  Find the rates of change of C with respect to t when t = 1 
and t = 8.

 (c)  Verify that the rate of change of C is proportional to C. 
What is the constant of proportionality?

88.  Depreciation After t years, the value of a car purchased 
for $25,000 is

 V(t) = 25,000(3
4)

t
.

 (a)  Use a graphing utility to graph the function and determine 
the value of the car 2 years after it was purchased.

 (b)  Find the rates of change of V with respect to t when t = 1 
and t = 4.

 (c)  Use a graphing utility to graph V′(t) and determine the  
horizontal asymptote of V′(t). Interpret its meaning in the 
context of the problem.

 Compound Interest In Exercises 89–92, 
complete the table by determining the balance 
A for P dollars invested at rate r for t years and 
compounded n times per year.

 
n 1 2 4 12 365 Continuous Compounding

A

89. P = $1000 90. P = $2500

 r = 31
2%  r = 6%

 t = 10 years  t = 20  years

91. P = $7500 92. P = $4000

 r = 4.8%  r = 4%

 t = 30 years  t = 15 years

Compound Interest In Exercises 93–96, complete the 
table by determining the amount of money P (present value) 
that should be invested at rate r to produce a balance of 
$100,000 in t years.

t 1 10 20 30 40 50

P

93. r = 4% 94. r = 0.6%

 Compounded continuously  Compounded continuously

95. r = 5% 96. r = 2%

 Compounded monthly  Compounded daily
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 97.  Compound Interest Assume that you can earn 6% on 
an investment, compounded daily. Which of the following 
options would yield the greatest balance after 8 years?

  (a)  $20,000 now  (b)  $30,000 after 8 years

  (c)  $8000 now and $20,000 after 4 years

  (d) $9000 now, $9000 after 4 years, and $9000 after 8 years

 98.  Compound Interest Consider a deposit of $100 placed 
in an account for 20 years at r% compounded continuously. 
Use a graphing utility to graph the exponential functions 
describing the growth of the investment over the 20 years for 
the following interest rates. Compare the ending balances. 

  (a) r = 3%  (b) r = 5%  (c) r = 6% 

 99.  Timber Yield The yield V (in millions of cubic feet per 
acre) for a stand of timber at age t is V = 6.7e−48.1�t, where 
t is measured in years.

  (a)  Find the limiting volume of wood per acre as t approaches 
infinity.

  (b)  Find the rates at which the yield is changing when t = 20 
and t = 60.

 100.  HOW DO YOU SEE IT? The graph shows 
the proportion P of correct responses after n 
trials in a group project in learning theory.

Pr
op

or
tio

n 
of

co
rr

ec
t r

es
po

ns
es

Trials

n

P

2 4 6 8 10 12 14 16 18 20

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P = 0.86
1 + e−0.25n

(a)  What is the limiting proportion of correct 
responses as n approaches infinity?

(b)  What happens to the rate of change of the 
proportion in the long run?

100.  

101.  Population Growth A lake is stocked with 500 fish, 
and the population p is growing according to the logistic curve

  p(t) = 10,000
1 + 19e−t�5

  where t is measured in months.

  (a) Use a graphing utility to graph the function.

  (b)  Find the fish populations after 6 months, 12 months,  
24 months, 36 months, and 48 months. What is the 
limiting size of the fish population?

  (c)  Find the rates at which the fish population is changing 
after 1 month and after 10 months.

  (d)  After how many months is the population increasing 
most rapidly?

103.  Comparing Models The total numbers y of AIDS cases 
by year of diagnosis in Canada for the years 2005 through 
2014 are shown in the table, with x = 5 corresponding to 
2005. (Source: Public Health Agency of Canada)

x 5 6 7 8 9

y 434 398 371 367 296

x 10 11 12 13 14

y 276 234 223 226 188

  (a)  Use the regression capabilities of a graphing utility to 
find the following models for the data.

   y1 = ax + b

   y2 = a + b ln x

   y3 = abx

   y4 = axb

  (b)  Use a graphing utility to plot the data and graph each of 
the models. Which model do you think best fits the data?

  (c)  Find the rate of change of each of the models in part 
(a) for the year 2012. Which model is decreasing at the 
greatest rate in 2012?

104.  An Approximation of e Complete the table to  
demonstrate that e can also be defined as

  lim
x→0+

 (1 + x)1�x.

  
x 1 10−1 10−2 10−4 10−6

(1 + x)1�x

The breaking strengths B (in tons) of steel cables of various 
diameters d (in inches) are shown in the table.

d 0.50 0.75 1.00 1.25 1.50 1.75

B 9.85 21.8 38.3 59.2 84.4 114.0

(a)  Use the regression 
capabilities of a 
graphing utility to 
fit an exponential 
model to the data.

(b)  Use a graphing  
utility to plot the 
data and graph the 
model.

(c)  Find the rates of  
growth of the model when d = 0.8 and d = 1.5.

102. Modeling Data

pidjoe/iStock/Getty Images
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Modeling Data In Exercises 105 and 106, find an 
exponential function that fits the experimental data collected 
over time t. 

105. 
t 0 1 2 3 4

y 1200.00 720.00 432.00 259.20 155.52

106. 
t 0 1 2 3 4

y 600.00 630.00 661.50 694.58 729.30

Using Properties of Exponents In Exercises 107–110, 
find the exact value of the expression.

107. 51�ln 5 108. 6(ln 10)�ln 6

109. 91�ln 3 110. 321�ln 2

111. Comparing Functions

  (a) Show that (23)2 ≠ 2(32).

  (b)  Are

  f (x) = (xx)x and g(x) = x(x
x)

   the same function? Why or why not?

  (c) Find f ′(x) and g′(x).
112. Finding an Inverse Function Let

   f (x) = ax − 1
ax + 1

   for a > 0, a ≠ 1. Show that f  has an inverse function. Then 
find f−1.

113.  Logistic Differential Equation Show that solving the 
logistic differential equation

  
dy
dt

=
8
25

y(54 − y), y(0) = 1

  results in the logistic growth function in Example 7.

  [Hint: 
1

y(5
4
− y) =

4
5(1

y
+

1
5
4
− y)]

114.  Using Properties of Exponents Given the exponential 
function f (x) = ax, show that

  (a) f (u + v) = f (u) ∙ f (v).
  (b) f (2x) = [ f (x)]2.

115. Tangent Lines

  (a) Determine y′ given yx = xy.

  (b)  Find the slope of the tangent line to the graph of yx = xy 
at each of the following points.

  (i) (c, c)  (ii) (2, 4)  (iii) (4, 2)
  (c)  At what points on the graph of yx = xy does the tangent 

line not exist?

PUTNAM EXAM CHALLENGE
116.  Which is greater

  (√n)√n+1 or (√n + 1)√n

  where n > 8?

117.  Show that if x is positive, then

  loge (1 +
1
x) >

1
1 + x

.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

Let f (x) = {∣x∣x,    1,
x ≠ 0
x = 0.

(a)  Use a graphing utility to graph f  in the viewing window 
−3 ≤ x ≤ 3, −2 ≤ y ≤ 2. What is the domain of f ?

(b)  Use the zoom and trace features of a graphing utility to  
estimate

 lim
x→0

 f (x).

(c)  Write a short paragraph explaining why the function f  is  
continuous for all real numbers.

(d) Visually estimate the slope of f  at the point (0, 1).
(e)  Explain why the derivative of a function can be approxi mated 

by the formula

 
f (x + ∆x) − f (x − ∆x)

2∆x

  for small values of ∆x. Use this formula to approximate the 
slope of f  at the point (0, 1).

   f ′(0) ≈  f(0 + ∆x) − f (0 − ∆x)
2∆x

  =
 f (∆x) − f (−∆x)

2∆x

 What do you think the slope of the graph of f  is at (0, 1)?
(f)  Find a formula for the derivative of f  and determine f ′(0). 

Write a short paragraph explaining how a graphing utility 
might lead you to approximate the slope of a graph incorrectly.

(g)  Use your formula for the derivative of f  to find the relative 
extrema of f. Verify your answer using a graphing utility.

Using Graphing Utilities to Estimate Slope

 FOR FURTHER INFORMATION For more information 
on using graphing utilities to estimate slope, see the article 
“Computer-Aided Delusions” by Richard L. Hall in The College 
Mathematics Journal. To view this article, go to MathArticles.com.
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5.6 Indeterminate Forms and L’Hôpital’s Rule

 Recognize limits that produce indeterminate forms.
 Apply L’Hôpital’s Rule to evaluate a limit.

Indeterminate Forms
Recall from Chapters 1 and 3 that the forms 0�0 and ∞�∞ are called indeterminate 
because they do not guarantee that a limit exists, nor do they indicate what the limit is, 
if one does exist. When you encountered one of these indeterminate forms earlier in 
the text, you attempted to rewrite the expression by using various algebraic techniques.

 Indeterminate
 Form Limit Algebraic Technique

0
0

  lim
x→−1

 
2x2 − 2
x + 1

= lim
x→−1

 2(x − 1) Divide numerator and
denominator by (x + 1).

  = −4

∞
∞  lim

x→∞
 
3x2 − 1
2x2 + 1

= lim
x→∞

 
3 − (1�x2)
2 + (1�x2) 

Divide numerator and
denominator by x2.

  =
3
2

Occasionally, you can extend these algebraic techniques to find limits of 
transcendental functions. For instance, the limit

lim
x→0

 
e2x − 1
ex − 1

produces the indeterminate form 0�0. Factoring and then dividing produces

 lim
x→0

 
e2x − 1
ex − 1

= lim
x→0

 
(ex + 1)(ex − 1)

ex − 1

 = lim
x→0

 (ex + 1)

 = 2.

Not all indeterminate forms, however, can be evaluated by algebraic manipulation. 
This is often true when both algebraic and transcendental functions are involved. For 
instance, the limit

lim
x→0

 
e2x − 1

x

produces the indeterminate form 0�0. Rewriting the expression to obtain

lim
x→0

 (e
2x

x
−

1
x)

merely produces another indeterminate form, ∞ − ∞. Of course, you could use 
technology to estimate the limit, as shown in the table and in Figure 5.23. From the 
table and the graph, the limit appears to be 2. (This limit will be verified in Example 1.)

x −1 −0.1 −0.01 −0.001 0 0.001 0.01 0.1 1

e2x − 1
x

0.865 1.813 1.980 1.998 ? 2.002 2.020 2.214 6.389

x

e2x − 1
x

y =

y

−1−2−3−4 1 2 3 4

2

3

4

5

6

7

8

The limit as x approaches 0 appears to 
be 2.
Figure 5.23
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L’Hôpital’s Rule
To find the limit illustrated in Figure 5.23, you can use a theorem called L’Hôpital’s 
Rule. This theorem states that under certain conditions, the limit of the quotient 
f (x)�g(x) is determined by the limit of the quotient of the derivatives

f ′(x)
g′(x).

To prove this theorem, you can use a more general result called the Extended Mean 
Value Theorem.

THEOREM 5.16 The Extended Mean Value Theorem

If f  and g are differentiable on an open interval (a, b) and continuous on [a, b] 
such that g′(x) ≠ 0 for any x in (a, b), then there exists a point c in (a, b) such 
that

f ′(c)
g′(c) =

f (b) − f (a)
g(b) − g(a).

A proof of this theorem is given in Appendix A.

To see why Theorem 5.16 is called the Extended Mean Value Theorem, consider 
the special case in which g(x) = x. For this case, you obtain the “standard” Mean Value 
Theorem as presented in Section 3.2.

THEOREM 5.17 L’Hôpital’s Rule

Let f  and g be functions that are differentiable on an open interval (a, b) 
containing c, except possibly at c itself. Assume that g′(x) ≠ 0 for all x in 
(a, b), except possibly at c itself. If the limit of f (x)�g(x) as x approaches c 
produces the indeterminate form 0�0, then

lim
x→c

 
f (x)
g(x) = lim

x→c
 
f ′(x)
g′(x)

provided the limit on the right exists (or is infinite). This result also applies 
when the limit of f (x)�g(x) as x approaches c produces any one  
of the indeterminate forms ∞�∞, (−∞)�∞, ∞�(−∞),  
or (−∞)�(−∞). 
A proof of this theorem is given in Appendix A.

People occasionally use L’Hôpital’s Rule incorrectly by applying the Quotient 
Rule to f (x)�g(x). Be sure you see that the rule involves

f ′(x)
g′(x)

not the derivative of f (x)�g(x).
L’Hôpital’s Rule can also be applied to one-sided limits. For instance, if the 

limit of f (x)�g(x) as x approaches c from the right produces the indeterminate form  
0�0, then

lim
x→c+

 
f (x)
g(x) = lim

x→c+
 
f ′(x)
g′(x)

provided the limit exists (or is infinite).

 FOR FURTHER INFORMATION
To enhance your understanding of 
the necessity of the restriction that 
g′(x) be nonzero for all x in (a, b), 
except possibly at c, see the article 
“Counterexamples to L’Hôpital’s 
Rule” by R. P. Boas in The 
American Mathematical Monthly. 
To view this article,  
go to MathArticles.com.

GUILLAUME L’HÔPITAL 
(1661–1704)

L’Hôpital’s Rule is named after 
the French mathematician 
Guillaume François Antoine de 
L’Hôpital. L’Hôpital is credited 
with writing the first text on 
differential calculus (in 1696) 
in which the rule publicly 
appeared. It was recently 
discovered that the rule and 
its proof were written in a 
letter from John Bernoulli to 
L’Hôpital. “… I acknowledge 
that I owe very much to the 
bright minds of the Bernoulli 
brothers. … I have made free 
use of their discoveries …,” 
said L’Hôpital.  
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection
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 Indeterminate Form 0�0

Evaluate lim
x→0

 
e2x − 1

x
.

Solution Because direct substitution results in the indeterminate form 0�0

 lim
x→0

 (e2x − 1) = 0

lim
x→0

 
e2x − 1

x
 lim

x→0
 x = 0

you can apply L’Hôpital’s Rule, as shown below.

 lim
x→0

 
e2x − 1

x
= lim

x→0
 

d
dx

[e2x − 1]

d
dx

[x]
 Apply L’Hôpital’s Rule.

 = lim
x→0

 
2e2x

1
 Differentiate numerator and denominator.

 = 2 Evaluate the limit. 

In the solution to Example 1, note that you actually do not know that the first limit 
is equal to the second limit until you have shown that the second limit exists. In other 
words, if the second limit had not existed, then it would not have been permissible to 
apply L’Hôpital’s Rule.

Another form of L’Hôpital’s Rule states that if the limit of f (x)�g(x) as x approaches 
∞ (or −∞) produces the indeterminate form 0�0 or ∞�∞, then

lim
x→∞

 
f (x)
g(x) = lim

x→∞
 
f ′(x)
g′(x)

provided the limit on the right exists.

 Indeterminate Form ∞�∞

Evaluate lim
x→∞

 
ln x

x
.

Solution Because direct substitution results in the indeterminate form ∞�∞, you 
can apply L’Hôpital’s Rule to obtain

 lim
x→∞

 
ln x

x
= lim

x→∞
 

d
dx

[ln x]

d
dx

[x]
 Apply L’Hôpital’s Rule.

 = lim
x→∞

 
1
x
 Differentiate numerator and denominator.

 = 0. Evaluate the limit. 

TECHNOLOGY Use a graphing utility to graph y1 = ln x and y2 = x in the 
same viewing window. Which function grows faster as x approaches ∞? How is this 
observation related to Example 2?

Exploration
Numerical and Graphical 
Approaches Use a 
numerical or a graphical 
approach to approximate 
each limit.

a. lim
x→0

 
22x − 1

x

b. lim
x→0

 
32x − 1

x

c. lim
x→0

 
42x − 1

x

d. lim
x→0

 
52x − 1

x

What pattern do you observe?
Does an analytic approach 
have an advantage for 
determining these limits? If 
so, explain your reasoning.
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Occasionally it is necessary to apply L’Hôpital’s Rule more than once to remove 
an indeterminate form, as shown in Example 3.

 Applying L’Hôpital’s Rule More than Once

Evaluate lim
x→−∞

 
x2

e−x.

Solution Because direct substitution results in the indeterminate form ∞�∞, you 
can apply L’Hôpital’s Rule.

lim
x→−∞

 
x2

e−x = lim
x→−∞

 

d
dx

[x2]

d
dx

[e−x]
= lim

x→−∞
 

2x
−e−x

This limit yields the indeterminate form (−∞)�(−∞), so you can apply L’Hôpital’s 
Rule again to obtain

lim
x→−∞

 
2x

−e−x = lim
x→−∞

 

d
dx

[2x]

d
dx

[−e−x]
= lim

x→−∞
 

2
e−x = 0. 

In addition to the forms 0�0 and ∞�∞, there are other indeterminate forms such as 
0 ∙ ∞, 1∞, ∞0, 00, and ∞ − ∞. For example, consider the following four limits that 
lead to the indeterminate form 0 ∙ ∞.

lim
x→0

 (1x)(x),  lim
x→0

 (2x)(x),  lim
x→∞

 ( 1
ex)(x),  lim

x→∞
 (1x)(ex)

 Limit is 1. Limit is 2. Limit is 0. Limit is ∞.

Because each limit is different, it is clear that the form 0 ∙ ∞ is indeterminate in the 
sense that it does not determine the value (or even the existence) of the limit. The 
remaining examples in this section show methods for evaluating these forms. Basically, 
you attempt to convert each of these forms to 0�0 or ∞�∞ so that L’Hôpital’s Rule 
can be applied.

 Indeterminate Form 0 ∙∞
Evaluate lim

x→∞
 e−x√x.

Solution Because direct substitution produces the indeterminate form 0 ∙ ∞, you 
should try to rewrite the limit to fit the form 0�0 or ∞�∞. In this case, you can rewrite 
the limit to fit the second form.

lim
x→∞

 e−x√x = lim
x→∞

 
√x
ex

Now, by L’Hôpital’s Rule, you have

 lim
x→∞

 
√x
ex = lim

x→∞
 
1�(2√x)

ex  Differentiate numerator and denominator.

 = lim
x→∞

 
1

2√xex
 Simplify.

 = 0. Evaluate the limit. 

 FOR FURTHER INFORMATION
To read about the connection 
between Leonhard Euler and 
Guillaume L’Hôpital, see the  
article “When Euler Met 
l’Hôpital” by William Dunham in 
Mathematics Magazine. To  
view this article, go to 
MathArticles.com.
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When rewriting a limit in one of the forms 0�0 or ∞�∞ does not seem to work, 
try the other form. For instance, in Example 4, you can write the limit as

lim
x→∞

 e−x√x = lim
x→∞

 
e−x

x−1�2

which yields the indeterminate form 0�0. As it happens, applying L’Hôpital’s Rule to 
this limit produces

lim
x→∞

 
e−x

x−1�2 = lim
x→∞

 
−e−x

−1�(2x3�2)

which also yields the indeterminate form 0�0.
The indeterminate forms 1∞, ∞0, and 00 arise from limits of functions that have 

variable bases and variable exponents. When you previously encountered this type of 
function, you used logarithmic differentiation to find the derivative. You can use a 
similar procedure when taking limits, as shown in the next example.

 Indeterminate Form 1∞

Evaluate lim
x→∞

 (1 +
1
x)

x

.

Solution Because direct substitution yields the indeterminate form 1∞, you can  
proceed as follows. To begin, assume that the limit exists and is equal to y.

y = lim
x→∞

 (1 +
1
x)

x

Taking the natural logarithm of each side produces

ln y = ln[ lim
x→∞

 (1 +
1
x)

x

].
Because the natural logarithmic function is continuous, you can write

 ln y = lim
x→∞

 [x ln(1 +
1
x)] Indeterminate form ∞ ∙ 0

 = lim
x→∞

 (ln[1 + (1�x)]
1�x ) Indeterminate form 0�0

 = lim
x→∞

 ((−1�x2){1�[1 + (1�x)]}
−1�x2 ) L’Hôpital’s Rule

 = lim
x→∞

 
1

1 + (1�x)
 = 1.

Now, because you have shown that 

8

−1

−1

5

1
x

y =   1 +
x( (

The limit of [1 + (1�x)]x as x 
approaches infinity is e.
Figure 5.24 

ln y = 1

you can conclude that

y = e

and obtain

lim
x→∞

 (1 +
1
x)

x

= e.

You can use a graphing utility to confirm this  
result, as shown in Figure 5.24.

REMARK Note that the 
solution to Example 5 is an 
alternate proof of Theorem 5.15.
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L’Hôpital’s Rule can also be applied to one-sided limits, as demonstrated in 
Examples 6 and 7.

 Indeterminate Form 00

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate lim
x→0+

 (sin x)x.

Solution Because direct substitution produces the indeterminate form 00, you can 
proceed as shown below. To begin, assume that the limit exists and is equal to y.

 y = lim
x→0+

 (sin x)x Indeterminate form 00

 ln y = ln[ lim
x→0+

 (sin x)x] Take natural log of each side.

 = lim
x→0+

 [ln(sin x)x] Continuity

 = lim
x→0+

 [x ln(sin x)] Indeterminate form 0 ∙ (−∞)

 = lim
x→0+

 
ln(sin x)

1�x
 Indeterminate form −∞�∞

 = lim
x→0+

 
cot x
−1�x2 L’Hôpital’s Rule

 = lim
x→0+

 
−x2

tan x
 Indeterminate form 0�0

 = lim
x→0+

 
−2x
sec2 x

 L’Hôpital’s Rule

 = 0

Now, because ln y = 0, you can conclude that y = e0 = 1, and it follows that

lim
x→0+

 (sin x)x = 1. 

TECHNOLOGY When evaluating complicated limits such as the one in 
Example 6, it is helpful to check the reasonableness of the solution with a graphing 
utility. For instance, the calculations in the table and the graph in the figure (see 
below) are consistent with the conclusion that (sin x)x approaches 1 as x approaches 
0 from the right.

x 1 0.1 0.01 0.001 0.0001 0.00001

(sin x)x 0.8415 0.7942 0.9550 0.9931 0.9991 0.9999

2

−1

−1

2
y = (sin x)x

  The limit of (sin x)x is 1 as x  
approaches 0 from the right.

Use a graphing utility to estimate the limits lim
x→0

 (1 − cos x)x and lim
x→0+

 (tan x)x. Then 
try to verify your estimates analytically.
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 Indeterminate Form ∞−∞

Evaluate lim
x→1+

 ( 1
ln x

−
1

x − 1).
Solution Because direct substitution yields the indeterminate form ∞ − ∞, 
you should try to rewrite the expression to produce a form to which you can apply 
L’Hôpital’s Rule. In this case, you can combine the two fractions to obtain

lim
x→1+

 ( 1
ln x

−
1

x − 1) = lim
x→1+ 

 
x − 1 − ln x
(x − 1) ln x

.

Now, because direct substitution produces the indeterminate form 0�0, you can apply 
L’Hôpital’s Rule to obtain

lim
x→1+

 
x − 1 − ln x
(x − 1) ln x

= lim
x→1+ 

d
dx

[x − 1 − ln x]

d
dx

[(x − 1) ln x]

 = lim
x→1+

 
1 − (1�x)

(x − 1)(1�x) + ln x

 = lim
x→1+

 
x − 1

x − 1 + x ln x
.

This limit also yields the indeterminate form 0�0, so you can apply L’Hôpital’s Rule 
again to obtain

lim
x→1+

 
x − 1

x − 1 + x ln x
= lim

x→1+
 

1
1 + x(1�x) + ln x

=
1
2

.

You can check the reasonableness of this solution using a table, as shown at the left.

The forms 0�0, ∞�∞, ∞ − ∞, 0 ∙ ∞, 00, 1∞, and ∞0 have been identified as 
indeterminate. There are similar forms that you should recognize as “determinate.”

 ∞ + ∞ →  ∞ Limit is positive infinity.

 −∞ − ∞ →  −∞ Limit is negative infinity.

 0∞ →  0 Limit is zero.

 0−∞ →  ∞ Limit is positive infinity.

As a final comment, remember that L’Hôpital’s Rule can be applied only 
to quotients leading to the indeterminate forms 0�0 and ∞�∞. For instance, the 
application of L’Hôpital’s Rule shown below is incorrect.

lim
x→0

 
ex

x
= lim

x→0
 
ex

1
= 1 Incorrect use of L’Hôpital’s Rule

The reason this application is incorrect is that, even though the limit of the denominator 
is 0, the limit of the numerator is 1, which means that the hypotheses of L’Hôpital’s 
Rule have not been satisfied.

Exploration
In each of the examples presented in this section, L’Hôpital’s Rule is used to 
find a limit that exists. It can also be used to conclude that a limit is infinite. 
For instance, try using L’Hôpital’s Rule to show that lim

x→∞
 ex�x = ∞.

x
1

ln x
−

1
x − 1

2 0.44270

1.5 0.46630

1.1 0.49206

1.01 0.49917

1.001 0.49992

1.0001 0.49999

1.00001 0.50000

REMARK You are asked 
to verify the last two forms in 
Exercises 110 and 111.
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5.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  L’Hopital’s Rule Explain the benefit of L’Hôpital’s 

Rule. 

2.  Indeterminate Forms For each limit, use direct 
substitution. Then identify the form of the limit as either 
indeterminate or not.

 (a) lim
x→0

 
x2

sin 2x
 (b) lim

x→∞
 (ex + x2)

(c) lim
x→∞

 (ln x − ex) (d) lim
x→0+

 (ln x2 −
1
x)

Numerical and Graphical Analysis In Exercises 3–6, 
complete the table and use the result to estimate the limit. Use 
a graphing utility to graph the function to confirm your result.

 3. lim
x→0

 
sin 4x
sin 3x

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

 4. lim
x→0

 
1 − ex

x

 
x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

 5. lim
x→∞

 x5e−x�100

 
x 1 10 102 103 104 105

f (x)

 6. lim
x→∞

 
6x

√3x2 − 2x

 
x 1 10 102 103 104 105

f (x)

 Using Two Methods In Exercises 7–14, 
evaluate the limit (a) using techniques from 
Chapters 1 and 3 and (b) using L’Hôpital’s Rule.

 7. lim
x→4

 
3(x − 4)
x2 − 16

  8. lim
x→−4

 
2x2 + 13x + 20

x + 4

 9. lim
x→6

 
√x + 10 − 4

x − 6
 10. lim

x→−1
 (1 − √x + 2

x + 1 )
11. lim

x→0
 (2 − 2 cos x

6x ) 12. lim
x→0

 
sin 6x

4x

13. lim
x→∞

 
5x2 − 3x + 1

3x2 − 5
 14. lim

x→∞
 
x3 + 2x
4 − x

 Evaluating a Limit In Exercises 15–42, evaluate 
the limit, using L’Hôpital’s Rule if necessary. 

15. lim
x→3

 
x2 − 2x − 3

x − 3
 16. lim

x→−2
 
x2 − 3x − 10

x + 2

17. lim
x→0

 
√25 − x2 − 5

x
 18. lim

x→5−
 
√25 − x2

x − 5

19. lim
x→0+

 
ex − (1 + x)

x3  20. lim
x→1

 
ln x3

x2 − 1

21. lim
x→1

 
x11 − 1
x4 − 1

 22. lim
x→1

 
xa − 1
x b − 1

, where a, b ≠ 0

23. lim
x→0

 
sin 3x
sin 5x

 24. lim
x→0

 
sin ax
sin bx

, where a, b ≠ 0

25. lim
x→∞

 
7x3 − 2x + 1

6x3 + 1
 26. lim

x→∞
 
8 − x

x3

27. lim
x→∞

 
x2 + 4x + 7

x − 6
 28. lim

x→∞
 

x3

x + 2

29. lim
x→∞

 
x3

ex�2 30. lim
x→∞

 
ex2

1 − x3

31. lim
x→∞

 
x

√x2 + 1
 32. lim

x→∞
 

x2

√x2 + 1

33. lim
x→∞

 
cos x

x
 34. lim

x→∞
 

sin x
x − π

35. lim
x→∞

 
ln x
x2  36. lim

x→∞
 
ln x4

x3

37. lim
x→∞

 
ex

x4 38. lim
x→∞

 
e2x−9

3x

39. lim
x→0

 
sin 5x
tan 9x

 40. lim
x→1

 
ln x

sin πx

41. lim
x→∞

 
∫x

1 ln(e4t−1) dt

x
 42. lim

x→1+
 
∫x

1 cos θ dθ
x − 1

 Evaluating a Limit In Exercises 43–62,  
(a) describe the type of indeterminate form (if any) 
that is obtained by direct substitution. (b) Evaluate 
the limit, using L’Hôpital’s Rule if necessary.  
(c) Use a graphing utility to graph the function and 
verify the result in part (b).

43. lim
x→∞

 x ln x 44. lim
x→0+

 x3 cot x

45. lim
x→∞

 x sin 
1
x
 46. lim

x→∞
 x tan 

1
x

47. lim
x→0+

 (ex + x)2�x 48. lim
x→0+

 (1 +
1
x)

x

49. lim
x→∞

 x1�x 50. lim
x→0+

 x1�x

51. lim
x→0+

 (1 + x)1�x 52. lim
x→∞

 (1 + x)1�x
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53. lim
x→0+

 3xx�2 54. lim
x→4+

 [3(x − 4)]x−4

55. lim
x→1+

 (ln x)x−1 56. lim
x→0+

 [cos(π2 − x)]
x

57. lim
x→2+

 ( 8
x2 − 4

−
x

x − 2) 58. lim
x→2+

 ( 1
x2 − 4

−
√x − 1
x2 − 4 )

59. lim
x→1+

 ( 3
ln x

−
2

x − 1) 60. lim
x→0+

 (10
x

−
3
x2)

61. lim
x→∞

 (ex − x) 62. lim
x→∞

 (x − √x2 + 1)

EXPLORING CONCEPTS
63.  Finding Functions Find differentiable functions f  

and g that satisfy the specified condition such that

 lim
x→5

 f (x) = 0 and lim
x→5

 g(x) = 0.

Explain how you obtained your answers. (Note: There 
are many correct answers.)

(a) lim
x→5

 
f (x)
g(x) = 10 (b) lim

x→5
 
f (x)
g(x) = 0

(c) lim
x→5

 
f (x)
g(x) = ∞

64.  Finding Functions Find differentiable functions f  
and g such that

 lim
x→∞

 f (x) = lim
x→∞

 g(x) = ∞ and lim
x→∞

 [ f (x) − g(x)] = 25.

Explain how you obtained your answers. (Note: There 
are many correct answers.)

65.  L’Hôpital’s Rule Determine which of the following 
limits can be evaluated using L’Hôpital’s Rule. Explain 
your reasoning. Do not evaluate the limit.

 (a) lim
x→2

 
x − 2

x3 − x − 6
 (b) lim

x→0
 
x2 − 4x
2x − 1

(c) lim
x→∞

 
x3

ex (d) lim
x→3

 
ex2 − e9

x − 3

(e) lim
x→1

 
cos πx

ln x
 (f ) lim

x→1
 
1 + x(ln x − 1)
(x − 1) ln x

66.  HOW DO YOU SEE IT? Use the graph of 
f  to find each limit.

x

y

2

2

4

6

4 6 8

3
ln x

4
x − 1

f(x) = −

(a) lim
x→1−

 f (x)  (b) lim
x→1+

 f (x)  (c) lim
x→1

 f (x)

66.  

67.  Numerical Analysis Complete the table to show that x
eventually “overpowers” (ln x)4.

x 10 102 104 106 108 1010

(ln x)4
x

68.  Numerical Analysis Complete the table to show that ex 
eventually “overpowers” x5.

 
x 1 5 10 20 30 40 50 100

ex

x5

Comparing Functions In Exercises 69–74, use L’Hôpital’s 
Rule to determine the comparative rates of increase of the 
functions f (x) = xm, g(x) = enx, and h(x) = (ln x)n, where 
n > 0, m > 0, and x→∞.

69. lim
x→∞

 
x2

e5x 70. lim
x→∞

 
x3

e2x

71. lim
x→∞

 
(ln x)3

x
 72. lim

x→∞
 
(ln x)2

x3

73. lim
x→∞

 
(ln x)n

xm  74. lim
x→∞

 
xm

enx

Asymptotes and Relative Extrema In Exercises 75–78, 
find any asymptotes and relative extrema that may exist and 
use a graphing utility to graph the function. 

75. y = x1�x, x > 0 76. y = xx, x > 0

77. y = 2xe−x 78. y =
ln x

x

Think About It In Exercises 79–82, L’Hôpital’s Rule is 
used incorrectly. Describe the error.

79. lim
x→2

 
3x2 + 4x + 1
x2 − x − 2

= lim
x→2

 
6x + 4
2x − 1

= lim
x→2

 
6
2
= 3

80.  lim
x→0

 
e2x − 1

ex = lim
x→0

 
2e2x

ex

  = lim
x→0

 2ex

  = 2

81.  lim
x→∞

 
e−x

1 + e−x = lim
x→∞

 
−e−x

−e−x

  = lim
x→∞

 1

  = 1

82.  lim
x→∞

 x cos 
1
x
= lim

x→∞
 
cos(1�x)

1�x

  = lim
x→∞

 
[−sin(1�x)](1�x2)

−1�x2

  = lim
x→∞

 sin 
1
x

  = 0
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Analytic and Graphical Analysis In Exercises 83 and 
84, (a) explain why L’Hôpital’s Rule cannot be used to find 
the limit, (b) find the limit analytically, and (c) use a graphing 
utility to graph the function and approximate the limit from 
the graph. Compare the result with that in part (b).

83. lim
x→∞

 
x

√x2 + 1
 84. lim

x→π�2−
 
tan x
sec x

Graphical Analysis In Exercises 85 and 86, graph f (x)�g(x)
and f ′(x)�g′(x) near x = 0. What do you notice about these 
ratios as x→ 0? How does this illustrate L’Hôpital’s Rule?

85. f (x) = sin 3x, g(x) = sin 4x 86. f (x) = e3x − 1, g(x) = x

87.  Electric Circuit The diagram shows a simple electric 
circuit consisting of a power source, a resistor, and an 
inductor. If voltage V is first applied at time t = 0, then the 
current I flowing through the circuit at time t is given by 

 I =
V
R
(1 − e−Rt�L)

where L is the inductance and R is the resistance. Use 
L’Hôpital’s Rule to find the formula for the current by fixing 
V and L and letting R approach 0 from the right.

 

V

R

L

88.  Velocity in a Resisting Medium The velocity v of an 
object falling through a resisting medium such as air or water 
is given by

 v =
32
k (1 − e−kt +

v0 ke−kt

32 )
where v0 is the initial velocity, t is the time in seconds, and k is 
the resistance constant of the medium. Use L’Hôpital’s Rule to 
find the formula for the velocity of a falling body in a vacuum 
by fixing v0 and t and letting k approach zero. (Assume that the 
downward direction is positive.)

89.  The Gamma Function The Gamma Function Γ(n)
is defined in terms of the integral of the function given by 
f (x) = xn−1e−x, n > 0. Show that for any fixed value of n,
the limit of f (x) as x approaches infinity is zero.

90.  Compound Interest The formula for the amount A in a 
savings account compounded n times per year for t years at an 
interest rate r and an initial deposit of P is given by

  A = P(1 +
r
n)

nt

.

   Use L’Hôpital’s Rule to show that the limiting formula as 
the number of compoundings per year approaches infinity is 
given by A = Pert.

Extended Mean Value Theorem In Exercises 91–94, 
verify that the Extended Mean Value Theorem can be applied 
to the functions f  and g on the closed interval [a, b]. Then find 
all values c in the open interval (a, b) such that

f ′(c)
g′(c) =

f (b) − f (a)
g(b) − g(a).

 Functions Interval

91. f (x) = x3, g(x) = x2 + 1 [0, 1]

92. f (x) = 1
x
, g(x) = x2 − 4 [1, 2]

93. f (x) = sin x, g(x) = cos x [0, 
π
2]

94. f (x) = ln x, g(x) = x3 [1, 4]

True or False? In Exercises 95–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 95. A limit of the form ∞�0 is indeterminate.

 96. A limit of the form ∞ ∙ ∞ is indeterminate.

 97.  An indeterminate form does not guarantee the existence of 
a limit.

 98. lim
x→0

 
x2 + x + 1

x
= lim

x→0
 
2x + 1

1
= 1

99. If p(x) is a polynomial, then lim
x→∞

 
p(x)
ex = 0.

100. If lim
x→∞

 
f (x)
g(x) = 1, then lim

x→∞
 [ f (x) − g(x)] = 0.

101.  Area Find the limit, as x approaches 0, of the ratio of the 
area of the triangle to the total shaded area in the figure.

x
− −

1

2

(−x, 1 − cos x) (x, 1 − cos x)

f(x) = 1 − cos x
y

2
ππ

2
π π

102.  Finding a Limit In Section 1.3, a geometric argument 
(see figure) was used to prove that

  lim
θ→0

 
sin θ
θ = 1. 

x

1

O AD

B

C

θ

y

(a)  Write the area of △ABD in 
terms of θ.

(b)  Write the area of the shaded 
region in terms of θ.

(c)  Write the ratio R of the area  
of △ABD to that of the  
shaded region.

  (d) Find lim
θ→0

 R.
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Continuous Function In Exercises 103 and 104, find the 
value of c that makes the function continuous at x = 0.

103. 
 
f (x) = {4x − 2 sin 2x

2x3 ,

c,

x ≠ 0

x = 0

104. f (x) = {(ex + x)1�x,
c,

x ≠ 0
x = 0

105. Finding Values Find the values of a and b such that

  lim
x→0

 
a − cos bx

x2 = 2.

106. Evaluating a Limit Use a graphing utility to graph

  f (x) = xk − 1
k

for k = 1, 0.1, and 0.01. Then evaluate the limit

  lim
k→0+

 
xk − 1

k
.

107. Finding a Derivative

(a) Let f ′(x) be continuous. Show that

  lim
h→0

 
f (x + h) − f (x − h)

2h
= f ′(x).

(b) Explain the result of part (a) graphically.

y

x
x − h x + hx

f

108.  Finding a Second Derivative Let f ″(x) be continuous. 
Show that

  lim
h→0

 
f (x + h) − 2f (x) + f (x − h)

h2 = f ″(x).

109.  Evaluating a Limit Consider the limit lim
x→0+

 (−x ln x).
(a)  Describe the type of indeterminate form that is obtained 

by direct substitution.

(b)  Evaluate the limit. Use a graphing utility to verify the 
result.

110.  Proof Prove that if f (x) ≥ 0, lim
x→a

 f (x) = 0, and 
lim
x→a

 g(x) = ∞, then lim
x→a

 f (x)g(x) = 0.

111. Proof Prove that if f (x) ≥ 0, lim
x→a

 f (x) = 0, and

  lim
x→a

 g(x) = −∞, then lim
x→a

 f (x)g(x) = ∞.

112.  Think About It Use two different methods to find the 
limit

  lim
x→∞

 
ln xm

ln xn

where m > 0, n > 0, and x > 0.

113.  Indeterminate Forms Show that the indeterminate 
forms 00, ∞0, and 1∞ do not always have a value of 1 by 
evaluating each limit.

  (a) lim
x→0+

 x(ln 2)�(1+ ln x)

(b) lim
x→∞

 x(ln 2)�(1+ ln x)

(c) lim
x→0

 (x + 1)(ln 2)�x

114.  Calculus History In L’Hôpital’s 1696 calculus textbook, 
he illustrated his rule using the limit of the function

  f (x) = √2a3x − x4 − a 3√a2x

a − 4√ax3

as x approaches a, a > 0. Find this limit.

115. Finding a Limit Consider the function

  h(x) = x + sin x
x

.

(a)  Use a graphing utility to graph the function. Then use the 
zoom and trace features to investigate lim

x→∞
 h(x).

(b) Find lim
x→∞

 h(x) analytically by writing

   h(x) = x
x
+

sin x
x

.

(c)  Can you use L’Hôpital’s Rule to find lim
x→∞

 h(x)? Explain 
your reasoning.

116.  Evaluating a Limit Let f (x) = x + x sin x and 
g(x) = x2 − 4.

(a) Show that lim
x→∞

 
f (x)
g(x) = 0.

(b) Show that lim
x→∞

 f (x) = ∞ and lim
x→∞

 g(x) = ∞.

(c) Evaluate the limit

lim
x→∞

 
f ′(x)
g′(x).

What do you notice?

(d)  Do your answers to parts (a) through (c) contradict 
L’Hôpital’s Rule? Explain your reasoning.

PUTNAM EXAM CHALLENGE

117. Evaluate lim
x→∞

 [1x ∙
ax − 1
a − 1 ]

1�x

 where a > 0, a ≠ 1.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

 FOR FURTHER INFORMATION For a geometric 
approach to this exercise, see the article “A Geometric Proof 
of lim

d→0+
 (−d ln d) = 0” by John H. Mathews in The College

Mathematics Journal. To view this article, go to MathArticles.com.
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5.7 Inverse Trigonometric Functions: Differentiation

 Develop properties of the six inverse trigonometric functions.
 Differentiate an inverse trigonometric function.
 Review the basic differentiation rules for elementary functions.

Inverse Trigonometric Functions
This section begins with a rather surprising statement: None of the six basic trigonometric 
functions has an inverse function. This statement is true because all six trigonometric 
functions are periodic and therefore are not one-to-one. In this section, you will examine 
these six functions to see whether their domains can be redefined in such a way that 
they will have inverse functions on the restricted domains.

In Example 4 of Section 5.3, you saw that the sine function is increasing (and 
therefore is one-to-one) on the interval

[−π
2

, 
π
2]

as shown in Figure 5.25. On this interval, you can define the inverse of the restricted 
sine function as

y = arcsin x if and only if sin y = x

where −1 ≤ x ≤ 1 and −π�2 ≤ arcsin x ≤ π�2.
Under suitable restrictions, each of the six trigonometric functions is one-to-one 

and so has an inverse function, as shown in the next definition. (Note that the term “iff” 
is used to represent the phrase “if and only if.”)

Definitions of Inverse Trigonometric Functions

Function Domain Range

y = arcsin  x  iff  sin  y = x −1 ≤ x ≤ 1 −
π
2

≤ y ≤
π
2

y = arccos  x  iff  cos  y = x −1 ≤ x ≤ 1 0 ≤ y ≤ π

y = arctan  x  iff  tan  y = x −∞ < x < ∞ −
π
2

< y <
π
2

y = arccot  x  iff  cot  y = x −∞ < x < ∞ 0 < y < π

y = arcsec  x  iff  sec  y = x ∣x∣ ≥ 1 0 ≤ y ≤ π, y ≠
π
2

y = arccsc  x  iff  csc  y = x ∣x∣ ≥ 1 −
π
2

≤ y ≤
π
2

, y ≠ 0

Exploration
The Inverse Secant Function In the definitions of the inverse trigonometric 
functions, the inverse secant function is defined by restricting the domain of  
the secant function to the intervals [0, π�2) ∪ (π�2, π]. Most other texts and 
reference books agree with this, but some disagree. What other domains might 
make sense? Explain your reasoning graphically. Most calculators do not have 
a key for the inverse secant function. How can you use a calculator to evaluate 
the inverse secant function?

x

y

1

−1

−−π ππ
2

π
2

y x= sin
Domain:   [ /2,    /2]
Range: [−1, 1]

−π π

The sine function is one-to-one on 
[−π�2, π�2].
Figure 5.25

REMARK The term  
“arcsin x” is read as “the arcsine 
of x” or sometimes “the angle 
whose sine is x.” An alternative 
notation for the inverse sine 
function is “sin−1 x.”
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The graphs of the six inverse trigonometric functions are shown in Figure 5.26.

 

x
−2 −1 1 2

y = arccos x

y

π

π

2

 

x
−2 −1 1 2

−

y = arctan x

y

π
2

π
2

 Domain: [−1, 1] Domain: (−∞, ∞)
 Range: [0, π] Range: (−π�2, π�2)

 

x
−2 −1 1 2

y = arcsec x

y

π

π

2

 

x
−2 −1 1 2

y = arccot x

π

y

π
2

 Domain: (−∞, −1] ∪ [1, ∞) Domain: (−∞, ∞)
 Range: [0, π�2) ∪ (π�2, π] Range: (0, π)

When evaluating inverse trigonometric functions, remember that they denote 
angles in radian measure.

 Evaluating Inverse Trigonometric Functions

Evaluate each function.

a. arcsin(−1
2)  b. arccos 0  c. arctan √3  d. arcsin(0.3)

Solution

a.  By definition, y = arcsin(−1
2) implies that sin y = −1

2. In the interval [−π�2, π�2], 
the correct value of y is −π�6.

arcsin(−1
2) = −

π
6

b.  By definition, y = arccos 0 implies that cos y = 0. In the interval [0, π], you have 
y = π�2.

arccos 0 =
π
2

c.  By definition, y = arctan √3 implies that tan y = √3. In the interval (−π�2, π�2), 
you have y = π�3.

arctan √3 =
π
3

d. Using a calculator set in radian mode produces

arcsin(0.3) ≈ 0.305. 

x
−2 −1 1 2

−

y

π
2

π
2

y = arcsin x

Domain: [−1, 1]
Range: [−π�2, π�2]

x
−1 1 2

−

y = arccsc x

y

π
2

π
2

Domain: (−∞, −1] ∪ [1, ∞)
Range: [−π�2, 0) ∪ (0, π�2]
Figure 5.26
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Inverse functions have the properties f ( f−1(x)) = x and f−1( f (x)) = x. When 
applying these properties to inverse trigonometric functions, remember that the 
trigonometric functions have inverse functions only in restricted domains. For x-values 
outside these domains, these two properties do not hold. For example, arcsin(sin π) is 
equal to 0, not π.

Properties of Inverse Trigonometric Functions

If −1 ≤ x ≤ 1 and −π�2 ≤ y ≤ π�2, then

sin(arcsin x) = x and arcsin(sin y) = y.

If −π�2 < y < π�2, then

tan(arctan x) = x and arctan(tan y) = y.

If ∣x∣ ≥ 1 and 0 ≤ y < π�2 or π�2 < y ≤ π, then

sec(arcsec x) = x and arcsec(sec y) = y.

Similar properties hold for the other inverse trigonometric functions.

 Solving an Equation

 arctan(2x − 3) = π
4

 Original equation

 tan[arctan(2x − 3)] = tan 
π
4

 Take tangent of each side.

 2x − 3 = 1 tan(arctan x) = x

 x = 2 Solve for x. 

Some problems in calculus require that you evaluate expressions such as 
cos(arcsin x), as shown in Example 3.

 Using Right Triangles

a. Given y = arcsin x, where 0 < y < π�2, find cos y.

b. Given y = arcsec(√5�2), find tan y.

Solution

a.  Because y = arcsin x, you know that sin y = x. This 

1 x

y

1 − x2

y = arcsin x

 
relationship between x and y can be represented by  
a right triangle, as shown in the figure at the right.

cos y = cos(arcsin x) = adj.
hyp.

= √1 − x2

 (This result is also valid for −π�2 < y < 0.)

b.  Use the right triangle shown in the figure at  
the left.

 tan y = tan(arcsec 
√5
2 )

 =
opp.
adj.

 =
1
2

 

1

y

2

5

y = arcsec 
√5
2
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Derivatives of Inverse Trigonometric Functions
In Section 5.1, you saw that the derivative of the transcendental function f (x) = ln x is 
the algebraic function f′(x) = 1�x. You will now see that the derivatives of the inverse 
trigonometric functions also are algebraic (even though the inverse trigonometric 
functions are themselves transcendental).

The next theorem lists the derivatives of the six inverse trigonometric functions. 
Note that the derivatives of arccos u, arccot u, and arccsc u are the negatives of the 
derivatives of arcsin u, arctan u, and arcsec u, respectively.

THEOREM 5.18 Derivatives of Inverse Trigonometric Functions

Let u be a differentiable function of x.

d
dx

 [arcsin u] = u′
√1 − u2

 
d
dx

 [arccos u] = −u′
√1 − u2

d
dx

 [arctan u] = u′
1 + u2 

d
dx

 [arccot u] = −u′
1 + u2

d
dx

 [arcsec u] = u′

∣u∣√u2 − 1
 

d
dx

 [arccsc u] = −u′

∣u∣√u2 − 1

Proofs for arcsin u and arccos u are given in Appendix A. [The 
proofs for the other rules are left as an exercise (see Exercise 94).]

 Differentiating Inverse Trigonometric Functions

a. 
d
dx

 [arcsin(2x)] = 2

√1 − (2x)2
=

2

√1 − 4x2

b. 
d
dx

 [arctan(3x)] = 3
1 + (3x)2 =

3
1 + 9x2

c. 
d
dx

 [arcsin √x] = (1�2) x−1�2

√1 − x
=

1

2√x√1 − x
=

1

2√x − x2

d. 
d
dx

 [arcsec e2x] = 2e2x

e2x√(e2x)2 − 1
=

2

√e4x − 1

 The absolute value sign is not necessary because e2x > 0.

 A Derivative That Can Be Simplified

 y = arcsin x + x√1 − x2

 y′ =
1

√1 − x2
+ x(12)(−2x)(1 − x2)−1�2 + √1 − x2

 =
1

√1 − x2
−

x2

√1 − x2
+ √1 − x2

 = √1 − x2 + √1 − x2

 = 2√1 − x2 

From Example 5, you can see one of the benefits of inverse trigonometric  
functions—they can be used to integrate common algebraic functions. For instance, 
from the result shown in the example, it follows that

∫√1 − x2 dx =
1
2
(arcsin x + x√1 − x2).

TECHNOLOGY If your 
graphing utility does not have 
the arcsecant function, you  
can obtain its graph using

f (x) = arcsec x = arccos 
1
x
.

REMARK There is no  
common agreement on the  
definition of arcsec x (or  
arccsc x) for negative values  
of x. When we defined the range 
of the arcsecant, we chose to  
preserve the reciprocal identity

arcsec x = arccos 
1
x
.

One consequence of this  
definition is that its graph has a 
positive slope at every x-value 
in its domain. (See Figure 5.26.) 
This accounts for the absolute 
value sign in the formula for  
the derivative of arcsec x.
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 Analyzing an Inverse Trigonometric Graph

Analyze the graph of y = (arctan x)2.

Solution From the derivative

y′ = 2(arctan x)( 1
1 + x2)

 =
2 arctan x

1 + x2

you can see that the only critical number is x = 0. By the First Derivative Test, this 
value corresponds to a relative minimum. From the second derivative

 y″ =
(1 + x2)( 2

1 + x2) − (2 arctan x)(2x)

(1 + x2)2

 =
2(1 − 2x arctan x)

(1 + x2)2

it follows that points of inflection occur when 2x arctan x = 1. Using Newton’s 
Method, these points occur when x ≈ ±0.765. Finally, because

lim
x→±∞

 (arctan x)2 = π2

4

it follows that the graph has a horizontal asymptote at y = π 2�4. The graph is shown 
in Figure 5.27.

 Maximizing an Angle

See LarsonCalculus.com for an interactive version of this type of example.

A photographer is taking a picture of a  

α
β θ

1 ft

4 ft

x

Not drawn to scale

The camera should be 2.236 feet from 
the painting to maximize the angle β.

 
painting hung in an art gallery. The height of  
the painting is 4 feet. The camera lens is 1 foot 
below the lower edge of the painting, as shown  
in the figure at the right. How far should the  
camera be from the painting to maximize the 
angle subtended by the camera lens?

Solution In the figure, let β be the angle to  
be maximized.

 β = θ − α

 = arccot 
x
5
− arccot x

Differentiating produces

dβ
dx

=
−1�5

1 + (x2�25) −
−1

1 + x2

 =
−5

25 + x2 +
1

1 + x2

 =
4(5 − x2)

(25 + x2)(1 + x2).

Because dβ�dx = 0 when x = √5, you can conclude from the First Derivative Test 
that this distance yields a maximum value of β. So, the distance is x ≈ 2.236 feet and
the angle is β ≈ 0.7297 radian ≈  41.81°. 

x
−2

1

1

−1

−1

2

3

2

y = (arctan x)2

y = π
4

2

Points of
in
ection

Relative
minimum

y

The graph of y = (arctan x)2 has a  
horizontal asymptote at y = π2�4.
Figure 5.27

REMARK In Example 7, you 
could also let θ = arctan(5�x) 
and α = arctan(1�x). Although 
these expressions are more 
difficult to use than those in 
Example 7, you should obtain the 
same answer. Try verifying this.
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Review of Basic Differentiation Rules
In the 1600s, Europe was ushered into the scientific age by such great thinkers as 
Descartes, Galileo, Huygens, Newton, and Kepler. These men believed that nature 
is governed by basic laws—laws that can, for the most part, be written in terms of 
mathematical  equations. One of the most influential publications of this period—
Dialogue on the Great World Systems, by Galileo Galilei—has become a classic 
description of modern scientific thought.

As mathematics has developed during the past few hundred years, a small  number 
of elementary functions have proven sufficient for modeling most* phenomena in 
physics, chemistry, biology, engineering, economics, and a variety of other fields. An 
elementary function is a function from the following list or one that can be formed as 
the sum, product, quotient, or composition of functions in the list.

Algebraic Functions Transcendental Functions

Polynomial functions Logarithmic functions

Rational functions Exponential functions

Functions involving radicals Trigonometric functions

 Inverse trigonometric functions

With the differentiation rules introduced so far in the text, you can differentiate any 
elementary function. For convenience, these differentiation rules are summarized below.

BASIC DIFFERENTIATION RULES FOR ELEMENTARY FUNCTIONS

 1. 
d
dx

[cu] = cu′  2. 
d
dx

[u ± v] = u′ ± v′

 3. 
d
dx

[uv] = uv′ + vu′  4. 
d
dx [

u
v] =

vu′ − uv′
v2

 5. 
d
dx

[c] = 0  6. 
d
dx

[un] = nun−1u′

 7. 
d
dx

[x] = 1  8. 
d
dx

[∣u∣] = u

∣u∣ (u′),  u ≠ 0

 9. 
d
dx

[ln u] = u′
u

 10. 
d
dx

[eu] = euu′

11. 
d
dx

[loga u] =
u′

(ln a)u 12. 
d
dx

[au] = (ln a)auu′

13. 
d
dx

[sin u] = (cos u)u′ 14. 
d
dx

[cos u] = −(sin u)u′

15. 
d
dx

[tan u] = (sec2 u)u′ 16. 
d
dx

[cot u] = −(csc2 u)u′

17. 
d
dx

[sec u] = (sec u tan u)u′ 18. 
d
dx

[csc u] = −(csc u cot u)u′

19. 
d
dx

[arcsin u] = u′
√1 − u2

 20. 
d
dx

[arccos u] = −u′
√1 − u2

21. 
d
dx

[arctan u] = u′
1 + u2 22. 

d
dx

[arccot u] = −u′
1 + u2

23. 
d
dx

[arcsec u] = u′

∣u∣√u2 − 1
 24. 

d
dx

[arccsc u] = −u′

∣u∣√u2 − 1

*  Some important functions used in engineering and science (such as Bessel functions and gamma  
functions) are not elementary functions.

 FOR FURTHER INFORMATION
For more on the derivative of  
the arctangent function, see 
the article “Differentiating the 
Arctangent Directly” by Eric  
Key in The College Mathematics 
Journal. To view this article,  
go to MathArticles.com.

GALILEO GALILEI (1564–1642)

Galileo’s approach to science 
departed from the accepted 
Aristotelian view that nature 
had describable qualities, such 
as “fluidity” and “potentiality.” 
He chose to describe the 
physical world in terms of 
measurable quantities, such as 
time, distance, force, and mass.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection
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5.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Inverse Trigonometric Function Describe the 

meaning of arccos x in your own words. 

2.  Restricted Domain What is a restricted domain? 
Why are restricted domains necessary to define inverse 
trigonometric functions?

3.  Inverse Trigonometric Functions Which inverse 
trigonometric function has a range of 0 < y < π?

4.  Finding a Derivative What is the missing value?

 
d
dx

 [arccsc x3] = ■
∣x3∣√x6 − 1

Finding Coordinates In Exercises 5 and 6, determine the 
missing coordinates of the points on the graph of the function.

 5. 

       ,        ,

y

x

π

π3

1
2

4

y = arccos x

−1 − 11
2

1
2

3
2

       ,

) )))
) )

6. 

       , 

y

x

π
4

3− ,

))       , −π
6 ))

) )

π
2

π
2

−

−3 −2 1 2 3

y = arctan x

 Evaluating Inverse Trigonometric Functions 
In Exercises 7–14, evaluate the expression without 
using a calculator.

 7. arcsin 12  8. arcsin 0

 9. arccos 12 10. arccos(−1)

11. arctan 
√3
3

 12. arccot(−√3 )

13. arccsc(−√2) 14. arcsec 2

Approximating Inverse Trigonometric Functions In 
Exercises 15–18, use a calculator to approximate the value. 
Round your answer to two decimal places.

15. arccos(0.051) 16. arcsin(−0.39)
17. arcsec 1.269 18. arccsc(−4.487)

 Using a Right Triangle In Exercises 19–24, 
use the figure to write the expression in algebraic 
form given y = arccos x, where 0 < y < π�2.

19. cos y 

x

1

y

20. sin y

21. tan y

22. cot y

23. sec y

24. csc y

 Evaluating an Expression In Exercises 25–28, 
evaluate each expression without using a calculator. 
(Hint: Sketch a right triangle, as demonstrated in  
Example 3.)

25. (a) sin(arctan 
3
4) 26. (a) tan(arccos 

√2
2 )

 (b) sec(arcsin 
4
5)  (b) cos(arcsin 

5
13)

27. (a) cot[arcsin(−1
2)] 28. (a) sec[arctan(−3

5)]
 (b) csc[arctan(− 5

12)]  (b) tan[arcsin(−5
6)]

Simplifying an Expression Using a Right Triangle In 
Exercises 29–36, write the expression in algebraic form. 
(Hint: Sketch a right triangle, as demonstrated in Example 3.)

29. cos(arcsin 2x) 30. sec(arctan 6x)
31. sin(arcsec x) 32. cos(arccot x)

33. tan(arcsec 
x
3) 34. sec[arcsin(x − 1)]

35. csc(arctan 
x

√2) 36. cos(arcsin 
x − h

r )
 Solving an Equation In Exercises 37–40, solve 
the equation for x.

37. arcsin(3x − π) = 1
2 38. arctan(2x − 5) = −1

39. arcsin√2x = arccos√x 40. arccos x = arcsec x

 Finding a Derivative In Exercises 41–56, find 
the derivative of the function.

41. f (x) = arcsin(x − 1) 42. f (t) = arccsc(−t 2)

43. g(x) = 3 arccos 
x
2

 44. f (x) = arcsec 2x

45. f (x) = arctan ex 46. f (x) = arccot √x

47. g(x) = arcsin 3x
x

 48. h(x) = x2 arctan 5x

49. h(t) = sin(arccos t) 50. f (x) = arcsin x + arccos x

51. y = 2x arccos x − 2√1 − x2

52. y = x arctan 2x −
1
4

 ln (1 + 4x2)

53. y =
1
2 (

1
2

 ln 
x + 1
x − 1

+ arctan x)
54. y =

1
2[x√4 − x2 + 4 arcsin 

x
2]

55. y = 8 arcsin 
x
4
−

x√16 − x2

2

56. y = arctan x +
x

1 + x2
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 Finding an Equation of a Tangent Line In 
Exercises 57–62, find an equation of the tangent 
line to the graph of the function at the given point.

57. y = 2 arcsin x, (12, 
π
3)

58. y = −
1
4

 arccos x, (−1
2

, −
π
6)

59. y = arctan 
x
2

, (2, 
π
4)

60. y = arcsec 4x, (√2
4

, 
π
4)

61. y = 4x arccos(x − 1), (1, 2π)

62. y = 3x arcsin x, (12, 
π
4)

Finding Relative Extrema  In Exercises 63–66, find any 
relative extrema of the function.

63. f (x) = arcsec x − x

64. f (x) = arcsin x − 2x

65. f (x) = arctan x − arctan(x − 4)
66. h(x) = arcsin x − 2 arctan x

 Analyzing an Inverse Trigonometric 
Graph In Exercises 67–70, analyze and sketch 
a graph of the function. Identify any relative 
extrema, points of inflection, and asymptotes. Use 
a graphing utility to verify your results.

67. f (x) = arcsin(x − 1)

68. f (x) = arctan x +
π
2

69. f (x) = arcsec 2x

70. f (x) = arccos 
x
4

Implicit Differentiation In Exercises 71–74, use implicit 
differentiation to find an equation of the tangent line to the 
graph of the equation at the given point.

71. x2 + x arctan y = y − 1, (−π
4

, 1)
72. arctan(xy) = arcsin(x + y), (0, 0)

73. arcsin x + arcsin y =
π
2

, (√2
2

, 
√2
2 )

74. arctan(x + y) = y2 +
π
4

, (1, 0)

75. Finding Values

 (a)  Use a graphing utility to evaluate arcsin(arcsin 0.5) and  
arcsin(arcsin 1).

 (b) Let

  f (x) = arcsin(arcsin x).

  Find the values of x in the interval −1 ≤ x ≤ 1 such that 
f (x) is a real number.

 76.  HOW DO YOU SEE IT? The graph of 
g(x) = cos x is shown below. Explain whether 
the points

 (−1
2

, 
2π
3 ), (0, 

π
2), and (12, −

π
3)

 lie on the graph of y = arccos x.

x

y

−1

−
−

1

π
1
2

( (−   , 
3

1
2

π

( (, 0 
2
π

( (, − 2   
3

1
2

π

( (

g(x) = cos x

76.  

EXPLORING CONCEPTS
77.  Inverse Trigonometric Functions Determine 

whether

 
arcsin x
arccos x

= arctan x.

78.  Inverse Trigonometric Functions Determine 
whether each inverse trigonometric function can be 
defined as shown. Explain.

 (a)  y = arcsec x, Domain: x > 1, Range: −
π
2

< y <
π
2

 (b) y = arccsc x, Domain: x > 1, Range: 0 < y < π

79.  Inverse Trigonometric Functions Explain why 
sin 2π = 0 does not imply that arcsin 0 = 2π.

80.  Inverse Trigonometric Functions Explain why 
tan π = 0 does not imply that arctan 0 = π.

Verifying Identities In Exercises 81 and 82, verify each 
identity.

81. (a) arccsc x = arcsin 
1
x
, ∣x∣ ≥ 1

 (b) arctan x + arctan 
1
x
=

π
2

, x > 0

82. (a) arcsin(−x) = −arcsin x, ∣x∣ ≤ 1

 (b) arccos(−x) = π − arccos x, ∣x∣ ≤ 1

True or False? In Exercises 83–86, determine whether the 
statement is true or false. If it is false, explain why or give an  
example that shows it is false.

83.  The slope of the graph of the inverse tangent function is 
 positive for all x.

84. The range of y = arcsin x is [0, π].

85. 
d
dx

[arctan(tan x)] = 1 for all x in the domain.

86. arcsin2 x + arccos2 x = 1
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87.  Angular Rate of Change An airplane flies at an altitude 
of 5 miles toward a point directly over an observer. Consider 
θ and x as shown in the figure.

x

5 mi

θ

Not drawn to scale

 (a) Write θ as a function of x.

 (b)  The speed of the plane is 400 miles per hour. Find dθ�dt 
when x = 10 miles and x = 3 miles.

88.  Writing Repeat Exercise 87 for an altitude of 3 miles and 
describe how the altitude affects the rate of change of θ.

89.  Angular Rate of Change In a free-fall experiment, an 
object is dropped from a height of 256 feet. A camera on the 
ground 500 feet from the point of impact records the fall of the 
object (see figure).

 (a)  Find the position function that yields the height of the 
object at time t, assuming the object is released at time 
t = 0. At what time will the object reach ground level?

 (b)  Find the rates of change of the angle of elevation of the 
camera when t = 1 and t = 2.

256 ft

θ
500 ft

Not drawn to scale

  

h
s

θ
800 m

Not drawn to scale

Figure for 89 Figure for 90

90.  Angular Rate of Change A television camera at ground  
level is filming the lift-off of a rocket at a point 800 meters 
from the launch pad. Let θ be the angle of elevation of the 
rocket and let s be the distance between the camera and the 
rocket (see figure). Write θ as a function of s for the period 
of time when the rocket is moving vertically. Differentiate the 
result to find dθ�dt in terms of s and ds�dt.

91.  Maximizing an Angle A billboard 85 feet wide is 
perpendicular to a straight road and is 40 feet from the road 
(see figure). Find the point on the road at which the angle θ 
subtended by the billboard is a maximum.

θ

40 ft

x

85 ft

Not drawn to scale

  

θ

x

50 ft

 Figure for 91 Figure for 92 

 92.  Angular Speed A patrol car is parked 50 feet from a 
long warehouse (see figure). The revolving light on top of the 
car turns at a rate of 30 revolutions per minute. Write θ as a  
function of x. How fast is the light beam moving along the 
wall when the beam makes an angle of θ = 45° with the line 
perpendicular from the light to the wall?

 93. Proof

  (a) Prove that arctan x + arctan y = arctan 
x + y
1 − xy

, xy ≠ 1.

  (b) Use the formula in part (a) to show that

 arctan 
1
2
+ arctan 

1
3
=

π
4

.

 94. Proof Prove each differentiation formula.

  (a) 
d
dx

[arctan u] = u′
1 + u2

  (b) 
d
dx

[arccot u] = −u′
1 + u2

  (c) 
d
dx

[arcsec u] = u′

∣u∣√u2 − 1

  (d) 
d
dx

[arccsc u] = −u′

∣u∣√u2 − 1

 95.  Describing a Graph Use a graphing utility to graph the 
function f (x) =  arccos x + arcsin x on the  interval [−1, 1].

  (a) Describe the graph of f.

  (b) Verify the result of part (a) analytically.

 96.  Think About It Use a graphing utility to graph 
f (x) = sin x and g(x) = arcsin(sin x).

  (a) Explain why the graph of g is not the line y = x.

  (b) Determine the extrema of g.

 97.  Maximizing an Angle In the figure, find the value of 
c in the interval [0, 4] on the x-axis that maximizes angle θ.

y

x
c

(0, 2) (4, 2)

θ

  

R

Q

P

3

2

5

θ

 Figure for 97 Figure for 98

 98.  Finding a Distance In the figure, find PR such that 
0 ≤ PR ≤ 3 and m∠θ is a maximum.

 99. Proof Prove that arcsin x = arctan( x

√1 − x2), ∣x∣ < 1.

100.  Inverse Secant Function Some calculus textbooks 
define the inverse secant function using the range 
[0, π�2) ∪ [π, 3π�2).

  (a) Sketch the graph y = arcsec x using this range.

  (b) Show that y′ =
1

x√x2 − 1
.
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5.8 Inverse Trigonometric Functions: Integration

 Integrate functions whose antiderivatives involve inverse trigonometric functions.
 Use the method of completing the square to integrate a function.
 Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric Functions
The derivatives of the six inverse trigonometric functions fall into three pairs. In each 
pair, the derivative of one function is the negative of the other. For example,

d
dx

[arcsin x] = 1

√1 − x2

and

d
dx

 [arccos x] = −
1

√1 − x2
.

When listing the antiderivative that corresponds to each of the inverse trigonometric 
functions, you need to use only one member from each pair. It is conventional to use 
arcsin x as the antiderivative of 1�√1 − x2, rather than −arccos x. The next theorem 
gives one antiderivative formula for each of the three pairs. The proofs of these 
integration rules are left to you (see Exercises 73–75).

THEOREM 5.19  Integrals Involving Inverse Trigonometric  
Functions

Let u be a differentiable function of x, and let a > 0.

1. ∫ du

√a2 − u2
= arcsin 

u
a
+ C   

2. ∫ du
a2 + u2 =

1
a

 arctan 
u
a
+ C

3. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C

 Integration with Inverse Trigonometric Functions

a. ∫ dx

√4 − x2
= arcsin 

x
2
+ C u = x, a = 2

b.  ∫ 
dx

2 + 9x2 =
1
3∫ 

3 dx

(√2)2 + (3x)2
 u = 3x, a = √2

  =
1

3√2
 arctan 

3x

√2
+ C

c.  ∫ dx

x√4x2 − 9
= ∫ 2 dx

2x√(2x)2 − 32
 u = 2x, a = 3

  =
1
3

 arcsec 
∣2x∣

3
+ C 

The integrals in Example 1 are fairly straightforward applications of integration 
formulas. Unfortunately, this is not typical. The integration formulas for inverse 
trigonometric functions can be disguised in many ways.

 FOR FURTHER INFORMATION
For a detailed proof of rule 2 of 
Theorem 5.19, see the article  
“A Direct Proof of the Integral 
Formula for Arctangent” by  
Arnold J. Insel in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.
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 Integration by Substitution

Find ∫ dx

√e2x − 1
.

Solution As it stands, this integral does not fit any of the three inverse trigonometric 
formulas. Using the substitution u = ex, however, produces

u = ex  du = ex dx  dx =
du
ex =

du
u

.

With this substitution, you can integrate as shown.

 ∫ dx

√e2x − 1
= ∫ dx

√(ex)2 − 1
 Write e2x as (e x)2.

 = ∫ du�u

√u2 − 1
 Substitute.

 = ∫ du

u√u2 − 1
 Rewrite to fit Arcsecant Rule.

 = arcsec 
∣u∣
1

+ C Apply Arcsecant Rule.

 = arcsec ex + C Back-substitute. 

 Rewriting as the Sum of Two Quotients

Find ∫ x + 2

√4 − x2
 dx.

Solution This integral does not appear to fit any of the basic integration formulas. 
By splitting the integrand into two parts, however, you can see that the first part can be 
found with the Power Rule and the second part yields an inverse sine function.

 ∫ x + 2

√4 − x2
 dx = ∫ x

√4 − x2
 dx + ∫ 2

√4 − x2
 dx

 = −
1
2

 ∫(4 − x2)−1�2(−2x) dx + 2 ∫ 1

√4 − x2
 dx

 = −
1
2

 [(4 − x2)1�2

1�2 ] + 2 arcsin 
x
2
+ C

 = −√4 − x2 + 2 arcsin 
x
2
+ C 

TECHNOLOGY PITFALL A symbolic integration utility can be useful for 
integrating functions such as the one in Example 2. In some cases, however, the  
utility may fail to find an antiderivative for two reasons. First, some elementary  
functions do not have antiderivatives that are elementary functions. Second, every 
utility has limitations—you might have entered a function that the utility was not  
programmed to handle. You should also remember that antiderivatives involving 
trigonometric functions or logarithmic functions can be written in many different 
forms. For instance, one utility found the integral in Example 2 to be

∫ dx

√e2x − 1
= arctan √e2x − 1 + C.

Try showing that this antiderivative is equivalent to the one found in Example 2.
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Completing the Square
Completing the square helps when quadratic functions are involved in the integrand. 
For example, the quadratic x2 + bx + c can be written as the difference of two squares 
by adding and subtracting (b�2)2.

x2 + bx + c = x2 + bx + (b2)
2
− (b2)

2
+ c = (x +

b
2)

2
− (b2)

2
+ c

 Completing the Square

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ dx
x2 − 4x + 7

.

Solution You can write the denominator as the sum of two squares, as shown.

x2 − 4x + 7 = (x2 − 4x + 4) − 4 + 7 = (x − 2)2 + 3 = u2 + a2

Now, in this completed square form, let u = x − 2 and a = √3.

∫ dx
x2 − 4x + 7

= ∫ dx
(x − 2)2 + 3

=
1

√3
 arctan 

x − 2

√3
 + C 

When the leading coefficient is not 1, it helps to factor before completing the 
square. For instance, you can complete the square of 2x2 − 8x + 10 by factoring first.

 2x2 − 8x + 10 = 2(x2 − 4x + 5)
 = 2(x2 − 4x + 4 − 4 + 5)
 = 2 [(x − 2)2 + 1]

To complete the square when the coefficient of x2 is negative, use the same factoring 
process shown above. For instance, you can complete the square for 3x − x2 as shown.

3x − x2 = −(x2 − 3x) = −[x2 − 3x + (3
2)2 − (3

2)2] = (3
2)2 − (x − 3

2)2

 Completing the Square

Find the area of the region bounded by the graph of 

f(x) = 1

√3x − x2

the x-axis, and the lines x = 3
2 and x = 9

4.

Solution In Figure 5.28, you can see that the area is

 Area = ∫9�4

3�2
 

1

√3x − x2
 dx

 = ∫9�4

3�2
 

dx

√(3�2)2 − [x − (3�2)]2
 Use completed square form derived above.

 = arcsin 
x − (3�2)

3�2 ]
9�4

3�2

 = arcsin 
1
2

 − arcsin 0

 =
π
6

 ≈ 0.524. 

x
1

1

2 3

2

3

x = 3
2

x = 9
4

f(x) = 1
3x − x2

y

The area of the region bounded by the 
graph of f, the x-axis, x = 3

2, and x = 9
4 

is π�6.
Figure 5.28
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Review of Basic Integration Rules
You have now completed the introduction of the basic integration rules. To be 
efficient at applying these rules, you should have practiced enough so that each rule is 
committed to memory.

You can learn a lot about the nature of integration by comparing this list with the 
summary of differentiation rules given in the preceding section. For differentiation, you 
now have rules that allow you to differentiate any elementary function. For integration, 
this is far from true.

The integration rules listed above are primarily those that were happened on  
during the development of differentiation rules. So far, you have not learned any rules 
or techniques for finding the antiderivative of a general product or quotient, the natural 
logarithmic function, or the inverse trigonometric functions. More important, you  
cannot apply any of the rules in this list unless you can create the proper du  
corresponding to the u in the formula. The point is that you need to work more on  
integration techniques, which you will do in Chapter 8. The next two examples should 
give you a better  feeling for the integration problems that you can and cannot solve 
with the techniques and rules you now know.

BASIC INTEGRATION RULES (a > 0)

 1. ∫k f(u) du = k∫f(u) du  2. ∫[ f(u) ± g(u)] du = ∫f(u) du ± ∫g(u) du

 3. ∫du = u + C  4. ∫un du =
un+1

n + 1
+ C, n ≠ −1

 5. ∫du
u

= ln∣u∣ + C  6. ∫eu du = eu + C

 7. ∫au du = ( 1
ln a)au + C  8. ∫sin u du = −cos u + C

 9. ∫cos u du = sin u + C 10. ∫tan u du = −ln∣cos u∣ + C

11. ∫cot u du = ln∣sin u∣ + C 12. ∫sec u du = ln∣sec u + tan u∣ + C

13. ∫csc u du = −ln∣csc u + cot u∣ + C 14. ∫sec2 u du = tan u + C

15. ∫csc2 u du = −cot u + C 16. ∫sec u tan u du = sec u + C

17. ∫csc u cot u du = −csc u + C 18. ∫ du

√a2 − u2
= arcsin 

u
a
+ C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a
+ C 20. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C
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 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques 
you have studied so far in the text.

a. ∫ dx

x√x2 − 1

b. ∫ x dx

√x2 − 1

c. ∫ dx

√x2 − 1

Solution

a. You can find this integral (it fits the Arcsecant Rule).

∫ dx

x√x2 − 1
= arcsec∣x∣ + C

b. You can find this integral (it fits the Power Rule).

 ∫ x dx

√x2 − 1
=

1
2∫(x2 − 1)−1�2(2x) dx

 =
1
2

 [(x
2 − 1)1�2

1�2 ] + C

 = √x2 − 1 + C

c.  You cannot find this integral using the techniques you have studied so far. (You 
should scan the list of basic integration rules to verify this conclusion.)

 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques 
you have studied so far in the text.

a. ∫ dx
x ln x

b. ∫ln x dx
x

c. ∫ln x dx

Solution

a. You can find this integral (it fits the Log Rule).

 ∫ dx
x ln x

= ∫1�x
ln x

 dx

 = ln∣ln x∣ + C

b. You can find this integral (it fits the Power Rule).

 ∫ln x dx
x

= ∫(1x)(ln x)1 dx

 =
(ln x)2

2
+ C

c. You cannot find this integral using the techniques you have studied so far. 

REMARK Note in  
Examples 6 and 7 that the  
simplest functions are the ones 
that you cannot yet integrate.
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5.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Integration Rules Decide whether you can find 

each integral using the formulas and techniques you have 
studied so far. Explain.

 (a) ∫ 2 dx

√x2 + 4
 (b) ∫ dx

x√x2 − 9

2.  Completing the Square In your own words, 
describe the process of completing the square of a 
quadratic function. Explain when completing the square 
is useful for finding an integral.

 Finding an Indefinite Integral In Exercises 
3–22, find the indefinite integral.

 3. ∫ dx

√9 − x2
  4. ∫ dx

√1 − 4x2
 

 5. ∫ 1

x√4x2 − 1
 dx  6. ∫ 12

1 + 9x2 dx

 7. ∫ 1

√1 − (x + 1)2
 dx  8. ∫ 7

4 + (3 − x)2 dx

 9. ∫ t

√1 − t4
 dt 10. ∫ 1

x√x 4 − 4
 dx

11. ∫ t
t 4 + 25

 dt 12. ∫ 1

x√1 − (ln x)2
 dx

13. ∫ e2x

4 + e4x dx 14. ∫ 5

x√9x2 − 11
 dx

15. ∫ −csc x cot x

√25 − csc2x
 dx 16. ∫ sin x

7 + cos2 x
 dx

17. ∫ 1

√x√1 − x
 dx 18. ∫ 3

2√x(1 + x)
 dx

19. ∫ x − 3
x2 + 1

 dx 20. ∫ x2 + 8

x√x2 − 4
 dx

21. ∫ x + 5

√9 − (x − 3)2
 dx 22. ∫ x − 2

(x + 1)2 + 4
 dx

 Evaluating a Definite Integral In Exercises  
23–34, evaluate the definite integral.

23. ∫1�6

0
 

3

√1 − 9x2
 dx 24. ∫√2

0

1

√4 − x2
 dx

25. ∫√3�2

0

1
1 + 4x2 dx 26. ∫3

√3
 

1

x√4x2 − 9
 dx

27. ∫7

1

1
9 + (x + 2)2 dx 28. ∫4

1

1

x√16x2 − 5
 dx

29. ∫ln 5

0

ex

1 + e2x dx 30. ∫ln 4

ln 2

e−x

√1 − e−2x
 dx

31. ∫π
π�2

 
sin x

1 + cos2 x
 dx 32. ∫π�2

0

cos x
1 + sin2 x

 dx

33. ∫1�√2

0

arcsin x

√1 − x2
 dx 34. ∫1�√2

0

arccos x

√1 − x2
 dx

 Completing the Square In Exercises 35–42, 
find or evaluate the integral by completing the 
square. 

35. ∫2

0
 

dx
x2 − 2x + 2

 36. ∫3

−2
 

dx
x2 + 4x + 8

37. ∫ dx

√−2x2 + 8x + 4
 38. ∫ dx

3x2 − 6x + 12

39. ∫ 1

√−x2 − 4x
 dx 40. ∫ 2

√−x2 + 4x
 dx

41. ∫3

2
 

2x − 3

√4x − x2
 dx 42. ∫4

3
 

1

(x − 1)√x2 − 2x
 dx

 Integration by Substitution In Exercises 
43–46, use the specified substitution to find or 
 evaluate the integral.

43. ∫√et − 3 dt 44. ∫ 
√x − 2
x + 1

 dx

 u = √et − 3  u = √x − 2

45. ∫3

1
 

dx

√x(1 + x)
 46. ∫1

0
 

dx

2√3 − x√x + 1

 u = √x  u = √x + 1 

 Comparing Integration Problems In 
Exercises 47–50, find the indefinite integrals, if 
possible, using the formulas and techniques you 
have studied so far in the text.

47. (a) ∫ 1

√1 − x2
 dx 48. (a) ∫ex2

 dx

 (b) ∫ x

√1 − x2
 dx  (b) ∫xex2

 dx

 (c) ∫ 1

x√1 − x2
 dx  (c) ∫ 1

x2 e1�x dx

49. (a) ∫√x − 1 dx 50. (a) ∫ 1
1 + x4 dx

 (b) ∫x√x − 1 dx  (b) ∫ x
1 + x 4 dx

 (c) ∫ x

√x − 1
 dx  (c) ∫ x3

1 + x 4 dx
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EXPLORING CONCEPTS
Comparing Antiderivatives In Exercises 51 and 52, 
show that the antiderivatives are equivalent.

51. ∫ 3x2

√1 − x6
 dx = arcsin x3 + C or arccos √1 − x6 + C

52. ∫ 6
4 + 9x2 dx = arctan 

3x
2
+ C or arccsc 

√4 + 9x2

3x
+ C

53.  Inverse Trigonometric Functions The 
antiderivative of

 ∫ 1

√1 − x2
 dx

  can be either arcsin x + C or −arccos x + C. Does this 
mean that arcsin x = −arccos x? Explain.

 54.  HOW DO YOU SEE IT? Using the graph, 
which value best approximates the area of the 
region between the x-axis and the function over  
the interval [−1

2, 12 ]? Explain.

y

x
−1 − 1

2

3
2

1
2

1
2

1
2

f(x) = 1
1 − x2

(a) −3  (b) 12  (c) 1  (d) 2  (e) 4

54.  

Slope Field In Exercises 55 and 56, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

55. 
dy
dx

=
2

9 + x2, (0, 2) 56. 
dy
dx

=
2

√25 − x2
, (5, π)

 

x

y

4−4

5

−3

 

x

y

5

−5

−5 5

Slope Field In Exercises 57–60, use a graphing utility to 
graph the slope field for the differential equation and graph 
the particular solution satisfying the specified initial condition.

57. 
dy
dx

=
10

x√x2 − 1
 58. 

dy
dx

=
1

12 + x2

 y (3) = 0  y (4) = 2

59. 
dy
dx

=
2y

√16 − x2
 60. 

dy
dx

=
√y

1 + x2

 y(0) = 2  y(0) = 4

Differential Equation In Exercises 61 and 62, find the 
particular solution of the differential equation that satisfies the 
initial condition.

61. 
dy

dx
=

1

√4 − x2

 y(0) = π

62. 
dy
dx

=
1

4 + x2

 y(2) = π

 Area In Exercises 63–66, find the area of the 
given region. Use a graphing utility to verify your 
result.

63. y =
2

√4 − x2
 64. y =

1

x√x2 − 1

 
y

x

2

3

−1
−1−2 1 2

  
y

x
1 2

1

2

x =    2

65. y =
3 cos x

1 + sin2 x
 66. y =

4ex

1 + e2x

 y

x
π
2

π
4

π
4

−

−2

−3

1

3

  y

x

x = ln    3

−1−2 1 2

−1

1

3

67. Area

 (a) Sketch the region whose area is represented by

 ∫1

0
 arcsin x dx.

 (b)  Use the integration capabilities of a graphing utility to 
approximate the area.

 (c) Find the exact area analytically.
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68. Approximating Pi

 (a) Show that

 ∫1

0

4
1 + x2 dx = π.

 (b)  Approximate the number π  by using the integration  
capabilities of a graphing utility.

69. Investigation Consider the function

 F(x) = 1
2∫

x+2

x

 
2

t2 + 1
 dt.

 (a)  Write a short paragraph giving a geometric interpretation 
of the function F(x) relative to the function

   f (x) = 2
x2 + 1

.

    Use what you have written to guess the value of x that will 
make F maximum.

 (b)  Perform the specified integration to find an alternative 
form of F(x). Use calculus to locate the value of x that will 
make F maximum and compare the result with your guess 
in part (a).

70. Comparing Integrals Consider the integral

 ∫ 1

√6x − x2
 dx.

 (a)  Find the integral by completing the square of the radicand.

 (b) Find the integral by making the substitution u = √x.

 (c)  The antiderivatives in parts (a) and (b) appear to be  
significantly different. Use a graphing utility to graph each 
antiderivative in the same viewing window and determine 
the relationship between them. Find the domain of each.

True or False? In Exercises 71 and 72, determine whether 
the  statement is true or false. If it is false, explain why or give 
an example that shows it is false.

71. ∫ 
dx

3x√9x2 − 16
=

1
4

 arcsec 
3x
4

+ C

72. ∫ 
dx

25 + x2 =
1
25

 arctan 
x

25
+ C

Verifying an Integration Rule In Exercises 73–75, verify 
the rule by differentiating. Let a > 0.

73. ∫ 
du

√a2 − u2
= arcsin 

u

a
+ C

74. ∫ du
a2 + u2 =

1
a

 arctan 
u
a
+ C

75. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C

76.  Proof Graph y1 =
x

1 + x2, y2 = arctan x, and y3 = x on

 [0, 10]. Prove that 
x

1 + x2 < arctan x < x for x > 0.

77. Numerical Integration

 (a)  Write an integral that represents the area of the region in 
the figure. 

 (b)  Use the Midpoint Rule with n = 8 to estimate the area of 
the region.

 (c)  Explain how you can use the results of parts (a) and (b) to 
estimate π.

y

x
−1−2 1 2

2

3
2

1
2

y = 1
1 + x2

78.  Vertical Motion An object is projected upward from 
ground level with an initial velocity of 500 feet per second. 
In this exercise, the goal is to analyze the motion of the object 
during its upward flight.

 (a)  If air resistance is neglected, find the velocity of the object 
as a function of time. Use a graphing utility to graph this 
function.

 (b)  Use the result of part (a) to find the position function and 
determine the maximum height attained by the object.

 (c)  If the air resistance is proportional to the square of the 
velocity, you obtain the equation

  
dv
dt

= −(32 + kv2)

   where 32 feet per second per second is the acceleration 
due to gravity and k is a constant. Find the velocity as a 
function of time by solving the equation

  ∫ dv
32 + kv2 = −∫dt.

 (d)  Use a graphing utility to graph the velocity function v(t) in 
part (c) for k = 0.001. Use the graph to approximate the 
time t0 at which the object reaches its maximum height.

 (e)  Use the integration capabilities of a graphing utility to 
approximate the integral

  ∫t0

0
 v(t) dt

   where v(t) and t0 are those found in part (d). This is the 
approximation of the maximum height of the object.

 (f )  Explain the difference between the results in parts (b)  
and (e).

 FOR FURTHER INFORMATION For more information  
on this topic, see the article “What Goes Up Must Come Down; 
Will Air Resistance Make It Return Sooner, or Later?” by John 
Lekner in Mathematics Magazine. To view this article, go to 
MathArticles.com.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Sketching a Graph In Exercises 1 and 2, sketch the graph 
of the function and state its domain.

 1. f (x) = ln x − 3  2. f (x) = ln(x + 3)

Using Properties of Logarithms In Exercises 3 and 4, 
use the properties of logarithms to approximate the indicated 
logarithms, given that ln 4 ≈ 1.3863 and ln 5 ≈ 1.6094.

3. (a) ln 20 (b) ln 45   (c) ln 625   (d) ln √5

4. (a) ln 0.0625   (b) ln 54 (c) ln 16 (d) ln  3√80

Expanding a Logarithmic Expression In Exercises 
5 and 6, use the properties of logarithms to expand the 
logarithmic expression.

 5. ln 5√4x2 − 1
4x2 + 1

6. ln[(x2 + 1)(x − 1)]

Condensing a Logarithmic Expression In Exercises 7 
and 8, write the expression as the logarithm of a single quantity.

 7. ln 3 + 1
3 ln(4 − x2) − ln x

8. 3[ln x − 2 ln(x2 + 1)] + 2 ln 5

Finding a Derivative In Exercises 9–16, find the derivative 
of the function.

 9. g(x) = ln √2x

10.  f (x) = ln(3x2 + 2x)
11.  f (x) = x√ln x

12.  f (x) = [ln(2x)]3

13. y = ln√x2 + 4
x2 − 4

14. y = ln 
4x

x − 6

15. y =
1

ln(1 − 7x)

16. y =
ln 5x
1 − x

Finding an Equation of a Tangent Line In Exercises 17 
and 18, find an equation of the tangent line to the graph of the 
function at the given point.

17. y = ln(2 + x) + 2
2 + x

, (−1, 2)

18. y = 2x2 + ln x2, (1, 2)

Logarithmic Differentiation In Exercises 19 and 20, use 
logarithmic differentiation to find dy�dx.

19. y = x2√x − 1, x > 1 20. y =
x + 2

√3x − 2
, x >

2
3

Finding an Indefinite Integral In Exercises 21–26, find 
the indefinite integral.

21. ∫ 1
7x − 2

 dx 22. ∫ x2

x3 + 1
 dx

23. ∫ sin x
1 + cos x

 dx 24. ∫ ln √x
x

 dx

25. ∫ 
x2 − 6x + 1

x2 + 1
 dx 26. ∫ dx

√x(2√x + 5)
Evaluating a Definite Integral In Exercises 27–30, 
evaluate the definite integral.

27. ∫4

1
 
2x + 1

2x
 dx

28. ∫e
1

  
ln x
x

 dx

29. ∫π�3

0
sec θ dθ

30. ∫π
0

tan 
θ
3

 dθ

Area In Exercises 31 and 32, find the area of the region 
bounded by the graphs of the equations. Use a graphing utility 
to verify your result.

31. y =
6x2

x3 − 2
, x = 3, x = 5, y = 0

32. y = x + csc 
πx
12

, x = 2, x = 6, y = 0

Finding an Inverse Function In Exercises 33–38, (a) 
find the inverse function of f, (b) graph f  and f−1 on the 
same set of coordinate axes, (c) verify that f−1( f (x)) = x 
and f ( f−1(x)) = x, and (d) state the domains and ranges of f   
and f−1.

33. f (x) = 1
2x − 3

34. f (x) = 5x − 7

35. f (x) = √x + 1

36. f (x) = x3 + 2

37. f (x) = 3√x + 1

38. f (x) = x2 − 5, x ≥ 0

Evaluating the Derivative of an Inverse Function In 
Exercises 39–42, verify that f  has an inverse function. Then 
use the function f  and the given real number a to find 
( f−1)′(a). (Hint: Use Theorem 5.9.)

39. f (x) = x3 + 2, a = −1

40. f (x) = x√x − 3, a = 4

41. f (x) = tan x, −
π
4

≤ x ≤
π
4

, a =
√3
3

42. f (x) = cos x, 0 ≤ x ≤ π, a = 0
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Solving an Exponential or Logarithmic Equation In 
Exercises 43–46, solve for x accurate to three decimal places.

43. e3x = 30

44. −4 + 3e−2x = 6

45. ln √x + 1 = 2

46. ln x + ln(x − 3) = 0

Finding a Derivative In Exercises 47–52, find the 
derivative of the function.

47. g(t) = t2et 48. g(x) = ln 
ex

1 + ex

49. y = √e2x + e−2x 50. h(z) = e−z2�2

51. g(x) = x3

e2x 52. y = 3e−3�t

Finding an Equation of a Tangent Line In Exercises 53 
and 54, find an equation of the tangent line to the graph of the 
function at the given point.

53. f (x) = e6x, (0, 1)
54. h(x) = −xe2−x, (2, −2)

Finding Extrema and Points of Inflection In Exercises 
55 and 56, find the extrema and points of inflection (if any 
exist) of the function. Use a graphing utility to graph the 
function and confirm your results.

55. f (x) = (x + 1)e−x 56. g(x) = 1

√2π
e−(x−5)2�2

Finding an Indefinite Integral In Exercises 57–60, find 
the indefinite integral.

57. ∫xe1−x2
 dx 58. ∫ x2ex

3+1 dx

59. ∫ 
e4x − e2x + 1

ex
 dx 60. ∫ 

e2x − e−2x

e2x + e−2x dx

Evaluating a Definite Integral In Exercises 61–64, 
evaluate the definite integral.

61. ∫1

0
xe−3x2 dx 62. ∫2

1�2
 
e1�x

x2  dx

63. ∫3

1

ex

ex − 1
 dx 64. ∫5

1�4
 
e4x + 1
4x + e4x dx

65. Area Find the area of the region bounded by the graphs of 

 y = 2e−x, y = 0, x = 0, and x = 2.

66.  Depreciation The value V of an item t years after it is  
purchased is V = 9000e−0.6t, 0 ≤ t ≤ 5.

 (a) Use a graphing utility to graph the function.

 (b)  Find the rates of change of V with respect to t when t = 1 
and t = 4.

 (c)  Use a graphing utility to graph the tangent lines to the 
 function when t = 1 and t = 4.

Sketching a Graph In Exercises 67 and 68, sketch the 
graph of the function.

67. y = 3 x�2 68. y = (14)
x

Solving an Equation In Exercises 69–74, solve the 
equation accurate to three decimal places.

69. 41−x = 52 70. 2(3x+2) = 17

71. (1 +
0.03
12 )

12t

= 3 72. (1 +
0.06
365 )

365t

= 2

73. log6(x + 1) = 2 74. log5 x
2 = 4.1

Finding a Derivative In Exercises 75–82, find the derivative 
of the function.

75. f (x) = 3x−1 76. f (x) = 53x

77. g(t) = 23t

t2
 78. f (x) = x(4−3x)

79. g(x) = log3 √1 − x 80. h(x) = log5 
x

x − 1

81. y = x2x+1 82. y = (3x + 5)x

Finding an Indefinite Integral In Exercises 83 and 84, 
find the indefinite integral.

83. ∫(x + 1)5(x+1)2 dx 84. ∫2−1�t

t2
 dt

Evaluating a Definite Integral In Exercises 85 and 86, 
evaluate the definite integral.

85. ∫2

1
 6x dx 86. ∫0

−4
 9x�2 dx

87. Compound Interest

 (a)  A deposit of $550 is made in a savings account that pays 
an annual interest rate of 1% compounded monthly. What 
is the balance after 11 years?

 (b)  How large a deposit, at 5% interest compounded 
continuously, must be made to obtain a balance of $10,000 
in 15 years?

 (c)  A deposit earns interest at a rate of r percent compounded 
continuously and doubles in value in 10 years. Find r.

88.  Climb Rate The time t (in minutes) for a small plane to 
climb to an altitude of h feet is

 t = 50 log10 
18,000

18,000 − h

 where 18,000 feet is as high as the plane can fly.

 (a)  Determine the domain of the function appropriate for the 
context of the problem.

 (b)  Use a graphing utility to graph the function and identify 
any asymptotes.

 (c)  Find the time when the altitude is increasing at the  
greatest rate.
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Evaluating a Limit In Exercises 89–96, use L’Hôpital’s 
Rule to evaluate the limit.

 89. lim
x→1

 
(ln x)2
x − 1

90. lim
x→0

 
sin πx
sin 5πx

91. lim
x→∞

 
e2x

x2

92. lim
x→∞

 xe−x2

93. lim
x→∞

 (ln x)2�x

94. lim
x→1+

 (x − 1)ln x

95. lim
n→∞

 1000(1 +
0.09
n )

n

96. lim
x→∞

 (1 +
4
x)

x

Evaluating an Expression In Exercises 97 and 98, evaluate 
each expression without using a calculator. (Hint: Make a 
sketch of a right triangle.)

 97. (a) sin(arcsin 12)
(b) cos(arcsin 12)

98. (a) tan(arccot 2)
(b) cos(arcsec √5 )

Finding a Derivative In Exercises 99–104, find the 
derivative of the function.

 99. y = arccsc 2x2

100. y = 1
2 arctan e2x

101. y = x arcsec x

102. y = √x2 − 4 − 2 arcsec 
x
2

, 2 < x < 4

103. y = x(arcsin x)2 − 2x + 2√1 − x2 arcsin x

104. y = tan(arcsin x)

Finding an Indefinite Integral In Exercises 105–110, find 
the indefinite integral.

105. ∫ 
1

e2x + e−2x dx

106. ∫ 
1

3 + 25x2 dx

107. ∫ 
x

√1 − x4
 dx

108. ∫ 
1

x√9x2 − 49
 dx

109. ∫ 
arctan(x�2)

4 + x2  dx

110. ∫ 
arcsin 2x

√1 − 4x2
 dx

Evaluating a Definite Integral In Exercises 111–114, 
evaluate the definite integral.

111. ∫1�7

0
 

dx

√1 − 49x2

112. ∫1

0
 

2x2

√4 − x6
 dx

113. ∫2

−1
 

10e2x

25 + e4x dx

114. ∫π�2

π�3
 

cos x

(sin x)√sin2 x − (1�4)
 dx

Area In Exercises 115 and 116, find the area of the given 
region.

115. y =
4 − x

√4 − x2
 116. y =

6
16 + x2

  

x

y

−1−2 1 2

1

2

3

4

  

x

y

−1 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

Verifying an Identity In Exercises 117 and 118, verify the 
identity.

117. cosh 2x = cosh2 x + sinh2 x

118. cosh(x − y) = cosh x cosh y − sinh x sinh y

Finding a Derivative In Exercises 119–124, find the 
derivative of the function.

119. y = sech(4x − 1) 120. y = 2x − cosh √x

121. y = coth 8x2 122. y = ln(coth x)
123. y = sinh−1(4x) 124. y = x tanh−1(2x)

Finding an Indefinite Integral In Exercises 125–130, find 
the indefinite integral. 

125. ∫ x2 sech2 x3 dx 126. ∫sinh 6x dx

127. ∫sech2 x
tanh x

 dx 128. ∫csch4 3x coth 3x dx

129. ∫ 1
9 − 4x2 dx 130. ∫ 

x

√x4 − 1
 dx

Evaluating a Definite Integral In Exercises 131–134, 
evaluate the definite integral.

131. ∫2

1
 sech 2x tanh 2x dx 132. ∫1

0
 sinh2 x dx

133. ∫1

0
 

3

√9x2 + 16
 dx 134. ∫0

−1
 

2
49 − 4x2 dx
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Approximation To approximate ex, you can use a function 
of the form

 f (x) = a + bx
1 + cx

.

  (This function is known as a Padé approximation.) The values 
of f (0), f ′(0), and f ″(0) are equal to the corresponding values 
of ex. Show that these values are equal to 1 and find the values 
of a, b, and c such that f (0) = f ′(0) = f ″(0) = 1. Then use a 
graphing utility to compare the graphs of f  and ex. 

2.  Symmetry Recall that the graph of a function y = f (x) is 
symmetric with respect to the origin if, whenever (x, y) is a 
point on the graph, (−x, −y) is also a point on the graph. The 
graph of the function y = f (x) is symmetric with respect to 
the point (a, b) if, whenever (a − x, b − y) is a point on the 
graph, (a + x, b + y) is also a point on the graph, as shown in 
the figure.

x

(a, b)

(a − x, b − y)

(a + x, b + y)

y

 (a)  Sketch the graph of y = sin x on the interval [0, 2π]. Write 
a short paragraph explaining how the symmetry of the 
graph with respect to the point (π, 0) allows you to conclude 
that

 ∫2π

0
sin x dx = 0.

 (b)  Sketch the graph of y = sin x + 2 on the interval [0, 2π]. 
Use the symmetry of the graph with respect to the point 
(π, 2) to evaluate the integral

 ∫2π

0
(sin x + 2) dx.

 (c)  Sketch the graph of y = arccos x on the interval [−1, 1]. 
Use the symmetry of the graph to evaluate the  integral

 ∫1

−1
arccos x dx.

 (d) Evaluate the integral ∫π�2

0
 

1
1 + (tan x)√2

 dx.

3.  Finding a Value Find the value of the positive constant c 
such that

 lim
x→∞

 (x + c
x − c)

x

= 9.

4.  Finding a Value Find the value of the positive constant c 
such that

 lim
x→∞

 (x − c
x + c)

x

=
1
4

.

5.  Finding Limits Use a graphing utility to estimate each 
limit. Then calculate each limit using L’Hôpital’s Rule. What 
can you conclude about the form 0 ∙ ∞?

 (a) lim
x→0+

 (cot x +
1
x) (b) lim

x→0+
 (cot x −

1
x)

 (c) lim
x→0+

 [(cot x +
1
x)(cot x −

1
x)]

6.  Areas and Angles

 (a)  Let P(cos t, sin t) be a point on the unit circle x2 + y2 = 1 
in the first quadrant (see figure). Show that t is equal to 
twice the area of the shaded circular sector AOP.

x

1

1O

P

A(1, 0)t

y   

x

1

1O

P

A(1, 0)

y

t

 Figure for part (a) Figure for part (b)

 (b)  Let P(cosh t, sinh t) be a point on the unit hyperbola 
x2 − y2 = 1 in the first quadrant (see figure). Show that t 
is equal to twice the area of the shaded region AOP. Begin 
by showing that the area of the shaded region AOP is given 
by the formula 

  A(t) = 1
2

 cosh t sinh t − ∫cosh t

1
 √x2 − 1  dx.

7.  Intersection Graph the exponential function y = ax for 
a = 0.5, 1.2, and 2.0. Which of these curves intersects the line 
y = x? Determine all positive numbers a for which the curve 
y = ax intersects the line y = x.

8.  Length The line x = 1 is tangent to the unit circle at A. The 
length of segment QA equals the length of the circular arc PA� 
(see figure). Show that the length of segment OR approaches 2 
as P approaches A.

x
A(1, 0)

R

Q

O

P

y
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404 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

 9.  Area Consider the three regions A, B, and C determined by 
the graph of f (x) = arcsin x, as shown in the figure.

x

A

CB

y

1
π
4

11
2

2
2

π
6

  (a) Calculate the areas of regions A and B.

  (b) Use your answers in part (a) to evaluate the integral

  ∫√2�2

1�2
arcsin x dx.

  (c) Use the methods in part (a) to evaluate the integral

  ∫3

1
ln x dx.

  (d) Use the methods in part (a) to evaluate the integral

  ∫√3

1
arctan x dx.

10.  Distance Let L be the tangent line to the graph of the 
function y = ln x at the point (a, b), where c is the y-intercept 
of the tangent line, as shown in the figure. Show that the 
distance between b and c is always equal to 1.

xa

b

c

L

y    

xa

b

c

L

y

Figure for 10 Figure for 11

11.  Distance Let L be the tangent line to the graph of the 
function y = ex at the point (a, b), where c is the y-intercept of 
the tangent line, as shown in the figure. Show that the distance 
between a and c is always equal to 1.

12.  Gudermannian Function The Gudermannian 
function of x is gd(x) = arctan(sinh x).
(a) Graph gd using a graphing utility.

(b) Show that gd is an odd function.

(c) Show that gd is monotonic and therefore has an inverse.

(d) Find the point of inflection of gd.

(e) Verify that gd(x) = arcsin(tanh x).
13.  Decreasing Function Show that f (x) = ln xn

x
 is a  

decreasing function for x > e and n > 0.

14.  Area Use integration by substitution to find the area under 
the curve 

 y =
1

sin2 x + 4 cos2 x

between x = 0 and x =
π
4

.

15.  Area Use integration by substitution to find the area under 
the curve

 y =
1

√x + x

between x = 1 and x = 4.

16.  Mortgage A $120,000 home mortgage for 35 years at 
91

2% has a monthly payment of $985.93. Part of the monthly  
payment goes for the interest charge on the unpaid balance, and 
the remainder of the payment is used to reduce the principal. 
The amount that goes for interest is

 u = M − (M −
Pr
12) (1 +

r
12)

12t

and the amount that goes toward reduction of the principal is

v = (M −
Pr
12) (1 +

r
12)

12t
.

In these formulas, P is the amount of the mortgage, r is the 
interest rate (in decimal form), M is the monthly payment, and 
t is the time in years.

 (a)  Use a graphing utility to graph each function in the same 
viewing window. (The viewing window should show all  
35 years of mortgage payments.)

 (b)  In the early years of the mortgage, the larger part of the 
monthly payment goes for what purpose? Approximate 
the time when the monthly payment is evenly divided 
between interest and principal reduction.

 (c)  Use the graphs in part (a) to make a conjecture about the 
relationship between the slopes of the tangent lines to the 
two curves for a specified value of t. Give an analytical 
argument to ver ify your conjecture. Find u′(15) and v′(15).

(d)  Repeat parts (a) and (b) for a repayment period of 20 years 
(M = $1118.56). What can you conclude?

17. Approximating a Function

(a)  Use a graphing utility to compare the graph of the function 
y = ex with the graph of each given function.

  (i) y1 = 1 +
x
1!

(ii)  y2 = 1 +
x
1!

+
x2

2!

(iii) y3 = 1 +
x
1!

+
x2

2!
+

x3

3!

(b)  Identify the pattern of successive polynomials in part (a), 
extend the pattern one more term, and compare the graph 
of the resulting polynomial function with the graph of 
y = ex.

(c) What do you think this pattern implies?
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406 Chapter 6 Differential Equations

6.1 Slope Fields and Euler’s Method

 Use initial conditions to find particular solutions of differential equations.
 Use slope fields to approximate solutions of differential equations.
 Use Euler’s Method to approximate solutions of differential equations.

General and Particular Solutions
In this text, you will learn that physical phenomena can be described by differential 
equations. Recall that a differential equation in x and y is an equation that involves x, 
y, and derivatives of y. For example,

2xy′ − 3y = 0 Differential equation

is a differential equation. In Section 6.2, you will see that  problems involving radioactive 
decay, population growth, and Newton’s Law of Cooling can be formulated in terms 
of differential equations.

A function y = f (x) is called a solution of a differential equation if the equation 
is satisfied when y and its derivatives are replaced by f (x) and its derivatives. For 
example, differentiation and substitution would show that y = e−2x is a solution of the 
differential equation y′ + 2y = 0. It can be shown that every solution of this differential 
equation is of the form

y = Ce−2x General solution of y′ + 2y = 0

where C is any real number. This solution is called the general solution. Some 
differential equations have singular solutions that cannot be written as special cases of 
the general solution. Such solutions, however, are not considered in this text. The order 
of a differential equation is determined by the highest-order derivative in the equation. 
For instance, y′ = 4y is a first-order differential equation. 

In Section 4.1, Example 9, you saw that the second-order differential equation 
s″(t) = −32 has the general solution

s(t) = −16t2 + C1t + C2 General solution of s″(t) = −32

which contains two arbitrary constants. It can be shown that a differential equation of 
order n has a general solution with n arbitrary constants.

 Determining Solutions

Determine whether each function is a solution of the differential equation y″ − y = 0.

a. y = sin x  b. y = 4e−x  c. y = Cex

Solution

a. Because y = sin x, y′ = cos x, and y″ = −sin x, it follows that

y″ − y = −sin x − sin x = −2 sin x ≠ 0.

 So, y = sin x is not a solution.

b. Because y = 4e−x, y′ = −4e−x, and y″ = 4e−x, it follows that

y″ − y = 4e−x − 4e−x = 0.

 So, y = 4e−x is a solution.

c. Because y = Cex, y′ = Cex, and y″ = Cex, it follows that

y″ − y = Cex − Cex = 0.

 So, y = Cex is a solution for any value of C. 
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6.1 Slope Fields and Euler’s Method 407

Geometrically, the general solution of a first-order differential equation represents 
a family of curves known as solution curves, one for each value assigned to the 
arbitrary constant. For instance, you can verify that every function of the form

y = Ce−2x General solution of y′ + 2y = 0

is a solution of the differential equation

y′ + 2y = 0.

Figure 6.1 shows four of the solution curves corresponding to different values of C.
As discussed in Section 4.1, particular solutions of a differential equation are 

obtained from initial conditions that give the values of the dependent variable or one 
of its derivatives for particular values of the independent variable. The term “initial 
condition” stems from the fact that, often in problems involving time, the value of 
the dependent variable or one of its derivatives is known at the initial time t = 0. For 
instance, the second-order differential equation

s″(t) = −32

having the general solution

s(t) = −16t2 + C1t + C2 General solution of s″(t) = −32

might have the following initial conditions.

s(0) = 80, s′(0) = 64 Initial conditions

In this case, the initial conditions yield the particular solution

s(t) = −16t2 + 64t + 80. Particular solution

 Finding a Particular Solution

See LarsonCalculus.com for an interactive version of this type of example.

For the differential equation

xy′ − 3y = 0

verify that y = Cx3 is a solution. (Assume x > 0.) Then find the particular solution 
determined by the initial condition y = 2 when x = 3.

Solution You know that y = Cx3 is a solution because y′ = 3Cx2 and

xy′ − 3y = x(3Cx2) − 3(Cx3) = 0.

Furthermore, the initial condition y = 2 when x = 3 yields

 y = Cx3 General solution

 2 = C(3)3 Substitute initial condition.

 
2
27

= C Solve for C.

and you can conclude that the particular solution is 

y =
2x3

27
, x > 0 Particular solution

as shown in Figure 6.2. Try checking this solution by substituting for y and y′ in the 
original differential equation. 

Note that to determine a particular solution, the number of initial conditions must 
match the number of constants in the general solution.

x

C = −1

C = 1

C = −2

C = 2

General
solution:
y = Ce−2x

y

−1−2 2 3 4

−1

1

Several solution curves for y′ + 2y = 0
Figure 6.1

x

(3, 2)

y = , x > 02x3

27

y

1 2 3 4 5

1

2

3

4

5

For the initial condition y = 2 when 
x = 3, the particular solution of the 
differential equation xy′ − 3y = 0, 
x > 0, is y = (2x3)�27.
Figure 6.2
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408 Chapter 6 Differential Equations

Slope Fields
Solving a differential equation analytically can be difficult or even impossible. 
However, there is a graphical approach you can use to learn a lot about the solution of 
a differential equation. Consider a differential equation of the form

y′ = F(x, y) Differential equation

where F(x, y) is some expression in x and y. At each point (x, y) in the xy-plane where F 
is defined, the differential equation  determines the slope y′ = F(x, y) of the solution at 
that point. If you draw short line segments with slope F(x, y) at selected points (x, y) in 
the domain of F, then these line segments form a slope field, or a direction field, for the 
differential equation y′ = F(x, y). Each line segment has the same slope as the solution 
curve through that point. A slope field shows the general shape of all the solutions 
and can be helpful in getting a visual perspective of the directions of the solutions of a 
differential equation.

 Sketching a Slope Field

Sketch a slope field for the differential equation y′ = x − y for the points (−1, 1), 
(0, 1), and (1, 1).

Solution The slope of the solution curve at any point (x, y) is

F(x, y) = x − y. Slope at (x, y)

So, the slope at each point can be found as shown.

Slope at (−1, 1): y′ = −1 − 1 = −2

Slope at (0, 1): y′ = 0 − 1 = −1

Slope at (1, 1): y′ = 1 − 1 = 0

Draw short line segments at the three points with their respective slopes, as shown in 
Figure 6.3.

 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.

a.

x

y

2

−2

2−2

  b.

x

y

2

−2

2−2

  c.

x

y

2

−2

2−2

i. y′ = x + y ii. y′ = x iii. y′ = y

Solution

a.  You can see that the slope at any point along the y-axis is 0. The only equation that 
satisfies this condition is y′ = x. So, the graph matches equation (ii).

b.  You can see that the slope at the point (1, −1) is 0. The only  equation that satisfies 
this condition is y′ = x + y. So, the graph matches equation (i).

c.  You can see that the slope at any point along the x-axis is 0. The only equation that 
satisfies this condition is y′ = y. So, the graph matches equation (iii). 

y

x
−1−2 1 2

1

2

Figure 6.3
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6.1 Slope Fields and Euler’s Method 409

A solution curve of a differential equation y′ = F(x, y) is simply a curve in the 
xy-plane whose tangent line at each point (x, y) has slope equal to F(x, y). This is 
illustrated in Example 5.

 Sketching a Solution Using a Slope Field

Sketch a slope field for the differential equation

y′ = 2x + y.

Use the slope field to sketch the solution that passes through the point (1, 1).

Solution Make a table showing the slopes at several points. The table shown is a 
small sample. The slopes at many other points should be calculated to get a representative 
slope field.

x −2 −2 −1 −1 0 0 1 1 2 2

y −1 1 −1 1 −1 1 −1 1 −1 1

y′ = 2x + y −5 −3 −3 −1 −1 1 1 3 3 5

Next, draw line segments at the points with their respective slopes, as shown in 
Figure 6.4.

x

2

2−2

−2

y     

x

2

2−2

−2

y

 Slope field for y′ = 2x + y Particular solution for y′ = 2x + y 
 Figure 6.4 passing through (1, 1)
 Figure 6.5

After the slope field is drawn, start at the initial point (1, 1) and move to the right in the 
direction of the line segment. Continue to draw the solution curve so that it moves 
parallel to the nearby line segments. Do the same to the left of (1, 1). The resulting 
solution is shown in Figure 6.5. 

In Example 5, note that the slope field shows that y′ increases to infinity as x 
increases.

TECHNOLOGY Drawing a slope field by 

2

−2

−2

2  
hand is tedious. In practice, slope fields are  
usually drawn using a graphing utility. If you 
have access to a graphing utility that can graph 
slope fields, try graphing the slope field for the 
differential equation in Example 5. One 
example of a slope field drawn by a graphing 
utility is shown at the right.
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Euler’s Method
Euler’s Method is a numerical approach to approximating the particular solution of 
the differential equation

y′ = F(x, y)

that passes through the point (x0, y0). From the given information, you know that the 
graph of the solution passes through the point (x0, y0) and has a slope of F(x0, y0) at this 
point. This gives you a “starting point” for approximating the solution.

From this starting point, you can proceed in the direction indicated by the slope. 
Using a small step h, move along the tangent line until you arrive at the point (x1, y1), 
where

x1 = x0 + h and y1 = y0 + hF(x0, y0)

as shown in Figure 6.6. Then, using (x1, y1) as a new starting point, you can repeat the 
process to obtain a second point (x2, y2). The values of xi and yi are shown below.

 x1 = x0 + h  y1 = y0 + hF(x0, y0)
 x2 = x1 + h  y2 = y1 + hF(x1, y1)

 ⋮  ⋮
 xn = xn−1 + h  yn = yn−1 + hF(xn−1, yn−1)

When using this method, note that you can obtain better approximations of the exact 
solution by choosing smaller and smaller step sizes.

 Approximating a Solution Using Euler’s Method

Use Euler’s Method to approximate the particular solution of the differential equation 

y′ = x − y

passing through the point (0, 1). Use a step of h = 0.1.

Solution Using h = 0.1, x0 = 0, y0 = 1, and F(x, y) = x − y, you have

x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3

and the first three approximations are

y1 = y0 + hF(x0, y0) = 1 + (0.1)(0 − 1) = 0.9

y2 = y1 + hF(x1, y1) = 0.9 + (0.1)(0.1 − 0.9) = 0.82

y3 = y2 + hF(x2, y2) = 0.82 + (0.1)(0.2 − 0.82) = 0.758.

The first ten approximations are shown in the table. You can plot these values to see a 
graph of the approximate solution, as shown in Figure 6.7.

 

For the differential equation in Example 6, you can verify the exact solution to be 
the equation

y = x − 1 + 2e−x.

Figure 6.7 compares this exact solution with the approximate solution obtained in 
Example 6.

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yn 1 0.9 0.82 0.758 0.712 0.681 0.663 0.657 0.661 0.675 0.697

x

y

Exact solution
curve

Euler
approximation

(x1, y1)

(x2, y2)

hF(x0, y0)

x0

y0

x0 + h

Slope F(x0, y0)
h

Figure 6.6

y

x
1.00.80.60.40.2

1.0

0.8

0.6

0.4

0.2

Exact
solution

Approximate
solution

Figure 6.7
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6.1 Slope Fields and Euler’s Method 411

6.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Verifying a Solution Describe how to determine 

whether a function y = f (x) is a solution of a differential 
equation. 

2.  General Solution What does the general solution of 
a first-order differential equation represent geometrically?

3.  Slope Field What do the line segments on a slope field 
represent?

4.  Euler’s Method What does Euler’s Method allow 
you to do?

 Verifying a Solution In Exercises 5–10, verify 
that the function is a solution of the differential 
equation.

 Function Differential Equation

 5. y = Ce5x y′ = 5y

 6. y = e−2x 3y′ + 5y = −e−2x

 7. y = C1 sin x − C2 cos x y″ + y = 0

 8. y = C1e
−x cos x + C2e

−x sin x y″ + 2y′ + 2y = 0

 9. y = (−cos x) ln∣sec x + tan x∣ y″ + y = tan x

10. y = 2
5 (e−4x + ex) y″ + 4y′ = 2ex

 Verifying a Particular Solution In Exercises 
11–14, verify that the function is a particular 
solution of the differential equation.

 Differential Equation
 Function and Initial Condition

11. y = sin x cos x − cos2 x 2y + y′ = 2 sin 2x − 1

  y(π4) = 0

12. y = 6x − 4 sin x + 1 y′ = 6 − 4 cos x

   y(0) = 1

13. y = 4e−6x2
 y′ = −12xy

   y(0) = 4

14. y = e−cos x y′ = y sin x

  y(π2) = 1

 Determining a Solution In Exercises 15–22, 
determine whether the function is a solution of the 
differential equation y(4) − 16y = 0.

15. y = 3 cos 2x 16. y = 3 sin 2x

17. y = 3 cos x 18. y = 2 sin x

19. y = e−2x 20. y = 5 ln x

21. y = ln x + e2x + Cx4 22. y = 3e2x − 4 sin 2x

Determining a Solution In Exercises 23–30, determine 
whether the function is a solution of the differential equation 
xy′ − 2y = x3ex, x > 0.

23. y = x2 + ex

24. y = x3 − e−x

25. y = x2ex

26. y = x2(2 + ex)
27. y = ex − sin x

28. y = x2ex + sin x + cos x

29. y = 2ex ln x

30. y = x2ex − 5x2

 Finding a Particular Solution In Exercises 
31–34, some of the curves corresponding to 
different values of C in the general solution of the 
differential equation are shown in the graph. Find 
the particular solution that passes through the 
point shown on the graph.

31. y = Ce−x�2 32. y(x2 + y) = C

 2y′ + y = 0  2xy + (x2 + 2y)y′ = 0

 

x
1−1−2

2

(0, 3)

y

2 3

  

x

(0, 2)4

2 4−2−4

y

33. y2 = Cx3 34. 2x2 − y2 = C

 2xy′ − 3y = 0, x > 0  yy′ − 2x = 0

 

x
3 4 5 6 7−1

4

3

2

1

−2

−3

−4

(4, 4)

y

x
3 4−3−4

4

3

2

−2

−3

−4

(3, 4)

y

Graphing Particular Solutions Using Technology In 
Exercises 35 and 36, the general solution of the differential 
equation is given. Use a graphing utility to graph the particular 
solutions for the given values of C.

35. 4yy′ − x = 0 36. yy′ + x = 0

 4y2 − x2 = C  x2 + y2 = C

 C = 0, C = ±1, C = ±4  C = 0, C = 1, C = 4
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412 Chapter 6 Differential Equations

 Finding a Particular Solution In Exercises 
37–42, verify that the general solution satisfies 
the differential equation. Then find the particular 
solution that satisfies the initial condition(s).

37. y = Ce−6x 38. 3x2 + 2y2 = C

 y′ + 6y = 0  3x + 2yy′ = 0

 y = 3 when x = 0  y = 3 when x = 1

39. y = C1 sin 3x + C2 cos 3x 40. y = C1 + C2 ln x

 y″ + 9y = 0  xy″ + y′ = 0, x > 0

 y = 2 when x =
π
6

  y = 0 when x = 2

 y′ = 1 when x =
π
6

  y′ =
1
2

 when x = 2

41. y = C1x + C2x3 42. y = e2x�3(C1 + C2x)
 x2y″ − 3xy′ + 3y = 0, x > 0 9y″ − 12y′ + 4y = 0

 y = 0 when x = 2  y = 4 when x = 0

 y′ = 4 when x = 2  y = 0 when x = 3

 Finding a General Solution In Exercises 
43–52, use integration to find a general solution of 
the differential equation.

43. 
dy
dx

= 12x2 44. 
dy
dx

= 3x8 − 2x

45. 
dy
dx

=
x

1 + x2 46. 
dy
dx

=
ex

4 + ex

47. 
dy
dx

= sin 2x 48. 
dy
dx

= tan2 x

49. 
dy
dx

= x√x − 6 50. 
dy
dx

= 2x√4x2 + 1

51. 
dy
dx

= xex2
 52. 

dy
dx

= 5(sin x)ecos x

Slope Field In Exercises 53–56, a differential equation and 
its slope field are given. Complete the table by determining the 
slopes (if possible) in the slope field at the given points.

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx

53. 
dy
dx

=
2x
y

 54. 
dy
dx

= y − x

 

x
10

−6

14

y

−10

 

x

y

8−8

10

−6

55. 
dy
dx

= x cos 
πy
8

 56. 
dy
dx

= tan 
πy
6

 

x
−10 10

−6

14

y y

8

8

−8

x
−8

 Matching In Exercises 57–60, match the 
differential equation with its slope field. [The slope 
fields are labeled (a), (b), (c), and (d).]

(a)

−3 3

−3

3

x

y  (b)

x

y

3

−3

3−3

(c)

x

y

3

−3

3−3

 (d)

x

y

2

−1

− 3
2

3
2

57. 
dy
dx

= sin 2x 58. 
dy
dx

=
1
2

 cos x

59. 
dy
dx

= e−2x

60. 
dy
dx

=
x

x2 + 1

 Slope Field In Exercises 61–64, (a) sketch the 
slope field for the differential equation, (b) use 
the slope field to sketch the solution that  passes 
through the given point, and (c) discuss the graph 
of the  solution as x→∞ and x→−∞. Use a 
graphing utility to verify your results. To print a 
blank coordinate plane, go to MathGraphs.com.

61. y′ = 3 − x, (4, 2)
62. y′ = 1

3x2 − 1
2x, (1, 1)

63. y′ = y − 4x, (2, 2)
64. y′ = y + xy, (0, −4)
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6.1 Slope Fields and Euler’s Method 413

65.  Slope Field Use the slope field for the differential equation 
y′ = 1�x, where x > 0, to sketch the graph of the solution that 
satisfies each given initial condition. Then make a conjecture 
about the behavior of a particular solution of y′ = 1�x 
as x→∞. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x

y

3

2

1

−3

−2

−1
6

 (a) (1, 0)
 (b) (2, −1)
66.  Slope Field Use the slope field for the differential equation

y′ = 1�y, where y > 0, to sketch the graph of the solution that 
satisfies each given initial condition. Then make a conjecture 
about the behavior of a particular solution of y′ = 1�y 
as x→∞. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x

y

6

31 2−3 −2 −1

 (a) (0, 1)
 (b) (1, 1)

Slope Field In Exercises 67–72, use a computer algebra  
system to (a) graph the slope field for the differential equation 
and (b) graph the solution satisfying the specified initial 
condition.

67. 
dy
dx

= 0.25y, y(0) = 4

68. 
dy
dx

= 4 − y, y(0) = 6

69. 
dy
dx

= 0.02y(10 − y), y(0) = 2

70. 
dy
dx

= 0.2x(2 − y), y(0) = 9

71. 
dy
dx

= 0.4y(3 − x), y(0) = 1

72. 
dy
dx

=
1
2

e−x�8 sin 
πy
4

, y(0) = 2

 Euler’s Method In Exercises 73–78, use 
Euler’s Method to make a table of values for the 
approximate solution of the  differential equation 
with the specified initial value. Use n steps of size h.

73. y′ = x + y, y(0) = 2, n = 10, h = 0.1

74. y′ = x + y, y(0) = 2, n = 20, h = 0.05

75. y′ = 3x − 2y, y(0) = 3, n = 10, h = 0.05

76. y′ = 0.5x(3 − y), y(0) = 1, n = 5, h = 0.4

77. y′ = exy, y(0) = 1, n = 10, h = 0.1

78. y′ = cos x + sin y, y(0) = 5, n = 10, h = 0.1

Euler’s Method In Exercises 79–81, complete the table 
using the exact solution of the differential equation and two 
approximations obtained using Euler’s Method to approximate 
the particular solution of the differential equation. Use h = 0.2 
and h = 0.1, and compute each approximation to four decimal 
places.

x 0 0.2 0.4 0.6 0.8 1

y(x)
(exact)

y(x)
(h = 0.2)

y(x)
(h = 0.1)

 Differential Initial Exact
 Equation Condition Solution

79. 
dy
dx

= y (0, 3) y = 3ex

80. 
dy
dx

=
2x
y

 (0, 2) y = √2x2 + 4

81. 
dy
dx

= y + cos x (0, 0) y =
1
2
(sin x − cos x + ex)

82.  Euler’s Method Compare the values of the approximations 
in Exercises 79–81 with the values given by the exact solution. 
How does the error change as h increases?

83.  Temperature At time t = 0 minutes, the temperature of 
an object is 140°F. The temperature of the object is changing 
at the rate given by the differential equation

 
dy
dt

= −
1
2
( y − 72).

 (a)  Use a graphing utility and Euler’s Method to approximate 
the particular solutions of this differential equation at 
t = 1, 2, and 3. Use a step size of h = 0.1. (A graphing 
utility program for Euler’s Method is available at 
LarsonCalculus.com.)

 (b) Compare your results with the exact solution

 y = 72 + 68e−t�2.

 (c)  Repeat parts (a) and (b) using a step size of h = 0.05. 
Compare the results.
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 84.  HOW DO YOU SEE IT? The graph shows  
a solution of one of the following differential  
equations. Which differential equation was 
used? Explain your reasoning.

(a) y′ = xy 

x

y

(b) y′ =
4x
y

(c) y′ = −4xy

(d) y′ = 4 − xy

84.  

EXPLORING CONCEPTS
85.  Euler’s Method Explain when Euler’s Method 

produces an exact particular solution of a differential 
equation.

86.   Finding Values It is known that y = Cekx is a 
solution of the differential equation y′ = 0.07y. Is it 
possible to determine C or k from the information given? 
Explain.

True or False? In Exercises 87 and 88, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

87.  If y = f (x) is a solution of a first-order differential equation, 
then y = f (x) + C is also a solution.

88.  A slope field shows one particular solution of a differential 
equation.

89.  Errors and Euler’s Method  The exact solution of the 
differential equation y′ = −2y, where y(0) = 4, is y = 4e−2x.

 (a)  Use a graphing utility to complete the table, where y is the 
exact value of the solution, y1 is the approximate  solution 
using Euler’s Method with h = 0.1, y2 is the approximate 
solution using Euler’s Method with h = 0.2, e1 is the 
absolute error ∣y − y1∣, e2 is the absolute error ∣y − y2∣, 
and r is the ratio e1�e2.

x 0 0.2 0.4 0.6 0.8 1

y

y1

y2

e1

e2

r

 (b) What can you conclude about the ratio r as h changes?

 (c) Predict the absolute error when h = 0.05.

90.  Errors and Euler’s Method Repeat Exercise 89 for 
which the exact solution of the differential equation

 
dy
dx

= x − y

 where y(0) = 1, is y = x − 1 + 2e−x.

91.  Electric Circuit The diagram shows a simple electric 
circuit consisting of a power source, a resistor, and an inductor.

E

R

L

  A model of the current I, in amperes (A), at time t is given by 
the first-order differential equation

 L
dI
dt

+ RI = E(t)

  where E(t) is the voltage (V) produced by the power source, 
R is the resistance, in ohms (Ω), and L is the inductance, in 
henrys (H). Suppose the electric circuit consists of a 24-V 
power source, a 12-Ω resistor, and a 4-H inductor.

 (a) Sketch a slope field for the differential equation.

 (b) What is the limiting value of the current? Explain.

92.  Slope Field A slope field shows that the slope at the 
point (1, 1) is 6. Does this slope field represent the family of 
solutions for the differential equation y′ = 4x + 2y? Explain.

93.  Think About It It is known that y = A sin ωt is a solution 
of the differential equation y″ + 16y = 0. Find the value(s) of ω.

94.  Think About It It is known that y = ekt is a solution of the 
differential equation y″ − 16y = 0. Find the value(s) of k.

PUTNAM EXAM CHALLENGE
95.  Let f  be a twice-differentiable real-valued function 

satisfying f (x) + f ″(x) = −xg(x)f ′(x), where g(x) ≥ 0 
for all real x. Prove that ∣ f (x)∣ is bounded.

96.  Prove that if the family of integral curves of the 
differential equation

 
dy
dx

+ p(x)y = q(x), p(x) ∙ q(x) ≠ 0

  is cut by the line x = k, the tangents at the points of 
intersection are concurrent.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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6.2 Growth and Decay 415

6.2 Growth and Decay

 Use separation of variables to solve a simple differential equation.
 Use exponential functions to model growth and decay in applied problems.

Differential Equations
In Section 6.1, you learned to analyze the solutions of differential equations visually 
using slope fields and to approximate solutions numerically using Euler’s Method. 
Analytically, you have learned to solve only two types of differential  equations—those 
of the forms y′ = f (x) and y″ = f (x). In this section, you will learn how to solve a more 
general type of differential  equation. The strategy is to rewrite the equation so that each 
variable occurs on only one side of the equation. This strategy is called separation of 
variables. (You will study this strategy in detail in Section 6.3.)

 Solving a Differential Equation

 y′ =
2x
y

 Original equation

 yy′ = 2x Multiply each side by y.

 ∫yy′ dx = ∫2x dx Integrate each side with respect to x.

 ∫y dy = ∫2x dx dy = y′ dx

 
1
2

y2 = x2 + C1 Apply Power Rule.

 y2 − 2x2 = C Rewrite, letting C = 2C1.

So, the general solution is y2 − 2x2 = C. 

When you integrate each side of the equation in Example 1, you do not need to add 
a constant of integration to each side. When you do, you still obtain the same result.

 ∫y dy = ∫2x dx

 
1
2

y2 + C2 = x2 + C3

 
1
2

y2 = x2 + (C3 − C2)

 
1
2

y2 = x2 + C1 Rewrite, letting C1 = C3 − C2.

Some people prefer to use Leibniz notation and differentials when applying 
separation of variables. The solution to Example 1 is shown below using this notation.

 
dy
dx

=
2x
y

 y dy = 2x dx

 ∫y dy = ∫2x dx

 
1
2

y2 = x2 + C1

 y2 − 2x2 = C

REMARK You can use 
implicit differentiation to check 
the solution to Example 1.

Exploration
In Example 1, the general 
solution of the differential 
equation is

y2 − 2x2 = C.

Use a graphing utility 
to sketch the particular 
solutions for C = ±2, 
C = ±1, and C = 0. 
Describe the solutions 
graphically. Is the following 
statement true of each 
solution?

 The slope of the graph at 
the point (x, y) is equal to 
twice the ratio of x and y.

Explain your reasoning. Are 
all curves for which this 
statement is true represented 
by the general solution?
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Growth and Decay Models
In many applications, the rate of change of a variable y is proportional to the value of 
y. When y is a function of time t, the proportion can be written as shown.

Rate of change of y  is  proportional to y.

 
dy
dt

= ky

The general solution of this differential equation is given in the next theorem.

THEOREM 6.1 Exponential Growth and Decay

If y is a differentiable function of t such that y > 0 and dy�dt = ky for some 
constant k, then

y = Cekt

where C is the initial value of y, and k is the proportionality 
constant. Exponential growth occurs when k > 0, and  
exponential decay occurs when k < 0.

Proof

 
dy
dt

= ky Write original equation.

 
dy
y

= k dt Separate variables.

 ∫ 
dy
y

= ∫ k dt Integrate each side.

 ln y = kt + C1 Find antiderivative of each side.

 y = ekt+C1 Exponentiate each side.

 y = ekteC1 Property of exponents

 y = Cekt Let C = eC1.

So, all solutions of y′ = ky are of the form y = Cekt. Remember that you can differentiate 
the function y = Cekt with respect to t to verify that y′ = ky. 

 Using an Exponential Growth Model

The rate of change of y is proportional to y. When t = 0, y = 2, and when t = 2, y = 4. 
What is the value of y when t = 3?

Solution Because y′ = ky, you know that y and t are related by the equation 
y = Cekt. You can find the values of the constants C and k by applying the initial 
 conditions.

2 = Ce0  C = 2 When t = 0, y = 2.

4 = 2e2k  k =
1
2

ln 2 ≈ 0.3466 When t = 2, y = 4.

So, the model is y = 2e0.3466t. When t = 3, the value of y is 2e0.3466(3) ≈ 5.657. See 
Figure 6.8. 

Using logarithmic properties, the value of k in Example 2 can also be written as 
ln√2. So, the model becomes y = 2e(ln√2)t, which can be rewritten as y = 2(√2)t.

t
1

1

2

2

3

3

4

4

5

6

7

(0, 2)

(2, 4)

(3, 5.657)

y = 2e0.3466t

y

If the rate of change of y is proportional 
to y, then y follows an exponential 
model.
Figure 6.8

REMARK Notice that you 
do not need to write ln∣y∣ 
because y > 0.
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Radioactive decay is measured in terms of half-life—the number of years required 
for half of the atoms in a sample of radioactive material to decay. The rate of decay 
is proportional to the amount present. The half-lives of some common radioactive 
isotopes are listed below.

Uranium (238U) 4,470,000,000 years

Plutonium (239Pu) 24,100 years

Carbon (14C) 5715 years

Radium (226Ra) 1599 years

Einsteinium (254Es) 276 days

Radon (222Rn) 3.82 days

Nobelium (257No) 25 seconds

 Radioactive Decay

Ten grams of the plutonium isotope 239Pu were released in a nuclear accident. How 
long will it take for the 10 grams to decay to 1 gram?

Solution Let y represent the mass (in grams) of the plutonium. Because the rate of 
decay is proportional to y, you know that

y = Cekt

where t is the time in years. To find the values of the constants C and k, apply the initial 
conditions. Using the fact that y = 10 when t = 0, you can write

10 = Cek(0)  10 = Ce0

which implies that C = 10. Next, using the fact that the half-life of 239Pu is 24,100 years, 
you have y = 10�2 = 5 when t = 24,100. So, you can write

 5 = 10ek(24,100)

 
1
2
= e24,100k

 
1

24,100
 ln 

1
2
= k

 −0.000028761 ≈ k.

So, the model is

y = 10e−0.000028761t. Half-life model

To find the time it would take for 10 grams to decay to 1 gram, you can solve for t in 
the equation

1 = 10e−0.000028761t.

The solution is approximately 80,059 years. 

From Example 3, notice that in an exponential growth or decay problem, it is 
easy to solve for C when you are given the value of y at t = 0. The next example 
 demonstrates a procedure for solving for C and k when you do not know the value of 
y at t = 0.

TECHNOLOGY Most graphing utilities have curve-fitting capabilities that can 
be used to find models that represent data. Use the exponential regression feature 
of a graphing utility and the information in Example 2 to find a model for the data. 
How does your model compare with the given model?

Radioactive Decay

Ten grams of the plutonium isotope 
long will it take for the 10 grams to decay to 1 gram?

Solution Let y represent the mass (in grams) of the plutonium. Because the rate of 
decay is proportional to 

y = Cekt

where t is the time in years. To find the values of the constants 
conditions. Using the fact that 

10 = Cek(0)

which implies that C =
you have y = 10�2 =

In a conventional nuclear 
reactor, 1 kilogram of 239Pu can 
generate enough electricity to 
power about 900 homes for a 
year. (Source: World Nuclear 
Association, U.S. Energy 
Information Administration)

REMARK The exponential 
decay model in Example 3 
could also be written as
y = 10(1

2)t�24,100
. This model is 

much easier to derive, but for 
some applications it is not as 
convenient to use. 

iurii/Shutterstock.com
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 Population Growth

See LarsonCalculus.com for an interactive version of this type of example.

An experimental population of fruit flies increases according to the law of exponential 
growth. There were 100 flies after the second day of the experiment and 300 flies after 
the fourth day. Approximately how many flies were in the original population?

Solution Let y = Cekt be the number of flies at time t, where t is measured in days. 
Note that y is continuous, whereas the number of flies is discrete. Because y = 100 
when t = 2 and y = 300 when t = 4, you can write

100 = Ce2k and 300 = Ce4k.

From the first equation, you know that

C = 100e−2k.

Substituting this value into the second equation produces the following.

 300 = 100e−2ke4k

 300 = 100e2k

 3 = e2k

 ln 3 = 2k

 
1
2

 ln 3 = k

 0.5493 ≈ k

So, the exponential growth model is

y = Ce0.5493t.

To solve for C, reapply the condition y = 100 when t = 2 and obtain

 100 = Ce0.5493(2)

 C = 100e−1.0986

 C ≈ 33.

So, the original population (when t = 0) consisted of approximately y = C = 33 flies, 
as shown in Figure 6.9.

 Declining Sales

Four months after it stops advertising, a manufacturing company notices that its sales 
have dropped from 100,000 units per month to 80,000 units per month. The sales follow 
an exponential pattern of decline. What will the sales be after another 2 months?

Solution Use the exponential decay model y = Cekt, where t is measured in months. 
From the initial condition (t = 0), you know that C = 100,000. Moreover, because 
y = 80,000 when t = 4, you have

 80,000 = 100,000e4k

 0.8 = e4k

 ln(0.8) = 4k

 −0.0558 ≈ k.

So, after 2 more months (t = 6), you can expect the monthly sales to be

 y = 100,000e−0.0558(6)

 ≈ 71,500 units.

See Figure 6.10. 
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In Examples 2 through 5, you did not actually have to solve the differential 
equation dy�dt = ky. (This was done once in the proof of Theorem 6.1.) The next 
example demonstrates a problem whose solution involves the separation of variables 
technique. The example concerns Newton’s Law of Cooling, which states that the rate 
of change of the temperature of an object is proportional to the difference between the 
object’s temperature and the temperature of the surrounding medium.

 Newton’s Law of Cooling

Let y represent the temperature (in °F) of an object in a room whose temperature is 
kept at a constant 60°F. The object cools from 100°F to 90°F in 10 minutes. How much 
longer will it take for the temperature of the object to decrease to 80°F?

Solution From Newton’s Law of Cooling, you know that the rate of change of y is 
proportional to the difference between y and 60. This can be written as 

dy
dt

= k(y − 60), 80 ≤ y ≤ 100.

To solve this differential equation, use separation of variables, as shown.

 
dy
dt

= k(y − 60) Differential equation

 ( 1
y − 60) dy = k dt Separate variables.

 ∫ 
1

y − 60
 dy = ∫ k dt Integrate each side.

 ln∣y − 60∣ = kt + C1 Find antiderivative of each side.

Because y > 60, ∣y − 60∣ = y − 60, and you can omit the absolute value signs. Using 
exponential notation, you have

 y − 60 = ekt+C1

 y = 60 + Cekt. C = eC1

Using y = 100 when t = 0, you obtain

100 = 60 + Cek(0) = 60 + C

which implies that C = 40. Because y = 90 when t = 10,

 90 = 60 + 40ek(10)

 30 = 40e10k

 k =
1
10

 ln 
3
4

.

So, k ≈ −0.02877 and the model is

y = 60 + 40e−0.02877t. Cooling model

When y = 80, you obtain

 80 = 60 + 40e−0.02877t

 20 = 40e−0.02877t

 
1
2
= e−0.02877t

 ln 
1
2
= −0.02877t

 t ≈ 24.09 minutes.

So, it will require about 14.09 more minutes for the object to cool to a temperature of 
80°F. See Figure 6.11. 
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6.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Describing Values Describe what the values of C 

and k represent in the exponential growth and decay model 
y = Cekt. 

2.  Growth and Decay For y = Cekt, explain why 
exponential growth occurs when k > 0 and exponential 
decay occurs when k < 0.

 Solving a Differential Equation In Exercises 
3–12, find the general solution of the differential 
equation.

 3. 
dy
dx

= x + 3  4. 
dy
dx

= 5 − 8x

 5. 
dy
dx

= y + 3  6. 
dy
dx

= 6 − y

 7. y′ =
5x
y

  8. y′ = −
√x
4y

 9. y′ = √x y 10. y′ = x(1 + y)
11. (1 + x2)y′ − 2xy = 0 12. xy + y′ = 100x

Writing and Solving a Differential Equation In 
Exercises 13 and 14, write and find the general solution of the 
differential equation that models the verbal statement.

13.  The rate of change of Q with respect to t is inversely 
proportional to the square of t.

14.  The rate of change of P with respect to t is proportional to 
25 − t.

 Slope Field In Exercises 15 and 16, a differential 
equation, a point, and a slope field are given. 
(a) Sketch two approximate solutions of the 
differential equation on the slope field, one of 
which passes through the given point. (To print an 
enlarged copy of the graph, go to MathGraphs.com.)  
(b) Use integration and the given point to find 
the particular solution of the differential equation 
and use a graphing utility to graph the solution. 
Compare the result with the sketch in part (a) that 
passes through the given point.

15. 
dy
dx

= x(6 − y), (0, 0) 16. 
dy
dx

= xy, (0, 
1
2)

 

x
−5 −1

9

5

y  

x

4

−4

−4 4

y

 Finding a Particular Solution In Exercises 
17–20, find the function y = f (t) passing through 
the point (0, 10) with the given differential equation. 
Use a graphing utility to graph the solution.

17. 
dy
dt

=
1
2

t 18. 
dy
dt

= −9√t

19. 
dy
dt

= −
1
2

y 20. 
dy
dt

=
3
4

y

 Writing and Solving a Differential 
Equation In Exercises 21 and 22, write and find 
the general solution of the differential equation 
that models the verbal statement. Evaluate the 
solution at the specified value of the independent 
variable.

21.  The rate of change of N is proportional to N. When t = 0, 
N = 250, and when t = 1, N = 400. What is the value of N 
when t = 4?

22.  The rate of change of P is proportional to P. When t = 0, 
P = 5000, and when t = 1, P = 4750. What is the value of P 
when t = 5?

 Finding an Exponential Function In 
Exercises 23–26, find the exponential function 
y = Cekt that passes through the two given points.

23. 

t

y

(4, 3)

(0, 2)

1 2 3 4 5

1

3

4

5

 24. 

1 2 3 4 5

4

3

2

1

(0, 4)

y

5, 1
2))

t

25. 

(1, 5)

(5, 2)

y

t
1 2 3 4 5 6

1
2
3
4
5
6

 26. 

1 2 3 4 5

5

4

3

2

1

(4, 5)

y

t

3, 1
2))

EXPLORING CONCEPTS
Increasing Function In Exercises 27 and 28, 
determine the quadrants in which the solution of the 
differential equation is an increasing function. Explain. 
(Do not solve the differential equation.)

27. 
dy
dx

=
1
2

xy 28. 
dy
dx

=
1
2

x2y
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 Radioactive Decay In Exercises 29–36, 
complete the table for the radioactive isotope.

    Amount Amount
  Half-life Initial After After
 Isotope (in years) Quantity 1000 Years 10,000 Years

29. 226Ra 1599 20 g  

30. 226Ra 1599  1.5 g 

31. 226Ra 1599   0.1 g

32. 14C 5715   3 g

33. 14C 5715 5 g  

34. 14C 5715  1.6 g 

35. 239Pu 24,100  2.1 g 

36. 239Pu 24,100   0.4 g

37.  Radioactive Decay Radioactive radium has a half-life 
of approximately 1599 years. What percent of a given amount 
remains after 100 years?

38.  Carbon Dating Carbon-14 dating assumes that the carbon 
dioxide on Earth today has the same radioactive content as it 
did centuries ago. If this is true, the amount of 14C absorbed by 
a tree that grew several centuries ago should be the same as the 
amount of 14C absorbed by a tree growing today. A piece of 
ancient charcoal contains only 15% as much of the radioactive 
carbon as a piece of modern charcoal. How long ago was the 
tree burned to make the ancient charcoal? (The half-life of 14C 
is 5715 years.)

 Compound Interest In Exercises 39– 44, 
complete the table for a savings account in which 
interest is compounded continuously.

 Initial Annual Time to Amount After
 Investment Rate Double 10 Years

39. $1000 12%  

40. $28,000 2.5%  

41. $150  15 yr 

42. $31,000  8 yr 

43. $900   $1845.25

44. $6000   $6840

Compound Interest In Exercises 45–48, find the principal 
P that must be invested at rate r, compounded monthly, so that 
$1,000,000 will be available for retirement in t years.

45. r = 7 1
2%, t = 20 46. r = 6%, t = 40

47. r = 8%, t = 35 48. r = 9%, t = 25

Compound Interest In Exercises 49 and 50, find the time 
necessary for $1000 to double when it is invested at rate r 
and compounded (a) annually, (b) monthly, (c) daily, and  
(d) continuously.

49. r = 7%

50. r = 5.5%

 Population In Exercises 51–54, the population 
(in millions) of a country in 2015 and the 
expected continuous annual rate of change k of 
the population are given. (Source: U.S. Census 
Bureau, International Data Base)

(a) Find the exponential growth model

 P = Cekt

 for the population by letting t = 5 correspond to 2015.

(b)  Use the model to predict the population of the country in 
2030.

(c)  Discuss the relationship between the sign of k and the 
change in population for the country.

 Country 2015 Population k

51. Latvia 2.0 −0.011

52. Canada 35.1 0.008

53. Paraguay 6.8 0.012

54. Ukraine 44.4 −0.006

55.  Modeling Data One hundred bacteria are started in a 
culture and the number N of bacteria is counted each hour for 
5 hours. The results are shown in the table, where t is the time 
in hours.

t 0 1 2 3 4 5

N 100 126 151 198 243 297

 (a)  Use the regression capabilities of a graphing utility to find 
an exponential model for the data.

 (b)  Use the model to estimate the time required for the  
population to quadruple in size.

56.  Bacteria Growth The number of bacteria in a culture is 
increasing according to the law of exponential growth. There 
are 125 bacteria in the culture after 2 hours and 350 bacteria 
after 4 hours.

 (a) Find the initial population.

 (b)  Write an exponential growth model for the bacteria  
population. Let t represent the time in hours.

 (c)  Use the model to determine the number of bacteria after 
8 hours.

 (d) After how many hours will the bacteria count be 25,000?

57.  Learning Curve The management at a certain factory has 
found that a worker can produce at most 30 units in a day. The 
learning curve for the number of units N produced per day 
after a new employee has worked t days is 

 N = 30(1 − ekt).

 After 20 days on the job, a particular worker produces 19 units.

 (a) Find the learning curve for this worker.

 (b)  How many days should pass before this worker is 
producing 25 units per day?
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58.  Learning Curve Suppose the management in Exercise 57 
requires a new employee to produce at least 20 units per day 
after 30 days on the job.

 (a)  Find the learning curve that describes this minimum 
requirement.

 (b)  Find the number of days before a minimal achiever is 
producing 25 units per day.

59. Insect Population

 (a)  Suppose an insect population increases by a constant 
number each month. Explain why the number of insects 
can be represented by a linear function.

 (b)  Suppose an insect population increases by a constant 
percentage each month. Explain why the number of 
insects can be represented by an exponential function.

 60.  HOW DO YOU SEE IT? The functions f  
and g are both of the form y = Cekt.

 

t

y

1 2 3 4 5 6

1

2

3

4

5

6

f

g

(a)  Do the functions f  and g represent exponential 
growth or exponential decay? Explain.

(b)  Assume both functions have the same value of C. 
Which function has a greater value of k? Explain.

60.  

61.  Modeling Data The table shows the cost of tuition and 
fees M (in dollars) at public four-year universities for selected 
years. (Source: The College Board)

Year 1980 1985 1990 1995

Cost, M 2320 2918 3492 4399

Year 2000 2005 2010 2015

Cost, M 4845 6708 8351 9410

 (a)  Use a graphing utility to find an exponential model M1 for 
the data. Let t = 0 represent 1980.

 (b)  Use a graphing utility to find a linear model M2 for the 
data. Let t = 0 represent 1980.

 (c)  Which model fits the data better? Explain.

 (d)  Use the exponential model to predict when the cost of 
tuition and fees will be $15,000. Does the result seem 
reasonable? Explain.

63.  Sound Intensity The level of sound β (in decibels) 
with an intensity of I is β(I) = 10 log10(I�I0), where I0 is an 
intensity of 10−16 watt per square centimeter, corresponding 
roughly to the faintest sound that can be heard. Determine β(I) 
for the following.

 (a) I = 10−14 watt per square centimeter (whisper)

 (b) I = 10−9 watt per square centimeter (busy street corner)

 (c) I = 10−4 watt per square centimeter (threshold of pain)

64.  Noise Level With the installation of noise suppression 
materials, the noise level in an auditorium was reduced from 
93 to 80 decibels. Use the function in Exercise 63 to find the 
percent decrease in the intensity level of the noise as a result 
of the installation of these materials.

65.  Newton’s Law of Cooling When an object is removed 
from a furnace and placed in an environment with a constant 
temperature of 80°F, its core temperature is 1500°F. One hour 
after it is removed, the core temperature is 1120°F. 

 (a)  Write an equation for the core temperature y of the object 
t hours after it is removed from the furnace.

 (b)  What is the core temperature of the object 6 hours after it 
is removed from the furnace?

66.  Newton’s Law of Cooling A container of hot liquid 
is placed in a freezer that is kept at a constant temperature 
of 20°F. The initial temperature of the liquid is 160°F. After  
5 minutes, the liquid’s temperature is 60°F. 

 (a)  Write an equation for the temperature y of the liquid  
t minutes after it is placed in the freezer.

 (b)  How much longer will it take for the temperature of the 
liquid to decrease to 25°F?

True or False? In Exercises 67 and 68, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

67.  Half of the atoms in a sample of radioactive radium decay in 
799.5 years.

68.  If prices are rising at a rate of 0.5% per month, then they are 
rising at a rate of 6% per year.

The value of a tract of timber is

V(t) = 100,000e0.8√t

where t is the time in  
years, with t = 0  
corresponding to 2010.  
If money earns interest  
continuously at 10%,  
then the present value of  
the timber at any time t is

A(t) = V(t)e−0.10t.

Find the year in which the timber should be harvested to  
maximize the present value function.

62. Forestry

Stephen Aaron Rees/Shutterstock.com
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6.3 Separation of Variables and the Logistic Equation

  Recognize and solve differential equations that can be solved by separation of  
variables.

 Use differential equations to model and solve applied problems.
 Solve and analyze logistic differential equations.

Separation of Variables
Consider a differential equation that can be written in the form

M(x) + N(y) dy
dx

= 0

where M is a continuous function of x alone and N is a continuous function of y alone. 
As you saw in Section 6.2, for this type of equation, all x-terms can be collected with dx 
and all y-terms with dy, and a solution can be obtained by integration. Such equations 
are said to be separable, and the solution procedure is called separation of variables. 
Below are some examples of differential equations that are separable.

Original Differential Equation Rewritten with Variables Separated

x2 + 3y 
dy
dx

= 0 3y dy = −x2 dx

(sin x)y′ = cos x dy = cot x dx

xy′
ey + 1

= 2 
1

ey + 1
 dy =

2
x
 dx

 Separation of Variables

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of

(x2 + 4) dy
dx

= xy.

Solution To begin, note that y = 0 is a solution. To find other solutions, assume that 
y ≠ 0 and separate variables as shown.

 (x2 + 4) dy = xy dx Differential form

 
dy
y

=
x

x2 + 4
 dx Separate variables.

Now, integrate to obtain

 ∫ 
dy
y

= ∫ 
x

x2 + 4
 dx  Integrate.

 ln∣y∣ = 1
2

 ln(x2 + 4) + C1

 ln∣y∣ = ln√x2 + 4 + C1

 ∣y∣ = eln√x2+4+C1  Exponentiate each side.

 ∣y∣ = eC1√x2 + 4  Property of exponents

 y = ±eC1√x2 + 4.

Because y = 0 is also a solution, you can write the general solution as

y = C√x2 + 4. General solution 

REMARK Be sure to check 
your solutions throughout this 
chapter. In Example 1, you  
can check the solution

y = C√x2 + 4

by differentiating and  
substituting into the original 
equation.

So, the solution checks.

 (x2 + 4) dy
dx

= xy

 (x2 + 4) Cx

√x2 + 4
=? x(C√x2 + 4)

 Cx√x2 + 4 = Cx√x2 + 4
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In some cases, it is not feasible to write the general solution in the explicit form 
y = f (x). The next example illustrates such a solution. Implicit differentiation can be 
used to verify this solution.

 Finding a Particular Solution

Given the initial condition y(0) = 1, find the particular solution of the equation

xy dx + e−x2(y2 − 1) dy = 0.

Solution Note that y = 0 is a solution of the differential equation—but this solution 
does not satisfy the initial condition. So, you can assume that y ≠ 0. To separate 
 variables, you must rid the first term of y and the second term of e−x2. So, you should 
multiply by ex2�y and obtain the following.

 xy dx + e−x2(y2 − 1) dy = 0

 e−x2(y2 − 1) dy = −xy dx

 ∫ (y −
1
y) dy = ∫ −xex2

 dx

 
y2

2
− ln∣y∣ = −

1
2

ex2 + C

From the initial condition y(0) = 1, you have

1
2
− 0 = −

1
2
+ C

which implies that C = 1. So, the particular solution has the implicit form

 
y2

2
− ln∣y∣ = −

1
2

ex2 + 1

 y2 − ln y2 + ex2 = 2.

You can check this by differentiating and rewriting to get the original equation.

 Finding a Particular Solution Curve

Find the equation of the curve that passes through the point (1, 3) and has a slope of 
y�x2 at any point (x, y).

Solution Because the slope of the curve is y�x2, you have

dy
dx

=
y
x2

with the initial condition y(1) = 3. Because the initial condition occurs in Quadrant I, 
assume x > 0. Then, separating variables and integrating produce

 ∫ 
dy
y

= ∫ 
dx
x2 , y ≠ 0, x > 0

 ln∣y∣ = −
1
x
+ C1

 y = e−(1�x)+C1

 y = Ce−1�x.

Because y = 3 when x = 1, it follows that 3 = Ce−1 and C = 3e. So, the equation of 
the specified curve is

y = (3e)e−1�x  y = 3e(x−1)�x, x > 0.

See Figure 6.12. 

 FOR FURTHER INFORMATION
For an example (from engineering) 
of a differential equation that 
is separable, see the article 
“Designing a Rose Cutter” by 
J. S. Hartzler in The College 
Mathematics Journal. To view this 
 article, go to MathArticles.com.

−2 2 4 6 8 10

12

10

6

4

2

x

y = 3e(x − 1)/x

y = 3e

(1, 3)

y

Figure 6.12
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Applications

 Wildlife Population

The rate of change of the number of coyotes N(t) in a population is directly proportional 
to 650 − N(t), where t is the time in years. When t = 0, the population is 300, and 
when t = 2, the population has increased to 500. Find the population when t = 3.

Solution Because the rate of change of the population is proportional to 650 − N(t), 
or 650 − N, you can write the differential equation

dN
dt

= k(650 − N).

You can solve this equation using separation of variables.

 dN = k(650 − N) dt Differential form

 
dN

650 − N
= k dt  Separate variables.

 −ln∣650 − N∣ = kt + C1  Integrate.

 ln∣650 − N∣ = −kt − C1  

 650 − N = e−kt−C1  Exponentiate each side. (Assume N < 650.)

 650 − N = e−C1e−kt  Property of exponents

 N = 650 − Ce−kt  General solution

Using N = 300 when t = 0, you can conclude that C = 350, which produces

N = 650 − 350e−kt.

Then, using N = 500 when t = 2, it follows that

500 = 650 − 350e−2k  e−2k =
3
7

  k ≈ 0.4236.

So, the model for the coyote population is 

N = 650 − 350e−0.4236t. Model for population

When t = 3, you can approximate the population to be

 N = 650 − 350e−0.4236(3)

 ≈ 552 coyotes.

The model for the population is shown in Figure 6.13. Note that N = 650 is the 
horizontal asymptote of the graph and is the carrying capacity of the model. You will 
learn more about carrying capacity later in this section.

t
1 2 3 4 5 6

Time (in years)

700

100

200

300

400

500

600

N
um

be
r 

of
 c

oy
ot

es

(0, 300)

(2, 500)

N

(3, 552)

N = 650 − 350e−0.4236t

 Figure 6.13 

The rate of change of the number of coyotes 
to 650 − N(t)
when t = 2, the population has increased to 500. Find the population when 

Solution Because the rate of change of the population is proportional to 
or 650 − N,N,N  you can write the differential equation

dNdNd
dt

= k(6

You can solve this equation using separation of variables.

d
650

Derek R. Audette/Shutterstock.com
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A common problem in electrostatics,  

x

y

Each line y = Kx is an orthogonal  
trajectory of the family of circles.
Figure 6.14

 
thermodynamics, and hydrodynamics involves 
finding a family of curves, each of which is 
orthogonal to all members of a given family of 
curves. For example, Figure 6.14 shows a family 
of circles

x2 + y2 = C Family of circles

each of which intersects the lines in the family

y = Kx Family of lines

at right angles. Two such families of curves are 
said to be mutually orthogonal, and each curve  
in one of the families is called an orthogonal  
trajectory of the other family. In electrostatics, 
lines of force are orthogonal to the equipotential 
curves. In thermodynamics, the flow of heat across a plane surface is orthogonal to the 
isothermal curves. In hydrodynamics, the flow (stream) lines are orthogonal trajectories 
of the velocity potential curves.

 Finding Orthogonal Trajectories

Describe the orthogonal trajectories for the family of curves given by

y =
C
x

for C ≠ 0. Sketch several members of each family.

Solution First, solve the given equation for C and write xy = C. Then, by 
differentiating implicitly with respect to x, you obtain the differential equation

 x 
dy
dx

+ y = 0 Differential equation

 x 
dy
dx

= −y

 
dy
dx

= −
y
x
. Slope of given family

Because dy�dx represents the slope of the given family of curves at (x, y), it follows that 
the orthogonal family has the negative reciprocal slope x�y. So,

dy
dx

=
x
y
. Slope of orthogonal family

Now you can find the orthogonal family by separating variables and integrating.

 ∫ y dy = ∫ x dx

 
y2

2
=

x2

2
+ C1

 y2 − x2 = K

So, the orthogonal trajectories for the family of curves given by y = C�x is the family 
of curves given by y2 − x2 = K. When K ≠ 0, the orthogonal trajectories are 
hyperbolas with centers at the origin, and the transverse axes are vertical for K > 0 and 
horizontal  for K < 0. When K = 0, the orthogonal trajectories are the lines y = ±x.  
Several trajectories are shown in Figure 6.15. 

y

x

Given family:
xy = C

Orthogonal
family:
y2 − x2 = K

Orthogonal trajectories
Figure 6.15
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Logistic Differential Equation
In Section 6.2, the exponential growth model was derived from the fact that the rate of 
change of a variable y is proportional to the value of y. You observed that the differential 
equation dy�dt = ky has the general solution y = Cekt. Exponential growth is unlimited, 
but when describing a population, there often exists some upper limit L past which 
growth cannot occur. This upper limit L is called the carrying capacity, which is the 
maximum population y(t) that can be sustained or supported as time t increases. A model 
that is often used to describe this type of growth is the logistic differential equation

dy
dt

= ky(1 −
y
L) Logistic differential equation

where k and L are positive constants. A population that satisfies this equation does not 
grow without bound but approaches the carrying capacity L as t increases.

From the equation, you can see that if y is between 0 and the carrying capacity L, 
then dy�dt > 0, and the population increases. If y is greater than L, then dy�dt < 0, 
and the population decreases. The graph of the function y is called the logistic curve, 
as shown in Figure 6.16.

 Deriving the General Solution

Solve the logistic differential equation

dy
dt

= ky(1 −
y
L).

Solution Begin by separating variables.

 
dy
dt

= ky(1 −
y
L) Write differential equation.

 
1

y(1 − y�L) dy = k dt Separate variables.

 ∫ 
1

y(1 − y�L) dy = ∫ k dt Integrate each side.

 ∫ (1y +
1

L − y) dy = ∫ k dt Rewrite left side using partial fractions.

 ln∣y∣ − ln∣L − y∣ = kt + C Find antiderivative of each side.

 ln∣L − y
y ∣ = −kt − C Multiply each side by −1 and simplify.

 ∣L − y
y ∣ = e−kt−C Exponentiate each side.

 ∣L − y
y ∣ = e−Ce−kt Property of exponents

 
L − y

y
= be−kt Let ±e−C = b.

Solving this equation for y produces y =
L

1 + be−kt. 

From Example 6, you can conclude that all solutions of the logistic differential 
equation are of the general form

y =
L

1 + be−kt.

t

y

L

Logistic
curve

y = L

Note that as t→∞, y→L.
Figure 6.16

REMARK A review of the 
method of partial fractions is 
given in Section 8.5.

Exploration
Use a graphing utility to 
investigate the effects of the 
values of L, b, and k on the 
graph of

y =
L

1 + be−kt .

Include some examples to 
support your results.
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 Solving a Logistic Differential Equation

A state game commission releases 40 elk into a game refuge. After 5 years, the elk  
population is 104. The commission believes that the environment can support no more 
than 4000 elk. The growth rate of the elk population p is

dp
dt

= kp(1 −
p

4000), 40 ≤ p ≤ 4000

where t is the number of years.

a. Write a model for the elk population in terms of t.

b.  Graph the slope field for the differential equation and the solution that passes through 
the point (0, 40).

c. Use the model to estimate the elk population after 15 years.

d. Find the limit of the model as t→∞.

Solution

a. You know that L = 4000. So, the solution of the equation is of the form

p =
4000

1 + be−kt.

 Because p(0) = 40, you can solve for b as follows.

40 =
4000

1 + be−k(0)  40 =
4000
1 + b

  b = 99

 Then, because p = 104 when t = 5, you can solve for k.

104 =
4000

1 + 99e−k(5)  k ≈ 0.194

 So, a model for the elk population is

p =
4000

1 + 99e−0.194t.

b. Using a graphing utility, you can graph the slope field for

dp
dt

= 0.194p(1 −
p

4000)
 and the solution that passes through (0, 40), as shown in Figure 6.17.

c. To estimate the elk population after 15 years, substitute 15 for t in the model.

 p =
4000

1 + 99e−0.194(15) Substitute 15 for t.

 =
4000

1 + 99e−2.91  Simplify.

 ≈ 626

d. As t increases without bound, the denominator of

4000
1 + 99e−0.194t

 gets closer and closer to 1. So,

lim
t→∞

 
4000

1 + 99e−0.194t = 4000. 

80
0

0

5000

Slope field for

dp
dt

= 0.194p(1 −
p

4000)
and the solution passing through (0, 40)
Figure 6.17
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CONCEPT CHECK
1.  Separation of Variables Determine whether each 

differential equation is separable.

 (a) y = 2x5 y′ − y′ (b) 
y′
x
= x2 y + 1

2.  Mutually Orthogonal What does it mean for two 
families of curves to be mutually orthogonal?

3.  Carrying Capacity Describe carrying capacity in 
your own words.

4.  Logistic Differential Equation List a real-life 
application that can be modeled by the logistic differential 
equation.

 Finding a General Solution Using 
Separation of Variables In Exercises 5–18, 
find the general solution of the differential 
equation.

 5. 
dy
dx

=
x
y
  6. 

dy
dx

=
3x2

y2

 7. 
dy
dx

=
x − 1

y3   8. 
dy
dx

=
6 − x2

2y3

 9. 
dr
ds

=
4
9

 r 10. 
dr
ds

=
9
4

s

11. (2 + x)y′ = 3y 12. xy′ = y

13. y2y′ = sin 9x 14. yy′ = −8 cos(πx)
15. √1 − 4x2 y′ = x 16. √x3 − 5y′ = x2

17. y ln x − xy′ = 0, x > 0

18. 12yy′ − 7ex = 0

 Finding a Particular Solution Using 
Separation of Variables In Exercises 19–28, 
find the particular solution of the differential 
equation that satisfies the initial condition.

 Differential Equation Initial Condition

19. yy′ − 2ex = 0 y(0) = 6

20. √x + √yy′ = 0 y(1) = 9

21. y(x + 1) + y′ = 0 y(−2) = 1

22. 2xy′ − ln x2 = 0, x > 0 y(1) = 2

23. y(1 + x2)y′ − x(1 + y2) = 0 y(0) = √3

24. y√1 − x2 y′ − x√1 − y2 = 0 y(0) = 1

25. 
du
dv

= uv sin v2 u(0) = e2

26. 
dr
ds

= er−2s r(0) = 0

27. dP − kP dt = 0 P(0) = P0

28. dT + k(T − 70) dt = 0 T(0) = 140

 Finding a Particular Solution Curve In 
Exercises 29–32, find an equation of the curve that 
 passes through the point and has the given slope.

29. (0, 2), y′ =
x
4y

 30. (1, 1), y′ = −
9x
16y

31. (3, 1), y′ = −
y
5x

32. (8, 2), y′ =
2y
3x

Using Slope In Exercises 33 and 34, find all functions f
having the indicated property.

33.  The tangent to the graph of f  at the point (x, y) intersects the  
x-axis at (x + 2, 0).

34. All tangents to the graph of f  pass through the origin.

Slope Field In Exercises 35–38, (a) write a differential 
 equation for the statement, (b) match the differential equation 
with a possible slope field, and (c) verify your result by using 
a graphing utility to graph a slope field for the differential 
equation. [The slope fields are labeled (i), (ii), (iii), and (iv).] 

(i) 

x
−5 −1

9

5

y   (ii) 

x
−1

−5

5

9

y

(iii) 

x
−5 −1

9

5

y   (iv) 

x
−5 5

y

−2.5

2.5

35.  The rate of change of y with respect to x is proportional to the 
difference between y and 4.

36.  The rate of change of y with respect to x is proportional to the 
difference between x and 4.

37.  The rate of change of y with respect to x is proportional to the 
product of y and the difference between y and 4.

38. The rate of change of y with respect to x is proportional to y2.

39.  Radioactive Decay The rate of decomposition of 
radioactive radium is proportional to the amount present at 
any time. The half-life of radioactive radium is 1599 years. 
What percent of a present amount will remain after 50 years?

6.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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40.  Chemical Reaction In a chemical reaction, a certain 
compound changes into another compound at a rate proportional 
to the unchanged amount. There is 40 grams of the original 
compound initially and 35 grams after 1 hour. When will  
75 percent of the compound be changed?

41.  Weight Gain A calf that weighs 60 pounds at birth gains 
weight at the rate dw�dt = k(1200 − w), where w is the 
weight in pounds and t is the time in years.

 (a) Find the general solution of the differential equation.

 (b)  Use a graphing utility to graph the particular solutions for 
k = 0.8, 0.9, and 1.

 (c)  The animal is sold when its weight reaches 800 pounds. 
Find the time of sale for each of the models in part (b).

 (d)  What is the maximum weight of the animal for each of the 
models in part (b)?

42.  Weight Gain A goat that weighs 7 pounds at birth gains 
weight at the rate dw�dt = k(250 − w), where w is the weight 
in pounds and t is the time in years. Repeat Exercise 41 assuming 
that the goat is sold when its weight reaches 175 pounds.

 Finding Orthogonal Trajectories In 
Exercises 43–48, find the orthogonal trajectories 
for the family of curves. Use a graphing utility to 
graph several members of each family.

43. 3x2 − y2 = C 44. x2 − 2y2 = C

45. x2 = Cy 46. y2 = 2Cx

47. y2 = Cx3 48. y = Cex

Matching In Exercises 49–52, match the logistic equation 
with its graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) y

x
−2−4−6 108642

10
8
6
4

12
14

(b) y

x
−2−4−6 108642

10
8

2

12
14

(c) y

x
−2−4−6 108642

10
8
6
4

12
14

 (d) y

x
−2−4−6 108642

10
8
6
4

12
14

49. y =
12

1 + e−x 50. y =
12

1 + 3e−x

51. y =
12

1 + 1
2e−x

 52. y =
12

1 + e−2x

 Using a Logistic Equation In Exercises 53 
and 54, the logistic equation models the growth of 
a population. Use the equation to (a) find the value  
of k, (b) find the carrying capacity, (c) find the initial 
population, (d) determine when the population will 
reach 50% of its carrying capacity, and (e) write 
a logistic differential equation that has the  
solution P(t).

53. P(t) = 2100
1 + 29e−0.75t 54. P(t) = 5000

1 + 39e−0.2t

Using a Logistic Differential Equation In Exercises 55 
and 56, the logistic differential equation models the growth 
rate of a population. Use the equation to (a) find the value of 
k, (b) find the carrying capacity, (c) graph a slope field using a 
computer algebra system, and (d) determine the value of P at 
which the population growth rate is the  greatest.

55. 
dP
dt

= 3P(1 −
P

100) 56. 
dP
dt

= 0.1P − 0.0004P2

 Solving a Logistic Differential Equation In 
Exercises 57–60, find the logistic equation that 
passes through the given point.

57. 
dy
dt

= y(1 −
y

36), (0, 4) 58. 
dy
dt

= 4.2y(1 −
y

21), (0, 9)

59. 
dy
dt

=
4y
5

−
y2

150
, (0, 8) 60. 

dy
dt

=
3y
20

−
y2

1600
, (0, 15)

61.  Endangered Species A conservation organization 
releases 25 Florida panthers into a game preserve. After 
2 years, there are 39 panthers in the preserve. The Florida 
preserve has a carrying capacity of 200 panthers.

 (a)  Write a logistic equation that models the population of 
panthers in the preserve.

 (b) Find the population after 5 years.

 (c) When will the population reach 100?

 (d)  Write a logistic differential equation that models the 
growth rate of the panther population. Then repeat part (b) 
using Euler’s Method with a step size of h = 1. Compare 
the  approximation with the exact answer.

 (e)  At what time is the panther population growing most 
rapidly? Explain.

62.  Bacteria Growth At time t = 0, a bacterial culture 
weighs 1 gram. Two hours later, the culture weighs 4 grams. 
The maximum weight of the culture is 20 grams.

 (a)  Write a logistic equation that models the weight of the 
bacterial culture.

 (b) Find the culture’s weight after 5 hours.

 (c) When will the culture’s weight reach 18 grams?

 (d)  Write a logistic differential equation that models the 
growth rate of the culture’s weight. Then repeat part (b) 
using Euler’s Method with a step size of h = 1. Compare 
the approximation with the exact answer.

 (e)  At what time is the culture’s weight increasing most 
rapidly? Explain.
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EXPLORING CONCEPTS
63.  Separation of Variables Is an equation of the 

form 

 
dy
dx

= f (x)g(y) − f (x)h(y), g(y) ≠ h(y)

 separable? Explain.

64.  Slope Field Describe the slope field for a logistic 
differential equation. Explain your reasoning. 

65. Finding a Derivative Show that if

 y =
1

1 + be−kt

then

 
dy
dt

= ky(1 − y).

66. Point of Inflection For any logistic equation, show that 
the point of inflection occurs at y = L�2 when the solution 
starts below the carrying capacity L.

 68.  HOW DO YOU SEE IT? The growth of a  
population is modeled by a logistic equation, 
as shown in the graph below. What happens to 
the rate of growth as the population increases? 
What do you think causes this to occur in 
real-life situations, such as animal or human 
populations?

t

y

68.  

Determining if a Function Is Homogeneous In  
Exercises 69–76, determine whether the function is 
homogeneous, and if it is, determine its degree. A function 
f (x, y) is homogeneous of degree n if f (tx, ty) = tnf (x, y).

69. f (x, y) = x3 + 4xy2 + y3

70. f (x, y) = x 4 + 2x2y2 + x + y

71. f (x, y) = ex�y

72. f (x, y) = x2ey�x + y2

73. f (x, y) = 2 ln xy

74. f (x, y) = tan(x + y)

75. f (x, y) = 2 ln 
x
y

76. f (x, y) = tan 
y
x

Solving a Homogeneous Differential Equation In 
Exercises 77–82, solve the homogeneous differential equation 
in terms of x and y. A homogeneous differential equation is an 
equation of the form 

M(x, y) dx + N(x, y) dy = 0

where M and N are homogeneous functions of the same degree. 
To solve an equation of this form by the method of separation 
of variables, use the substitutions y = vx and dy = x dv + v dx.

77. (x + y) dx − 2x dy = 0

78. (x3 + y3) dx − xy2 dy = 0

79. (x − y) dx − (x + y) dy = 0

80. (x2 + y2) dx − 2xy dy = 0

81. xy dx + (y2 − x2) dy = 0

82. (2x + 3y) dx − x dy = 0

True or False? In Exercises 83–85, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83.  The function y = 0 is always a solution of a differential 
equation that can be solved by separation of variables.

84.  The differential equation y′ = xy − 2y + x − 2 is separable.

85.  The families x2 + y2 = 2Cy and x2 + y2 = 2Kx are mutually 
orthogonal.

PUTNAM EXAM CHALLENGE
86.  A not uncommon calculus mistake is to believe that the 

product rule for derivatives says that ( fg)′ = f ′g′. If 

 f (x) = ex2

  determine, with proof, whether there exists an open 
interval (a, b) and a nonzero function g defined on (a, b) 
such that this wrong product rule is true for x in (a, b).

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

 Ignoring resistance, a  
sailboat starting from  
rest accelerates (dv�dt)  
at a rate proportional  
to the difference between  
the velocities of the wind  
and the boat.

(a)  The wind is blowing  
at 20 knots, and after  
a half-hour, the boat is moving at 10 knots. Write the 
velocity v as a function of time t.

(b)  Use the result of part (a) to write the distance traveled  
by the boat as a function of time.

67. Sailing

iStockphoto.com/travenian
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6.4 First-Order Linear Differential Equations6.4 First-Order Linear Differential Equations

  Solve a first-order linear differential equation, and use linear differential equations to 
solve applied problems.

First-Order Linear Differential Equations
In this section, you will see how to solve a very important class of first-order differential 
equations—first-order linear differential equations.

Definition of First-Order Linear Differential Equation

A first-order linear differential equation is an equation of the form

dy
dx

+ P(x)y = Q(x)

where P and Q are continuous functions of x. This first-order linear differential 
equation is said to be in standard form.

To solve a linear differential equation, write it in standard form to identify the 
functions P(x) and Q(x). Then integrate P(x) and form the expression

u(x) = e∫P(x) dx Integrating factor

which is called an integrating factor. The general solution of the equation is

y =
1

u(x)∫ Q(x)u(x) dx. General solution

It is instructive to see why the integrating factor helps solve a linear differential equation 
of the form y′ + P(x)y = Q(x). When both sides of the equation are multiplied by the 
 integrating factor u(x) = e∫P(x) dx, the left side becomes the derivative of a product.

 y′e∫P(x) dx + P(x)ye∫P(x) dx = Q(x)e∫P(x) dx

 [ ye∫P(x) dx]′ = Q(x)e∫P(x) dx

Integrating both sides of this second equation and dividing by u(x) produce the general 
solution.

 Solving a Linear Differential Equation

Find the general solution of

y′ + y = ex.

Solution For this equation, P(x) = 1 and Q(x) = ex. So, the integrating factor is

u(x) = e∫P(x) dx = e∫dx = ex.

This implies that the general solution is

 y =
1

u(x) ∫ Q(x)u(x) dx

 =
1
ex ∫ex(ex) dx

 = e−x(12e2x + C)
 =

1
2

ex + Ce−x. 

ANNA JOHNSON PELL WHEELER 
(1883–1966)

Anna Johnson Pell Wheeler 
was awarded a master’s degree 
in 1904 from the University 
of Iowa for her thesis The 
Extension of Galois Theory to 
Linear Differential Equations. 
Influenced by David Hilbert, 
she worked on integral 
equations while studying infinite 
linear spaces.

Mathematical Association of America
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 Solving a First-Order Linear Differential Equation

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of xy′ − 2y = x2, x > 0.

Solution The standard form of the equation is

y′ + (−2
x)y = x, x > 0. Standard form

So, P(x) = −2�x, and you have

∫P(x) dx = −∫ 
2
x

dx = −ln x2

which implies that the integrating factor is

e∫P(x) dx = e−ln x2 =
1

eln x2 =
1
x2. Integrating factor

So, multiplying each side of the standard form by 1�x2 yields

 
y′
x2 −

2y
x3 =

1
x

 
d
dx

 [ y
x2] = 1

x

 
y
x2 = ∫ 

1
x
 dx

 
y
x2 = ln x + C

 y = x2(ln x + C). General solution

Several solution curves (for C = −2, −1, 0, 1, 2, 3, and 4) are shown in Figure 6.18.
  

In most falling-body problems discussed so far in the text, air resistance has been 
neglected. The next example includes this factor. In the example, the air resistance on the 
falling object is assumed to be proportional to its velocity v. If g is the acceleration due 
to gravity, the downward force F on a falling object of mass m is given by −mg − kv. 
If a is the acceleration of the object, then by Newton’s Second Law of Motion,

F = ma = m 
dv
dt

which yields the following differential equation.

m 
dv
dt

= −mg − kv  
dv
dt

+
kv
m

= −g

REMARK Rather than  
memorizing the formula in 
Theorem 6.2, just remember  
that multiplication by the  
integrating factor e∫P(x) dx  
converts the left side of the  
differential equation into 
the derivative of the product 
ye∫P(x) dx.

THEOREM 6.2  Solution of a First-Order Linear Differential  
Equation

An integrating factor for the first-order linear differential equation

y′ + P(x)y = Q(x)

is u(x) = e∫P(x) dx. The solution of the differential equation is

ye∫P(x) dx = ∫Q(x)e∫P(x) dx dx + C.

x

C = 4
C = 3

C = 2
C = 1

C = 0

C = −1

C = −2

y

1 2 3 4

−1

−2

1

2

Figure 6.18
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 A Falling Object with Air Resistance

An object of mass m is dropped from a hovering helicopter. The air resistance is 
proportional to the velocity of the object. Find the velocity of the object as a function 
of time t.

Solution The velocity v satisfies the equation

dv
dt

+
kv
m

= −g.  g = acceleration due to gravity, 
k = constant of proportionality

Letting b = k�m, you can separate variables to obtain

 dv = −(g + bv) dt

 ∫ 
dv

g + bv
= −∫dt

 
1
b

 ln∣g + bv∣ = −t + C1

 ln∣g + bv∣ = −bt + bC1

 g + bv = Ce−bt.  C = ebC1

Because the object was dropped, v = 0 when t = 0; so g = C, and it follows that

bv = −g + ge−bt  v =
−g(1 − e−bt)

b
= −

mg
k
(1 − e−kt�m). 

A simple electric circuit consists of an electric current I (in amperes), a resistance 
R (in ohms), an inductance L (in henrys), and a constant electromotive force E (in 
volts), as shown in Figure 6.19. According to Kirchhoff’s Second Law, if the switch S 
is closed when t = 0, then the applied electromotive force (voltage) is equal to the sum 
of the  voltage drops in the rest of the circuit. This, in turn, means that the current I 
satisfies the differential equation

L 
dI
dt

+ RI = E.

 An Electric Circuit Problem

Find the current I as a function of time t (in seconds), given that I satisfies the 
differential equation L(dI�dt) + RI = sin 2t, where R and L are nonzero constants.

Solution In standard form, the given linear equation is

dI
dt

+
R
L

I =
1
L

 sin 2t.

Let P(t) = R�L, so that e∫P(t) dt = e(R�L)t, and by Theorem 6.2,

 Ie(R�L)t =
1
L

 ∫e(R�L)t sin 2t dt

 =
1

4L2 + R2 e(R�L)t(R sin 2t − 2L cos 2t) + C.

So, the general solution is

 I = e−(R�L)t[ 1
4L2 + R2 e(R�L)t(R sin 2t − 2L cos 2t) + C]

 =
1

4L2 + R2 (R sin 2t − 2L cos 2t) + Ce−(R�L)t. 

REMARK Notice in 
Example 3 that the velocity 
approaches a limit of −mg�k  
as a result of the air resistance.  
For falling-body problems  
in which air resistance is  
neglected, the velocity  
increases without bound.

E
S

R I

L

Figure 6.19

REMARK The integral in 
Example 4 was found using a 
computer algebra system. In 
Chapter 8, you will learn how to 
integrate functions of this type 
using integration by parts.
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One type of problem that can be described in terms of a differential equation 
involves chemical mixtures, as illustrated in the next example.

 A Mixture Problem

A tank contains 50 gallons of a solution composed of 90% water and 10% alcohol. A 
second solution containing 50% water and 50% alcohol is added to the tank at a rate of 
4 gallons per minute. As the second solution is being added, the tank is being drained 
at a rate of 5 gallons per minute, as shown in Figure 6.20. The solution in the tank is 
stirred constantly. How much alcohol is in the tank after 10 minutes?

Solution Let y be the number of gallons of alcohol in the tank at any time t. You 
know that y = 5 when t = 0. Because the number of gallons of solution in the tank 
at any time is 50 − t, and the tank loses 5 gallons of solution per minute, it must lose

( 5
50 − t)y

gallons of alcohol per minute. Furthermore, because the tank is gaining 2 gallons of 
alcohol per minute, the rate of change of alcohol in the tank is

dy
dt

= 2 − ( 5
50 − t)y  

dy
dt

+ ( 5
50 − t)y = 2.

To solve this linear differential equation, let

P(t) = 5
50 − t

and obtain

∫P(t) dt = ∫ 
5

50 − t
 dt = −5 ln∣50 − t∣.

Because t < 50, you can drop the absolute value signs and conclude that

e∫P(t) dt = e−5 ln(50− t) =
1

(50 − t)5.

So, the general solution is

 
y

(50 − t)5 = ∫ 
2

(50 − t)5 dt

 
y

(50 − t)5 =
1

2(50 − t)4 + C

 y =
50 − t

2
+ C(50 − t)5.

Because y = 5 when t = 0, you have

5 =
50
2

+ C(50)5  −
20
505 = C

which means that the particular solution is

y =
50 − t

2
− 20(50 − t

50 )
5

.

Finally, when t = 10, the amount of alcohol in the tank is

y =
50 − 10

2
− 20(50 − 10

50 )
5

≈ 13.45 gal

which represents a solution containing 33.6% alcohol. 

5 gal/min

4 gal/min

Figure 6.20
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6.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  First-Order What does the term “first-order” refer to 

in a first-order linear differential equation?

2.  First-Order Linear Differential Equations 
Describe how to solve a first-order linear differential 
equation.

Determining Whether a Differential Equation Is 
Linear In Exercises 3–6, determine whether the differential 
equation is linear. Explain your reasoning.

 3. x3y′ + xy = ex + 1  4. 2xy − y′ ln x = y

 5. y′ − y sin x = xy2  6. 
2 − y′

y
= 5x

 Solving a First-Order Linear Differential 
Equation In Exercises 7–14, find the general 
solution of the first-order linear differential 
equation for x > 0.

 7. 
dy
dx

+ (1x)y = 6x + 2  8. 
dy
dx

+ (2x)y = 3x − 5

 9. y′ + 2xy = 10x 10. y′ + 3x2y = 6x2

11. (y + 1) cos x dx − dy = 0 12. (y − 1) sin x dx − dy = 0

13. y′ + 3y = e3x 14. xy′ + y = x2 ln x

Slope Field In Exercises 15 and 16, (a) sketch an approximate 
solution of the differential equation satisfying the given initial 
condition on the slope field, (b) find the particular solution 
that satisfies the given initial condition, and (c) use a graphing 
utility to graph the particular solution. Compare the graph 
with the sketch in part (a). To print an enlarged copy of the 
graph, go to MathGraphs.com.

15. 
dy
dx

= ex − y, 16. y′ + (1x)y = sin x2,

 (0, 1)  (√π, 0)
 

x
−4 4

−3

5

y   

−4

x

y

4

−4 4

 Finding a Particular Solution In Exercises 
17–24, find the particular solution of the  
first-order linear differential equation for x > 0 
that satisfies the initial condition.

 Differential Equation Initial Condition

17. y′ + y = 6ex y(0) = 3

18. x3y′ + 2y = e1�x2 y(1) = e

 Differential Equation Initial Condition

19. y′ + y tan x = sec x + cos x y(0) = 1

20. y′ + y sec x = sec x y(0) = 4

21. y′ + (1x)y = 0 y(2) = 2

22. y′ + (2x − 1)y = 0 y(1) = 2

23. x dy = (x + y + 2) dx y(1) = 10

24. 2xy′ − y = x3 − x y(4) = 2

25.  Population Growth When predicting population  
growth, demographers must consider birth and death rates as 
well as the net change caused by the difference between the  
rates of immigration and emigration. Let P be the population 
at time t and let N be the net increase per unit time resulting  
from the difference between immigration and emigration.  
So, the rate of growth of the population is given by

 
dP
dt

= kP + N

  where N is constant. Solve this differential equation to find 
P as a function of time, when at time t = 0 the size of the 
population is P0.

26.  Investment Growth A large corporation starts at time 
t = 0 to invest part of its receipts continuously at a rate of 
P dollars per year in a fund for future corporate expansion. 
Assume that the fund earns r percent interest per year 
compounded continuously. So, the rate of growth of the 
amount A in the fund is given by dA�dt = rA + P, where 
A = 0 when t = 0. Solve this differential equation for A as a 
function of t.

Investment Growth In Exercises 27 and 28, use the result 
of Exercise 26.

27. Find A for the following.

 (a) P = $275,000, r = 8%, t = 10 years

 (b) P = $550,000, r = 5.9%, t = 25 years

28.  Find t if the corporation needs $1,000,000 and it can invest 
$125,000 per year in a fund earning 8% interest compounded 
continuously.

29.  Learning Curve The management at a certain factory 
has found that the maximum number of units a worker can 
produce in a day is 75. The rate of increase in the number 
of units N produced with respect to time t in days by a new 
employee is proportional to 75 − N.

 (a)  Determine the differential equation describing the rate of 
change of performance with respect to time.

 (b) Solve the differential equation from part (a).

 (c)  Find the particular solution for a new employee who 
produced 20 units on the first day at the factory and  
35 units on the twentieth day.

6.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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Falling Object In Exercises 31 and 32, consider an  
object with a mass of 4 kilograms dropped from a height of 
1500 meters, where the air  resistance is proportional to the 
velocity.

31.  Write the velocity of the object as a function of time t when 
the velocity after 5 seconds is approximately −31 meters per 
second. What is the limiting value of the velocity function?

32.  Use the result of Exercise 31 to write the position of the object 
as a function of time t. Approximate the velocity of the object 
when it reaches ground level.

Electric Circuits In Exercises 33 and 34, use the differential 
equation for electric circuits given by

L 
dI
dt

+ RI + E.

In this equation, I is the current, R is the resistance, L is the 
inductance, and E is the electromotive force (voltage).

33.  Solve the differential equation for the current given a constant 
voltage E0.

34.  Use the result of Exercise 33 to find the equation for the current 
when I(0) = 0, E0 = 120 volts, R = 600 ohms, and L = 4 
henrys. When does the current reach 90% of its limiting value?

Mixture In Exercises 35–38, consider a tank that at time 
t = 0 contains v0 gallons of a solution of which, by weight, q0 
pounds is soluble concentrate. Another solution containing q1 
pounds of the concentrate per gallon is running into the tank 
at the rate of r1 gallons per minute. The solution in the tank is 
kept well stirred and is withdrawn at the rate of r2 gallons per 
minute.

35.  Let Q be the amount of concentrate (in pounds) in the solution 
at any time t. Show that

 
dQ
dt

+
r2Q

v0 + (r1 − r2)t
= q1r1.

36.  Let Q be the amount of concentrate (in pounds) in the solution 
at any time t. Write the differential equation for the rate of 
change of Q with respect to t when r1 = r2 = r.

37.  A 200-gallon tank is full of a solution containing 25 pounds 
of concentrate. Starting at time t = 0, distilled water is 
admitted to the tank at a rate of 10 gallons per minute, and the  
well-stirred solution is withdrawn at the same rate.

 (a)  Find the amount of concentrate Q (in pounds) in the 
solution as a function of t.

 (b)  Find the time at which the amount of concentrate in the 
tank reaches 15 pounds.

 (c)  Find the amount of concentrate (in pounds) in the solution 
as t→∞.

38.  A 200-gallon tank is half full of distilled water. Starting at 
time t = 0, a solution containing 0.5 pound of concentrate per 
gallon is admitted to the tank at a rate of 5 gallons per minute, 
and the well-stirred mixture is withdrawn at a rate of 3 gallons 
per minute.

 (a) At what time will the tank be full?

 (b)  At the time the tank is full, how many pounds of  
concentrate will it contain?

 (c)  Repeat parts (a) and (b), assuming that the solution 
entering the tank contains 1 pound of concentrate  
per gallon.

39.  Using an Integrating Factor The expression u(x) is 
an integrating factor for y′ + P(x)y = Q(x). Which of the 
following is equal to u′(x)? Verify your answer.

 (a) P(x)u(x) (b) P′(x)u(x)
 (c) Q(x)u(x) (d) Q′(x)u(x)

40.  HOW DO YOU SEE IT? The graph shows 
the amount of concentrate Q (in pounds) in a 
solution in a tank at time t (in minutes) as a 
solution with concentrate enters the tank, is 
well stirred, and is withdrawn from the tank.
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(a)  How much concentrate is in the tank at time t = 0?

(b)  Which is greater, the rate of solution into the tank 
or the rate of solution withdrawn from the tank? 
Explain.

(c)  At what time is there no concentrate in the tank? 
What does this mean?

40.  

Glucose is added  
intravenously to the 
bloodstream at the 
rate of q units per 
minute, and the body 
removes glucose from 
the bloodstream at a 
rate proportional to the 
amount present. Assume 
that Q(t) is the amount 
of glucose in the bloodstream at time t.

(a)  Determine the differential equation describing the rate  
of change of glucose in the bloodstream with respect  
to time.

(b)  Solve the differential equation from part (a), letting 
Q = Q0 when t = 0.

(c) Find the limit of Q(t) as t→∞.

30. Intravenous Feeding

wavebreakmedia/Shutterstock.com
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EXPLORING CONCEPTS
41.  Using Different Methods Describe two ways to 

find the general solution of

 
dy
dx

+ 3xy = x.

  Verify that each method gives the same result.

42.  Integrating Factor Explain why you can omit 
the constant of integration when finding an integrating 
factor.

Matching In Exercises 43–46, match the differential 
equation with its solution.

 Differential Equation Solution

43. y′ − 2x = 0 (a) y = Cex2

44. y′ − 2y = 0 (b) y = −1
2 + Cex2

45. y′ − 2xy = 0 (c) y = x2 + C

46. y′ − 2xy = x (d) y = Ce2x

Slope Field In Exercises 47 and 48, (a) use a graphing 
utility to graph the slope field for the differential equation, 
(b) find the particular solutions of the differential equation 
passing through the given points, and (c) use a graphing utility 
to graph the particular solutions on the slope field in part (a).

 Differential Equation Points

47. 
dy
dx

−
1
x

y = x2, x > 0 (−2, 4), (2, 8)

48. 
dy
dx

+ 4x3y = x3 (0, 
7
2), (0, −

1
2)

Solving a First-Order Differential Equation In Exercises 
49–56, find the general solution of the first-order differential 
equation for x > 0 by any appropriate method.

49. 
dy
dx

=
e2x+y

ex−y

50. y′ cos x2 +
y cos x2

x
= sec x2

51. y cos x − cos x +
dy
dx

= 0

52. y′ = 2x√1 − y2

53. (2y − ex) dx + x dy = 0

54. (x + y) dx − x dy = 0

55. 3( y − 4x2) dx + x dy = 0

56. x dx + ( y + ey)(x2 + 1) dy = 0

Solving a Bernoulli Differential Equation In Exercises 
57–64, solve the Bernoulli differential equation. The Bernoulli 
equation is a well-known nonlinear equation of the form

y′ + P(x)y = Q(x)yn

that can be reduced to a linear form by a substitution. The  
general solution of a Bernoulli equation is

y1−ne∫(1−n)P(x) dx = ∫(1 − n)Q(x)e∫(1−n)P(x) dx dx + C.

57. y′ + 3x2y = x2y3

58. y′ + xy = xy−1

59. y′ + (1x)y = xy2, x > 0

60. y′ + (1x)y = x√y, x > 0

61. xy′ + y = xy3, x > 0

62. y′ − y = y3

63. y′ − y = ex 3√y

64. yy′ − 2y2 = ex

True or False? In Exercises 65 and 66, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

65. y′ + x√y = x2 is a first-order linear differential equation.

66. y′ + xy = exy is a first-order linear differential equation.

A person’s weight depends on both the number of calories 
 consumed and the energy used. Moreover, the amount of energy 
used depends on a person’s weight—the average amount of energy 
used by a person is 17.5 calories per pound per day. So, the more 
weight a person loses, the less energy a person uses (assuming that 
the person maintains a constant level of activity). An equation that 
can be used to model weight loss is

dw
dt

=
C

3500
−

17.5
3500

w

where w is the person’s weight (in pounds), t is the time in days, 
and C is the constant daily calorie consumption.

(a) Find the general solution of the differential equation.

(b)  Consider a person who weighs 180 pounds and begins a diet of 
2500 calories per day. How long will it take the person to lose  
10 pounds? How long will it take the person to lose 35 pounds?

(c)  Use a graphing utility to graph the particular solution from  
part (b). What is the “limiting” weight of the person?

(d)  Repeat parts (b) and (c) for a person who weighs 200 pounds 
when the diet is started.

Weight Loss

 FOR FURTHER INFORMATION For more information on 
modeling weight loss, see the article “A Linear Diet Model” by 
Arthur C. Segal in The College Mathematics Journal.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

 1.  Determining a Solution Determine whether the 
function y = x3 is a solution of the  differential equation 
2xy′ + 4y = 10x3.

 2.  Determining a Solution Determine whether the 
function y = 2 sin 2x is a solution of the differential equation 
y′″ − 8y = 0.

Finding a General Solution In Exercises 3–8, use 
integration to find a general solution of the differential equation.

 3. 
dy
dx

= 4x2 + 7  4. 
dy
dx

=
6 − x

3x
, x > 0

 5. 
dy
dx

= cos 2x  6. 
dy
dx

= 8 csc x cot x

 7. 
dy
dx

= e2−x  8. 
dy
dx

= 2e3x

Slope Field In Exercises 9 and 10, a differential equation 
and its slope field are given. Complete the table by determining 
the slopes (if possible) in the slope field at the given points.

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx

 9. 
dy
dx

= 2x − y 10. 
dy
dx

= x sin 
πy
4

 

x

y

8

−4

−4

8

  

x

y

−4
−2

8

10

Slope Field In Exercises 11 and 12, (a) sketch the slope 
field for the differential equation, and (b) use the slope field 
to sketch the solution that passes through the given point. 
Use a graphing utility to verify your results. To print a blank 
coordinate plane, go to MathGraphs.com.

11. y′ = 2x2 − x, (0, 2)
12. y′ = y + 4x, (−1, 1)

Euler’s Method In Exercises 13 and 14, use Euler’s 
Method to make a table of values for the approximate solution 
of the differential equation with the specified initial value. Use 
n steps of size h.

13. y′ = x − y, y(0) = 4, n = 10, h = 0.05

14. y′ = 5x − 2y, y(0) = 2, n = 10, h = 0.1

Solving a Differential Equation In Exercises 15–22, find 
the general solution of the differential equation.

15. 
dy
dx

= 6x − x3 16. 
dy
dx

= 3y + 5

17. 
dy
dx

= ( y − 1)2 18. 
dy
dx

=
x

x2 + 2

19. (2 + x)y′ − xy = 0 20. xy′ − (x + 1)y = 0

21. √x + 1y′ − y = 0 22. y′ + √xy = 9√x

Writing and Solving a Differential Equation In 
Exercises 23 and 24, write and find the general solution of the 
differential equation that models the verbal statement.

23.  The rate of change of y with respect to t is inversely 
proportional to the cube of t.

24.  The rate of change of y with respect to t is proportional to 
50 − t.

Finding an Exponential Function In Exercises 25–28, 
find the exponential function y = Cekt that passes through the 
two given points.

25. 

1 2 3 4 5

1

2

3

4

5 (5, 5)

3
40, ))

y

t

 26. 

1 2 3 4 5

1

2

3

4

5 (0, 5)

1
65, ))

y

t

27. 

1 2 3 4 5

1

2

3

4

5

y

2, 3
2))

(4, 5)

t

 28. 

1 2 3 4 5

1

2

3

4

5
(1, 4)

(4, 1)

y

t

29.  Air Pressure Under ideal conditions, air pressure 
decreases continuously with the height above sea level at a 
rate proportional to the pressure at that height. The barometer 
reads 30 inches at sea level and 15 inches at 18,000 feet. Find 
the barometric pressure at 35,000 feet.

30.  Radioactive Decay Radioactive radium has a half-life 
of approximately 1599 years. The initial quantity is 15 grams. 
How much remains after 750 years?

31.  Population Growth A population grows exponentially 
at the rate of 1.85%. How long will it take the population to 
double?
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32.  Compound Interest Find the balance in an account 
when $400 is deposited for 11 years at an interest rate of 2% 
compounded continuously.

33.  Sales The sales S (in thousands of units) of a new product 
after it has been on the market for t years is given by

 S = Cek�t.

 (a)  Find S as a function of t when 5000 units have been sold 
after 1 year and the saturation point for the market is 
30,000 units (that is, lim

t→∞
 S = 30).

 (b) How many units will have been sold after 5 years?

34.  Sales The sales S (in thousands of units) of a new product 
after it has been on the market for t years is given by

 S = 25(1 − ekt).

 (a)  Find S as a function of t when 4000 units have been sold 
after 1 year.

 (b) How many units will saturate this market?

Finding a General Solution Using Separation of 
Variables In Exercises 35–38, find the general solution of 
the differential equation.

35. 
dy
dx

=
5x
y

36. 
dy
dx

=
x3

2y2

37. y′ey−3x = ex+2y

38. y′ − ey sin x = 0

Finding a Particular Solution Using Separation of 
Variables In Exercises 39– 42, find the particular solution 
of the differential equation that satisfies the initial condition.

 Differential Equation Initial Condition

39. y3y′ − 3x = 0 y(2) = 2

40. yy′ − 5e2x = 0 y(0) = −3

41. y3(x4 + 1)y′ − x3(y4 + 1) = 0 y(0) = 1

42. y′ + sin x cos x = 0 y(π) = −2

Finding a Particular Solution Curve In Exercises 43 and 
44, find an equation of the curve that passes through the point 
and has the given slope.

43. (1, 3), y′ =
2x
y

44. (1, −2), y′ =
y
8x

Finding Orthogonal Trajectories In Exercises 45 and 46, 
find the orthogonal trajectories for the family of curves. Use a 
graphing utility to graph several members of each family.

45. 5x2 − 4y2 = C

46. x3 = Cy

Using a Logistic Equation In Exercises 47 and 48, 
the logistic equation models the growth of a population. Use 
the equation to (a) find the value of k, (b) find the carrying 
capacity, (c) find the initial population, (d) determine when 
the population will reach 50% of its carrying capacity, and 
(e) write a logistic differential equation that has the solution P(t).

47. P(t) = 5250
1 + 34e−0.55t 48. P(t) = 4800

1 + 14e−0.15t

Solving a Logistic Differential Equation In Exercises 
49 and 50, find the logistic equation that passes through the 
given point.

49. 
dy
dt

= y(1 −
y

80), (0, 8) 50. 
dy
dt

= 1.76y(1 −
y
8), (0, 3)

51.  Wildlife Population The rate of change of the number 
of raccoons N(t) in a population is directly proportional 
to 380 − N(t), where t is the time in years. When t = 0, 
the population is 110, and when t = 4, the population has 
increased to 150. Find the population when t = 8.

52.  Environment A conservation department releases  
1200 brook trout into a lake. It is estimated that the carrying 
capacity of the lake for the species is 20,400. After the first 
year, there are 2000 brook trout in the lake.

 (a)  Write a logistic equation that models the number of brook 
trout in the lake.

 (b) Find the number of brook trout in the lake after 8 years.

 (c) When will the number of brook trout reach 10,000?

 (d)  Write a logistic differential equation that models the 
growth rate of the brook trout population. Then repeat 
part (b) using Euler’s method with a step size of h = 1. 
Compare the approximation with the exact answer.

 (e)  At what time is the brook trout population growing most 
rapidly? Explain.

Solving a First-Order Linear Differential Equation In 
Exercises 53–58, find the general solution of the first-order 
linear differential equation.

53. y′ − y = 10 54. exy′ + 4exy = 1

55. 4y′ = ex�4 + y 56. 
dy
dx

−
5y
x2 =

1
x2, x > 0

57. (x − 2)y′ + y = 1, x > 2

58. (x + 3)y′ + 2y = 2(x + 3)2, x > −3

Finding a Particular Solution In Exercises 59–62, find 
the particular solution of the first-order linear differential 
equation that satisfies the initial condition.

 Differential Equation Initial Condition

59. y′ + 5y = e5x y(0) = 3

60. y′ − (3x)y = 2x3 y(1) = 1

61. (3y + 5) cos x dx = dy y(π) = 0

62. y′ − 8x3y = e2x4
 y(0) = 2
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Doomsday Equation The differential equation

 
dy
dt

= ky1+ε

  where k and ε are positive constants, is called the doomsday  
equation.

 (a) Solve the doomsday equation

 
dy
dt

= y1.01

 given that y(0) = 1. Find the time T at which

 lim
t→T−

 y(t) = ∞.

 (b) Solve the doomsday equation

 
dy
dt

= ky1+ε

  given that y(0) = y0. Explain why this equation is called the 
doomsday equation.

2.  Sales Let S represent sales of a new product (in thousands of 
units), let L represent the maximum level of sales (in thousands 
of units), and let t represent time (in months). The rate of 
change of S with respect to t is proportional to the product of 
S and L − S.

 (a)  Write the differential equation for the sales model when 
L = 100, S = 10 when t = 0, and S = 20 when t = 1. 
Verify that

 S =
L

1 + Ce−kt.

 (b) At what time is the growth in sales increasing most  rapidly?

 (c) Use a graphing utility to graph the sales function.

 (d)  Sketch the solution from part (a) on the slope field below. To 
print an enlarged copy of the graph, go to MathGraphs.com.

t
1 2 3 4

140
120
100
80
60
40
20

S

 (e)  Assume the estimated maximum level of sales is correct. 
Use the slope field to describe the shape of the solution 
curves for sales when, at some period of time, sales exceed L.

3.  Gompertz Equation Another model that can be used to 
represent population growth is the Gompertz equation, which 
is the solution of the  differential equation

 
dy
dt

= ky ln 
L
y

 where k is a constant and L is the carrying capacity.

 (a) Find the general solution of the differential equation.

 (b)  Use a graphing utility to graph the slope field for the 
differential equation when k = 0.05 and L = 1000.

 (c) Describe the behavior of the graph in part (b) as t→∞.

 (d)  Use a graphing utility to graph the equation you found in 
part (a) for L = 5000, y(0) = 500, and k = 0.02. Determine 
the concavity of the graph and how it compares with the 
general solution of the logistic differential equation.

4.  Error Using Product Rule Although it is true for some 
functions f  and g, a common mistake in calculus is to believe 
that the Product Rule for derivatives is ( fg)′ = f ′g′.

 (a) Given g(x) = x, find f  such that ( fg)′ = f ′g′.

 (b)  Given an arbitrary function g, find a function f  such that 
( fg)′ = f ′g′.

 (c) Describe what happens if g(x) = ex.

5.  Torricelli’s Law Torricelli’s Law states that water will 
flow from an opening at the bottom of a tank with the same 
speed that it would attain falling from the surface of the water 
to the opening. One of the forms of Torricelli’s Law is

 A(h)dh
dt

= −k√2gh

  where h is the height of the water in the tank, k is the area of 
the opening at the bottom of the tank, A(h) is the horizontal  
cross-sectional area at height h, and g is the acceleration due to 
gravity (g ≈ 32 feet per second per second). A hemispherical 
water tank has a radius of 6 feet. When the tank is full, a 
circular valve with a radius of 1 inch is opened at the bottom, 
as shown in the figure. How long will it take for the tank to 
drain completely?

6 ft

h

6 − h
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 6.  Torricelli’s Law The cylindrical water tank shown in the 
figure has a height of 18 feet. When the tank is full, a circular 
valve is opened at the bottom of the tank. After 30 minutes, the 
depth of the water is 12 feet.

h

r

18 ft

 (a)  Using Torricelli’s Law, how long will it take for the tank 
to drain completely?

 (b) What is the depth of the water in the tank after 1 hour?

 7.  Torricelli’s Law Suppose the tank in Exercise 6 has a 
height of 20 feet and a radius of 8 feet, and the valve is circular 
with a radius of 2 inches. The tank is full when the valve is 
opened. How long will it take for the tank to drain completely?

 8.  Rewriting the Logistic Equation Show that the 
logistic equation

 y =
L

1 + be−kt

 can be written as

 y =
1
2
L[1 + tanh(12 k(t − ln b

k ))].
  What can you conclude about the graph of the logistic equation?

 9.  Biomass Biomass is a measure of the amount of living 
matter in an ecosystem. Suppose the biomass s(t) in a given 
ecosystem increases at a rate of about 3.5 tons per year and 
decreases by about 1.9% per year. This situation can be 
modeled by the  differential equation

 
ds
dt

= 3.5 − 0.019s.

 (a) Find the general solution of the differential equation.

 (b)  Use a graphing utility to graph the slope field for the 
differential equation. What do you notice?

 (c) Explain what happens to the biomass as t→∞.

10.  Epidemic Carriers are individuals who can transmit a 
disease but who exhibit no apparent symptoms. Let y represent 
the proportion of carriers in a population at any time t. Suppose 
that carriers are quarantined at a rate r. Then the change in the 
proportion of carriers can be modeled by dy�dt = −ry. Find 
the general solution of the differential equation given that 40% 
of the population are carriers at the beginning of an outbreak.

Medical Science In Exercises 11–13, a medical researcher 
wants to determine the concentration C (in moles per liter) of a 
tracer drug injected into a moving fluid. Solve this problem by 
considering a single-compartment dilution model (see figure). 
Assume that the fluid is continuously mixed and that the 
volume of the fluid in the compartment is constant.

Flow R (pure)

Flow R
(concentration C)

Tracer
injected

Volume V

11.  If the tracer is injected instantaneously at time t = 0, then the 
concentration of the fluid in the compartment begins diluting 
according to the differential equation

 
dC
dt

= (−R
V)C

 where C = C0 when t = 0.

 (a)  Solve this differential equation to find the concentration  C
as a function of time t.

 (b) Find the limit of C as t→∞.

12.  Use the solution of the differential equation in Exercise 11 and 
the given values to find the concentration C as a function of 
time t, and use a graphing utility to graph the function.

 (a)  V = 2 liters

  R = 0.5 liter per minute

  C0 = 0.6 mole per liter

 (b)  V = 2 liters

  R = 1.5 liters per minute

  C0 = 0.6 mole per liter

13.  In Exercises 11 and 12, it was assumed that there was a single 
initial injection of the tracer drug into the compartment. Now 
consider the case in which the tracer is continuously injected  
(beginning at t = 0) at the rate of Q moles per minute. 
Considering Q to be negligible compared with R, use the 
 differential equation

 
dC
dt

=
Q
V
− (RV)C

 where C = 0 when t = 0.

 (a)  Solve this differential equation to find the concentration C 
as a function of time t.

 (b) Find the limit of C as t→∞.
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Applications of Integration
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7.1 Area of a Region Between Two Curves

 Find the area of a region between two curves using integration.
 Find the area of a region between intersecting curves using integration.
 Describe integration as an accumulation process.

Area of a Region Between Two Curves
With a few modifications, you can extend the application of definite integrals from the 
area of a region under a curve to the area of a region between two curves. Consider two 
functions f  and g that are continuous on the interval [a, b]. Also, the graphs of both 
f  and g lie above the x-axis, and the graph of g lies below the graph of f, as shown in 
Figure 7.1. You can geometrically interpret the area of the region between the graphs as 
the area of the region under the graph of g subtracted from the area of the region under 
the graph of f, as shown in Figure 7.2.

x
a b

f

g

y   

x
a b

f

g

y   

x
a b

f

g

y

 
Area of region
between f and g

 =  
Area of region
under f

 −  
Area of region
under g

 ∫b

a

 [ f (x) − g(x)] dx =  ∫b

a

 f (x) dx −  ∫b

a

 g(x) dx

 Figure 7.2

To verify the reasonableness of the result  

x
a bxi

f

g
y

f (xi)

g(xi)

Δx

Representative rectangle
Height: f (xi) − g(xi)
Width: Δx

Figure 7.3

 
shown in Figure 7.2, you can partition the interval 
[a, b] into n subintervals, each of width ∆x. Then, 
as shown in Figure 7.3, sketch a representative 
rectangle of width ∆x and height f (xi) − g(xi), 
where xi is in the ith subinterval. The area of this 
representative rectangle is

∆Ai = (height)(width) = [ f (xi) − g(xi)]∆x.

By adding the areas of the n rectangles and taking 
the limit as �∆�→0 (n→∞), you obtain

lim
n→∞

 ∑
n

i=1
 [ f (xi) − g(xi)]∆x.

Because f  and g are continuous on [a, b], f − g is also continuous on [a, b] and the 
limit exists. So, the area of the region is

 Area = lim
n→∞

 ∑
n

i=1
 [ f (xi) − g(xi)]∆x

 = ∫b

a

 [ f (x) − g(x)] dx.

x

g

f

Region
between
two
curves

x = bx = a

y

Figure 7.1

REMARK Recall from 
Section 4.3 that �∆� is the norm 
of the partition. In a regular  
partition, the statements �∆�→0 
and n→∞ are equivalent. 
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Area of a Region Between Two Curves

If f  and g are continuous on [a, b] and g(x) ≤ f (x) for all x in [a, b], then 
the area of the region bounded by the graphs of f  and g and the vertical lines 
x = a and x = b is

A = ∫b

a

 [ f (x) − g(x)] dx.

In Figure 7.1, the graphs of f  and g are shown above the x-axis. This, however, 
is not necessary. The same integrand [ f (x) − g(x)] can be used as long as f  and g 
are continuous and g(x) ≤ f (x) for all x in the interval [a, b]. This is summarized 
graphically in Figure 7.4. Notice in Figure 7.4 that the height of a representative 
rectangle is f (x) − g(x) regardless of the relative position of the x-axis.

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y   

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y

 Figure 7.4

Representative rectangles are used throughout this chapter in various applications 
of integration. A vertical rectangle (of width ∆x) implies integration with respect to x, 
whereas a horizontal rectangle (of width ∆y) implies integration with respect to y.

 Finding the Area of a Region Between Two Curves

Find the area of the region bounded by the graphs of y = x2 + 2, y = −x, x = 0, and 
x = 1.

Solution Let g(x) = −x and f (x) = x2 + 2. Then g(x) ≤ f (x) for all x in [0, 1], as 
shown in Figure 7.5. So, the area of the representative rectangle is

 ∆A = [ f (x) − g(x)]∆x

 = [(x2 + 2) − (−x)]∆x

and the area of the region is

 A = ∫b

a

 [ f (x) − g(x)] dx

 = ∫1

0
 [(x2 + 2) − (−x)] dx

 = [x
3

3
+

x2

2
+ 2x]

1

0

 =
1
3
+

1
2
+ 2

 =
17
6

. 

x

3

3

1

1

−1

−1 2

(x, f(x))

(x, g(x))

f(x) = x2 + 2

g(x) = −x

y

Region bounded by the graph of f, the 
graph of g, x = 0, and x = 1
Figure 7.5
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Area of a Region Between Intersecting Curves
In Example 1, the graphs of f (x) = x2 + 2 and g(x) = −x do not intersect, and the values 
of a and b are given explicitly. A more common problem involves the area of a region 
bounded by two intersecting graphs, where the values of a and b must be calculated.

 A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of f (x) = 2 − x2 and g(x) = x.

Solution In Figure 7.6, notice that the graphs of f  and g have two points of 
 intersection. To find the x-coordinates of these points, set f (x) and g(x) equal to each 
other and solve for x.

 2 − x2 = x Set f (x) equal to g(x).

 −x2 − x + 2 = 0 Write in general form.

 −(x + 2)(x − 1) = 0 Factor.

 x = −2 or 1 Solve for x.

So, a = −2 and b = 1. Because g(x) ≤ f (x) for all x in the interval [−2, 1], the 
representative rectangle has an area of

∆A = [ f (x) − g(x)]∆x = [(2 − x2) − x]∆x

and the area of the region is

 A = ∫1

−2
 [(2 − x2) − x] dx

 = [−x3

3
−

x2

2
+ 2x]

1

−2

 =
9
2

.

 A Region Lying Between Two Intersecting Graphs

The sine and cosine curves intersect infinitely many times, bounding regions of equal 
areas, as shown in Figure 7.7. Find the area of one of these regions.

Solution Let g(x) = cos x and f (x) = sin x. Then g(x) ≤ f (x) for all x in the interval 
corresponding to the shaded region in Figure 7.7. To find the two points of intersection 
on this interval, set f (x) and g(x) equal to each other and solve for x.

 sin x = cos x Set f (x) equal to g(x).

 
sin x
cos x

= 1 Divide each side by cos x.

 tan x = 1 Trigonometric identity

 x =
π
4

 or 
5π
4

, 0 ≤ x ≤ 2π  Solve for x.

So, a = π�4 and b = 5π�4. Because sin x ≥ cos x for all x in the interval [π�4, 5π�4], 
the area of the region is

 A = ∫5π�4

π�4
 [sin x − cos x] dx

 = [−cos x − sin x]
5π�4

π�4

 = 2√2. 

x

−1

−1

−2

−2

1

1

(x, g(x))

(x, f(x))
g(x) = x

f(x) = 2 − x2

y

Region bounded by the graph of f  and 
the graph of g
Figure 7.6

x

1

−1

ππ
2

π
2

3

(x, g(x))

(x, f(x))

g(x) = cos x

f(x) = sin x

y

One of the regions bounded by the 
graphs of the sine and cosine functions
Figure 7.7
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7.1 Area of a Region Between Two Curves 447

To find the area of the region between two curves that intersect at more than two 
points, first determine all points of intersection. Then check to see which curve is above 
the other in each interval determined by these points, as shown in Example 4.

 Curves That Intersect at More than Two Points

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region between the graphs of

f (x) = 3x3 − x2 − 10x and g(x) = −x2 + 2x.

Solution Begin by setting f (x) and g(x) equal to each other and solving for x. This 
yields the x-values at all points of intersection of the two graphs.

 3x3 − x2 − 10x = −x2 + 2x Set f (x) equal to g(x).

 3x3 − 12x = 0 Write in general form.

 3x(x − 2)(x + 2) = 0 Factor.

 x = −2, 0, 2 Solve for x.

So, the two graphs intersect when x = −2, 0, and 2. In Figure 7.8, notice that 
g(x) ≤ f (x) on the interval [−2, 0]. The two graphs switch at the origin, however, and 
f (x) ≤ g(x) on the interval [0, 2]. So, you need two integrals—one for the  interval 
[−2, 0] and one for the interval [0, 2].

 A = ∫0

−2
 [ f (x) − g(x)] dx + ∫2

0
 [g(x) − f (x)] dx

 = ∫0

−2
 (3x3 − 12x) dx + ∫2

0
 (−3x3 + 12x) dx

 = [3x4

4
− 6x2]

0

−2
+ [−3x4

4
+ 6x2]

2

0

 = −(12 − 24) + (−12 + 24)
 = 24 

When the graph of a function of y is a boundary of a region, it is often convenient 
to use representative rectangles that are horizontal and find the area by integrating with 
respect to y. In general, to determine the area between two curves, you can use

A = ∫x2

x1

 [(top curve) − (bottom curve)] dx Vertical rectangles

 in variable x

or

A = ∫y2

y1

 [(right curve) − (left curve)] dy Horizontal rectangles

 in variable y

where (x1, y1) and (x2, y2) are either adjacent points of intersection of the two curves 
involved or points on the specified boundary lines.

x

y

4

6

−4

−1

−6

−8

−10

1

(0, 0)
(2, 0)

(−2, −8)

g(x) = −x2 + 2x

f(x) = 3x3 − x2 − 10x

f(x) ≤ g(x)g(x) ≤ f(x)

On [−2, 0], g(x) ≤ f (x), and on [0, 2],
f (x) ≤ g(x).
Figure 7.8

REMARK In Example 4, notice that you obtain an incorrect result when you  
integrate from −2 to 2. Such integration produces

 ∫2

−2
 [ f (x) − g(x)] dx = ∫2

−2
 (3x3 − 12x) dx.

 = 0.
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448 Chapter 7 Applications of Integration

 Horizontal Representative Rectangles

Find the area of the region bounded by the graphs of x = 3 − y2 and x = y + 1.

Solution Consider

g( y) = 3 − y2 and f (y) = y + 1.

These two curves intersect when y = −2 and y = 1, as shown in Figure 7.9. Because 
f (y) ≤ g(y) on this interval, you have

∆A = [g( y) − f (y)]∆y = [(3 − y2) − (y + 1)]∆y.

So, the area is 

 A = ∫1

−2
 [(3 − y2) − (y + 1)] dy

 = ∫1

−2
 (−y2 − y + 2) dy

 = [−y3

3
−

y2

2
+ 2y]

1

−2

 = (−1
3
−

1
2
+ 2) − (83 − 2 − 4)

 =
9
2

. 

x
−1

−1

−2

1

1

2

(2, 1)

(−1, −2)

f(y) = y + 1

g(y) = 3 − y2

Δy

y    

x

y

−1

−1

−2

1

1

(2, 1)

(−1, −2)

y = x − 1

Δx

Δx

y = −    3 − x

y =     3 − x

 Horizontal rectangles (integration Vertical rectangles (integration with 
 with respect to y) respect to x)
 Figure 7.9 Figure 7.10

In Example 5, notice that by integrating with respect to y, you need only one 
 integral. To integrate with respect to x, you would need two integrals because the upper 
boundary changes at x = 2, as shown in Figure 7.10.

 A = ∫2

−1
 [(x − 1) + √3 − x] dx + ∫3

2
 (√3 − x + √3 − x) dx

 = ∫2

−1
 [x − 1 + (3 − x)1�2] dx + 2∫3

2
 (3 − x)1�2 dx

 = [x
2

2
− x −

(3 − x)3�2

3�2 ]
2

−1
− 2[(3 − x)3�2

3�2 ]
3

2

 = (2 − 2 −
2
3) − (

1
2
+ 1 −

16
3 ) − 2(0) + 2(23)

 =
9
2
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7.1 Area of a Region Between Two Curves 449

Integration as an Accumulation Process
In this section, the integration formula for the area between two curves was developed 
by using a rectangle as the representative element. For each new application of integration 
in the remaining sections of this chapter, an appropriate representative element will be 
constructed using precalculus formulas you already know. Each integration formula 
will then be obtained by summing or accumulating these representative elements.

Known precalculus
formula

  
Representative

element
  

New integration
formula

For example, the area formula in this section was developed as follows.

 Integration as an Accumulation Process

Find the area of the region bounded by the graph of y = 4 − x2 and the x-axis. Describe 
the integration as an accumulation process.

Solution The area of the region is

A = ∫2

−2
 (4 − x2) dx.

You can think of the integration as an accumulation of the areas of the rectangles formed 
as the representative rectangle slides from x = −2 to x = 2, as shown in Figure 7.11.

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

 A = ∫−2

−2
 (4 − x2) dx = 0 A = ∫−1

−2
 (4 − x2) dx =

5
3

 A = ∫0

−2
 (4 − x2) dx =

16
3

 

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

 A = ∫1

−2
 (4 − x2) dx = 9 A = ∫2

−2
 (4 − x2) dx =

32
3

 Figure 7.11 

A = (height)(width)   ∆A = [ f (x) − g(x)]∆x   A = ∫b

a

 [ f (x) − g(x)] dx
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7.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Area What is the geometric interpretation of the area of 

the region between two curves?

2.  Area Describe how to find the area of the region bounded 
by the graphs of f (x) and g(x) and the vertical lines x = a 
and x = b, where f  and g do not intersect on [a, b].

3.  Area Between Intersecting Curves Explain why 
it is important to determine all points of intersection of 
two curves when finding the area of the region between 
the curves.

4.  Sketching a Region Sketch a region for which 
integration with respect to y is easier than integration with 
respect to x.

 Writing a Definite Integral In Exercises 5–10, 
write a definite integral that represents the area of 
the region. (Do not evaluate the integral.)

 5. y1 = x2 − 6x  6. y1 = x2 + 2x + 1

 y2 = 0  y2 = 2x + 5

 

x

−2

−4

−6

−8

2 4 8

y1

y2

y   

x
−2−4 2

2

4

6

8

y

y1

y2

 7. y1 = x2 − 4x + 3  8. y1 = x2

 y2 = −x2 + 2x + 3  y2 = x3

 

x
2

1

−1
1 4

4

5

3

y

y1
y2

  

x

1

1

y

y1
y2

 9. y1 = 3(x3 − x) 10. y1 = (x − 1)3

 y2 = 0  y2 = x − 1

 

x

1

−1

−1 1

y

y1

y2

  

x

1

−1

1 2

y

y1
y2

 Finding a Region In Exercises 11–14, the 
integrand of the definite integral is a  difference of 
two functions. Sketch the graph of each function 
and shade the region whose area is represented by 
the integral.

11. ∫4

0
 [(x + 1) − x

2] dx 12. ∫3

2
 [(x

3

3
− x) − x

3] dx

13. ∫1

−2
 [(2 − y) − y2] dy 14. ∫4

0
 (2√y − y) dy

 Finding the Area of a Region In Exercises 
15–28, sketch the region bounded by the graphs of 
the equations and find the area of the region.

15. y = x2 − 1, y = −x + 2, x = 0, x = 1

16. y = −x3 + 2, y = x − 3, x = −1, x = 1

17. f (x) = x2 + 2x, g(x) = x + 2

18. y = −x2 + 3x + 1, y = −x + 1

19. f (x) = 1
9x2, y = 1, x = 1, x = 2

20. f (x) = −
4
x3, y = 0, x = −3, x = −1

21. f (x) = x5 + 2, g(x) = x + 2

22. f (x) = 3√x − 1, g(x) = x − 1

23. f (y) = y2, g(y) = y + 2

24. f (y) = y(2 − y), g(y) = −y

25. f ( y) = y2 + 1, g(y) = 0, y = −1, y = 2

26. f (y) = y

√16 − y2
, g(y) = 0, y = 3

27. f (x) = 10
x

, x = 0, y = 2, y = 10

28. g(x) = 4
2 − x

, y = 4, x = 0

 Comparing Methods In Exercises 29 and 30, 
find the area of the region by integrating (a) with 
respect to x and (b) with respect to y. (c) Compare 
your results. Which method is simpler? In general, 
will this method always be simpler than the other 
one? Why or why not?

29. x = 4 − y2 30. y = x2

 x = y − 2  y = 6 − x
 

x

y

−2−4−6 4 6

−4

−6

4

6

  

−2−4−6 2 4 6
−2

4

6

8

10

x

y

7.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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Finding the Area of a Region In Exercises 31–36, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the functions, (b) find the area of the region analytically, 
and (c) use the integration capabilities of the graphing utility to  
verify your results.

31. f (x) = x(x2 − 3x + 3), g(x) = x2

32. y = x4 − 2x2, y = 2x2

33. f (x) = x4 − 4x2, g(x) = x2 − 4

34. f (x) = x4 − 9x2, g(x) = x3 − 9x

35. f (x) = 1
1 + x2, g(x) = 1

2
x2

36. f (x) = 6x
x2 + 1

, y = 0, 0 ≤ x ≤ 3

 Finding the Area of a Region In Exercises 
37–42, sketch the region bounded by the graphs of 
the equations and find the area of the region.

37. f (x) = cos x, g(x) = 2 − cos x, 0 ≤ x ≤ 2π

38. f (x) = sin x, g(x) = cos 2x, −
π
2

≤ x ≤ π
6

39. f (x) = 2 sin x, g(x) = tan x, −
π
3

≤ x ≤ π
3

40. f (x) = sec 
πx
4

 tan 
πx
4

, g(x) = (√2 − 4)x + 4, x = 0

41. f (x) = xe−x2
, y = 0, 0 ≤ x ≤ 1

42. f (x) = −2x, g(x) = 1 − 3x

Finding the Area of a Region In Exercises 43–46, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the equations, (b) find the area of the region analytically, 
and (c) use the integration capabilities of the graphing utility 
to verify your results.

43. f (x) = 2 sin x + sin 2x, y = 0, 0 ≤ x ≤ π

44. f (x) = 2 sin x + cos 2x, y = 0, 0 < x ≤ π

45. f (x) = 1
x2e1�x, y = 0, 1 ≤ x ≤ 3

46. g(x) = 4 ln x
x

, y = 0, x = 5

Finding the Area of a Region In Exercises 47–50, (a) use 
a graphing utility to graph the region bounded by the graphs of 
the equations, (b) explain why the area of the region is difficult 
to find analytically, and (c) use the integration capabilities of 
the graphing utility to approximate the area of the region to 
four decimal places.

47. y =√ x3

4 − x
, y = 0, x = 3

48. y = √x ex, y = 0, x = 0, x = 1

49. y = x2, y = 4 cos x

50. y = x2, y = √3 + x

51.  Finding the Area of a Region Find the area of the 
given region bounded by the graphs of y1, y2, and y3, as shown 
in the figure.

 y1 = x2 + 2, y2 = 4 − x2, y3 = 2 − x

 

x

y

−1 1 3

1

3

y1

y2

y3

  

x

y

y3 y2

y1

2

4
π

2
π

 Figure for 51  Figure for 52

52.  Finding the Area of a Region Find the area of the 
given region bounded by the graphs of y1, y2, and y3, as shown 
in the figure.

 y1 = sin x, y2 = cos x, y3 = sin x + cos x

 Integration as an Accumulation Process In 
Exercises 53–56, find the accumulation function F. 
Then evaluate F at each value of the independent 
variable and graphically show the area given by 
each value of the independent variable.

53. F(x) = ∫x

0
 (12t + 1) dt (a) F(0) (b) F(2) (c) F(6)

54. F(x) = ∫x

0
 (12t2 + 2) dt (a) F(0) (b) F(4) (c) F(6)

55. F(α) = ∫α
−1

 cos 
πθ
2

 dθ (a) F(−1)   (b) F(0)   (c) F(12)
56. F( y) = ∫y

−1
 4ex�2 dx (a) F(−1) (b) F(0) (c) F(4)

Finding the Area of a Figure In Exercises 57–60, use 
integration to find the area of the figure having the given 
vertices.

57. (−1, −1), (1, 1), (2, −1)
58. (0, 0), (6, 0), (4, 3)
59. (0, 2), (4, 2), (0, −2), (−4, −2)
60. (0, 0), (1, 2), (3, −2), (1, −3)

Using a Tangent Line In Exercises 61–64, write and 
evaluate the definite integral that represents the area of the 
region bounded by the graph of the function and the tangent 
line to the graph at the given point.

61. f (x) = 2x3 − 1, (1, 1)
62. f (x) = x − x3, (−1, 0)

63. f (x) = 1
x2 + 1

, (1, 
1
2)

64. y =
2

1 + 4x2, (12, 1)
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EXPLORING CONCEPTS
65.  Area Between Curves The graphs of y = 1 − x2

and y = x4 − 2x2 + 1 intersect at three points. However, 
the area between the curves can be found by a single 
integral. Explain why this is so, and write an integral that 
represents this area.

66.  Using Symmetry The area of the region bounded 
by the graphs of y = x3 and y = x cannot be found by 
the single integral ∫1

−1 (x3 − x) dx. Explain why this is 
so. Use symmetry to write a single integral that does 
represent the area.

67.  Interpreting Integrals Two cars with velocities 
v1(t) and v2(t) (in meters per second) are tested on a 
straight track. Consider the following integrals.

 ∫5

0
 [v1(t) − v2(t)] dt = 10 ∫10

0
 [v1(t) − v2(t)] dt = 30

 ∫30

20
 [v1(t) − v2(t)] dt = −5

 (a) Write a verbal interpretation of each integral.

 (b)  Is it possible to determine the distance between the 
two cars when t = 5 seconds? Why or why not?

 (c)  Assume both cars start at the same time and place. 
Which car is ahead when t = 10 seconds? How far 
ahead is the car?

 (d)  Suppose Car 1 has velocity v1 and is ahead of Car 2 
by 13 meters when t = 20 seconds. How far ahead 
or behind is Car 1 when t = 30 seconds?

68.  HOW DO YOU SEE IT? A state legislature 
is debating two proposals for eliminating the 
annual budget deficits after 10 years. The rate 
of decrease of the deficits for each proposal is 
shown in the figure.

60

50

40
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20
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2 4 6 8 10

Proposal 1

Proposal 2

D
e


ci
t

(i
n 

bi
lli
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s 

of
 d

ol
la

rs
)

Year

t

D

(a)  What does the area between the two curves 
represent?

(b)  From the viewpoint of minimizing the cumulative 
state deficit, which is the better proposal? Explain.

68.  

Dividing a Region In Exercises 69 and 70, find b such that 
the line y = b divides the region bounded by the graphs of the 
equations into two regions of equal area.

69. y = 9 − x2, y = 0 70. y = 9 − ∣x∣, y = 0

Dividing a Region In Exercises 71 and 72, find a such that 
the line x = a divides the region bounded by the graphs of the 
equations into two regions of equal area.

71. y = x, y = 4, x = 0 72. y2 = 4 − x, x = 0

Limits and Integrals In Exercises 73 and 74, evaluate 
the limit and sketch the graph of the region whose area is 
represented by the limit.

73. lim
�∆�→0

 ∑
n

i=1
 (xi − xi

2)∆x, where xi =
i
n

 and ∆x =
1
n

74. lim
�∆�→0

 ∑
n

i=1
 (4 − xi

2)∆x, where xi = −2 +
4i
n

 and ∆x =
4
n

Revenue In Exercises 75 and 76, two models R1 and R2 are 
given for revenue (in millions of dollars) for a corporation. 
Both models are estimates of revenues from 2020 through 
2025, with t = 0 corresponding to 2020. Which model projects 
the greater revenue? How much more total revenue does that 
model project over the six-year period?

75. R1 = 7.21 + 0.58t

 R2 = 7.21 + 0.45t

76. R1 = 7.21 + 0.26t + 0.02t2

 R2 = 7.21 + 0.1t + 0.01t2

77.  Lorenz Curve Economists use Lorenz curves to illustrate 
the distribution of income in a country. A Lorenz curve, 
y = f (x), represents the actual income distribution in the 
country. In this model, x represents percents of families in the 
country from the poorest to the wealthiest and y represents 
percents of total income. The model y = x represents a 
country in which each family has the same income. The area 
between these two models, where 0 ≤ x ≤ 100, indicates 
a country’s “income inequality.” The table lists percents of 
income y for selected percents of families x in a country.

x 60 70 80 90

y 28.03 39.77 55.28 75.12

x 10 20 30 40 50

y 3.35 6.07 9.17 13.39 19.45

 (a)  Use a graphing utility to find a quadratic model for the 
Lorenz curve.

 (b) Plot the data and graph the model.

 (c)  Graph the model y = x. How does this model compare 
with the model in part (a)?

 (d)  Use the integration capabilities of a graphing utility to 
approximate the “income inequality.”

78.  Profit The chief financial officer of a company reports 
that profits for the past fiscal year were $15.9 million. The 
officer predicts that profits for the next 5 years will grow at 
a continuous annual rate somewhere between 3 1

2% and 5%. 
Estimate the cumulative difference in total profit over the  
5 years based on the predicted range of growth rates.
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80.  Mechanical Design The surface of a machine part is the 
region between the graphs of y1 = ∣x∣ and y2 = 0.08x2 + k 
(see figure).

x
y1

y2

y

 (a) Find k such that the parabola is tangent to the graph of y1.

 (b) Find the area of the surface of the machine part.

81. Area Find the area between the graph of y = sin x and the

  line segment joining the points (0, 0) and (7π6 , −
1
2), as shown

 in the figure.

1

6
π

3
π

π7
6

1
2

, −

(0, 0)

4
x

y

1
2

))

82.  Area Let a > 0 and b > 0. Show that the area of the ellipse

 
x2

a2 +
y2

b2 = 1 is πab (see figure).

ab

= 1+
x2

a2

y2

b2

x

y

True or False? In Exercises 83–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83.  If the area of the region bounded by the graphs of f  and g 
is 1, then the area of the region bounded by the graphs of 
h(x) = f (x) + C and k(x) = g(x) + C is also 1.

84. If

 ∫b

a

 [ f (x) − g(x)] dx = A

 then

 ∫b

a

 [g(x) − f (x)] dx = −A.

85.  If the graphs of f  and g intersect midway between x = a and 
x = b, then

 ∫b

a

 [ f (x) − g(x)] dx = 0.

86. The line

 y = (1 − 3√0.5)x
 divides the region under the curve

 f (x) = x(1 − x)

 on [0, 1] into two regions of equal area.

PUTNAM EXAM CHALLENGE
87.  The horizontal line y = c intersects the curve 

y = 2x − 3x3 in the first quadrant as shown in the figure. 
Find c so that the areas of the two shaded regions are equal.

x

y

y = 2x − 3x3

y = c

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

Concrete sections for a new building have the dimensions  
(in meters) and shape shown in the figure.

x

(−5.5, 0)
2 m

(5.5, 0)

2

1

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

y

1
3

y = 5 − x1
3

y = 5 + x

(a)  Find the area of the  
face of the section 
superimposed on  
the rectangular  
coordinate system.

(b)  Find the volume of 
concrete in one of  
the sections by  
multiplying the area  
in part (a) by 2 meters.

(c)  One cubic meter of concrete weighs 5000 pounds. Find 
the weight of the section.

79. Building Design

jl661227/Shutterstock.com
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454 Chapter 7 Applications of Integration

7.2 Volume: The Disk Method

 Find the volume of a solid of revolution using the disk method.
 Find the volume of a solid of revolution using the washer method.
 Find the volume of a solid with known cross sections.

The Disk Method
You have already learned that area is only one of the many applications of the definite 
integral. Another important application is its use in finding the volume of a three-
dimensional solid. In this section, you will study a particular type of three-dimensional 
solid—one whose cross sections are similar. Solids of revolution are used commonly 
in engineering and manufacturing. Some examples are axles, funnels, pills, bottles, and 
pistons, as shown in Figure 7.12.

        

 Solids of revolution
 Figure 7.12

When a region in the plane is revolved about a line, the resulting solid is a solid of 
revolution, and the line is called the axis of revolution. The simplest such solid is a 
right circular cylinder or disk, which is formed by revolving a rectangle about an axis 
adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a 
disk is

 Volume of disk = (area of disk)(width of disk)
 = πR2w

where R is the radius of the disk and w is the width.
To see how to use the volume of a disk to find the volume of a general solid of 

revolution, consider a solid of revolution formed by revolving the plane region in 
Figure 7.14 (see next page) about the indicated axis. To determine the volume of this 
solid, consider a representative rectangle in the plane region. When this rectangle is 
revolved about the axis of revolution, it generates a representative disk whose volume is 

∆V = πR2∆x.

Approximating the volume of the solid by n such disks of width ∆x and radius R(xi) 
produces

 Volume of solid ≈ ∑
n

i=1
 π[R(xi)]2∆x

 = π∑
n

i=1
 [R(xi)]2∆x.

R

Rectangle

Axis of revolution

w

R

Disk

w

Volume of a disk: πR2w
Figure 7.13
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R

Δx
x = bx = a

Plane region

Representative
rectangle    

Solid of
revolution

veAxis of
revolution

Δx
Approximation
by n disks

Representati
disk

Disk method
Figure 7.14

This approximation appears to become better and better as �∆�→0 (n→∞). So, you 
can define the volume of the solid as

Volume of solid = lim
�∆�→0

 π∑
n

i=1
 [R(xi)]2 ∆x = π∫b

a

 [R(x)]2 dx.

Schematically, the disk method looks like this.

Known Precalculus Representative New Integration
Formula Element Formula

Volume of disk
V = πR2w   ∆V = π[R(xi)]2∆x  

Solid of revolution

V = π∫b

a

 [R(x)]2 dx

A similar formula can be derived when the axis of revolution is vertical.

THE DISK METHOD

To find the volume of a solid of revolution with the disk method, use one of 
the formulas below. (See Figure 7.15.)

Horizontal Axis of Revolution Vertical Axis of Revolution

Volume = V = π∫b

a

 [R(x)]2 dx Volume = V = π∫d

c

 [R(y)]2 dy

R(x)

a b

Δx
a

V = π ∫ [R(x)]2 dx
b   

R(y)

c

d

Δy

c

d
V = π ∫ [R(y)]2 dy

Horizontal axis of revolution Vertical axis of revolution
 Figure 7.15

REMARK In Figure 7.15, 
note that you can determine  
the variable of integration  
by placing a representative   
rectangle in the plane region 
“perpendicular” to the axis of 
revolution. When the width  
of the rectangle is ∆x, integrate 
with respect to x, and when the 
width of the rectangle is ∆y, 
integrate with respect to y.
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456 Chapter 7 Applications of Integration

The simplest application of the disk method involves a plane region bounded by 
the graph of f  and the x-axis. When the axis of revolution is the x-axis, the radius R(x) 
is simply f (x).

 Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

f (x) = √sin x

and the x-axis (0 ≤ x ≤ π) about the x-axis, as shown in Figure 7.16.

Solution From the representative rectangle in the upper graph in Figure 7.16, you 
can see that the radius of this solid is

 R(x) = f (x)
 = √sin x.

So, the volume of the solid of revolution is

 V = π∫b

a

 [R(x)]2 dx Apply disk method.

 = π∫π
0

 (√sin x)2 dx Substitute √sin x for R(x).

 = π∫π
0

 sin x dx Simplify.

 = π[−cos x]
π

0
 Integrate.

 = π(1 + 1)
 = 2π.

 Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of 

f (x) = 2 − x2

and g(x) = 1 about the line y = 1, as shown in Figure 7.17.

Solution By equating f (x) and g(x), you can determine that the two graphs intersect 
when x = ±1. To find the radius, subtract g(x) from f (x).

 R(x) = f (x) − g(x)
 = (2 − x2) − 1

 = 1 − x2

To find the volume, integrate between −1 and 1.

 V = π∫b

a

 [R(x)]2 dx Apply disk method.

 = π∫1

−1
 (1 − x2)2 dx Substitute 1 − x2 for R(x).

 = π∫1

−1
 (1 − 2x2 + x4) dx Simplify.

 = π[x −
2x3

3
+

x5

5 ]
1

−1
 Integrate.

 =
16π
15

 

x

1

−1

ππ
2

Δx

R(x)

f(x) =     sin x

Plane region

y

x

1

−1

π

Solid of revolution

y

Figure 7.16

x

R(x)

g(x)

f(x) = 2 − x2

2

−1 1

Axis of
revolution

Plane region

Δx f(x)

y

g(x) = 1

x
−1 1

2

Solid of
revolution

y

Figure 7.17
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The Washer Method
The disk method can be extended to cover solids of revolution with holes by replacing 
the representative disk with a representative washer. The washer is formed by revolving 
a rectangle about an axis, as shown in Figure 7.18. If r and R are the inner and outer 
radii of the washer, respectively, and w is the width of the washer, then the volume is

Volume of washer = π(R2 − r2)w.

To see how this concept can be used to find the volume of a solid of revolution, 
consider a region bounded by an outer radius R(x) and an inner radius r(x), as shown 
in Figure 7.19. If the region is revolved about its axis of revolution, then the volume 
of the resulting solid is

V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx.    Washer method

Note that the integral involving the inner radius represents the volume of the hole and 
is subtracted from the integral involving the outer radius.

R(x) r(x)

Plane region

a b

  Solid of revolution
with hole

 Figure 7.19

 Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

y = √x and y = x2

about the x-axis, as shown in Figure 7.20.

Solution In Figure 7.20, you can see that the outer and inner radii are as follows.

 R(x) = √x Outer radius

 r(x) = x2 Inner radius

Integrating between 0 and 1 produces

 V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx Apply washer method.

 = π∫1

0
 [(√x)2 − (x2)2] dx Substitute √x for R(x) and x2 for r(x).

 = π∫1

0
 (x − x4) dx Simplify.

 = π[x
2

2
−

x5

5 ]
1

0
 Integrate.

 =
3π
10

. 

Axis of revolution

R

r

w

r

R

Disk

Solid of revolution

w

Figure 7.18

y = x2

y =    x

r = x2

R =    x

x

1

1

Δx

(0, 0)

(1, 1)

Plane region

y

−1

1

1

Solid of
revolution

x

y

Solid of revolution
Figure 7.20
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In each example so far, the axis of revolution has been horizontal and you have 
integrated with respect to x. In the next example, the axis of revolution is vertical and 
you integrate with respect to y. In this example, you need two separate integrals to 
compute the volume.

 Integrating with Respect to y: Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

y = x2 + 1, y = 0, x = 0, and x = 1

about the y-axis, as shown in Figure 7.21.

Δy

Δy

(1, 2)

r

1

2

1

x

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

For 0 ≤ y ≤ 1:
R = 1
r = 0

Plane region

R
y    

x
1−1

2

Solid of
revolution

y

 Figure 7.21

Solution For the region shown in Figure 7.21, the outer radius is simply R = 1. 
There is, however, no convenient formula that represents the inner radius. When 
0 ≤ y ≤ 1, r = 0, but when 1 ≤ y ≤ 2, r is determined by the equation y = x2 + 1, 
which implies that r = √y − 1.

r(y) = {0,
√y − 1,

   0 ≤ y ≤ 1
   1 ≤ y ≤ 2

Using this definition of the inner radius, you can use two integrals to find the volume.

 V = π∫1

0
 (12 − 02) dy + π∫2

1
 [12 − (√y − 1)2 ] dy Apply washer method.

 = π∫1

0
 1 dy + π∫2

1
 (2 − y) dy Simplify.

 = π[y]
1

0
+ π[2y −

y2

2 ]
2

1
 Integrate.

 = π + π(4 − 2 − 2 +
1
2)

 =
3π
2

Note that the first integral π∫1
0  1 dy represents the volume of a right circular cylinder of 

radius 1 and height 1. This portion of the volume could have been determined without 
using calculus. 

TECHNOLOGY Some graphing utilities have the capability of generating 
(or have built-in software capable of generating) a solid of revolution. If you have 
access to such a utility, use it to graph some of the solids of revolution described in 
this section. For instance, the solid in Example 4 might appear like that shown in  
Figure 7.22.

Generated by Mathematica

Figure 7.22
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 Manufacturing

See LarsonCalculus.com for an interactive version of this type of example.

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as 
shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the 
resulting metal ring?

Solution You can imagine the ring to be generated by a segment of the circle whose 
equation is x2 + y2 = 25, as shown in Figure 7.23(b). Because the radius of the hole 
is 3 inches, you can let y = 3 and solve the equation x2 + y2 = 25 to determine that 
the limits of integration are x = ±4. So, the inner and outer radii are r(x) = 3 and 
R(x) = √25 − x2, and the volume is

 V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx

 = π∫4

−4
 [(√25 − x2)2 − (3)2] dx

 = π∫4

−4
 (16 − x2) dx

 = π[16x −
x3

3 ]
4

−4

 =
256π

3
 cubic inches. 

Solids with Known Cross Sections
With the disk method, you can find the volume of a solid having a circular cross section  
whose area is A = πR2. This method can be generalized to solids of any shape, as long 
as you know a for mula for the area of an arbitrary cross section. Some common cross 
sections are squares, rectangles, triangles, semicircles, and trapezoids.

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area A(x) taken perpendicular to the x-axis,

Volume = ∫b

a

 A(x) dx. See Figure 7.24(a).

2. For cross sections of area A(y) taken perpendicular to the y-axis,

Volume = ∫d

c

 A(y) dy. See Figure 7.24(b).

x

y

x = a

x = b

Δx    

y

y = c

y = d

x

Δy

 (a) Cross sections perpendicular to x-axis (b) Cross sections perpendicular to y-axis

 Figure 7.24

x

y

−5 −4 −3 −2 −1

r(x) = 3

R(x) =     25 − x2 y =     25 − x2

y = 3

Plane region

1 2 3 4 5

(b)

Figure 7.23

3 in.

5 in.

x

Solid of revolution

4 5

y

(a)
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 Triangular Cross Sections

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region 
bounded by the lines

f (x) = 1 −
x
2

, g(x) = −1 +
x
2

, and x = 0.

The cross sections perpendicular to the x-axis are equilateral triangles.

Solution The base and area of each triangular cross section are as follows.

 Base = (1 −
x
2) − (−1 +

x
2) = 2 − x Length of base

 Area =
√3
4

(base)2 Area of equilateral triangle

 A(x) = √3
4

(2 − x)2 Area of cross section

Because x ranges from 0 to 2, the volume of the solid is

V = ∫b

a

 A(x) dx = ∫2

0
 
√3
4

(2 − x)2 dx = −
√3
4 [

(2 − x)3
3 ]

2

0
=

2√3
3

.

 An Application to Geometry

Prove that the volume of a pyramid with a square base is

V =
1
3

hB

where h is the height of the pyramid and B is the area of the base.

Solution As shown in Figure 7.26, you can intersect the pyramid with a plane 
parallel to the base at height y to form a square cross section whose sides are of length 
b′. Using similar triangles, you can show that

b′
b
=

h − y
h

 or b′ =
b
h
(h − y)

where b is the length of the sides of the base of the pyramid. So,

A(y) = (b′)2 = b2

h2 (h − y)2.

Integrating between 0 and h produces

 V = ∫h

0
 A(y) dy

 = ∫h

0
 
b2

h2 (h − y)2 dy

 =
b2

h2∫h

0
 (h − y)2 dy

 = −(b
2

h2)[(h − y)3
3 ]

h

0

 =
b2

h2 (h
3

3 )
 =

1
3

hB. B = b2 

x

−1

1

1

2

f(x) = 1 − x
2

Δx

y

g(x) = −1 + x
2

Triangular base in xy-plane
Figure 7.25

x

y

1

−1

2

1

y = f(x)

y = g(x)

Cross sections are equilateral triangles.

Area = A(y)

Area of base = B = b2

=

x

b2

h2 (h − y)2

y

b ′

b

x

y

h − y

h

b ′1
2

b
1
2

y

Figure 7.26
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7.2 Volume: The Disk Method 461

7.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Disk Method Explain how to use the disk method to 

find the volume of a solid of revolution.

2.  Comparing Methods What is the relationship 
between the disk method and the washer method?

3.  Finding the Volume of a Solid In your own 
words, describe when it is necessary to use more than one 
integral to find the volume of a solid of revolution.

4.  Finding the Volume of a Solid Explain how to 
find the volume of a solid with a known cross section.

 Finding the Volume of a Solid In Exercises 
5–8, write and evaluate the definite integral that 
represents the volume of the solid formed by 
revolving the region about the x-axis.

 5. y = √x  6. y = −x + 1

  

x

1

2

2

3

3

4

41

y
  

x

1

1

y

 7. y = x2, y = x5  8. y = 2, y = 4 −
x2

4

  

x

1

1

y   

x

1

2 3

3

5

1−1−2−3

y

 Finding the Volume of a Solid In Exercises 
9–12, write and evaluate the definite integral that 
represents the volume of the solid formed by 
revolving the region about the y-axis.

 9. y = x2 10. y = √16 − x2

  

x

1

2

2

3

3

4

41

y   

x

1

2

2

3

3

4

41

y

11. y = x2�3 12. x = −y2 + 4y

 

x

1

1

y   

x

1

2

2

3

3

4

41

y

 Finding the Volume of a Solid In Exercises 
13–16, find the volumes of the solids generated by 
revolving the region bounded by the graphs of the 
equations about the given lines.

13. y = √x, y = 0, x = 3

 (a) the x-axis (b) the y-axis

 (c) the line x = 3 (d) the line x = 6

14. y = 2x2, y = 0, x = 2

 (a) the y-axis (b) the x-axis

 (c) the line y = 8 (d) the line x = 2

15. y = x2, y = 4x − x2

 (a) the x-axis

 (b) the line y = 6

16. y = 4 + 2x − x2, y = 4 − x

 (a) the x-axis

 (b) the line y = 1

 Finding the Volume of a Solid In Exercises 
17–20, find the volume of the solid generated by 
revolving the region bounded by the graphs of the 
equations about the line y = 4.

17. y = x, y = 3, x = 0

18. y = 1
2x3, y = 4, x = 0

19. y =
2

1 + x
, y = 0, x = 0, x = 4

20. y = √1 − x, x = 0, y = 0

 Finding the Volume of a Solid In Exercises 
21–24, find the volume of the solid generated by 
revolving the region bounded by the graphs of the 
equations about the line x = 5.

21. y = x, y = 0, y = 4, x = 5

22. y = 2 −
x
2

, y = 0, y = 1, x = 0

23. x = y2, x = 4

24. xy = 3, y = 1, y = 4, x = 5

7.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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Finding the Volume of a Solid In Exercises 25–32, find 
the volume of the solid generated by revolving the region 
bounded by the graphs of the equations about the x-axis.

25. y =
1

√3x + 5
, y = 0, x = 0, x = 2

26. y = x√4 − x2, y = 0

27. y =
6
x
, y = 0, x = 1, x = 3

28. y =
2

x + 1
, y = 0, x = 0, x = 6

29. y = e−3x, y = 0, x = 0, x = 2

30. y = ex�4, y = 0, x = 0, x = 6

31. y = x2 + 1, y = −x2 + 2x + 5, x = 0, x = 3

32. y = √x, y = −1
2x + 4, x = 0, x = 8

Finding the Volume of a Solid In Exercises 33–36, find 
the volume of the solid generated by revolving the region 
bounded by the graphs of the equations about the y-axis.

33. y = 3(2 − x), y = 0, x = 0

34. y = √3x − 2, x = 0, y = 0, y = 1

35. y = 9 − x2, y = 0, x = 2, x = 3

36. y =
x3

8
, y = 0, x = 4

 Finding the Volume of a Solid In Exercises 
37–40, find the volume of the solid generated by 
revolving the region bounded by the graphs of 
the equations about the x-axis. Verify your results 
using the integration  capabilities of a graphing 
utility.

37. y = sin x, y = 0, x = 0, x = π

38. y = cos 2x, y = 0, x = 0, x =
π
4

39. y = ex−1, y = 0, x = 1, x = 2

40. y = ex�2 + e−x�2, y = 0, x = −1, x = 2

Finding the Volume of a Solid In Exercises 41–48, find 
the volume of the solid generated by revolving the specified 
region about the given line.

R2
R3

R1

0.5 1

0.5

1

x

y

y = x

y = x2

41. R1 about y = 0 42. R1 about x = 1

43. R1 about x = 0 44. R2 about y = 1

45. R2 about y = 0 46. R3 about x = 1

47. R3 about x = 0 48. R3 about y = 1

Finding the Volume of a Solid Using Technology In 
Exercises 49–52, use the integration capabilities of a graphing 
utility to approximate the volume of the solid generated by 
revolving the region bounded by the graphs of the equations 
about the x-axis.

49. y = e−x2
, y = 0, x = 0, x = 2

50. y = ln x, y = 0, x = 1, x = 3

51. y = 2 arctan(0.2x), y = 0, x = 0, x = 5

52. y = √2x, y = x2

EXPLORING CONCEPTS
53.  Describing a Solid Each integral represents the 

volume of a solid. Describe each solid.

 (a) π∫π�2

0
 sin2 x dx (b) π∫4

2
 y4 dy

54.  Comparing Volumes A region bounded by the 
parabola y = 4x − x2 and the x-axis is revolved about 
the x-axis. A second region bounded by the parabola 
y = 4 − x2 and the x-axis is revolved about the x-axis. 
Without integrating, how do the volumes of the two 
solids compare? Explain.

55.  Comparing Volumes The 

1 2 3 4

2

4

6

8

10

y = x2

x

y  
region in the figure is revolved  
about the indicated axes and line.  
Order the volumes of the resulting 
solids from least to greatest. Explain 
your reasoning.

 (a) x-axis

 (b) y-axis

 (c) x = 3

 56.  HOW DO YOU SEE IT? Use the graph to 
match the integral for the volume with the axis  
of rotation.

a

b

x

y

y = f(x)

x = f(y)

(a) V = π∫b

0
 (a2 − [ f (y)]2) dy (i) x-axis

(b) V = π∫a

0
 (b2 − [b − f (x)]2) dx (ii) y-axis

(c) V = π∫a

0
 [ f (x)]2 dx (iii) x = a

(d) V = π∫b

0
 [a − f ( y)]2 dy (iv) y = b

56.  
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Dividing a Solid In Exercises 57 and 58, consider the solid 
formed by revolving the region bounded by y = √x, y = 0, 
x = 1, and x = 3 about the x-axis.

57.  Find the value of x in the interval [1, 3] that divides the solid 
into two parts of equal volume.

58.  Find the values of x in the interval [1, 3] that divide the solid 
into three parts of equal volume.

59.  Manufacturing A manufacturer drills a hole through the 
center of a metal sphere of radius R. The hole has a radius r. 
Find the volume of the resulting ring.

60.  Manufacturing For the metal sphere in Exercise 59, let 
R = 6. What value of r will produce a ring whose volume is 
exactly half the volume of the sphere?

61.  Volume of a Cone Use the disk method to verify that the 
volume of a right circular cone is 1

3πr2h, where r is the radius 
of the base and h is the height.

62.  Volume of a Sphere Use the disk method to verify that 
the volume of a sphere is 43πr3, where r is the radius.

63.  Using a Cone A cone of height H with a base of radius r 
is cut by a plane  parallel to and h units above the base, where 
h < H. Find the volume of the solid (frustum of a cone) below 
the plane.

64.  Using a Sphere A sphere of radius r is cut by a plane h 
units above the equator, where h < r. Find the volume of the 
solid (spherical segment) above the plane.

65.  Volume of a Fuel Tank A tank on the wing of a jet 
aircraft is formed by revolving the region bounded by the 
graph of y = 1

8x2√2 − x and the x-axis (0 ≤ x ≤ 2) about the 
x-axis, where x and y are measured in meters. Use a graphing 
utility to graph the function. Find the volume of the tank 
analytically.

66.  Volume of a Container A container can be modeled by 
revolving the graph of

 y = {√0.1x3 − 2.2x2 + 10.9x + 22.2,
2.95,

   0 ≤ x ≤ 11.5
   11.5 < x ≤ 15

  about the x-axis, where x and y are measured in centimeters. 
Use a graphing utility to graph the function. Find the volume 
of the container analytically.

67.  Finding Volumes of Solids Find the volumes of the 
solids (see figures) generated if the upper half of the ellipse 
9x2 + 25y2 = 225 is revolved about (a) the x-axis to form a 
prolate spheroid (shaped like a football) and (b) the y-axis to 
form an oblate spheroid (shaped like half of a candy).

x6

4

−4

y   
4

−4
6

x

y

 Figure for 67(a) Figure for 67(b)

69.  Minimum Volume The function y = 4 − (x2�4) on the 
interval [0, 4] is revolved about the line y = b (see figure).

 (a) Find the volume of the resulting solid as a function of b.

 (b)  Use a graphing utility to graph the function in part (a), and 
use the graph to approximate the value of b that minimizes 
the volume of the solid.

 (c)  Use calculus to find the value of b that minimizes the 
volume of the solid, and compare the result with the 
answer to part (b).

3−1 4
x

4

−2

y

y = b

 

x
11

3

−3

y

 Figure for 69 Figure for 70

70.  Modeling Data A draftsman is asked to determine the 
amount of material required to produce a machine part (see 
figure). The diameters d of the part at equally spaced points 
x are listed in the table. The measurements are listed in 
centimeters.

x 6 7 8 9 10

d 5.8 5.4 4.9 4.4 4.6

x 0 1 2 3 4 5

d 4.2 3.8 4.2 4.7 5.2 5.7

 (a)  Use the regression capabilities of a graphing utility to find 
a fourth-degree polynomial through the points representing 
the radius of the machine part. Plot the data and graph the 
model.

 (b)  Use the integration capabilities of a graphing utility to 
approximate the volume of the machine part.

A 3D printer is used to create a plastic drinking glass. The 
equations given to the printer for the inside of the glass are

x = (y4)
1�32

 and y = 5

where x and y are 
measured in inches. 
What is the total volume 
that the drinking glass 
can hold when the region 
bounded by the graphs of 
the equations is revolved 
about the y-axis?

68. 3D Printing

Sergi Lopez Roig/Shutterstock.com
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71.  Think About It Match each integral with the solid whose 
volume it represents, and give the dimensions of each solid.

 (a) Right circular cylinder  (b) Ellipsoid

 (c) Sphere  (d) Right circular cone  (e) Torus

 (i) π∫h

0
 (rx

h )
2

 dx (ii) π∫h

0
 r2 dx

 (iii) π∫r

−r

 (√r2 − x2)2 dx

 (iv) π∫b

−b

 (a√1 −
x2

b2)
2

 dx

 (v)  π∫r

−r

 [(R + √r2 − x2)2 − (R − √r2 − x2)2] dx

72.  Cavalieri’s Theorem Prove that if two solids have equal 
altitudes and all cross sections parallel to their bases and at 
equal distances from their bases have equal areas, then the 
solids have the same volume (see figure).

h

R1

R2

 Area of R1 = area of R2

73.  Using Cross Sections Find the volumes of the solids 
whose bases are bounded by the graphs of y = x + 1 
and y = x2 − 1, with the indicated cross sections taken 
perpendicular to the x-axis.

 (a) Squares (b) Rectangles of height 1

  
y

x

−1
1

2 x

y

2
1

−1

74.  Using Cross Sections Find the volumes of the solids 
whose bases are bounded by the circle x2 + y2 = 4, with the 
indicated cross sections taken perpendicular to the x-axis.

 (a) Squares (b) Equilateral triangles

  

y
x

22

  

y
x

22

 (c) Semicircles (d) Isosceles right triangles

  

y
x 2 2

 

x
y

2 2

75.  Using Cross Sections Find the volume of the solid 
of intersection (the solid common to both) of the two right 
circular cylinders of radius r whose axes meet at right angles 
(see figure).

y

x

  

 Two intersecting cylinders Solid of intersection

76.  Using Cross Sections The solid shown in the figure has 
cross sections bounded by the graph of ∣x∣a + ∣y∣a = 1, where 
1 ≤ a ≤ 2.

 (a) Describe the cross section when a = 1 and a = 2.

 (b)  Describe a procedure for approximating the volume of the 
solid.

77.  Volume of a Wedge Two planes cut a right circular 
cylinder to form a wedge. One plane is perpendicular to 
the axis of the cylinder and the second makes an angle of 
θ degrees with the first (see figure).

 (a) Find the volume of the wedge if θ = 45°.

 (b)  Find the volume of the wedge for an arbitrary angle θ. 
Assuming that the cylinder has sufficient length, how does 
the volume of the wedge change as θ increases from 0° to 
90°?

y

x θ

   

x

y

R r

 Figure for 77 Figure for 78

78. Volume of a Torus

 (a)  Show that the volume of the torus shown in the figure 
is given by the integral 8πR∫r

0 √r2 − y2 dy, where 
R > r > 0.

 (b) Find the volume of the torus.

11 y

x

y

x

y

x

⎪ ⎪ ⎪ ⎪x 2 +  y 2 = 1⎪ ⎪ ⎪ ⎪x a +  y a = 1⎪ ⎪ ⎪ ⎪x 1 +  y 1 = 1

 FOR FURTHER INFORMATION For more information 
on this problem, see the article “Estimating the Volumes of Solid 
Figures with Curved Surfaces” by Donald Cohen in Mathematics 
Teacher. To view this article, go to MathArticles.com.
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7.3 Volume: The Shell Method

 Find the volume of a solid of revolution using the shell method.
 Compare the uses of the disk method and the shell method.

The Shell Method
In this section, you will study an alternative method for finding the volume of a solid 
of revolution. This method is called the shell method because it uses cylindrical shells.  
A comparison of the advantages of the disk and shell methods is given later in 
this section.

To begin, consider a representative rectangle as shown in Figure 7.27, where w is 
the width of the rectangle, h is the height of the rectangle, and p is the distance between 
the axis of revolution and the center of the rectangle. When this rectangle is revolved 
about its axis of revolution, it forms a cylindrical shell (or tube) of thickness w. To 
find the volume of this shell, consider two cylinders. The radius of the larger cylinder 
corresponds to the outer radius of the shell, and the radius of the smaller cylinder 
corresponds to the inner radius of the shell. Because p is the average radius of the shell, 
you know the outer radius is

p +
w
2

 Outer radius

and the inner radius is

p −
w
2

. Inner radius

So, the volume of the shell is

 Volume of shell = (volume of cylinder) − (volume of hole)

 = π(p +
w
2)

2

h − π(p −
w
2)

2

h

 = 2πphw

 = 2π(average radius)(height)(thickness).

You can use this formula to find the volume of a solid of revolution. For instance, 
the plane region in Figure 7.28 is revolved about a line to form the indicated solid. 
Consider a horizontal rectangle of width ∆y. As the plane region is revolved about a 
line parallel to the x-axis, the rectangle generates a representative shell whose volume  is

∆V = 2π[p(y)h(y)]∆y.

You can approximate the volume of the solid by n such shells of thickness ∆y, height 
h(yi), and average radius p(yi).

Volume of solid ≈ ∑
n

i=1
 2π[p(yi)h(yi)]∆y = 2π∑

n

i=1
 [p(yi)h(yi)]∆y

This approximation appears to become better and better as �∆�→0 (n→∞). So, the 
volume of the solid is

 Volume of solid = lim
�∆�→0

 2π∑
n

i=1
 [p(yi)h(yi)]∆y

 = 2π∫d

c

 [p(y)h(y)] dy.

p

w

Axis of revolution

p −
p + w

2w
2

h

Figure 7.27

d

cp(y)

Δy

Plane region

h(y)

Solid of revolution

Axis of
revolution

Figure 7.28
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THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of 
the formulas below. (See Figure 7.29.)

Horizontal Axis of Revolution Vertical Axis of Revolution

Volume = V = 2π∫d

c

 p(y)h(y) dy Volume = V = 2π∫b

a

 p (x)h(x) dx

d

c

Δy

p(y)

h(y)  

ba

Δx

h(x)

p(x)

 Horizontal axis of revolution Vertical axis of revolution
 Figure 7.29

 Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by 

y = x − x3

and the x-axis (0 ≤ x ≤ 1) about the y-axis.

Solution Because the axis of revolution is  

x

h(x) = x − x3

p(x) = x

Δx

(1, 0)

Axis of
revolution

y = x − x3

y

Figure 7.30

 
vertical, use a vertical representative rectangle,  
as shown in Figure 7.30. The width ∆x indicates 
that x is the variable of integration. The distance 
from the center of the rectangle to the axis of  
revolution is p(x) = x, and the height of the  
rectangle is 

h(x) = x − x3.

Because x ranges from 0 to 1, apply the shell 
method to find the volume of the solid.

 V = 2π∫b

a

 p(x)h(x) dx

 = 2π∫1

0
 x(x − x3) dx

 = 2π∫1

0
 (−x4 + x2) dx Simplify.

 = 2π[−x5

5
+

x3

3 ]
1

0
 Integrate.

 = 2π(−1
5
+

1
3)

 =
4π
15
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 Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by the graph of

x = e−y2

and the y-axis (0 ≤ y ≤ 1) about the x-axis.

Solution Because the axis of revolution is horizontal, use a horizontal representative 
rectangle, as shown in Figure 7.31. The width ∆y indicates that y is the variable of 
integration. The distance from the center of the rectangle to the axis of revolution is 
p(y) = y, and the height of the rectangle is h(y) = e−y2

. Because y ranges from 0 to 1, 
the volume of the solid is

 V = 2π∫d

c

 p(y)h(y) dy Apply shell method.

 = 2π∫1

0
 ye−y2

 dy

 = −π[e−y2]
1

0
 Integrate.

 = π(1 −
1
e)

 ≈ 1.986. 

Exploration
To see the advantage of using the shell method in Example 2, solve the  
equation x = e−y2 for y.

y = {1,
√−ln x,

   0 ≤ x ≤ 1�e
   1�e < x ≤ 1

Then use this equation to find the volume using the disk method.

Comparison of Disk and Shell Methods
The disk and shell methods can be distinguished as follows. For the disk method, the 
representative rectangle is always perpendicular to the axis of revolution, whereas 
for the shell method, the representative rectangle is always parallel to the axis of 
revolution, as shown in Figure 7.32.

x

h(y) = e−y
2

p(y) = y

Δy

Axis of
revolution

x = e−y
2

1

y

Figure 7.31

c

d

Δy

c

d
V = 2π ∫ ph dy

xh

p

y

a b

a

b
V = 2π ∫ ph dx

x

h

p

y

Δx

Horizontal axis of revolutionVertical axis of revolution
Shell method: Representative rectangle is 
parallel to the axis of revolution.

c

d

Δy

c

d
V = π ∫ (R2 − r2) dy

xR

r

y

a b

Δx
a

b
V = π ∫ (R2 − r2) dx

x

R

r

y

Vertical axis of revolution Horizontal axis of revolution
Disk method: Representative rectangle is 
perpendicular to the axis of revolution.

Figure 7.32
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Often, one method is more convenient to use than the other. The next  example  
illustrates a case in which the shell method is preferable.

 Shell Method Preferable

See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid formed by revolving the region bounded by the graphs of 

y = x2 + 1, y = 0, x = 0, and x = 1

about the y-axis.

Solution In Example 4 in Section 7.2, you saw that the washer method requires two 
integrals to determine the volume of this solid. See Figure 7.33(a).

 V = π∫1

0
 (12 − 02) dy + π∫2

1
 [12 − (√y − 1)2] dy Apply washer method.

 = π∫1

0
 1 dy + π∫2

1
 (2 − y) dy Simplify.

 = π[y]
1

0
+ π[2y −

y2

2 ]
2

1
 Integrate.

 = π + π(4 − 2 − 2 +
1
2)

 =
3π
2

In Figure 7.33(b), you can see that the shell method requires only one integral to find  
the volume.

 V = 2π∫b

a

 p(x)h(x) dx Apply shell method.

 = 2π∫1

0
 x(x2 + 1) dx

 = 2π [x
4

4
+

x2

2 ]
1

0
 Integrate.

 = 2π(34)
 =

3π
2

 

Consider the solid formed by revolving the region in Example 3 about the vertical 
line x = 1. Would the resulting solid of revolution have a greater volume or a smaller 
volume than the solid in Example 3? Without integrating, you should be able to reason 
that the resulting solid would have a smaller volume because “more” of the revolved 
region would be closer to the axis of revolution. To confirm this, try solving the integral

V = 2π∫1

0
 (1 − x)(x2 + 1) dx p(x) = 1 − x

which gives the volume of the solid.

 FOR FURTHER INFORMATION To learn more about the disk and shell methods, 
see the article “The Disk and Shell Method” by Charles A. Cable in The American 
Mathematical Monthly. To view this article, go to MathArticles.com.

x

Axis of
revolution

1

1

2

r

(1, 2)

Δy

Δy

For 0 ≤ y ≤ 1:
R = 1
r = 0

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

y

(a) Disk method

Axis of
revolution

h(x) = x2 + 1

1

1

2

p(x) = x

(1, 2)

Δx

y

x

(b) Shell method

Figure 7.33
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 Volume of a Pontoon

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed 
by rotating the graph of

y = 1 −
x2

16
, −4 ≤ x ≤ 4

about the x-axis, where x and y are measured in feet. Find the volume of the pontoon.

Solution Refer to Figure 7.35 and use the disk method as shown.

 V = π∫4

−4
 (1 −

x2

16)
2

 dx Apply disk method.

 = π∫4

−4
 (1 −

x2

8
+

x4

256) dx Simplify.

 = π[x −
x3

24
+

x5

1280]
4

−4
 Integrate.

 =
64π
15

 ≈ 13.4 cubic feet 

To use the shell method in Example 4, you would have to solve for x in terms of 
y in the equation 

y = 1 −
x2

16

and then evaluate an integral that requires a u-substitution.
Sometimes, solving for x is very difficult (or even impossible). In such cases, you 

must use a vertical rectangle (of width ∆x), thus making x the variable of integration. 
The position (horizontal or vertical) of the axis of revolution then determines the 
method to be used. This is shown in Example 5.

 Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs 
of y = x3 + x + 1, y = 1, and x = 1 about the line x = 2, as shown in Figure 7.36.

Solution In the equation y = x3 + x + 1, you cannot easily solve for x in terms of 
y. (See the discussion at the end of Section 3.8.) Therefore, the variable of integration 
must be x, and you should choose a vertical representative rectangle. Because the 
rectangle is parallel to the axis of revolution, use the shell method.

 V = 2π∫b

a

 p(x)h(x) dx Apply shell method.

 = 2π∫1

0
 (2 − x)(x3 + x + 1 − 1) dx

 = 2π∫1

0
 (−x4 + 2x3 − x2 + 2x) dx Simplify.

 = 2π[−x5

5
+

x4

2
−

x3

3
+ x2]

1

0
 Integrate.

 = 2π(−1
5
+

1
2
−

1
3
+ 1)

 =
29π
15

 

8 ft

2 ft

Figure 7.34

−1−2−3−4 1

2

2

3

3 4

R(x) = 1 −
r (x) = 0

x2

16

Δx

y

x

Disk method
Figure 7.35

Axis of
revolution

1

2

2

3

p(x) = 2 − x

Δx

(1, 3)

x

y

h(x) = x3 + x + 1 − 1

Figure 7.36
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7.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Shell Method Explain how to use the shell method to 

find the volume of a solid of revolution.

2.  Representative Rectangles Compare the 
representative rectangles for the disk and shell methods.

 Finding the Volume of a Solid In Exercises 
3–12, use the shell method to write and evaluate 
the definite integral that represents the volume of 
the solid generated by revolving the plane region 
about the y-axis.

 3. y = x  4. y = 1 − x

x
1

1

2

2

y

x
1

1

y

5. y = √x  6. y =
1
2

x2 + 1

x
4

2

4

2

y
  

−1−2 1 2

1

2

3

4

x

y

7. y =
1
4

x2, y = 0, x = 4  8. y =
1
2

x3, y = 0, x = 3

9. y = x2, y = 4x − x2 10. y = x3, y = 8, x = 0

11. y = √2x − 5, y = 0, x = 4

12. y = x3�2, y = 8, x = 0

 Finding the Volume of a Solid In Exercises 
13–22, use the shell method to write and evaluate 
the definite integral that represents the volume of 
the solid generated by revolving the plane region 
about the x-axis.

13. y = x 14. y = 1 − x

x
1

1

2

2

y

x
1

1

2

4

−2

−1

y

15. y =
1
x
 16. x + y2 = 4

1 2

1

1
4

1
2

1
2

3
2

3
4

x

y
  

x

y

1 2 3 4
−1

1

3

2

4

17. y = x3, x = 0, y = 8 18. y = 4x2, x = 0, y = 4

19. x + y = 4, y = x, y = 0 20. y = 3 − x, y = 0, x = 6

21. y = 1 − √x, y = x + 1, y = 0

22. y = √x + 2, y = x, y = 0

 Finding the Volume of a Solid In Exercises 
23–26, use the shell method to find the volume 
of the solid generated by revolving the region 
bounded by the graphs of the equations about the 
given line.

23. y = 2x − x2, y = 0, about the line x = 4

24. y = √x, y = 0, x = 4, about the line x = 6

25. y = 3x − x2, y = x2, about the line x = 2

26. y =
1
3

x3, y = 6x − x2, about the line x = 3

 Choosing a Method In Exercises 27 and 28, 
decide whether it is more convenient to use the disk 
method or the shell method to find the volume of 
the solid of revolution. Explain your reasoning. (Do 
not find the volume.)

27. (y − 2)2 = 4 − x 28. y = 4 − ex

 

−1 1 2 3 4−1

1

2

3

5

x

y   

−1−2−3 1 2 3

2

1

3

4

5

x

y

Choosing a Method In Exercises 29–32, use the disk 
method or the shell method to find the volumes of the solids 
generated by revolving the region bounded by the graphs of 
the equations about the given lines.

29. y = x3, y = 0, x = 2

 (a) the x-axis  (b) the y-axis  (c) the line x = 4

7.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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30. y =
10
x2 , y = 0, x = 1, x = 5

 (a) the x-axis  (b) the y-axis  (c) the line y = 10

31. x1�2 + y1�2 = a1�2, x = 0, y = 0

 (a) the x-axis  (b) the y-axis  (c) the line x = a

32. x2�3 + y2�3 = a2�3, a > 0 (hypocycloid)

 (a) the x-axis  (b) the y-axis

Finding the Volume of a Solid Using Technology In 
Exercises 33–36, (a) use a graphing utility to graph the region 
bounded by the graphs of the equations, and (b) use the 
integration capabilities of the graphing utility to approximate 
the volume of the solid generated by revolving the region about 
the y-axis.

33. x4�3 + y4�3 = 1, x = 0, y = 0, first quadrant

34. y = √1 − x3, y = 0, x = 0

35. y = 3√(x − 2)2(x − 6)2, y = 0, x = 2, x = 6

36. y =
2

1 + e1�x, y = 0, x = 1, x = 3

EXPLORING CONCEPTS
37.  Describing Cylindrical Shells Consider the plane 

region bounded by the graphs of y = k, y = 0, x = 0, 
and x = b, where k > 0 and b > 0. What are the heights 
and radii of the cylinders generated when this region is 
revolved about (a) the x-axis and (b) the y-axis?

38.  Think About It A solid is generated by revolving 
the region bounded by y = 9 − x2 and x = 0 about the  
y-axis. Explain why you can use the shell method with 
limits of integration x = 0 and x = 3 to find the volume 
of the solid.

Comparing Integrals In Exercises 39 and 40, give a 
geometric argument that explains why the integrals have 
equal values.

39. π∫5

1
 (x − 1) dx = 2π∫2

0
 y[5 − (y2 + 1)] dy

40. π∫2

0
 [16 − (2y)2] dy = 2π∫4

0
 x(x2) dx

41.  Comparing Volumes The region in the figure is 
revolved about the indicated axes and line. Order the volumes 
of the resulting solids from least to greatest. Explain your 
reasoning.

 (a) x-axis  (b) y-axis  (c) x = 4

y = x2/5

1 2 3 4

1

2

3

4

x

y

 42.  HOW DO YOU SEE IT? Use the graph to 
answer the following.

y = f (x)

x = g(y)

x

y

2.45C

B

3

A

(a)  Describe the figure generated by revolving 
segment AB about the y-axis.

(b)  Describe the figure generated by revolving 
segment BC about the y-axis.

(c)  Assume the curve in the figure can be described 
as y = f (x) or x = g(y). A solid is generated by 
revolving the region bounded by the curve, y = 0, 
and x = 0 about the y-axis. Set up integrals to find 
the volume of this solid using the disk method and 
the shell method. (Do not integrate.)

42.  

Analyzing an Integral In Exercises 43–46, the integral 
represents the volume of a solid of revolution. Identify (a) the 
plane region that is revolved and (b) the axis of revolution.

43. 2π∫2

0
 x3 dx 44. 2π∫1

0
 (y − y3�2) dy

45. 2π∫6

0
 (y + 2)√6 − y dy

46. 2π∫1

0
 (4 − x)ex dx

47.  Machine Part A solid is generated by revolving the region 
bounded by y = 1

2x2 and y = 2 about the y-axis. A hole, 
centered  along the axis of revolution, is drilled through this 
solid so that one-fourth of the volume is removed. Find the 
diameter of the hole.

48.  Machine Part A solid is generated by revolving the region 
bounded by y = √9 − x2 and y = 0 about the y-axis. A hole, 
centered along the axis of revolution, is drilled through this 
solid so that one-third of the volume is removed. Find the 
 diameter of the hole.

49.  Volume of a Torus A torus is formed by revolving the 
region bounded by the circle x2 + y2 = 1 about the line x = 2 
(see figure). Find the volume of this “doughnut-shaped” solid. 
(Hint: The integral ∫1

−1 √1 − x2 dx represents the area of a 
semicircle.)

x

1

1 2

−1

−1

y
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50.  Volume of a Torus Repeat Exercise 49 for a torus formed 
by revolving the region bounded by the circle x2 + y2 = r2 
about the line x = R, where r < R.

51. Finding Volumes of Solids

 (a) Use differentiation to verify that

  ∫x sin x dx = sin x − x cos x + C.

 (b)  Use the result of part (a) to find the volume of the solid 
generated by revolving each plane region about the y-axis.

(i)

0.5

1.0

x

y

π π3
4

π
2

−

y = sin x

π
4

π
4

 (ii)

x

y

π

1

2

y = 2 sin x

y = −sin x

52. Finding Volumes of Solids

 (a) Use differentiation to verify that

  ∫x cos x dx = cos x + x sin x + C.

 (b)  Use the result of part (a) to find the volume of the solid 
 generated by revolving each plane region about the y-axis. 
(Hint: Begin by approximating the points of intersection.)

(i)

y = cos x

y = x2

x

y

−0.5
−1 0.5 1 1.5

0.5

1.5

2

(ii)
y = 4 cos x

y = (x − 2)2

x

y

−1−2 1 2 3

1

2

3

53.  Volume of a Segment of a Sphere Let a sphere of 
radius r be cut by a plane, thereby forming a segment of height 
h. Show that the volume of this segment is 

 
1
3
πh2(3r − h).

54.  Volume of an Ellipsoid Consider the plane region 
bounded by the graph of the ellipse

 (xa)
2

+ (yb)
2

= 1

  where a > 0 and b > 0. Show that the volume of the ellipsoid  
formed when this region is revolved about the y-axis is

 
4
3
πa2b.

  What is the volume when the region is revolved about the  
x-axis?

55.  Exploration Consider the region bounded by the graphs of 
y = axn, y = abn, and x = 0, as shown in the figure.

x

abn

b

y

y = axn

 (a)  Find the ratio R1(n) of the area of the region to the area of 
the circumscribed rectangle.

 (b)  Find lim
n→∞

 R1(n) and compare the result with the area of the

  circumscribed rectangle.

 (c)  Find the volume of the solid of revolution formed by 
revolving the region about the y-axis. Find the ratio R2(n) 
of this volume to the volume of the circumscribed right 
 circular cylinder.

 (d)  Find lim
n→∞

 R2(n) and compare the result with the volume of

  the circumscribed cylinder.

 (e)  Use the results of parts (b) and (d) to make a conjecture 
about the shape of the graph of y = axn, 0 ≤ x ≤ b, as 
n→∞.

56.  Think About It Match each integral with the solid whose 
volume it represents and give the dimensions of each solid.

 (a) Right circular cone    (b) Torus    (c) Sphere

 (d) Right circular cylinder  (e) Ellipsoid  

 (i)  2π∫r

0
 hx dx

 (ii) 2π∫r

0
 hx(1 −

x
r) dx

 (iii) 2π∫r

0
 2x√r2 − x2 dx

 (iv) 2π∫b

0
 2ax√1 −

x2

b2 dx

 (v)  2π∫r

−r

 (R − x)(2√r2 − x2) dx

57.  Volume of a Storage Shed A storage shed has a 
circular base of diameter 80 feet. Starting at the center, the 
interior height is measured every 10 feet and recorded in the 
table (see figure). Find the volume of the shed. 

 

H
ei

gh
t (

in
 f

ee
t)

Distance from center
(in feet)

10

10

20

20

30

30

40

40

50

50

x

y
x Height

0 50

10 45

20 40

30 20

40 0
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7.3 Volume: The Shell Method 473

58.  Modeling Data A pond is approximately circular, with 
a diameter of 400 feet. Starting at the center, the depth of the 
water is measured every 25 feet and recorded in the table (see 
figure).

 

D
ep

th
 (

in
 f

ee
t)

Distance from center
(in feet)

10
8
6
4
2

20
18
16
14
12

50 100 150 200
x

y

 (a)  Use the regression capabilities of a graphing utility to find 
a quadratic model for the depths recorded in the table. Use 
the graphing utility to plot the depths and graph the model.

 (b)  Use the integration capabilities of a graphing utility and 
the model in part (a) to approximate the volume of water 
in the pond.

 (c)  Use the result of part (b) to approximate the number of 
gallons of water in the pond. (Hint: 1 cubic foot of water 
is approximately 7.48 gallons.)

59.  Equal Volumes Let V1 and V2 be the volumes of the 
solids that result when the plane region bounded by

 y =
1
x
, y = 0, x =

1
4

, and x = c, c >
1
4

  is revolved about the x-axis and the y-axis, respectively. Find 
the value of c for which V1 = V2.

60.  Volume of a Segment of a Paraboloid The region 
bounded by y = r2 − x2, y = 0, and x = 0 is revolved about 
the y-axis to form a paraboloid. A hole, centered along the 
axis of revolution, is drilled through this solid. The hole has 
a radius k, 0 < k < r. Find the volume of the resulting ring  
(a) by integrating with respect to x and (b) by integrating with 
respect to y.

61.  Finding Volumes of Solids Consider the graph of 
y2 = x(4 − x)2, as shown in the figure. Find the  volumes of 
the solids that are generated when the loop of this graph is 
revolved about (a) the x-axis, (b) the y-axis, and (c) the line 
x = 4.

1 2 3 4 5 6 7

−2
−1

−3
−4

1
2
3
4

x

y
y2 = x(4 − x)2

x 0 25 50

Depth 20 19 19

x 75 100 125

Depth 17 15 14

x 150 175 200

Depth 10 6 0

The Oblateness of Saturn Saturn is the most oblate of the 
planets in our solar system. Its equatorial radius is 60,268 kilometers 
and its polar radius is 54,364 kilometers. The color-enhanced 
photograph of Saturn was taken by Voyager 1. In the photograph, 
the oblateness of Saturn is clearly visible.

(a)  Find the ratio of the volumes of the sphere and the oblate 
ellipsoid shown below.

(b)  If a planet were spherical and had the same volume as Saturn, 
what would its radius be?

 Computer model of   
“spherical Saturn,” whose 
equatorial radius is equal  
to its polar radius. The 
equation of the cross  
section passing through  
the pole is 

x2 + y2 = 60,2682.

 Computer model of   
“oblate Saturn,” whose 
equatorial radius is greater 
than its polar radius.  
The equation of the  
cross section passing 
through the pole is

x2

60,2682 +
y2

54,3642 = 1.

Saturn

NASA
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7.4 Arc Length and Surfaces of Revolution

 Find the arc length of a smooth curve.
 Find the area of a surface of revolution.

Arc Length
In this section, definite integrals are used to find the arc lengths of curves and the areas 
of surfaces of revolution. In either case, an arc (a segment of a curve) is  approximated 
by straight line segments whose lengths are given by the familiar Distance Formula

d = √(x2 − x1)2 + (y2 − y1)2.

A rectifiable curve is one that has a finite arc length. You will see that a sufficient 
 condition for the graph of a function f  to be rectifiable between (a, f (a)) and (b, f (b)) 
is that f′ be continuous on [a, b]. Such a function is continuously differentiable on 
[a, b], and its graph on the interval [a, b] is a smooth curve.

Consider a function y = f (x) that is continuously differentiable on the interval 
[a, b]. You can approximate the graph of f  by n line segments whose endpoints are 
determined by the partition

a = x0 < x1 < x2 < .  .  . < xn = b

as shown in Figure 7.37. By letting ∆xi = xi − xi−1 and ∆yi = yi − yi−1, you can 
approximate the length of the graph by

 s ≈ ∑
n

i=1
 √(xi − xi−1)2 + (yi − yi−1)2

 = ∑
n

i=1
 √(∆xi)2 + (∆yi)2

 = ∑
n

i=1
 √(∆xi)2 + (∆yi

∆xi
)

2

(∆xi)2

 = ∑
n

i=1
 √1 + (∆yi

∆xi
)

2

(∆xi).

This approximation appears to become better and better as �∆�→0 (n→∞). So, the 
length of the graph is

s = lim
�∆�→0

 ∑
n

i=1
 √1 + (∆yi

∆xi
)

2

 (∆xi).

Because f′(x) exists for each x in (xi−1, xi), the Mean Value Theorem guarantees the 
existence of ci in (xi−1, xi) such that

 
f (xi) − f (xi−1)

xi − xi−1
= f′(ci)

 
∆yi

∆xi

= f′(ci).

Because f′ is continuous on [a, b], it follows that √1 + [ f′(x)]2 is also continuous (and 
therefore integrable) on [a, b], which implies that

 s = lim
�∆�→0

 ∑
n

i=1
 √1 + [ f′(ci)]2 (∆xi)

 = ∫b

a

 √1 + [ f′(x)]2 dx

where s is called the arc length of f  between a and b.

x
a b

s = length of

s
y = f(x)

curve from
a to b

y

Figure 7.37

x
a = x0 b = xnx1 x2

(xn, yn)
(x0, y0)

(x1, y1)
(x2, y2)

Δy = y2 − y1

Δx = x2 − x1

y
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7.4 Arc Length and Surfaces of Revolution 475

Because the definition of arc length can be applied to a linear function, you can 
check to see that this new definition agrees with the standard Distance Formula for the 
length of a line segment. This is shown in Example 1.

 The Length of a Line Segment

Find the arc length from (x1, y1) to (x2, y2) on the graph of

f (x) = mx + b.

Solution Because

f′(x) = m =
y2 − y1

x2 − x1

it follows that

 s = ∫x2

x1

 √1 + [ f′(x)]2 dx Formula for arc length

 = ∫x2

x1

 √1 + (y2 − y1

x2 − x1
)

2

 dx

 =√(x2 − x1)2 + (y2 − y1)2

(x2 − x1)2
(x)]

x2

x1

 Integrate and simplify.

 =√(x2 − x1)2 + (y2 − y1)2

(x2 − x1)2
(x2 − x1)

 = √(x2 − x1)2 + (y2 − y1)2

which is the formula for the distance between two points in the plane, as shown in 
Figure 7.38. 

 FOR FURTHER INFORMATION To see how arc length can be used to define 
trigonometric functions, see the article “Trigonometry Requires Calculus, Not Vice 
Versa” by Yves Nievergelt in UMAP Modules.

Definition of Arc Length

Let the function y = f (x) represent a smooth curve on the interval [a, b]. The  
arc length of f  between a and b is

s = ∫b

a

 √1 + [ f′(x)]2 dx.

Similarly, for a smooth curve x = g(y), the arc length of g between c and d is

s = ∫d

c

 √1 + [g′(y)]2 dy.

x

x2 − x1

y2 − y1

f(x) = mx + b

(x1, y1)

(x2, y2)

y

The formula for the arc length of the 
graph of f  from (x1, y1) to (x2, y2) is the 
same as the standard Distance Formula.
Figure 7.38

TECHNOLOGY Definite integrals representing arc length often are very 
difficult to evaluate. In this section, a few examples are presented. In the next 
chapter, with more advanced integration techniques, you will be able to tackle more 
difficult arc length problems. In the meantime, remember that you can always use 
a numerical integration program to approximate an arc length. For instance, use the 
numerical integration feature of a graphing utility to approximate the arc lengths in 
Examples 2 and 3.

CHRISTIAN HUYGENS  
(1629–1695)

The Dutch mathematician 
Christian Huygens, who 
invented the pendulum clock, 
and James Gregory (1638–1675), 
a Scottish mathematician, both 
made early contributions to the 
problem of finding the length of 
a rectifiable curve.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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 Finding Arc Length

Find the arc length of the graph of y =
x3

6
+

1
2x

 on the interval [12, 2], as shown in 
Figure 7.39.

Solution Using

dy
dx

=
3x2

6
−

1
2x2 =

1
2 (x2 −

1
x2)

yields an arc length of

 s = ∫b

a

 √1 + (dy
dx)

2

 dx Formula for arc length

 = ∫2

1�2
 √1 + [12 (x2 −

1
x2)]

2

 dx

 = ∫2

1�2
 √1

4 (x4 + 2 +
1
x4) dx

 =
1
2

 ∫2

1�2
 (x2 +

1
x2) dx Simplify.

 =
1
2[

x3

3
−

1
x]

2

1�2
 Integrate.

 =
1
2 (

13
6

+
47
24)

 =
33
16

.

 Finding Arc Length

Find the arc length of the graph of (y − 1)3 = x2 on the interval [0, 8], as shown in 
Figure 7.40.

Solution Solving for y yields y = x2�3 + 1 and dy�dx = 2�(3x1�3). Because dy�dx 
is undefined when x = 0, the arc length formula with respect to x cannot be used. 
Solving for x in terms of y yields x = ±(y − 1)3�2. Choosing the positive value of x 
produces 

dx
dy

=
3
2
( y − 1)1�2.

The x-interval [0, 8] corresponds to the y-interval [1, 5], and the arc length is

 s = ∫d

c

 √1 + (dx
dy)

2

 dy Formula for arc length

 = ∫5

1
 √1 + [32 (y − 1)1�2]

2

 dy

 = ∫5

1
 √9

4
y −

5
4

 dy

 =
1
2∫

5

1
 √9y − 5 dy Simplify.

 =
1
18[

(9y − 5)3�2

3�2 ]
5

1
 Integrate.

 =
1
27

(403�2 − 43�2)

 ≈ 9.073. 

321

2

1

x

1
2x6

x3y = +

y

The arc length of the graph of y on 
[12, 2]
Figure 7.39

1 2 3 4 5 6 7 8

1

2

3

4

5

x

(y − 1)3 = x2

(0, 1)

(8, 5)
y

The arc length of the graph of y on 
[0, 8]
Figure 7.40

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



7.4 Arc Length and Surfaces of Revolution 477

 Finding Arc Length

See LarsonCalculus.com for an interactive version of this type of example.

Find the arc length of the graph of

y = ln(cos x)

from x = 0 to x = π�4, as shown in Figure 7.41.

Solution Using

dy
dx

= −
sin x
cos x

= −tan x

yields an arc length of

s = ∫b

a

 √1 + (dy
dx)

2

 dx Formula for arc length

 = ∫π�4

0
 √1 + tan2 x dx

 = ∫π�4

0
 √sec2 x dx Trigonometric identity

 = ∫π�4

0
 sec x dx Simplify.

 = [ln∣sec x + tan x∣]
π�4

0
 Integrate.

 = ln(√2 + 1) − ln 1

 ≈ 0.881.

 Length of a Cable

An electric cable is hung between two towers that are 200 feet apart, as shown in 
Figure 7.42. The cable takes the shape of a catenary whose equation is

y = 75(ex�150 + e−x�150) = 150 cosh 
x

150
.

Find the arc length of the cable between the two towers.

Solution Because y′ = 1
2 (ex�150 − e−x�150), you can write

(y′)2 = 1
4
(ex�75 − 2 + e−x�75)

and

1 + (y′)2 = 1
4
(ex�75 + 2 + e−x�75) = [12 (ex�150 + e−x�150)]

2

.

Therefore, the arc length of the cable is

 s = ∫b

a

 √1 + (y′)2 dx Formula for arc length

 =
1
2∫

100

−100
 (ex�150 + e−x�150) dx

 = 75[ex�150 − e−x�150]
100

−100
 Integrate.

 = 150(e2�3 − e−2�3)
 ≈ 215 feet. 

x

−1

y = ln(cos x)

π
2

π
2

−

y

The arc length of the graph of y on

[0, 
π
4]

Figure 7.41

x

y

x
150

Catenary:
y = 150 cosh

150

−100 100

Figure 7.42
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478 Chapter 7 Applications of Integration

Area of a Surface of Revolution
In Sections 7.2 and 7.3, integration was used to calculate the volume of a solid 
of revolution. You will now look at a procedure for finding the area of a surface  
of revolution.

Definition of Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting 
surface is a surface of revolution.

The area of a surface of revolution is  

Axis of
revolution

L

r1

r2

 
derived from the formula for the lateral surface 
area of the frustum of a right circular cone. 
Consider the line segment in the figure at the  
right, where L is the length of the line segment,  
r1 is the radius at the left end of the line segment, 
and r2 is the radius at the right end of the line  
segment. When the line  segment is revolved  
about its axis of revolution, it forms a frustum  
of a right  circular cone, with

S = 2πrL Lateral surface area of frustum

where

r =
1
2
(r1 + r2). Average radius of frustum

(In Exercise 56, you are asked to verify the formula for S.)
Consider a function f  that has a continuous derivative on the interval [a, b]. The 

graph of f  is revolved about the x-axis to form a surface of revolution, as shown in 
Figure 7.43. Let ∆ be a partition of [a, b], with subintervals of width ∆xi. Then the line 
segment of length

∆Li = √(∆xi)2 + (∆yi)2

generates a frustum of a cone. Let ri be the average radius of this frustum. By the 
Intermediate Value Theorem, a point di exists (in the ith subinterval) such that

ri = f (di).

The lateral surface area ∆Si of the frustum is

 ∆Si = 2πri∆Li

 = 2πf (di)√(∆xi)2 + (∆yi)2

 = 2πf (di)√1 + (∆yi

∆xi
)

2

∆xi.

y = f(x)
Δyi

Δxi

a = x0 xi

ΔLi

xi − 1 b = xn

  

Axis of
revolution

 Figure 7.43
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7.4 Arc Length and Surfaces of Revolution 479

By the Mean Value Theorem, a number ci exists in (xi−1, xi) such that

 f′(ci) =
f (xi) − f (xi−1)

xi − xi−1

 =
∆yi

∆xi

.

So, ∆Si = 2πf (di)√1 + [ f′(ci)]2 ∆xi, and the total surface area can be  approximated 
by

S ≈ 2π∑
n

i=1
 f (di)√1 + [ f′(ci)]2 ∆xi.

It can be shown that the limit of the right side as �∆�→0 (n→∞) is

S = 2π∫b

a

 f (x)√1 + [ f′(x)]2 dx.

In a similar manner, if the graph of f  is revolved about the y-axis, then S is

S = 2π∫b

a

 x√1 + [ f′(x)]2 dx.

In these two formulas for S, you can regard the products 2πf (x) and 2πx as the 
circumferences of the circles traced by a point (x, y) on the graph of f  as it is revolved 
about the x-axis and the y-axis (Figure 7.44). In one case, the radius is r = f (x), and 
in the other case, the radius is r = x. Moreover, by appropriately adjusting r, you 
can generalize the formula for surface area to cover any horizontal or vertical axis of 
revolution, as indicated in the next definition.

Definition of the Area of a Surface of Revolution

Let y = f (x) have a continuous derivative on the interval [a, b]. The area S of 
the surface of revolution formed by revolving the graph of f  about a horizontal 
or vertical axis is

S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx y is a function of x.

where r(x) is the distance between the graph of f  and the axis of revolution. If 
x = g(y) on the interval [c, d], then the surface area is

S = 2π∫d

c

 r(y)√1 + [g′(y)]2 dy x is a function of y.

where r(y) is the distance between the graph of g and the axis of revolution.

The formulas in this definition are sometimes written as

S = 2π∫b

a

 r(x) ds y is a function of x.

and

S = 2π∫d

c

 r(y) ds x is a function of y.

where

ds = √1 + [ f′(x)]2 dx and ds = √1 + [g′(y)]2 dy

respectively.

x

(x, f(x))

r = f(x)

y = f(x)

a bAxis of
revolution

y

x

A
xi

s 
of

 r
ev

ol
ut

io
n

r = x

(x, f(x))

a b

y

y = f(x)

Figure 7.44
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 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of f (x) = x3 on the interval 
[0, 1] about the x-axis, as shown in Figure 7.45.

Solution The distance between the x-axis and the graph of f  is r(x) = f (x), and 
because f′(x) = 3x2, the surface area is

 S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx Formula for surface area

 = 2π∫1

0
 x3√1 + (3x2)2 dx

 =
2π
36∫

1

0
 (36x3)(1 + 9x4)1�2 dx Simplify.

 =
π
18[

(1 + 9x4)3�2

3�2 ]
1

0
 Integrate.

 =
π
27

(103�2 − 1)

 ≈ 3.563.

 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of f (x) = x2 on the interval 
[0, √2] about the y-axis, as shown in the figure below.

x

(    2, 2)

r (x) = x

f(x) = x2 

Axis of revolution

−2
2

2

3

−1 1

y

Solution In this case, the distance between the graph of f  and the y-axis is r(x) = x. 
Using f′(x) = 2x and the formula for surface area, you can determine that

 S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx Formula for surface area

 = 2π∫√2

0
 x√1 + (2x)2 dx

 =
2π
8 ∫

√2

0
 (1 + 4x2)1�2(8x) dx Simplify.

 =
π
4 [

(1 + 4x2)3�2

3�2 ]
√2

0
 Integrate.

 =
π
6
[(1 + 8)3�2 − 1]

 =
13π

3

 ≈ 13.614. 

Axis of
revolution

1

1

−1

f(x) = x3

r (x) = f (x)

x

(1, 1)

y

Figure 7.45
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7.4 Arc Length and Surfaces of Revolution 481

7.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Rectifiable Curve Describe the condition for a curve 

to be rectifiable between two points.

2.  Arc Length Explain how to find the arc length of a 
function that is a smooth curve on the interval [a, b].

3.  Arc Length Name a function for which the integral 
below represents the arc length of the function on the 
interval [0, 2].

 ∫2

0
 √1 + (4x)2 dx

4.  Surface of Revolution Describe a surface of 
revolution in your own words.

Finding Distance Using Two Methods In Exercises 
5 and 6, find the distance between the points using (a) the 
Distance Formula and (b) integration.

 5. (2, 1), (5, 3)  6. (−2, 2), (4, −6)

 Finding Arc Length In Exercises 7–20, find 
the arc length of the graph of the  function over the 
indicated interval.

 7. y =
2
3
(x2 + 1)3�2  8. y =

x4

8
+

1
4x2, [2, 3]

 

y =   (x2 + 1)3/2 

x

y

−1 1 2 3 4
−1

1

2

3

4

2
3

  
y = + 

x

y

1 2 3 4

4

8

12

16

x4

8
1

4x2

 9. y =
2
3

x3�2 + 1 10. y = 2x3�2 + 3

 

−1 1 2 3 4
−1

1

2

3

4

y = x3/2 + 12
3

x

y
  

2 4 6 8 10 12

10

20

30

40

50

60

y = 2x3/2 + 3

x

y

11. y =
3
2

x2�3, [1, 8] 12. y =
3
2

x2�3 + 4, [1, 27]

13. y =
x5

10
+

1
6x3, [2, 5] 14. y =

x7

14
+

1
10x5, [1, 2]

15. y = ln(sin x), [π4, 
3π
4 ] 16. y = ln(cos x), [0, 

π
3]

17. y = 1
2 (ex + e−x), [0, 2]

18. y = ln(e
x + 1

ex − 1), [ln 6, ln 8]

19. x = 1
3 (y2 + 2)3�2, 0 ≤ y ≤ 4

20. x = 1
3√y (y − 3), 1 ≤ y ≤ 4

Finding Arc Length In Exercises 21–30, (a) sketch the 
graph of the function, highlighting the part indicated by the 
given interval, (b) write a definite integral that represents the 
arc length of the curve over the indicated interval and observe 
that the integral cannot be evaluated with the techniques 
studied so far, and (c) use the integration capabilities of a 
graphing utility to approximate the arc length.

21. y = 4 − x2, [0, 2] 22. y = x2 + x − 2, [−2, 1]

23. y =
1
x
, [1, 3]

24. y =
1

x + 1
, [0, 1]

25. y = sin x, [0, π]

26. y = cos x, [−π
2

, 
π
2]

27. y = 2 arctan x, [0, 1]
28. y = ln x, [1, 5] 
29. x = e−y, 0 ≤ y ≤ 2

30. x = √36 − y2, 0 ≤ y ≤ 3

Approximation In Exercises 31 and 32, approximate the 
arc length of the graph of the function over the interval [0, 4] 
in three ways. (a) Use the Distance Formula to find the distance 
between the endpoints of the arc. (b) Use the Distance Formula 
to find the lengths of the four line segments connecting the 
points on the arc when x = 0, x = 1, x = 2, x = 3, and x = 4. 
Find the sum of the four lengths. (c) Use the integration 
capabilities of a graphing utility to approximate the integral 
yielding the indicated arc length.

31. f (x) = x3 32. f (x) = (x2 − 4)2

33.  Length of a Cable An electric cable is hung between two 
towers that are 40 meters apart (see figure). The cable takes the 
shape of a catenary whose equation is

 y = 10(ex�20 + e−x�20), −20 ≤ x ≤ 20

  where x and y are measured in meters. Find the arc length of 
the cable between the two towers.

x
−20 −10 10 20

10

30

y
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34.  Roof Area A barn is 100 feet long and 40 feet wide (see 
figure). A cross section of the roof is the inverted catenary 
y = 31 − 10(ex�20 + e−x�20). Find the number of square feet 
of roofing on the barn.

20

20

−20
x

100 ft

y
y = 31 − 10(ex/20 + e−x/20)

35.  Length of Gateway Arch The Gateway Arch in St. 
Louis, Missouri, is closely approximated by the inverted 
catenary

 y = 693.8597 − 68.7672 cosh 0.0100333x,

 −299.2239 ≤ x ≤ 299.2239.

  Use the integration capabilities of a graphing utility to 
approximate the length of this curve (see figure).

x
−200−400 200 400

(−299.2, 0) (299.2, 0)

(0, 625.1)

400

200

y  

−2−6 2 6 8

−6
−8

2

6
8

x2/3 + y2/3 = 4

x

y

 Figure for 35 Figure for 36

36.  Astroid Find the total length of the graph of the astroid 
x2�3 + y2�3 = 4.

37.  Arc Length of a Sector of a Circle Find the arc length 
from (0, 3) clockwise to (2, √5) along the circle x2 + y2 = 9.

38.  Arc Length of a Sector of a Circle Find the arc length 
from (−3, 4) clockwise to (4, 3) along the circle x2 + y2 = 25. 
Show that the result is one-fourth the  circumference of the circle.

 Finding the Area of a Surface of 
Revolution In Exercises 39–44, write and 
evaluate the definite integral that represents the 
area of the surface generated by revolving the 
curve on the indicated interval about the x-axis.

39. y =
1
3

x3 40. y = 2√x

 y

x

−4

−1

2

1 3

8
10

−6
−8
−10

y =   x31
3

y

x
2 4 6 8

−6

−4

−2

2

4

6
y = 2   x

41. y =
x3

6
+

1
2x

, 1 ≤ x ≤ 2 42. y = 3x, 0 ≤ x ≤ 3

43. y = √4 − x2, −1 ≤ x ≤ 1

44. y = √9 − x2, −2 ≤ x ≤ 2

 Finding the Area of a Surface of 
Revolution In Exercises 45–48, write and 
evaluate the definite integral that represents the 
area of the surface generated by revolving the 
curve on the indicated interval about the y-axis.

45. y = 3√x + 2, 1 ≤ x ≤ 8 46. y = 9 − x2, 0 ≤ x ≤ 3

47. y = 1 −
x2

4
, 0 ≤ x ≤ 2 48. y =

x
2
+ 3, 1 ≤ x ≤ 5

Finding the Area of a Surface of Revolution Using 
Technology In Exercises 49 and 50, use the integration 
capabilities of a graphing utility to approximate the area of the 
surface of revolution.

 Function Interval Axis of Revolution

49. y = sin x [0, π] x-axis

50. y = ln x [1, e] y-axis

EXPLORING CONCEPTS
Approximation In Exercises 51 and 52, determine 
which value best approximates the length of the arc 
represented by the integral. Make your selection on the 
basis of a sketch of the arc, not by performing calculations.

51. ∫2

0
 √1 + [ d

dx (
5

x2 + 1)]
2

 dx

 (a) 25   (b) 5   (c) 2   (d) −4   (e) 3

52. ∫π�4

0
 √1 + [ d

dx
(tan x)]

2

 dx

 (a) 3   (b) −2   (c) 4   (d) 
4π
3

   (e) 1

53.  Exploring Relationships Consider the function

 f (x) = 1
4

ex + e−x.

  Compare the definite integral of f  on the interval [a, b] 
with the arc length of f  over the interval [a, b].

 54.  HOW DO YOU SEE IT? The graphs of 
the functions f1 and f2 on the interval [a, b] are 
shown in the figure. The graph of each function 
is revolved about the x-axis. Which surface of 
revolution has the greater surface area? Explain.

x
a b

f1

f2

y

54.  
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55.  Think About It The figure shows the graphs of the

  functions y1 = x, y2 =
1
2x3�2, y3 =

1
4x2, and y4 =

1
8x5�2 on the 

interval [0, 4]. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x
1 2 3 4

4

3

2

1

y

 (a) Label the functions.

 (b)  Without calculating, list the functions in order of increasing 
arc length.

 (c)  Verify your answer in part (b) by using the integration 
capabilities of a graphing utility to approximate each arc 
length accurate to three decimal places.

56. Verifying a Formula

 (a)  Given a circular sector with radius L and central angle θ 
(see figure), show that the area of the sector is given by

  S =
1
2

L2θ.

 (b)  By joining the straight-line edges of the sector in part (a), 
a right circular cone is formed (see figure) and the lateral 
surface area of the cone is the same as the area of the 
sector. Show that the area is S = πrL, where r is the radius 
of the base of the cone. (Hint: The arc length of the sector 
equals the circumference of the base of the cone.)

L

θ

  
L

r

 Figure for 56(a) Figure for 56(b)

 (c)  Use the result of part (b) to verify that the formula for 
the lateral surface area of the frustum of a cone with slant 
height L and radii r1 and r2 (see figure) is S = π(r1 + r2)L. 
(Note: This formula was used to develop the integral for 
finding the surface area of a surface of revolution.)

Axis of
revolution

L

r1

r2

57.  Lateral Surface Area of a Cone A right circular cone 
is generated by revolving the region bounded by y = 3x�4, 
y = 3, and x = 0 about the y-axis. Find the lateral surface area 
of the cone.

58.  Lateral Surface Area of a Cone A right circular cone 
is generated by revolving the region bounded by y = hx�r, 
y = h, and x = 0 about the y-axis. Verify that the lateral 
surface area of the cone is S = πr√r2 + h2.

59.  Using a Sphere Find the area of the segment of a sphere 
formed by revolving the graph of y = √9 − x2, 0 ≤ x ≤ 2, 
about the y-axis.

60.  Using a Sphere Find the area of the segment of a sphere 
formed by revolving the graph of y = √r2 − x2, 0 ≤ x ≤ a, 
about the y-axis. Assume that a < r.

61.  Modeling Data The circumference C (in inches) of a vase 
is measured at three-inch intervals starting at its base. The 
 measurements are shown in the table, where y is the vertical 
distance in inches from the base.

y 0 3 6 9 12 15 18

C 50 65.5 70 66 58 51 48

 (a)  Use the data to approximate the volume of the vase by 
summing the volumes of approximating disks.

 (b)  Use the data to approximate the outside surface area 
(excluding the base) of the vase by summing the outside 
surface areas of approximating frustums of right circular 
cones.

 (c)  Use the regression capabilities of a graphing utility to find 
a cubic model for the points (y, r), where r = C�(2π). Use 
the graphing utility to plot the points and graph the model.

 (d)  Use the model in part (c) and the integration capabilities of 
a graphing utility to approximate the volume and outside 
surface area of the vase. Compare the results with your 
answers in parts (a) and (b).

62.  Modeling Data Property bounded by two perpendicular 
roads and a stream is shown in the figure. All distances are 
measured in feet.

x

200

200

400

400

600

600

y

(0, 540)

(50, 390)
(150, 430)

(200,425)
(250, 360)

(300, 275)

(350, 125)

(400, 0)

(100, 390)

 (a)  Use the regression capabilities of a graphing utility to fit a 
fourth-degree polynomial to the path of the stream.

 (b)  Use the model in part (a) to approximate the area of the 
property in acres.

 (c)  Use the integration capabilities of a graphing utility to find 
the length of the stream that bounds the property.
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63.  Volume and Surface Area Let R be the region bounded 
by y = 1�x, the x-axis, x = 1, and x = b, where b > 1. Let D 
be the solid formed when R is revolved about the x-axis.

 (a) Find the volume V of D.

 (b)  Write a definite integral that represents the surface area S 
of D.

 (c) Show that V approaches a finite limit as b→∞.

 (d) Show that S→∞ as b→∞.

64. Think About It Consider the equation

 
x2

9
+

y2

4
= 1.

 (a) Use a graphing utility to graph the equation.

 (b)  Write the definite integral for finding the first-quadrant arc 
length of the graph in part (a).

 (c)  Compare the interval of integration in part (b) and the 
domain of the integrand. Is it possible to evaluate the 
 definite integral? Explain. (You will learn how to evaluate 
this type of integral in Section 8.8.)

Approximating Arc Length or Surface Area In 
Exercises 65–68, write the definite integral for finding the 
indicated arc length or surface area. Then use the integration 
capabilities of a graphing utility to approximate the arc length 
or surface area. (You will learn how to evaluate this type of 
integral in Section 8.8.)

65.  Length of Pursuit A fleeing object leaves the origin and 
moves up the y-axis (see figure). At the same time, a pursuer 
leaves the point (1, 0) and always moves toward the fleeing 
object. The pursuer’s speed is twice that of the fleeing object. 
The equation of the path is modeled by

 y =
1
3
(x3�2 − 3x1�2 + 2).

  How far has the fleeing object traveled when it is caught? 
Show that the pursuer has traveled twice as far.

 

x
1

1

y

y =   (x3/2 − 3x1/2 + 2)1
3

 
y

x

y = x1/2 − x3/21
3

 Figure for 65 Figure for 66

66.  Bulb Design An ornamental light bulb is designed by 
revolving the graph of

 y =
1
3

x1�2 − x3�2, 0 ≤ x ≤ 1
3

  about the x-axis, where x and y are measured in feet (see 
figure). Find the surface area of the bulb and use the result 
to approximate the amount of glass needed to make the bulb. 
Assume that the thickness of the glass is 0.015 inch.

67.  Astroid Find the area of the surface formed by revolving 
the portion in the first quadrant of the graph of x2�3 + y2�3 = 4, 
0 ≤ y ≤ 8, about the y-axis.

y

x

8

4 8−4−8

  

x

y

−1 1 2 3 4 5 6

−1

1

x(4 − x)21
12

y2 =

 Figure for 67 Figure for 68

68. Using a Loop Consider the graph of

 y2 =
1
12

x(4 − x)2

  shown in the figure. Find the area of the surface formed when 
the loop of this graph is revolved about the x-axis.

69.  Suspension Bridge A cable for a suspension bridge has 
the shape of a parabola with equation y = kx2. Let h represent 
the height of the cable from its lowest point to its highest point 
and let 2w represent the total span of the bridge (see figure). 
Show that the length C of the cable is given by

 C = 2∫w

0
 √1 + (4h2

w2 )x2 dx

x

y

h

2w

70.  Suspension Bridge The Humber Bridge, located in the 
United Kingdom and opened in 1981, has a main span of 
about 1400 meters. Each of its towers has a height of about  
155 meters. Use these dimensions, the integral in Exercise 
69, and the integration capabilities of a graphing utility to 
approximate the length of a parabolic cable along the main span.

71.  Arc Length and Area Let C be the curve given by 
f (x) = cosh x for 0 ≤ x ≤ t, where t > 0. Show that the arc 
length of C is equal to the area bounded by C and the x-axis. 
Identify another curve on the interval 0 ≤ x ≤ t with this 
property.

PUTNAM EXAM CHALLENGE
72.  Find the length of the curve y2 = x3 from the origin to the 

point where the tangent makes an angle of 45° with the  
x-axis.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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7.5 Work 485

7.5 Work

 Find the work done by a constant force.
 Find the work done by a variable force.

Work Done by a Constant Force
The concept of work is important to scientists and engineers for determining the energy 
needed to perform various jobs. For instance, it is useful to know the amount of work 
done when a crane lifts a steel girder, when a spring is compressed, when a rocket is 
propelled into the air, or when a truck pulls a load along a highway.

In general, work is done by a force when it moves an object. If the force applied 
to the object is constant, then the definition of work is as follows.

Definition of Work Done by a Constant Force

If an object is moved a distance D in the direction of an applied constant force F, 
then the work W  done by the force is defined as W = FD.

There are four fundamental types of forces—gravitational, electromagnetic, strong 
nuclear, and weak nuclear. A force can be thought of as a push or a pull; a force 
changes the state of rest or state of motion of a body. For gravitational forces on Earth, 
it is common to use units of measure corresponding to the weight of an object.

 Lifting an Object

Determine the work done in lifting a 50-pound object 4 feet.

Solution The magnitude of the required force F is the weight of the object, as shown 
in Figure 7.46. So, the work done in lifting the object 4 feet is

W = FD = 50(4) = 200 foot-pounds. 

In the U.S. measurement system, work is typically expressed in foot-pounds 
(ft-lb), inch-pounds, or foot-tons. In the International System of Units (SI), the basic 
unit of force is the newton—the force required to produce an acceleration of 1 meter per 
second per second on a mass of 1 kilogram. In this system, work is typically expressed 
in newton-meters, also called joules. In another system, the centimeter-gram-second 
(C-G-S) system, the basic unit of force is the dyne—the force required to produce an 
acceleration of 1 centimeter per second per second on a mass of 1 gram. In this system, 
work is typically expressed in dyne-centimeters, also called ergs, or in joules. The table 
below summarizes the units of measure that are commonly used to express the work 
done and lists several conversion factors.

System of 
Measurement Measure of Work Measure of Force Measure of Distance

U.S. foot-pound (ft-lb) pound (lb) foot (ft)

International joule (J) newton (N) meter (m)

C-G-S erg dyne (dyn) centimeter (cm)

Conversions:
1 ft-lb ≈ 1.35582 J = 1.35582 × 107 ergs 1 N = 105 dyn ≈ 0.22481 lb
1 J = 107 ergs ≈ 0.73756 ft-lb 1 lb ≈ 4.44822 N

y

x

4 ft

1

2

3

4
50 lb

50 lb

The work done in lifting a 50-pound 
object 4 feet is 200 foot-pounds.
Figure 7.46
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Work Done by a Variable Force
In Example 1, the force involved was constant. When a variable force is applied to an 
object, calculus is needed to determine the work done, because the amount of force 
changes as the object changes position. For instance, the force required to compress a 
spring increases as the spring is compressed.

Consider an object that is moved along a straight line from x = a to x = b by a 
continuously varying force F(x). Let ∆ be a partition that divides the interval [a, b] into 
n subintervals determined by

a = x0 < x1 < x2 < .  .  . < xn = b

and let ∆xi = xi − xi−1. For each i, choose ci such that

xi−1 ≤ ci ≤ xi.

Then at ci, the force is F(ci). Because F is continuous, you can approximate the work 
done in moving the object through the ith subinterval by the increment

∆Wi = F(ci)∆xi
as shown in Figure 7.47. So, the total work  

F(x)

Δx

The amount of force changes as an 
object changes position (∆x).
Figure 7.47

 
done as the object moves from x = a to x = b 
is approximated by

 W ≈ ∑
n

i=1
 ∆Wi

 = ∑
n

i=1
 F(ci)∆xi.

This approximation appears to become better  
and better as �∆�→0 (n→∞). So, the work  
done is

 W = lim
�∆�→0

 ∑
n

i=1
 F(ci)∆xi

 = ∫b
a

 F(x) dx.

Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force F(x), 
then the work W  done by the force as the object is moved from

x = a to x = b

is given by

 W = lim
�∆�→0

 ∑
n

i=1
 ∆Wi

 = ∫b
a

 F(x) dx.

The remaining examples in this section use some well-known physical laws. The 
 discoveries of many of these laws occurred during the same period in which calculus 
was being developed. In fact, during the seventeenth and eighteenth centuries, there 
was little difference between physicists and mathematicians. One such physicist-
mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing 
the work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and 
Descartes. Her physics text Institutions was widely used for many years.

EMILIE DE BRETEUIL  
(1706–1749) 

A major work by Breteuil was 
the translation of Newton’s 
“Philosophiae Naturalis 
Principia Mathematica” into 
French. Her translation 
and commentary greatly 
contributed to the acceptance 
of Newtonian science in 
Europe.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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The three laws of physics listed below were developed by Robert Hooke (1635–1703), 
Isaac Newton (1642–1727), and Charles Coulomb (1736–1806).

1.  Hooke’s Law: The force F required to compress or stretch a spring (within its 
elastic limits) is proportional to the distance d that the spring is compressed or 
stretched from its original length. That is,

F = kd

   where the constant of proportionality k (the spring constant) depends on the specific 
nature of the spring.

2.  Newton’s Law of Universal Gravitation: The force F of attraction between two 
particles of masses m1 and m2 is proportional to the product of the masses and 
inversely  proportional to the square of the distance d between the two particles. That is,

F = G
m1m2

d2 .

   When m1 and m2 are in kilograms and d in meters, F will be in newtons for a value 
of G = 6.67 × 10−11 cubic meter per kilogram-second squared, where G is the 
gravitational constant.

3.  Coulomb’s Law: The force F between two charges q1 and q2 in a vacuum is 
proportional to the product of the charges and inversely proportional to the square 
of the distance d between the two charges. That is,

F = k
q1q2

d2 .

   When q1 and q2 are given in electrostatic units and d in centimeters, F will be in 
dynes for a value of k = 1.

 Compressing a Spring

See LarsonCalculus.com for an interactive version of this type of example.

A force of 30 newtons compresses a spring 0.3 meter from its natural length of  
1.5 meters. Find the work done in compressing the spring an additional 0.3 meter.

Solution By Hooke’s Law, the force F(x) required to compress the spring x units 
(from its natural length) is F(x) = kx. Because F(0.3) = 30, it follows that

F(0.3) = (k)(0.3)  30 = 0.3k  100 = k.

So, F(x) = 100x, as shown in Figure 7.48. To find the increment of work, assume that 
the force required to compress the spring over a small increment ∆x is nearly constant. 
So, the increment of work is

∆W = (force)(distance increment) = (100x)∆x.

Because the spring is compressed from x = 0.3 to x = 0.6 meter less than its natural 
length, the work required is

W = ∫b
a

 F(x) dx = ∫0.6

0.3
 100x dx = 50x2]

0.6

0.3
= 18 − 4.5 = 13.5 joules.

Note that you do not integrate from x = 0 to x = 0.6 because you were asked to 
 determine the work done in compressing the spring an additional 0.3 meter (not
including the first 0.3 meter). 

x
0 1.5

Natural length: F(0) = 0

0.3

Compressed 0.3 meter: F(0.3) = 30

x
0 1.5

x

Compressed x meters: F(x) = 100x

x
0 1.5

Figure 7.48
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 Moving a Space Module into Orbit

A space module weighs 15 metric tons on the  

Δx

x
x

4000 4800

4000
mi

Not drawn to scale

800
mi

Figure 7.49

 
surface of Earth. How much work is done in  
propelling the module to a height of 800 miles  
above Earth, as shown in Figure 7.49? (Use  
4000 miles as the radius of Earth. Do not consider  
the effect of air resistance or the weight of the  
propellant.)

Solution Because the weight of a body varies 
inversely as the square of its distance from the  
center of Earth, the force F(x) exerted by  
gravity is

F(x) = C
x2

where C is the constant of proportionality. Because the module weighs 15 metric tons 
on the surface of Earth and the radius of Earth is approximately 4000 miles, you have

15 =
C

(4000)2  240,000,000 = C.

So, the increment of work is

∆W = (force)(distance increment) = 240,000,000
x2  ∆x.

Finally, because the module is propelled from x = 4000 to x = 4800 miles, the total 
work done is

 W = ∫b
a

 F(x) dx Formula for work

 = ∫4800

4000
  

240,000,000
x2  dx

 =
−240,000,000

x ]
4800

4000
 Integrate.

 = −50,000 + 60,000

 = 10,000 mile-tons

 ≈ 1.164 × 1011 foot-pounds. 1 mile = 5280 feet; 1 metric ton ≈ 2205 pounds

In SI units, using a conversion factor of 1 foot-pound ≈ 1.35582 joules, the work done is

W ≈ 1.578 × 1011 joules. 

The solutions to Examples 2 and 3 conform to our development of work as the 
 summation of increments in the form

∆W = (force)(distance increment) = (F)(∆x).

Another way to formulate the increment of work is

∆W = (force increment)(distance) = (∆F)(x).

This second interpretation of ∆W  is useful in problems involving the movement of 
nonrigid substances such as fluids and chains.

Moving a Space Module into Orbit

A space module weighs 15 metric tons on the 
surface of Earth. How much work is done in 
propelling the module to a height of 800 miles 
above Earth, as shown in Figure 7.49? (Use 
4000 miles as the radius of Earth. Do not consider 
the effect of air resistance or the weight of the 
propellant.)

Solution Because the weight of a body varies
inversely as the square of its distance from the 
center of Earth, the force 
gravity is

F(x) = C
x2

where C is the constant of proportionality. Because the module weighs 15 metric tons NASA’s Space Launch System, 
or SLS, is a launch vehicle for 
exploration beyond Earth’s 
orbit. NASA plans to use the 
SLS on missions to an asteroid 
and eventually to Mars. 
(Source: NASA)

NASA
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 Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil  

x

16 − y

18

4
8

−8

x

Δyy

16

y

Figure 7.50

that weighs 50 pounds per cubic foot. Find the  
work required to pump all of the oil out through 
a hole in the top of the tank.

Solution Consider the oil to be subdivided  
into disks of thickness ∆y and radius x, as shown  
in Figure 7.50. Because the increment of force  
for each disk is given by its weight, you have

 ∆F = weight

 = (50 pounds
cubic root)(volume)

 = 50(πx2∆y) pounds.

For a circle of radius 8 and center at (0, 8),  
you have

 x2 + (y − 8)2 = 82

 x2 = 16y − y2

and you can write the force increment as

 ∆F = 50(πx2∆y)
 = 50π(16y − y2)∆y.

In Figure 7.50, note that a disk y feet from the bottom of the tank must be moved a 
distance of (16 − y) feet. So, the increment of work is

 ∆W = (∆F)(16 − y)
 = [50π(16y − y2)∆y](16 − y)
 = 50π(256y − 32y2 + y3)∆y.

Because the tank is half full, y ranges from 0 to 8 feet, and the work required to empty 
the tank is

 W = ∫8

0
 50π(256y − 32y2 + y3) dy

 = 50π[128y2 −
32
3
y3 +

y4

4 ]
8

0

 = 50π(11,264
3 )

 ≈ 589,782 foot-pounds. 

To estimate the reasonableness of the result in Example 4, consider that the weight 
of the oil in the tank is

(12)(volume)(density) = 1
2 (

4
3
π83)(50) ≈ 53,616.5 pounds.

Lifting the entire half-tank of oil 8 feet would involve work of

 W = FD Formula for work done by a constant force

 ≈ (53,616.5)(8)
 = 428,932 foot-pounds.

Because the oil is actually lifted between 8 and 16 feet, it seems reasonable that the 
work done is about 589,782 foot-pounds.
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 Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much 
work is required to raise one end of the chain to a height of 20 feet so that it is fully 
extended, as shown in Figure 7.51?

Solution Imagine that the chain is divided into small sections, each of length ∆y. 
Then the weight of each section is the increment of force

∆F = (weight) = (5 pounds
foot )(length) = 5 ∆y.

Because a typical section (initially on the ground) is raised to a height of y, the 
increment of work is

∆W = (force increment)(distance) = (5 ∆y)y = 5y ∆y.

Because y ranges from 0 to 20 feet, the total work required to raise the chain is

W = ∫20

0
 5y dy =

5y2

2 ]
20

0
=

5(400)
2

= 1000 foot-pounds. 

In the next example, you will consider a piston of radius r in a cylindrical casing, 
as shown in Figure 7.52. As the gas in the cylinder expands, the piston moves, and 
work is done. If p represents the pressure of the gas (in pounds per square foot) against 
the piston head and V represents the volume of the gas (in cubic feet), then the work 
increment involved in moving the piston ∆x feet is

∆W = (force)(distance increment) = F ∆x = p(πr2)∆x = p ∆V.

So, as the volume of the gas expands from V0 to V1, the work done in moving the   
piston is

W = ∫V1

V0

 p dV.

Assuming the pressure of the gas to be inversely proportional to its volume, you have 
p = k�V and the integral for work becomes

W = ∫V1

V0

 
k
V

 dV.

 Work Done by an Expanding Gas

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds 
per square foot expands to a volume of 2 cubic feet. Find the work done by the gas. 
(Assume that the pressure is inversely proportional to the volume.)

Solution Because p = k�V and p = 500 when V = 1, you have k = 500. So, the 
work done by the gas is

 W = ∫V1

V0

 
k
V

 dV

 = ∫2

1
 
500
V

 dV

 = 500 ln∣V∣]
2

1

 ≈ 346.6 foot-pounds. 

y

Work required to raise one end of the 
chain
Figure 7.51

x

r
Gas

Work done by expanding gas
Figure 7.52
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7.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Work How do you know when work is done by a force?

2.  Comparing Methods Describe the difference 
between finding the work done by a constant force and 
finding the work done by a variable force.

3.  Hooke’s Law Describe Hooke’s Law in your own 
words.

4.  Work What are two ways to write the increment of 
work?

 Constant Force In Exercises 5–8, determine 
the work done by the constant force.

 5. A 1200-pound steel beam is lifted 40 feet.

 6. An electric hoist lifts a 3000-pound car 6 feet.

 7.  A force of 112 newtons is required to slide a cement block  
8 meters in a construction project.

 8.  The locomotive of a freight train pulls its cars with a constant 
force of 7 tons for a distance of one-quarter mile.

 Hooke’s Law In Exercises 9–14, use Hooke’s 
Law to determine the work done by the variable 
force in the spring problem.

 9.  A force of 5 pounds compresses a 15-inch spring a total of  
3 inches. How much work is done in compressing the spring  
7 inches?

10.  A force of 250 newtons stretches a spring 30 centimeters. How 
much work is done in stretching the spring from 20 centimeters 
to 50 centimeters?

11.  A force of 20 pounds stretches a spring 9 inches in an exercise 
machine. Find the work done in stretching the spring 1 foot 
from its natural position.

12.  An overhead garage door has two springs, one on each side 
of the door. A force of 15 pounds is required to stretch each 
spring 1 foot. Because of the pulley system, the springs stretch 
only one-half the distance the door travels. The door moves a 
total of 8 feet, and the springs are at their natural length when 
the door is open. Find the work done by the pair of springs.

13.  Eighteen foot-pounds of work is required to stretch a spring 
4 inches from its natural length. Find the work required to 
stretch the spring an additional 3 inches.

14.  Six joules of work is required to stretch a spring 0.5 meter 
from its natural length. Find the work required to stretch the 
spring an additional 0.25 meter.

15.  Propulsion Neglecting air resistance and the weight of 
the propellant, determine the work done in propelling a  
five-metric-ton satellite to a height of (a) 100 miles above 
Earth and (b) 300 miles above Earth.

16.  Propulsion Use the information in Exercise 15 to write the 
work W of the propulsion system as a function of the height h 
of the satellite above Earth. Find the limit (if it exists) of W as 
h approaches infinity.

17.  Propulsion Neglecting air resistance and the weight of  
the propellant, determine the work done in propelling a 
10-metric-ton satellite to a height of (a) 11,000 miles above 
Earth and (b) 22,000 miles above Earth.

18.  Propulsion A lunar module weighs 12 metric tons on the 
surface of Earth. How much work is done in propelling the 
module from the surface of the moon to a height of 50 miles? 
Consider the radius of the moon to be 1100 miles and its force 
of gravity to be one-sixth that of Earth.

19.  Pumping Water A rectangular tank with a base 4 feet by  
5 feet and a height of 4 feet is full of water (see figure). The 
water weighs 62.4 pounds per cubic foot. How much work is 
done in pumping water out over the top edge in order to empty 
(a) half of the tank and (b) all of the tank?

5 ft

4 ft

4 ft

20.  Think About It Explain why the answer in part (b) of 
Exercise 19 is not twice the answer in part (a).

21.  Pumping Water A cylindrical water tank 4 meters high 
with a radius of 2 meters is buried so that the top of the tank 
is 1 meter below ground level (see figure). How much work is 
done in pumping a full tank of water up to ground level? The 
water weighs 9800 newtons per cubic meter.

 

x
2

5

−2

5 − y

Ground level

Δy

y  

Δy

10 m

x

y

y

 Figure for 21 Figure for 22

22.  Pumping Water Suppose the tank in Exercise 21 is 
located on a tower so that the bottom of the tank is 10 meters 
above a stream (see figure). How much work is done in filling 
the tank half full of water through a hole in the bottom, using 
water from the stream?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



492 Chapter 7 Applications of Integration

23.  Pumping Water An open tank has the shape of a right 
circular cone (see figure). The tank is 8 feet across the top and 
6 feet high. How much work is done in emptying the tank by 
pumping the water over the top edge?

x

6 −  y

Δy

2

6

−2−4

4

y

24.  Pumping Water Water is pumped in through the bottom of 
the tank in Exercise 23. How much work is done to fill the tank

 (a) to a depth of 2 feet?

 (b) from a depth of 4 feet to a depth of 6 feet?

25.  Pumping Water A hemispherical tank of radius 6 feet 
is  positioned so that its base is circular. How much work is 
required to fill the tank with water through a hole in the base 
when the water source is at the base?

26.  Pumping Diesel Fuel The fuel tank on a truck has 
trapezoidal cross sections with the dimensions (in feet) shown 
in the figure. Assume that the engine is approximately 3 feet 
above the top of the fuel tank and that diesel fuel weighs 
approximately 53.1 pounds per cubic foot. Find the work done 
by the fuel pump in raising a full tank of fuel to the level of the 
engine.

4

3

2

1

x3
2

1

3

3 2

1

y

Pumping Gasoline In Exercises 27 and 28, find the work 
done in pumping gasoline that weighs 42 pounds per cubic foot. 

27.  A cylindrical gasoline tank 3 feet in diameter and 4 feet long is 
carried on the back of a truck and is used to fuel tractors. The 
axis of the tank is horizontal. The opening on the tractor tank 
is 5 feet above the top of the tank in the truck. Find the work 
done in pumping the entire contents of the fuel tank into the 
tractor.

28.  The top of a cylindrical gasoline storage tank at a service 
station is 4 feet below ground level. The axis of the tank 
is horizontal and its diameter and length are 5 feet and 
12 feet, respectively. Find the work done in pumping the entire 
contents of the full tank to a height of 3 feet above ground level.

 Winding a Chain In Exercises 29–32, consider 
a 20-foot chain that weighs 3 pounds per foot 
hanging from a winch 20 feet above ground level. 
Find the work done by the winch in  winding up the 
specified amount of chain.

29. Wind up the entire chain.

30. Wind up one-third of the chain.

31.  Run the winch until the bottom of the chain is at the 10-foot 
level.

32. Wind up the entire chain with a 500-pound load attached to it.

Lifting a Chain In Exercises 33 and 34, consider a 15-foot 
hanging chain that weighs 3 pounds per foot. Find the work 
done in lifting the chain vertically to the indicated position.

33.  Take the bottom of the chain and raise it to the 15-foot level, 
leaving the chain doubled and still hanging vertically (see 
figure).

x

y

y

15 − 2y

15

12

9

6

3

y

34.  Repeat Exercise 33 raising the bottom of the chain to the  
12-foot level.

EXPLORING CONCEPTS
35.  Think About It Does it take any work to push an 

object that does not move? Explain.

36.  Think About It In Example 1, 200 foot-pounds 
of work was needed to lift the 50-pound object 4 feet 
vertically off the ground. Does it take an additional  
200 foot-pounds of work to lift the object another 4 feet 
vertically? Explain your reasoning.

37.  Newton’s Law of Universal Gravitation Consider 
two particles of masses m1 and m2. The position of the first 
particle is fixed, and the distance between the particles is a
units. Using Newton’s Law of Universal Gravitation, find the 
work needed to move the second particle so that the distance 
between the particles increases to b units.

38.  Conjecture Use Newton’s Law of Universal Gravitation 
to make a conjecture about what happens to the force of 
attraction between two particles when the distance between 
them is multiplied by a positive number n.

39.  Electric Force Two electrons repel each other with a force 
that varies inversely as the square of the distance between 
them. One electron is fixed at the point (2, 4). Find the work 
done in moving the second electron from (−2, 4) to (1, 4).
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40.  HOW DO YOU SEE IT? The graphs show 
the force Fi (in pounds) required to move an 
object 9 feet along the x-axis. Order the force 
functions from the one that yields the least 
work to the one that yields the most work 
without doing any calculations. Explain your 
reasoning.

(a) 

x
2 4 6 8

8

6

4

2

F1

F (b) 

x
2 4 6 8

16

20

12

8

4

F2

F

(c) 

F3 = 1
27
x2

x

F

2 4 6 8

1

2

3

4

(d) 

x
2 4 6 8

4

3

2

1

F4 =    x

F

40.  

41.  Ordering Forces Verify your answer to Exercise 40 by 
calculating the work for each force function.

42.  Comparing Work Order the following from least to 
greatest in terms of total work done.

 (a) A 60-pound box of books is lifted 3 feet.

 (b)  An 80-pound box of books is lifted 1 foot, and then a 
40-pound box of books is lifted 1 foot.

 (c)  A 60-pound box is held 3 feet in the air for 3 minutes.

 Boyle’s Law In Exercises 43 and 44, find the 
work done by the gas for the given volume and 
pressure. Assume that the pressure is inversely 
proportional to the volume. (See Example 6.)

43.  A quantity of gas with an initial volume of 2 cubic feet and a 
pressure of 1000 pounds per square foot expands to a volume 
of 3 cubic feet.

44.  A quantity of gas with an initial volume of 1 cubic foot and a 
pressure of 2500 pounds per square foot expands to a volume 
of 3 cubic feet.

Hydraulic Press In Exercises 45–48, use the integration 
 capabilities of a graphing utility to approximate the work 
done by a press in a manufacturing process. A model for the 
variable force F (in pounds) and the distance x (in feet) the 
press moves is given.

 Force Interval

45. F(x) = 1000[1.8 − ln(x + 1)] 0 ≤ x ≤ 5

46. F(x) = ex
2 − 1
100

 0 ≤ x ≤ 4

Force Interval

47. F(x) = 100x√125 − x3 0 ≤ x ≤ 5

48. F(x) = 1000 sinh x 0 ≤ x ≤ 2

49.  Modeling Data The hydraulic cylinder on a woodsplitter 
has a 4-inch bore (diameter) and a stroke of 2 feet. The 
hydraulic pump creates a maximum pressure of 2000 pounds 
per square inch. Therefore, the maximum force created by the 
cylinder is 2000(π ∙ 22) = 8000π  pounds.

 (a)  Find the work done through one extension of the cylinder, 
given that the maximum force is required.

 (b)  The force exerted in splitting a piece of wood is variable. 
Measurements of the force obtained in splitting a piece 
of wood are shown in the table. The variable x measures 
the extension of the cylinder in feet, and F is the force 
in pounds. Use the regression capabilities of a graphing 
utility to find a fourth-degree polynomial model for the 
data. Plot the data and graph the model.

x 0 1
3

2
3 1 4

3
5
3 2

F(x) 0 20,000 22,000 15,000 10,000 5000 0

 (c)  Use the model in part (b) to approximate the extension of 
the cylinder when the force is maximum.

 (d)  Use the model in part (b) to approximate the work done in 
splitting the piece of wood.

The Pyramid of Khufu (also known as the Great Pyramid of Giza) 
is the oldest of the Seven Wonders of the Ancient World. It is also 
the tallest of the three Giza pyramids in Egypt. The pyramid took  
20 years to construct, ending around 2560 b.c. When it was built, it 
had a height of 481 feet and a square base with side lengths of 756 
feet. Assume that the stone used to build it weighed 150 pounds 
per cubic foot.

(a)  How much work was required to build the pyramid? Consider 
only vertical distance.

(b)  Suppose that the pyramid builders worked 12 hours each day 
for 330 days a year for 20 years and that each worker did 
200 foot-pounds of work per hour. Approximately how many 
workers were needed to build the pyramid?

Pyramid of Khufu

vikau/Shutterstock.com
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7.6 Moments, Centers of Mass, and Centroids

 Understand the definition of mass.
 Find the center of mass in a one-dimensional system.
 Find the center of mass in a two-dimensional system.
 Find the center of mass of a planar lamina.
 Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass
In this section, you will study several important applications of integration that are 
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is 
independent of the particular gravitational system in which the body is located. However, 
because so many applications involving mass occur on Earth’s surface, an object’s mass 
is sometimes equated with its weight. This is not technically correct. Weight is a type 
of force and as such is dependent on gravity. Force and mass are related by the equation

Force = (mass)(acceleration).

The table below lists some commonly used measures of mass and force, together with 
their conversion factors.

System of 
Measurement

Measure  
of Mass Measure of Force

U.S. Slug Pound = (slug)(ft�sec2)

International Kilogram Newton = (kilogram)(m�sec2)

C-G-S Gram Dyne = (gram)(cm�sec2)

Conversions:

1 pound ≈ 4.44822 newtons 1 slug ≈ 14.59390 kilogram

1 newton ≈ 0.22481 pound 1 kilogram ≈ 0.0685218 slug

1 dyne ≈ 0.0000022481 pound 1 gram ≈ 0.0000685218 slug

1 dyne = 0.00001 newton 1 foot ≈ 0.30480 meter

 Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Use 32 feet per second per second as the acceleration due to gravity.

 Mass =
force

acceleration
 Force = (mass)(acceleration)

 =
1 pound

32 feet per second per second

 = 0.03125 
pound

foot per second per second

 = 0.03125 slug

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass. 
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Center of Mass in a One-Dimensional System
You will now consider two types of moments of a mass—the moment about a point 
and the moment about a line. To define these two moments, consider an idealized 
 situation in which a mass m is concentrated at a point. If x is the distance between this 
point mass and another point P, then the moment of m about the point P is

Moment = mx

and x is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in 

Figure 7.53. A child of mass 20 kilograms sits 2 meters to the left of fulcrum P, and 
an older child of mass 30 kilograms sits 2 meters to the right of P. From experience, 
you know that the seesaw will begin to rotate clockwise, moving the larger child down. 
This rotation occurs because the moment produced by the child on the left is less than 
the moment produced by the child on the right.

 Left moment = (20)(2) = 40 kilogram-meters

 Right moment = (30)(2) = 60 kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger child 
moved to a position 43 meters from the fulcrum, then the seesaw would balance, because 
each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin 
 corresponds to the fulcrum, as shown in Figure 7.54. Several point masses are located 
on the x-axis. The measure of the tendency of this system to rotate about the origin is 
the moment about the origin, and it is defined as the sum of the n products mixi. The 
moment about the origin is denoted by M0 and can be written as

M0 = m1x1 + m2x2 + .  .  . + mnxn.

If M0 is 0, then the system is said to be in equilibrium.

m1
x

x1

m2

x2

mn − 1

xn − 1

mn

xn

m3

x30

 If m1x1 + m2x2 + .  .  . + mnxn = 0, then the system is in equilibrium.
 Figure 7.54

For a system that is not in equilibrium, the center of mass is defined as the point 
x at which the fulcrum could be relocated to attain equilibrium. If the system were 
translated x units, then each coordinate xi would become

(xi − x)

and because the moment of the translated system is 0, you have

∑
n

i=1
 mi(xi − x) = ∑

n

i=1
 mixi − ∑

n

i=1
 mix = 0.

Solving for x produces

x =
∑
n

i=1
 mixi

∑
n

i=1
 mi

=
moment of system about origin

total mass of system
.

When m1x1 + m2x2 + .  .  . + mnxn = 0, the system is in equilibrium.

2 m2 m

20 kg 30 kg

P

The seesaw will balance when the left 
and the right moments are equal.
Figure 7.53
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Moment and Center of Mass: One-Dimensional System

Let the point masses m1, m2, .  .  . , mn be located at x1, x2, .  .  . , xn.

1. The moment about the origin is 

M0 = m1x1 + m2x2 + .  .  . + mnxn.

2. The center of mass is

x =
M0

m

 where m = m1 + m2 + .  .  . + mn is the total mass of the system.

 The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

0 1 2 3 4 5 6 7 8 9−5 −4 −3 −2 −1

x1010 515

m4m3m2m1

 Figure 7.55

Solution The moment about the origin is

 M0 = m1x1 + m2x2 + m3x3 + m4x4

 = 10(−5) + 15(0) + 5(4) + 10(7)
 = −50 + 0 + 20 + 70

 = 40. Moment about origin

Because the total mass of the system is 

m = 10 + 15 + 5 + 10 = 40 Total mass

the center of mass is

x =
M0

m
=

40
40

= 1. Center of mass

Note that the point masses will be in equilibrium when the fulcrum is located at x = 1. 
 

Rather than defining the moment of a mass, you could define the moment of a 
force. In this context, the center of mass is called the center of gravity. Consider a 
 system of point masses m1, m2, .  .  . , mn that is located at x1, x2, .  .  . , xn. Then, because

 force = (mass)(acceleration)

the total force of the system is

F = m1a + m2a + .  .  . + mna = ma.

The torque (moment) about the origin is

T0 = (m1a)x1 + (m2a)x2 + .  .  . + (mna)xn = M0a

and the center of gravity is

T0

F
=

M0a

ma
=

M0

m
= x.

So, the center of gravity and the center of mass have the same location.
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Center of Mass in a Two-Dimensional System
You can extend the concept of moment to two dimensions by considering a system of 
masses located in the xy-plane at the points (x1, y1), (x2, y2), .  .  . , (xn, yn), as shown 
in Figure 7.56. Rather than defining a single moment (with respect to the origin), two 
moments are defined—one with respect to the x-axis and one with respect to the y-axis.

Moments and Center of Mass: Two-Dimensional System

Let the point masses m1, m2, .  .  . , mn be located at (x1, y1), (x2, y2), .  .  . ,
(xn, yn).

1. The moment about the y-axis is

My = m1x1 + m2x2 + .  .  . + mnxn.

2. The moment about the x-axis is

Mx = m1y1 + m2y2 + .  .  . + mnyn.

3. The center of mass (x, y) (or center of gravity) is

x =
My

m
 and y =

Mx

m

 where

m = m1 + m2 + .  .  . + mn

 is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizontal 
or vertical line. In general, the moment about a line is the sum of the product of the 
 masses and the directed distances from the points to the line.

 Moment = m1(y1 − b) + m2(y2 − b) + .  .  . + mn(yn − b) Horizontal line y = b

 Moment = m1(x1 − a) + m2(x2 − a) + .  .  . + mn(xn − a) Vertical line x = a

 The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses m1 = 6, m2 = 3, m3 = 2, and 
m4 = 9, located at

(3, −2), (0, 0), (−5, 3), and (4, 2)

as shown in Figure 7.57.

Solution

 M = 6  + 3  + 2  + 9  = 20 Mass

 My = 6(3)  + 3(0) + 2(−5) + 9(4) = 44 Moment about y-axis

 Mx = 6(−2) + 3(0) + 2(3)  + 9(2) = 12 Moment about x-axis

So,

x =
My

m
=

44
20

=
11
5

and

y =
Mx

m
=

12
20

=
3
5

.

The center of mass is (11
5 , 35). 

m2

mn

m1

x

(x2, y2)

(x1, y1)

(xn, yn)

y

In a two-dimensional system, there is  
a moment about the y-axis My and a 
moment about the x-axis Mx.
Figure 7.56

m2 = 3

m1 = 6

m3 = 2
m4 = 9

4321

3

2

1

−1−2−3−4−5

−3

−2

−1

x
(0, 0)

(−5, 3)

(4, 2)

(3, −2)

y

Figure 7.57
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Center of Mass of a Planar Lamina
So far in this section, you have assumed the total mass of a system to be distributed 
at discrete points in a plane or on a line. Now consider a thin, flat plate of material 
of constant density called a planar lamina (see Figure 7.58). Density is a measure 
of mass per unit of volume, such as grams per cubic centimeter. For planar laminas, 
however, density is considered to be a measure of mass per unit of area. Density is 
denoted by ρ, the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina  

x
a xi b

(xi, g(xi))

(xi, f(xi))

(xi, yi)yi

f

g

Δx

y

Planar lamina of uniform density ρ
Figure 7.59

 
of uniform density ρ, bounded by the graphs of 
y = f (x), y = g(x), and a ≤ x ≤ b, as shown  
in Figure 7.59. The mass of this region is

 m = (density)(area)

 = ρ∫b

a

 [ f (x) − g(x)] dx

 = ρA

where A is the area of the region. To find the  
center of mass of this lamina, partition the  
interval [a, b] into n subintervals of equal width  
∆x. Let xi be the center of the ith subinterval.  
You can approximate the portion of the lamina  
lying in the ith subinterval by a rectangle whose  
height is h = f (xi) − g(xi). Because the density  
of the rectangle is ρ, its mass is

mi = (density)(area) = ρ[ f (xi) − g(xi)] ∆x.

 Density Height Width

Now, considering this mass to be located at the center (xi, yi) of the rectangle, the directed 
distance from the x-axis to (xi, yi) is yi = [ f (xi) + g(xi)]�2. So, the moment of mi about 
the x-axis is

 Moment = (mass)(distance)
 = miyi

 = ρ[ f (xi) − g(xi)]∆x[f (xi) + g(xi)
2 ].

Summing the moments and taking the limit as n→∞ suggest the definitions below.

Moments and Center of Mass of a Planar Lamina

Let f  and g be continuous functions such that f (x) ≥ g(x) on [a, b], and  
consider the planar lamina of uniform density ρ bounded by the graphs of 
y = f (x), y = g(x), and a ≤ x ≤ b.

1. The moments about the x- and y-axes are

 Mx = ρ∫b

a
 [f (x) + g(x)

2 ][ f (x) − g(x)] dx

 My = ρ∫b

a

 x[ f (x) − g(x)] dx.

2. The center of mass (x, y) is given by x =
My

m
 and y =

Mx

m
, where

 m = ρ∫b
a  [ f (x) − g(x)] dx is the mass of the lamina.

You can think of the center of mass 
(x, y) of a lamina as its balancing point. 
For a circular lamina, the center of 
mass is the center of the circle. For a 
rectangular lamina, the center of mass 
is the center of the rectangle.
Figure 7.58

(x, y) (x, y)
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 The Center of Mass of a Planar Lamina

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density ρ bounded by the graph of 
f (x) = 4 − x2 and the x-axis.

Solution Because the center of mass lies on the axis of symmetry, you know that 
x = 0. Moreover, the mass of the lamina is

 m = ρ∫2

−2
 (4 − x2) dx

 = ρ[4x −
x3

3 ]
2

−2

 =
32ρ

3
.

To find the moment about the x-axis, place a  

x
−2 −1 1 2

1

2

3
Δx

f(x)

f(x)
2

f(x) = 4 − x2

y  
representative rectangle in the region, as shown  
in the figure at the right. The distance from  
the x-axis to the center of this rectangle is

yi =
f (x)

2
=

4 − x2

2
.

Because the mass of the representative 
rectangle is

ρ f (x) ∆x = ρ(4 − x2) ∆x

you have

 Mx = ρ∫2

−2
 
4 − x2

2
(4 − x2) dx

 =
ρ
2∫

2

−2
 (16 − 8x2 + x4) dx

 =
ρ
2[16x −

8x3

3
+

x5

5 ]
2

−2

 =
256ρ

15

and y is

y =
Mx

m
=

256ρ�15
32ρ�3

=
8
5

.

So, the center of mass (the balancing point) of the lamina is (0, 85), as shown in 
Figure 7.60. 

The density ρ in Example 4 is a common factor of both the moments and the mass, 
and as such divides out of the quotients representing the coordinates of the center of 
mass. So, the center of mass of a lamina of uniform density depends only on the shape 
of the lamina and not on its density. For this reason, the point

(x, y) Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the 
region. In other words, to find the centroid of a region in the plane, you can assume that 
the region has a constant density of ρ = 1 and therefore the mass of the region is equal 
to the area A, or m = A. Then you can calculate the corresponding center of mass, as 
shown in the next two examples.

x

y

y = 4 − x2

Center of mass:

0, 8
5

1

2

4

−1

−2

1 2 3

))

The center of mass is the balancing 
point.
Figure 7.60
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500 Chapter 7 Applications of Integration

 The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of f (x) = 4 − x2 and g(x) = x + 2.

Solution The two graphs intersect at the points (−2, 0) and (1, 3), as shown in 
Figure 7.61. So, the area of the region is

A = ∫1

−2
 [ f (x) − g(x)] dx = ∫1

−2
 (2 − x − x2) dx =

9
2

.

The centroid (x, y) of the region has the following coordinates.

 x =
1
A∫

1

−2
 x[(4 − x2) − (x + 2)] dx

 =
2
9∫

1

−2
 (−x3 − x2 + 2x) dx

 =
2
9[−

x4

4
−

x3

3
+ x2]

1

−2

 = −
1
2

 y =
1
A∫

1

−2
 [(4 − x2) + (x + 2)

2 ][(4 − x2) − (x + 2)] dx

 =
2
9 (

1
2)∫1

−2
 (−x2 + x + 6)(−x2 − x + 2) dx

 =
1
9∫

1

−2
 (x4 − 9x2 − 4x + 12) dx

 =
1
9[

x5

5
− 3x3 − 2x2 + 12x]

1

−2

 =
12
5

So, the centroid of the region is (x, y) = (−1
2, 12

5 ). 

For simple plane regions, you may be able to find the centroids without resorting 
to integration.

 The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

Solution By superimposing a coordinate system on the region, as shown in Figure 
7.62(b), you can locate the centroids of the three rectangles at

(12, 
3
2), (

5
2

, 
1
2), and (5, 1).

Using these three points, you can find the centroid of the region.

 A = area of region = 3 + 3 + 4 = 10

 x =
(1�2)(3) + (5�2)(3) + (5)(4)

10
=

29
10

= 2.9

 y =
(3�2)(3) + (1�2)(3) + (1)(4)

10
=

10
10

= 1

So, the centroid of the region is (2.9, 1). Notice that (2.9, 1) is not the “average” of 
(1

2, 32), (5
2, 12), and (5, 1). 

x
−1

1

1

(1, 3)

(−2, 0)

f(x) + g(x)
2

f(x) − g(x)

x

g(x) = x + 2
y

f(x) = 4 − x2

Figure 7.61

1

2

2

23

1

(a) Original region

x
1

1

2

2

3

3

4 5 6

(5, 1)

y

3
2

1
2 )) , 

1
2

5
2 )) , 

(b) The centroids of the three rectangles

Figure 7.62
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Theorem of Pappus
The final topic in this section is a useful theorem credited to Pappus of Alexandria  
(ca. 300 a.d.), a Greek mathematician whose eight-volume Mathematical Collection is 
a record of much of classical Greek mathematics. You are asked to prove this theorem 
in Section 14.4.

THEOREM 7.1 The Theorem of Pappus

Let R be a region in a plane and let L be a line in the same plane such that L 
does not intersect the interior of R, as shown in Figure 7.63. If r is the distance 
between the centroid of R and the line, then the volume V of the solid of 
revolution formed by revolving R about the line is

V = 2πrA

where A is the area of R. (Note that 2πr is the distance traveled by the centroid 
as the region is revolved about the line.)

The Theorem of Pappus can be used to find the volume of a torus, as shown in 
the next example. Recall that a torus is a doughnut-shaped solid formed by revolving 
a circular region about a line that lies in the same plane as the circle (but does not 
intersect the circle).

 Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving 
the circular region bounded by 

(x − 2)2 + y2 = 1

about the y-axis, as shown in Figure 7.64(b).

Torus

 

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)r = 2

(x − 2)2 + y2 = 1

y

 (a) (b)

 Figure 7.64

Solution In Figure 7.64(b), you can see that the centroid of the circular region is  
(2, 0). So, the distance between the centroid and the axis of revolution is

r = 2.

Because the area of the circular region is A = π, the volume of the torus is

 V = 2πrA

 = 2π(2)(π)
 = 4π2 

 ≈ 39.5. 

R

r

Centroid of R

L

The volume V is 2πrA, where A is the 
area of region R.
Figure 7.63

Exploration
Use the shell method to show 
that the volume of the torus 
in Example 7 is

V = ∫3

1
 4πx√1 − (x − 2)2 dx.

Evaluate this integral using 
a graphing utility. Does your 
answer agree with the one in 
Example 7?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



502 Chapter 7 Applications of Integration

7.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Mass and Weight How are mass and weight related?

2.  Moment The equation for the moment 
about the origin of a one-dimensional system is 
M0 = 5(−3) + 2(−1) + 1(1) + 5(2) + 1(6). Is the 
system in equilibrium? Explain.

3.  Planar Lamina What is a planar lamina? Describe 
what the center of mass of a lamina represents.

4.  Theorem of Pappus Explain why the Theorem of 
Pappus is useful.

 Center of Mass of a Linear System In 
Exercises 5–8, find the center of mass of the given 
system of point masses lying on the x-axis.

 5. m1 = 7, m2 = 3, m3 = 5

x1 = −5, x2 = 0, x3 = 3

6. m1 = 0.1, m2 = 0.2, m3 = 0.2, m4 = 0.5

x1 = 1, x2 = 2, x3 = 3, x4 = 4

7. m1 = 1, m2 = 3, m3 = 2, m4 = 9, m5 = 5

x1 = 6, x2 = 10, x3 = 3, x4 = 2, x5 = 4

8. m1 = 8, m2 = 5, m3 = 5, m4 = 12, m5 = 2

x1 = −2, x2 = 6, x3 = 0, x4 = 3, x5 = −5

Equilibrium of a Linear System In Exercises 9 and 10, 
consider a beam of length L with a fulcrum x feet from one end 
(see figure). There are objects with weights W1 and W2 placed 
on opposite ends of the beam, where W1 < W2. Find x such that 
the system is in equilibrium.

x L − x

W1

W2

 9.  Two children weighing 48 pounds and 72 pounds are going to 
play on a seesaw that is 10 feet long.

10.  In order to move a 600-pound rock, a person weighing  
200 pounds wants to balance it on a beam that is 5 feet long.

 Center of Mass of a Two-Dimensional 
System In Exercises 11–14, find the center of 
mass of the given system of point masses.

11. 
mi 5 1 3

(xi, yi) (2, 2) (−3, 1) (1, −4)

12. 
mi 8 1 4

(xi, yi) (−3, −1) (0, 0) (−1, 2)

13. mi 12 6 4.5 15

(xi, yi) (2, 3) (−1, 5) (6, 8) (2, −2)

14. 
mi 3 4 2 1 6

(xi, yi) (−2, −3) (5, 5) (7, 1) (0, 0) (−3, 0)

 Center of Mass of a Planar Lamina In 
Exercises 15–28, find Mx, My, and (x, y) for the 
lamina of uniform density ρ bounded by the 
graphs of the equations.

15. y = 1
2x, y = 0, x = 2 16. y = 6 − x, y = 0, x = 0

17. y = √x, y = 0, x = 4 18. y = 1
3x2, y = 0, x = 2

19. y = x2, y = x3 20. y = √x, y = 1
2x

21. y = −x2 + 4x + 2, y = x + 2

22. y = √x + 1, y = 1
3x + 1

23. y = x2�3, y = 0, x = 8 24. y = x2�3, y = 4

25. x = 4 − y2, x = 0 26. x = 3y − y2, x = 0

27. x = −y, x = 2y − y2 28. x = y + 2, x = y2

Approximating a Centroid Using Technology In 
Exercises 29 and 30, use a graphing utility to graph the region 
bounded by the graphs of the equations. Use the integration 
capabilities of the graphing utility to approximate the centroid 
of the region.

29. y = 5 3√400 − x2, y = 0

30. y =
8

x2 + 4
, y = 0, x = −2, x = 2

 Finding the Center of Mass In Exercises 
31–34, introduce an appropriate coordinate 
system and find the center of mass of the planar 
lamina. (The answer depends on the position of the 
coordinate system.)

31. 

2

2 1

 32. 

2

1
2

2 1

1

33. 

2

4 4

1

1

2
1

1

5

3 3

7  34. 

6

2

7
8

7
8
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35.  Finding the Center of Mass Find the center of mass of 
the lamina in Exercise 31 when the  circular portion of the lamina 
has twice the density of the square portion of the lamina.

36.  Finding the Center of Mass Find the center of mass of 
the lamina in Exercise 31 when the square portion of the lamina 
has twice the density of the  circular portion of the lamina.

 Finding Volume by the Theorem of 
Pappus In Exercises 37–40, use the Theorem of 
Pappus to find the volume of the solid of revolution.

37. The torus formed by revolving the circular region bounded by

 (x − 5)2 + y2 = 16

 about the y-axis

38. The torus formed by revolving the circular region bounded by

 x2 + (y − 3)2 = 4

 about the x-axis

39.  The solid formed by revolving the region bounded by the 
graphs of y = x, y = 4, and x = 0 about the x-axis

40.  The solid formed by revolving the region bounded by the 
graphs of y = 2√x − 2, y = 0, and x = 6 about the y-axis

EXPLORING CONCEPTS
41.  Center of Mass What happens to the center of mass 

of a linear system when each point mass is translated k 
units horizontally? Explain.

42.  Centroid Explain why the centroid of a rectangle is 
the center of a rectangle.

43.  Center of Mass Use rectangles to create a region 
such that the center of mass lies outside of the region. 
Verify algebraically that the center of mass lies outside 
of the region.

 44.  HOW DO YOU SEE IT? The centroid of the 
plane region bounded by the graphs of y = f (x), 
y = 0, x = 0, and x = 3 is (1.2, 1.4). Without 
integrating, find the centroid of each of the 
regions bounded by the graphs of the following 
sets of equations. Explain your reasoning.

1 2 3 4 5

1

2

3

4

5 y = f(x)

Centroid: (1.2, 1.4)

x

y

(a) y = f (x) + 2, y = 2, x = 0, and x = 3

(b) y = f (x − 2), y = 0, x = 2, and x = 5

(c) y = −f (x), y = 0, x = 0, and x = 3

44.  

Centroid of a Common Region In Exercises 45–50, 
find and/or verify the centroid of the common region used in 
engineering.

45.  Triangle Show that the centroid of the triangle with 
vertices (−a, 0), (a, 0), and (b, c) is the point of intersection 
of the medians (see figure).

x

(b, c)

(−a, 0) (a, 0)

y   

x

(b, c) (a + b, c)

(a, 0)

y

 Figure for 45 Figure for 46

46.  Parallelogram Show that the centroid of the parallelogram 
with vertices (0, 0), (a, 0), (b, c), and (a + b, c) is the point of 
intersection of the diagonals (see figure).

47.  Trapezoid Find the centroid of the trapezoid with vertices 
(0, 0), (0, a), (c, b), and (c, 0). Show that it is the intersection 
of the line connecting the midpoints of the parallel sides and 
the line connecting the extended parallel sides, as shown in the 
figure.

x

(0, a)

(0, 0)

(c, b)

(c, 0)
b

a

y   

x
−r r

r

y

 Figure for 47 Figure for 48

48.  Semicircle Find the centroid of the region bounded by the 
graphs of y = √r2 − x2 and y = 0 (see figure).

49.  Semiellipse Find the centroid of the region bounded by

 the graphs of y =
b
a
√a2 − x2 and y = 0 (see figure).

x
−a a

b

y   

x

(1, 1)

(0, 0)

Parabolic spandrel

y = 2x − x2

y

 Figure for 49 Figure for 50

50.  Parabolic Spandrel Find the centroid of the parabolic 
spandrel shown in the figure.
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51.  Graphical Reasoning Consider the region bounded by 
the graphs of y = x2 and y = b, where b > 0.

 (a) Sketch a graph of the region.

 (b)  Set up the integral for finding My. Because of the form 
of the integrand, the value of the integral can be obtained 
without integrating. What is the form of the integrand? 
What is the value of the integral and what is the value  
of x?

 (c) Use the graph in part (a) to determine whether y >
b
2

 or

 y <
b
2

. Explain.

 (d) Use integration to verify your answer in part (c).

52.  Graphical and Numerical Reasoning Consider the 
region bounded by the graphs of y = x2n and y = b, where 
b > 0 and n is a positive integer.

 (a) Sketch a graph of the region.

 (b)  Set up the integral for finding My. Because of the form 
of the integrand, the value of the integral can be obtained 
without integrating. What is the form of the integrand? 
What is the value of the integral and what is the value of x?

 (c)  Use the graph in part (a) to determine whether y >
b
2

 or

 y <
b
2

. Explain.

 (d) Use integration to find y as a function of n.

 (e)  Use the result of part (d) to complete the table.

  
n 1 2 3 4

y

 (f ) Find lim
n→∞

 y.

 (g) Give a geometric explanation of the result in part (f).

53.  Modeling Data The manufacturer of glass for a window 
in a conversion van needs to approximate the center of mass of 
the glass. A coordinate system is superimposed on a prototype 
of the glass (see figure). The measurements (in centimeters) 
for the right half of the symmetric piece of glass are listed in 
the table.

x
−40 −20 20

20
10

40

40

y

  
x 0 10 20 30 40

y 30 29 26 20 0

 (a)  Use the regression capabilities of a graphing utility to find 
a fourth-degree polynomial model for the glass.

 (b)  Use the integration capabilities of a graphing utility and 
the model to approximate the center of mass of the glass. 

54.  Modeling Data The manufacturer of a boat needs to 
approximate the center of mass of a section of the hull. A 
coordinate system is superimposed on a prototype (see figure). 
The measurements (in feet) for the right half of the symmetric 
prototype are listed in the table.

x
−2.0 −1.0 1.0

1.0

2.0

h

d

y

x 0 0.5 1.0 1.5 2

h 1.50 1.45 1.30 0.99 0

d 0.50 0.48 0.43 0.33 0

 (a)  Use the regression capabilities of a graphing utility to find 
fourth-degree polynomial models for both curves shown in 
the figure. 

 (b)  Use the integration capabilities of a graphing utility and 
the models to approximate the center of mass of the hull 
section.

Second Theorem of Pappus In Exercises 55 and 56, use 
the Second Theorem of Pappus, which is stated as follows. If a 
segment of a plane curve C is revolved about an axis that does 
not intersect the curve (except possibly at its endpoints), then 
the area S of the resulting surface of revolution is equal to the 
product of the length of C times the distance d traveled by the 
centroid of C.

55.  Find the area of the surface formed by revolving the graph of
y = 3 − x, 0 ≤ x ≤ 3, about the y-axis.

56.  A torus is formed by revolving the graph of (x − 1)2 + y2 = 1 
about the y-axis. Find the surface area of the torus.

57.  Finding a Centroid Let n ≥ 1 be constant, and consider 
the region bounded by f (x) = xn, the x-axis, and x = 1. Find 
the centroid of this region. As n→∞, what does the region 
look like, and where is its centroid?

58.  Finding a Centroid Consider the functions

 f (x) = xn and g(x) = xm

  on the interval [0, 1], where m and n are positive integers and 
n > m. Find the centroid of the region bounded by f  and g.

PUTNAM EXAM CHALLENGE
59.  Let V be the region in the cartesian plane consisting  

of all points (x, y) satisfying the simultaneous conditions 

∣x∣ ≤ y ≤ ∣x∣ + 3 and y ≤ 4. Find the centroid (x, y) 
of V.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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7.7 Fluid Pressure and Fluid Force

 Find fluid pressure and fluid force.

Fluid Pressure and Fluid Force
Swimmers know that the deeper an object is submerged in a fluid, the greater the 
 pressure on the object. Pressure is defined as the force per unit of area over the  surface 
of a body. For example, because a column of water that is 10 feet in height and 1 inch 
square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is 4.3 pounds 
per square inch.* At 20 feet, this would increase to 8.6 pounds per square inch, and in 
general the pressure is proportional to the depth of the object in the fluid.

Definition of Fluid Pressure

The pressure P on an object at depth h in a liquid is

P = wh

where w is the weight-density of the liquid per unit of volume.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 49.4

Gasoline 41.0 – 43.0

Glycerin 78.6

Kerosene 51.2

Mercury 849.0

Seawater 64.0

Water 62.4

When calculating fluid pressure, you can use an important (and rather surprising) 
physical law called Pascal’s Principle, named after the French mathematician Blaise 
Pascal. Pascal’s Principle states that the pressure exerted by a fluid at a depth h is 
transmitted equally in all directions. For example, in Figure 7.65, the pressure at the 
indicated depth is the same for all three objects. Because fluid pressure is given in terms 
of force per unit area (P = F�A), the fluid force on a submerged horizontal surface of 
area A is

Fluid force = F = PA = (pressure)(area).

h

 The pressure at h is the same for all three objects.
 Figure 7.65

* The total pressure on an object in 10 feet of water would also include the pressure due to Earth’s 
atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per square inch.

BLAISE PASCAL (1623–1662)

Pascal is well known for 
his work in many areas of 
mathematics and physics, 
and also for his influence on 
Leibniz. Although much of 
Pascal’s work in calculus was 
intuitive and lacked the rigor 
of modern mathematics, he 
nevertheless anticipated many 
important results.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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 Fluid Force on a Submerged Sheet

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is 
submerged in 6 feet of water, as shown in Figure 7.66.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the 
sheet is submerged in 6 feet of water, the fluid pressure is

 P = (62.4)(6) P = wh

 = 374.4 pounds per square foot.

Because the total area of the sheet is A = (3)(4) = 12 square feet, the fluid force is

 F = PA

 = (374.4 
pounds

square foot)(12 square feet)

 = 4492.8 pounds.

This result is independent of the size of the body of water. The fluid force would be the 
same in a swimming pool or lake. 

In Example 1, the fact that the sheet is rectangular and horizontal means that you 
do not need the methods of calculus to solve the problem. Consider a surface that is 
submerged vertically in a fluid. This problem is more difficult because the pressure is 
not constant over the surface.

Consider a vertical plate that is submerged 

x

L(yi)

h(yi)
Δy

d

c

y

Calculus methods must be used to find 
the fluid force on a vertical metal plate.
Figure 7.67

 
in a fluid of weight-density w (per unit of  
volume), as shown in Figure 7.67. To determine 
the total force against one side of the region  
from depth c to depth d, you can subdivide the 
interval [c, d] into n subintervals, each of width 
∆y. Next, consider the representative rectangle  
of width ∆y and length L(yi), where yi is in the 
ith subinterval. The force against this 
representative rectangle is

 ∆Fi = w(depth)(area)
 = wh(yi)L(yi)∆y.

The force against n such rectangles is

∑
n

i=1
 ∆Fi = w∑

n

i=1
 h(yi)L(yi)∆y.

Note that w is considered to be constant and is factored out of the summation. Therefore, 
taking the limit as �∆�→0 (n→∞) suggests the next definition.

Definition of Force Exerted by a Fluid

The force F exerted by a fluid of constant weight-density w (per unit of  
volume) against a submerged vertical plane region from y = c to y = d is

 F = w lim
�∆�→0

 ∑
n

i=1
 h(yi)L(yi)∆y

 = w∫d

c

 h(y)L(y) dy

where h(y) is the depth of the fluid at y and L(y) is the horizontal length of the 
region at y.

3

6

4

The fluid force on a horizontal metal 
sheet is equal to the fluid pressure 
times the area.
Figure 7.66
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 Fluid Force on a Vertical Surface

See LarsonCalculus.com for an interactive version of this type of example.

A vertical gate in a dam has the shape of an  

8 ft

6 ft

5 ft

4 ft

(a) Water gate in a dam

isosceles trapezoid 8 feet across the top and  
6 feet across the bottom, with a height of  
5 feet, as shown in Figure 7.68(a). What is  
the fluid force on the gate when the top of the 
gate is 4 feet below the surface of the water?

Solution In setting up a mathematical model 
for this problem, you are at liberty to locate the  
x- and y-axes in several different ways. A  
convenient approach is to let the y-axis bisect  
the gate and place the x-axis at the surface of  
the water, as shown in Figure 7.68(b). So, the  
depth of the water at y in feet is 

x

h(y) = −y

Δy
x

−2−6 2 6

2

−2

−10 (3, −9)

(4, −4)

y

(b) The fluid force against the gate

Figure 7.68

Depth = h(y) = −y.

To find the length L(y) of the region at y, find  
the equation of the line forming the right side  
of the gate. Because this line passes through  
the points (3, −9) and (4, −4), its equation is

 y − (−9) = −4 − (−9)
4 − 3

(x − 3)

 y + 9 = 5(x − 3)
 y = 5x − 24

 x =
y + 24

5
.

In Figure 7.68(b), you can see that the length of the region at y is

Length = 2x =
2
5
(y + 24) = L(y).

Finally, by integrating from y = −9 to y = −4, you can calculate the fluid force to be

 F = w∫d

c

 h(y)L(y) dy

 = 62.4∫−4

−9
 (−y)(25)(y + 24) dy

 = −62.4(25)∫−4

−9
 (y2 + 24y) dy

 = −62.4(25)[
y3

3
+ 12y2]

−4

−9

 = −62.4(25)(
−1675

3 )
 = 13,936 pounds. 

In Example 2, the x-axis coincided with the surface of the water. This was convenient 
but arbitrary. In choosing a coordinate system to represent a physical situation, you 
should consider various possibilities. Often you can simplify the calculations in a problem 
by locating the coordinate system to take advantage of special characteristics of the 
problem, such as symmetry.
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 Fluid Force on a Vertical Surface

A circular observation window at a seawater aquarium has a radius of 1 foot, and the 
center of the window is 8 feet below water level, as shown in Figure 7.69. What is the 
fluid force on the window?

x

8 − y

Observation
window

2 3

8

7

6

5

4

3

2

Δy

x

y

The fluid force on the window
Figure 7.69

Solution To take advantage of symmetry, locate a coordinate system such that the 
origin coincides with the center of the window, as shown in Figure 7.69. The depth at 
y is then

Depth = h(y) = 8 − y.

The horizontal length of the window is 2x, and you can use the equation for the circle, 
x2 + y2 = 1, to solve for x as shown.

Length = 2x = 2√1 − y2 = L(y)
Finally, because y ranges from −1 to 1, and using 64 pounds per cubic foot as the 
weight-density of seawater, you have

 F = w∫d

c

 h(y)L(y) dy = 64∫1

−1
 (8 − y)(2)√1 − y2 dy.

Initially it looks as though this integral would be difficult to solve. However, when you 
break the integral into two parts and apply symmetry, the solution is simpler.

F = 64(16)∫1

−1
 √1 − y2 dy − 64(2)∫1

−1
 y√1 − y2 dy

The second integral is 0 (because the integrand is odd and the limits of integration are 
symmetric with respect to the origin). Moreover, by recognizing that the first integral 
represents the area of a semicircle of radius 1, you obtain

 F = 64(16)(π2) − 64(2)(0)

 = 512π
 ≈ 1608.5 pounds.

So, the fluid force on the window is about 1608.5 pounds. 

A circular observation window at a seawater aquarium has a radius of 1 foot, and the 
center of the window is 8 feet below water level, as shown in Figure 7.69. What is the 
fluid force on the window?

Jane Rix/Shutterstock.com
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7.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Fluid Pressure Describe fluid pressure in your own 

words. 

2.  Fluid Pressure Does fluid pressure change with 
depth?

 Force on a Submerged Sheet In Exercises 
3–6, the area of the top side of a piece of sheet 
metal is given. The sheet metal is submerged 
horizontally in 8 feet of water. Find the fluid force 
on the top side.

 3. 3 square feet  4. 8 square feet

 5. 10 square feet  6. 25 square feet

Force on a Submerged Sheet In Exercises 7 and 8, the 
area of the top side of a piece of sheet metal is given. The sheet 
metal is submerged horizontally in 5 feet of ethyl alcohol. Find 
the fluid force on the top side.

 7. 9 square feet  8. 14 square feet

 Fluid Force on a Tank Wall In Exercises 
9–14, find the fluid force on the vertical side of 
the tank, where the dimensions are given in feet. 
Assume that the tank is full of water.

 9. Rectangle 10. Triangle

 

3

4   

3

4

11. Trapezoid 12. Semicircle

 

3

2

4   

2

13. Parabola, y = x2 14. Semiellipse,

    y = −1
2√36 − 9x2

 

4

4   

3

4

 Fluid Force of Water In Exercises 15–18, find 
the fluid force on the vertical plate submerged in 
water, where the dimensions are given in meters 
and the weight-density of water is 9800 newtons 
per cubic meter.

15. Square 16. Rectangle

 

2

2

  

5

1

1

17. Triangle 18. Square

 

9

3

6

  
1

3 3

Force on a Concrete Form In Exercises 19–22, the figure 
is the vertical side of a form for poured concrete that weighs 
140.7 pounds per cubic foot. Determine the force on this part 
of the concrete form.

19. Rectangle 20. Semiellipse,

    y = −3
4√16 − x2

 
2 ft

10 ft

  

3 ft

4 ft

21. Rectangle 22. Triangle

 

6 ft

4 ft

  

3 ft

5 ft

23.  Fluid Force of Gasoline A cylindrical gasoline tank 
is placed so that the axis of the cylinder is horizontal. Find 
the fluid force on a circular end of the tank when the tank is 
half full, where the diameter is 3 feet and the gasoline weighs  
42 pounds per cubic foot.
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24.  Fluid Force of Gasoline Repeat Exercise 23 for a tank 
that is full. (Evaluate one integral by a geometric formula and 
the other by observing that the integrand is an odd function.)

EXPLORING CONCEPTS
25.  Fluid Pressure Explain why fluid pressure on a 

surface is calculated using horizontal representative 
rectangles instead of vertical representative rectangles.

26.  Buoyant Force Buoyant force is the difference 
between the fluid forces on the top and bottom sides of 
a solid. Find an expression for the buoyant force of a 
rectangular solid submerged in a fluid with its top side 
parallel to the surface of the fluid.

27.  Think About It Approximate the depth of the water 
in the tank in Exercise 9 if the fluid force is one-half as 
great as when the tank is full. Explain why the answer is 
not 32.

28.  HOW DO YOU SEE IT? Two identical  
semicircular windows are placed at the same 
depth in the vertical wall of an aquarium (see 
figure). Which is subjected to the greater fluid 
force? Explain.

d d

28.  

29.  Fluid Force on a Circular Plate A circular plate of 
radius r feet is submerged vertically in a tank of fluid that 
weighs w pounds per cubic foot. The center of the circle is  
k feet below the surface of the fluid, where k > r. Show that 
the fluid force on the surface of the plate is

F = wk(πr2).

(Evaluate one integral by a geometric formula and the other by 
observing that the integrand is an odd function.)

30.  Fluid Force on a Circular Plate Use the result of 
Exercise 29 to find the fluid force on the circular plate shown 
in each figure. Assume that the tank is filled with water and 
the measurements are given in feet.

 (a) 

5

2

  (b) 
2

3

31.  Fluid Force on a Rectangular Plate A rectangular 
plate of height h feet and base b feet is submerged vertically in 
a tank of fluid that weighs w pounds per cubic foot. The center 
of the rectangle is k feet below the surface of the fluid, where 
k > h�2. Show that the fluid force on the surface of the plate is

 F = wkhb.

32.  Fluid Force on a Rectangular Plate Use the result 
of Exercise 31 to find the fluid force on the rectangular plate 
shown in each figure. Assume that the tank is filled with water 
and the measurements are given in feet.

 (a)   (b)

 

4

5

3

  

6

10

5

33.  Submarine Porthole A square porthole on a vertical 
side of a submarine (submerged in seawater) has an area of  
1 square foot. Find the fluid force on the porthole, assuming 
that the center of the square is 15 feet below the surface.

34.  Submarine Porthole Repeat Exercise 33 for a circular 
porthole that has a diameter of 1 foot. The center of the circle 
is 15 feet below the surface.

35.  Modeling Data The vertical stern of a boat partially 
submerged in seawater with a superimposed coordinate system 
is shown in the figure. The table shows the widths w of the 
stern (in feet) at indicated values of y. Use the Midpoint Rule 
with n = 4 to approximate the fluid force against the stern.

y 0 1 2 3 4

w 0 5 9 10.25 10.5

w

Water level
Stern

2

2

4

4

6

6

−2−4−6

y

36.  Irrigation Canal Gate The vertical cross section of an 
irrigation canal is modeled by

 f (x) = 5x2

x2 + 4

  where x is measured in feet and x = 0 corresponds to the 
center of the canal. Use the integration capabilities of a 
graphing utility to approximate the fluid force against a 
vertical gate used to stop the flow of water when the water is 
3 feet deep.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Area of a Region In Exercises 1–10, sketch 
the region bounded by the graphs of the equations and find the 
area of the region.

 1. y = 6 −
1
2
x2, y =

3
4
x, x = −2, x = 2

2. y =
1
x2, y = 4, x = 5

3. y =
1

x2 + 1
, y = 0, x = −1, x = 1

4. x = y2 − 2y, x = −1, y = 0

5. y = x, y = x3

6. x = y2 + 1, x = y + 3

7. y = ex, y = e2, x = 0

8. y = csc x, y = 2, 
π
6

≤ x ≤ 5π
6

9. y = sin x, y = cos x, 
π
4

≤ x ≤ 5π
4

10. x = cos y, x =
1
2

, 
π
3

≤ y ≤ 7π
3

Finding the Area of a Region In Exercises 11–14, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the equations and (b) use the integration capabilities of the 
graphing utility to approximate the area of the region to four 
decimal places.

11. y = x2 − 8x + 3, y = 3 + 8x − x2

12. y = x2 − 4x + 3, y = x3, x = 0

13. √x + √y = 1, y = 0, x = 0

14. y = x4 − 2x2, y = 2x2

Integration as an Accumulation Process In Exercises 
15 and 16, find the accumulation function F. Then evaluate F 
at each value of the independent variable and graphically show 
the area given by each value of the independent variable.

15. F(x) = ∫x
0

 (3t + 1) dt

 (a) F(0)   (b) F(2)   (c) F(6)

16. F(x) = ∫x
−π

 (2 + sin t) dt

(a) F(−π)   (b) F(0)   (c) F(2π)

Revenue In Exercises 17 and 18, two models R1 and R2 are 
given for revenue (in millions of dollars) for a corporation. 
Both models are estimates of revenues from 2020 through 
2025, with t = 0 corresponding to 2020. Which model projects 
the greater revenue? How much more total revenue does that 
model project over the six-year period?

17. R1 = 2.98 + 0.65t 18. R1 = 4.87 + 0.55t + 0.01t2

 R2 = 2.98 + 0.56t  R2 = 4.87 + 0.61t + 0.07t2

Finding the Volume of a Solid In Exercises 19 and 20, 
use the disk method to find the volume of the solid generated 
by revolving the region bounded by the graphs of the equations 
about the x-axis.

19. y =
1

√1 + x2
, y = 0, x = −1, x = 1

20. y = e−x, y = 0, x = 0, x = 1

Finding the Volume of a Solid In Exercises 21 and 22, 
use the shell method to find the volume of the solid generated 
by revolving the region bounded by the graphs of the equations 
about the y-axis.

21. y =
1

x4 + 1
, y = 0, x = 0, x = 1

22. y =
1
x2, y = 0, x = 2, x = 5

Finding the Volume of a Solid In Exercises 23 and 24, 
use the disk method or the shell method to find the volumes of 
the solids generated by revolving the region bounded by the 
graphs of the equations about the given lines.

23. y = x, y = 0, x = 3

 (a) the x-axis

 (b) the y-axis

 (c) the line x = 3

 (d) the line x = 6

24. y = √x, y = 2, x = 0

 (a) the x-axis

 (b) the line y = 2

 (c) the y-axis

 (d) the line x = −1

25.  Gasoline Tank A gasoline tank is an oblate spheroid 
generated by revolving the region bounded by the graph of 

 
x2

16
+

y2

9
= 1

  about the y-axis, where x and y are measured in feet. How 
much gasoline can the tank hold?

26.  Using Cross Sections Find the volume of the solid 
whose base is bounded by the circle x2 + y2 = 9 and whose 
cross sections perpendicular to the x-axis are equilateral 
triangles.

Finding Arc Length In Exercises 27 and 28, find the arc 
length of the graph of the function over the indicated interval.

27. f (x) = 4
5
x5�4, [0, 4]

28. y =
1
3
x3�2 − 1, [2, 6]
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Finding the Area of a Surface of Revolution In 
Exercises 29 and 30, write and evaluate the definite integral 
that represents the area of the surface generated by revolving 
the curve on the indicated interval about the x-axis.

29. y =
x3

18
, 3 ≤ x ≤ 6

30. y = √25 − x2, −4 ≤ x ≤ 4

Finding the Area of a Surface of Revolution In 
Exercises 31 and 32, write and evaluate the definite integral 
that represents the area of the surface generated by revolving 
the curve on the indicated interval about the y-axis.

31. y =
x2

2
+ 4, 0 ≤ x ≤ 2

32. y = 3√x, 1 ≤ x ≤ 2

33.  Hooke’s Law  A force of 5 pounds stretches a spring 
1 inch from its natural position. Find the work done in  
stretching the spring from its  natural length of 10 inches to a 
length of 15 inches.

34.  Hooke’s Law A force of 50 pounds stretches a spring  
1 inch from its natural position. Find the work done in 
stretching the spring from its natural length of 10 inches to 
double that length.

35.  Propulsion Neglecting air resistance and the weight of 
the propellant, determine the work done in propelling a  
five-metric-ton satellite to a height of 200 miles above Earth.

36.  Pumping Water A water well has an 8-inch diameter and 
is 190 feet deep. The water is 25 feet from the top of the well. 
Determine the amount of work done in pumping the well dry.

37.  Winding a Chain A chain 10 feet long weighs 4 pounds 
per foot and is hung from a platform 20 feet above the ground. 
How much work is required to raise the entire chain to the 
20-foot level?

38.  Winding a Cable A 200-foot cable weighing 5 pounds 
per foot is hanging from a winch 200 feet above ground level. 
Find the work done in winding up the cable when there is a 
300-pound load attached to the end of the cable.

39.  Boyle’s Law A quantity of gas with an initial volume of 
1 cubic foot and a pressure of 500 pounds per square foot 
expands to a volume of 4 cubic feet. Find the work done by 
the gas. Assume that the pressure is inversely proportional to 
the volume.

40.  Boyle’s Law A quantity of gas with an initial volume 
of 2 cubic feet and a pressure of 800 pounds per square foot 
expands to a volume of 3 cubic feet. Find the work done by 
the gas. Assume that the pressure is inversely proportional to 
the volume.

41.  Center of Mass of a Linear System Find the center of 
mass of the given system of point masses lying on the x-axis.

 m1 = 8, m2 = 12, m3 = 6, m4 = 14

 x1 = −1, x2 = 2, x3 = 5, x4 = 7

42.  Center of Mass of a Two-Dimensional System Find 
the center of mass of the given system of point masses.

 
mi 3 2 6 9

(xi, yi) (2, 1) (−3, 2) (4, −1) (6, 5)

Center of Mass of a Planar Lamina In Exercises 43 and 
44, find Mx, My, and (x, y) for the lamina of uniform density ρ 
bounded by the graphs of the equations.

43. y = x2, y = 2x + 3 44. y = x2�3, y = 1
2x

45.  Finding the Center of Mass Introduce an appropriate 
coordinate system and find the center of mass of the planar 
lamina. (The answer depends on the position of the coordinate 
system.)

2

11

46.  Finding Volume Use the Theorem of Pappus to find the 
volume of the torus formed by revolving the circular region 
bounded by (x − 4)2 + y2 = 4 about the y-axis.

Force on a Submerged Sheet In Exercises 47 and 48, 
the area of the top side of a piece of sheet metal is given. The 
sheet metal is submerged horizontally in 3 feet of water. Find 
the fluid force on the top side.

47. 2 square feet 48. 15 square feet

49.  Fluid Force of Seawater Find the fluid force on the 
vertical plate submerged in seawater (see figure).

3 ft

6 ft

4 ft

   

7 ft

5 ft

 Figure for 49 Figure for 50

50.  Force on a Concrete Form The vertical side of a form 
for poured concrete that weighs 140.7 pounds per cubic foot 
is shown in the figure. Determine the force on this part of the 
concrete form.

51.  Submarine Porthole A circular porthole on a vertical 
side of a submarine (submerged in seawater) has a diameter of 
3 feet. Find the fluid force on the porthole, assuming that the 
center of the circle is 1600 feet below the surface.
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Finding a Limit Let R be the area of the region in the first 
quadrant bounded by the parabola y = x2 and the line y = cx, 
c > 0, as shown in the figure. Let T be the area of the triangle 
AOB. Calculate the limit

 lim
c→0+

 
T
R

.

x

R

T

O

A
B(c, c2)c2

c

y

y = x2

2.  Center of Mass of a Lamina Let L be the lamina of  
uniform density ρ = 1 obtained by removing circle A of radius 
r from circle B of radius 2r (see figure).

 

B A

2r r
x

y

 (a) Show that Mx = 0 for L.

 (b) Show that My for L is equal to (My for B) − (My for A).
 (c)  Find My for B and My for A. Then use part (b) to compute 

My for L.

 (d) What is the center of mass of L?

3.  Dividing a Region Let R be the region bounded by the 
parabola y = x − x2 and the x-axis (see figure). Find the 
equation of the line y = mx that divides this region into two 
regions of equal area.

x
1

y = mx

y = x − x2

y

4. Surface Area Graph the curve

 8y2 = x2(1 − x2).

  Use a computer algebra  system to find the surface area of the 
solid of revolution obtained by revolving the curve about the 
y-axis.

5.  Centroid A blade on an industrial fan has the configuration 
of a semicircle attached to a trapezoid (see figure). Find the 
centroid of the blade.

 

x
1

1

2

2

3

3

4

4

5 7−1
−2
−3
−4

y

6.  Volume A hole is cut through the center of a sphere of 
radius r (see  figure). The height of the remaining spherical ring 
is h. Find the volume of the ring and show that it is independent 
of the radius of the sphere.

r
h

7.  Volume A rectangle R of length ℓ and width w is revolved 
about the line L (see figure). Find the volume of the resulting 
solid of revolution.

d
R

L

w

 

x
2 4

16

32

48

64

A(1, 1)

B
R

S
y = x3

y

C

 Figure for 7 Figure for 8

8. Comparing Areas of Regions

 (a)  The tangent line to the curve y = x3 at the point A(1, 1) 
intersects the curve at another point B. Let R be the area 
of the region bounded by the curve and the tangent line. 
The tangent line at B intersects the curve at another point C 
(see figure). Let S be the area of the region bounded by the 
curve and this  second tangent line. How are the areas R and 
S related?

 (b)  Repeat the construction in part (a) by selecting an arbitrary 
point A on the curve y = x3. Show that the two areas R and 
S are always related in the same way.
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 9.  Using Arc Length The graph of y = f (x) passes through 
the origin. The arc length of the curve from (0, 0) to (x, f (x)) 
is given by 

 s(x) = ∫x
0

 √1 + et dt.

 Identify the function f.

10.  Using a Function Let f  be rectifiable on the interval 
[a, b], and let 

 s(x) = ∫x
a

 √1 + [ f ′(t)]2 dt.

 (a) Find 
ds
dx

.

 (b) Find ds and (ds)2.
 (c) Find s(x) on [1, 3] when f (t) = t 3�2.

 (d)  Use the function and interval in part (c) to calculate s(2) 
and describe what it signifies.

11.  Archimedes’ Principle Archimedes’ Principle states 
that the upward or buoyant force on an object within a fluid 
is equal to the weight of the fluid that the object displaces. 
For a partially submerged object, you can obtain information 
about the relative densities of the floating object and the fluid 
by observing how much of the object is above and below the 
surface. You can also determine the size of a floating object if 
you know the amount that is above the surface and the relative 
densities. You can see the top of a floating iceberg (see figure). 
The density of ocean water is 1.03 × 103 kilograms per cubic 
meter, and that of ice is 0.92 × 103 kilograms per cubic meter. 
What percent of the total iceberg is below the surface?

L
h

y = −h

y = 0

y = L − h

12.  Finding a Centroid Sketch the region bounded on the 
left by x = 1, bounded above by y = 1�x3, and bounded 
below by y = −1�x3.

 (a) Find the centroid of the region for 1 ≤ x ≤ 6.

 (b) Find the centroid of the region for 1 ≤ x ≤ b.

 (c) Where is the centroid as b→∞?

13.   Finding a Centroid Sketch the region bounded on the 
left by x = 1, bounded above by y = 1�x4, and bounded 
below by y = −1�x4.

 (a) Find the centroid of the region  for 1 ≤ x ≤ 6.

 (b) Find the centroid of the region for 1 ≤ x ≤ b.

 (c) Where is the centroid as b→∞?

14. Work Find the work done by each force F.

 (a)

x
1 65432

1

2

3

4

F

Feet

Po
un
ds

 (b)

x
1 65432

1

2

3

4

F

Feet

Po
un
ds

Consumer and Producer Surplus In Exercises 15 and 
16, find the consumer surplus and  producer surplus for the 
given demand [ p1(x)] and supply [ p2(x)] curves. The consumer 
 surplus and producer surplus are represented by the areas 
shown in the figure.

xx0

P0
(x0, P0)

Point of
equilibrium

Demand
curve

Supply
curve

Producer
surplus

Consumer
surplus

P

15. p1(x) = 50 − 0.5x, p2(x) = 0.125x

16. p1(x) = 1000 − 0.4x2, p2(x) = 42x

17.  Fluid Force A swimming pool is 20 feet wide, 40 feet 
long, 4 feet deep at one end, and 8 feet deep at the other end 
(see figures). The bottom is an inclined plane. Find the fluid 
force on each vertical wall when the pool is full of water.

40 ft

20 ft

8 ft
4 ft

x
10

8

20 30 40

Δy

(40, 4)

8 − y

y
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 8.5 Partial Fractions
 8.6 Numerical Integration
 8.7 Integration by Tables and Other Integration Techniques
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 8

Chemical Reaction (Exercise 50, p. 558)

The Wallis Product 
(Section Project, p. 540)

Memory Model (Exercise 92, p. 531)

Fluid Force (Exercise 63, p. 549)

515

Sending a Space Module into Orbit
(Example 5, p. 575)

Integration Techniques  
and Improper Integrals

Clockwise from top left, Dextroza/Shutterstock.com; Creations/Shutterstock.com; 
agsandrew/Shutterstock.com; Juriah Mosin/Shutterstock.com; Andrea Izzotti/Shutterstock.com
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516 Chapter 8 Integration Techniques and Improper Integrals

8.1 Basic Integration Rules

 Review procedures for fitting an integrand to one of the basic integration rules.

Fitting Integrands to Basic Integration Rules
In this chapter, you will study several integration techniques that greatly expand the set 
of integrals to which the basic integration rules can be applied. These rules are reviewed 
at the left. A major step in solving any integration problem is recognizing which basic 
integration rule to use.

 A Comparison of Three Similar Integrals

See LarsonCalculus.com for an interactive version of this type of example.

Find each integral.

a. ∫ 4
x2 + 9

 dx  b. ∫ 
4x

x2 + 9
 dx  c. ∫ 4x2

x2 + 9
 dx

Solution

a. Use the Arctangent Rule and let u = x and a = 3.

 ∫ 4
x2 + 9

 dx = 4∫ 1
x2 + 32 dx Constant Multiple Rule

 = 4(13 arctan 
x
3) + C Arctangent Rule

 =
4
3

 arctan 
x
3
+ C Simplify.

b.  The Arctangent Rule does not apply because the numerator contains a factor of x.
Consider the Log Rule and let u = x2 + 9. Then du = 2x dx, and you have

 ∫ 4x
x2 + 9

 dx = 2∫ 2x dx
x2 + 9

 Constant Multiple Rule

 = 2∫du
u

 Substitute: u = x2 + 9.

 = 2 ln∣u∣ + C Log Rule

 = 2 ln(x2 + 9) + C. Rewrite as a function of x.

c.  Because the degree of the numerator is equal to the degree of the denominator, you 
should first use division to rewrite the improper rational function as the sum of a 
polynomial and a proper rational function.

 ∫ 4x2

x2 + 9
 dx = ∫(4 +

−36
x2 + 9) dx Rewrite using long division.

 = ∫4 dx − 36∫ 1
x2 + 9

 dx Rewrite as two integrals.

 = 4x − 36(13 arctan 
x
3) + C Integrate.

 = 4x − 12 arctan 
x
3
+ C Simplify. 

Note in Example 1(c) that some algebra is required before applying any integration 
rules, and more than one rule is needed to find the resulting integral.

REVIEW OF BASIC 
INTEGRATION RULES 
(a > 0)

 1. ∫kf (u) du = k∫ f (u) du

 2. ∫[ f (u) ± g(u)] du =

 ∫ f (u) du ± ∫g(u) du

 3. ∫du = u + C

 4. ∫un du =
un+1

n + 1
+ C,

  n ≠ −1

 5. ∫du
u

= ln∣u∣ + C

 6. ∫eu du = eu + C

 7. ∫au du = ( 1
ln a)au + C

 8. ∫sin u du = −cos u + C

 9. ∫cos u du = sin u + C

10. ∫ tan u du = −ln∣cos u∣ + C

11. ∫cot u du = ln∣sin u∣ + C

12. ∫sec u du =

 ln∣sec u + tan u∣ + C

13. ∫csc u du =

 −ln∣csc u + cot u∣ + C

14. ∫sec2 u du = tan u + C

15. ∫csc2 u du = −cot u + C

16. ∫sec u tan u du = sec u + C

17. ∫csc u cot u du =−csc u +C

18. ∫ du

√a2 − u2
= arcsin 

u
a
+ C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a
+ C

20. ∫ du

u√u2 − a2
=

1
a

arcsec 
∣u∣
a

+C
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8.1 Basic Integration Rules 517

 Using Two Basic Rules to Solve a Single Integral

Evaluate ∫1

0

x + 3

√4 − x2
 dx.

Solution Begin by writing the integral as the sum of two integrals. Then apply the 
Power Rule and the Arcsine Rule.

 ∫1

0

x + 3

√4 − x2
 dx = ∫1

0

x

√4 − x2
 dx + ∫1

0

3

√4 − x2
 dx

 = −
1
2

 ∫1

0
(4 − x2)−1�2(−2x) dx + 3∫1

0

1

√22 − x2
 dx

 = [−(4 − x2)1�2 + 3 arcsin 
x
2]

1

0

 = (−√3 +
π
2) − (−2 + 0)

 ≈ 1.839 See Figure 8.1. 

Rules 18, 19, and 20 of the basic integration rules on the preceding page all have 
expressions involving the sum or difference of two squares:

a2 − u2, a2 + u2, and u2 − a2.

These expressions are often apparent after a u-substitution, as shown in Example 3.

 A Substitution Involving a2 − u2

Find ∫ x2

√16 − x6
 dx.

Solution Because the radical in the denominator can be written in the form

√a2 − u2 = √42 − (x3)2

you can try the substitution u = x3. Then du = 3x2 dx, and you have

 ∫ x2

√16 − x6
 dx =

1
3∫ 3x2 dx

√42 − (x3)2
 Rewrite integral.

 =
1
3∫ du

√42 − u2
 Substitute: u = x3.

 =
1
3

 arcsin 
u
4
+ C Arcsine Rule

 =
1
3

 arcsin 
x3

4
+ C. Rewrite as a function of x. 

TECHNOLOGY The Midpoint Rule can be used to give a good approximation 
of the value of the integral in Example 2 (for n = 5, the approximation is 1.837). 
When using numerical integration, however, you should be aware that the Midpoint 
Rule does not always give good approximations when one or both of the limits 
of integration are near a vertical asymptote. For instance, using the Fundamental 
Theorem of Calculus, you can obtain

∫1.99

0

x + 3

√4 − x2
 dx ≈ 6.213.

For n = 5, the Midpoint Rule gives an approximation of 5.667.

2

1

1−1
x

4 − x2
y =

x + 3

y

The area of the region is approximately 
1.839.
Figure 8.1

Exploration
A Comparison of Three 
Similar Integrals Which, 
if any, of the integrals listed 
below can be found using 
the 20 basic integration rules? 
For any that can be found, 
do so. For any that cannot, 
explain why not.

a. ∫ 3

√1 − x2
 dx

b. ∫ 3x

√1 − x2
 dx

c. ∫ 3x2

√1 − x2
 dx
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518 Chapter 8 Integration Techniques and Improper Integrals

Two of the most commonly overlooked integration rules are the Log Rule and the 
Power Rule. Notice in the next two examples how these two integration rules can be 
disguised.

 A Disguised Form of the Log Rule

Find ∫ 1
1 + ex dx.

Solution The integral does not appear to fit any of the basic rules. The quotient 
form, however, suggests the Log Rule. If you let u = 1 + ex, then du = ex dx. You can 
obtain the required du by adding and subtracting ex in the numerator.

 ∫ 1
1 + ex dx = ∫1 + ex − ex

1 + ex  dx Add and subtract ex in numerator.

 = ∫(1 + ex

1 + ex −
ex

1 + ex) dx Rewrite as two fractions.

 = ∫dx − ∫ ex dx
1 + ex Rewrite as two integrals.

 = x − ln(1 + ex) + C Integrate. 

There is usually more than one way to solve an integration problem. For instance, 
in Example 4, try integrating by multiplying the numerator and denominator by e−x to 
obtain an integral of the form −∫ du�u. See whether you can get the same answer by 
this procedure. (Be careful: the answer will appear in a different form.)

 A Disguised Form of the Power Rule

Find ∫(cot x)[ln(sin x)] dx.

Solution Again, the integral does not appear to fit any of the basic rules. However, 
considering the two primary choices for u

u = cot x or u = ln(sin x)

you can see that the second choice is the appropriate one because

u = ln(sin x) and du =
cos x
sin x

 dx = cot x dx.

So,

∫(cot x)[ln(sin x)] dx = ∫u du Substitute: u = ln(sin x).

 =
u2

2
+ C Integrate.

 =
1
2
[ln(sin x)]2 + C. Rewrite as a function of x. 

In Example 5, try checking that the derivative of

1
2
[ln(sin x)]2 + C

is the integrand of the original integral.

REMARK Remember that 
you can separate numerators but 
not denominators. Watch out for 
this common error when fitting 
integrands to basic rules. For 
instance, you cannot separate 
denominators in Example 4.

1
1 + ex ≠

1
1
+

1
ex
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8.1 Basic Integration Rules 519

Trigonometric identities can often be used to fit integrals to one of the basic 
integration rules.

 Using Trigonometric Identities

Find ∫tan2 2x dx.

Solution Note that tan2 u is not in the list of basic integration rules. However, sec2 u
is in the list. This suggests the trigonometric identity tan2 u = sec2 u − 1. If you let 
u = 2x, then du = 2 dx and

 ∫tan2 2x dx =
1
2∫tan2 u du Substitute: u = 2x.

 =
1
2∫(sec2 u − 1) du Trigonometric identity

 =
1
2∫sec2 u du −

1
2∫du Rewrite as two integrals.

 =
1
2

 tan u −
u
2
+ C Integrate.

 =
1
2

 tan 2x − x + C. Rewrite as a function of x. 

This section concludes with a summary of the common procedures for fitting 
integrands to the basic integration rules.

TECHNOLOGY If you 
have access to a computer 
algebra system, try using it 
to find the integrals in this 
section. Compare the forms of 
the antiderivatives given by 
the software with the forms 
obtained by hand. Sometimes 
the forms will be the same, 
but often they will differ. For 
instance, why is the antiderivative 
ln 2x + C equivalent to the 
antiderivative ln x + C?

PROCEDURES FOR FITTING INTEGRANDS TO BASIC INTEGRATION RULES

Technique Example

Expand (numerator). (1 + ex)2 = 1 + 2ex + e2x

Separate numerator. 
1 + x
x2 + 1

=
1

x2 + 1
+

x
x2 + 1

Complete the square. 
1

√2x − x2
=

1

√1 − (x − 1)2

Divide improper rational function. 
x2

x2 + 1
= 1 −

1
x2 + 1

Add and subtract terms in numerator.  
2x

x2 + 2x + 1
=

2x + 2 − 2
x2 + 2x + 1

  =
2x + 2

x2 + 2x + 1
−

2
(x + 1)2

Use trigonometric identities. cot2 x = csc2 x − 1

Multiply and divide by Pythagorean conjugate.  
1

1 + sin x
= ( 1

1 + sin x)(
1 − sin x
1 − sin x)

  =
1 − sin x
1 − sin2 x

  =
1 − sin x

cos2 x

  = sec2 x −
sin x

cos2 x
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520 Chapter 8 Integration Techniques and Improper Integrals

8.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Integration Technique Describe how to integrate 

a rational function with a numerator and denominator of 
the same degree.

2.  Fitting Integrands to Basic Integration 
Rules What procedure should you use to fit each 
integrand to the basic integration rules? Do not integrate.

 (a) ∫ 2 + x
x2 + 9

 dx (b) ∫ cot2 x dx

Choosing an Antiderivative In Exercises 3 and 4, select 
the correct antiderivative.

 3. ∫ x

√x2 + 1
 dx

(a) 2√x2 + 1 + C (b) √x2 + 1 + C

(c) 1
2√x2 + 1 + C (d) ln(x2 + 1) + C

4. ∫ 1
x2 + 1

 dx

(a) ln√x2 + 1 + C (b) 
2x

(x2 + 1)2 + C

 (c) arctan x + C (d) ln(x2 + 1) + C

 Choosing a Formula In Exercises 5–14, select 
the basic integration formula you can use to find 
the indefinite integral, and identify u and a when 
appropriate. Do not integrate.

 5. ∫(5x − 3)4 dx  6. ∫ 2t + 1
t2 + t − 4

 dt

7. ∫ 1

√x(1 − 2√x)
 dx  8. ∫ 2

(2t − 1)2 + 4
 dt

9. ∫ 3

√1 − t2
 dt 10. ∫ −2x

√x2 − 4
 dx

11. ∫t sin t2 dt 12. ∫sec 5x tan 5x dx

13. ∫(cos x)esin x dx 14. ∫ 1

x√x2 − 4
 dx

 Finding an Indefinite Integral In Exercises 
15–46, find the indefinite integral.

15. ∫14(x − 5)6 dx 16. ∫ 5
(t + 6)3 dt

17. ∫ 7
(z − 10)7 dz 18. ∫t3√t4 + 1 dt

19. ∫[z2 +
1

(1 − z)6] dz 20. ∫[4x −
2

(2x + 3)2] dx

21. ∫ t2 − 3
−t3 + 9t + 1

 dt 22. ∫ x + 1

√3x2 + 6x
 dx

23. ∫ x2

x − 1
 dx 24. ∫ 3x

x + 4
 dx

25. ∫x + 2
x + 1

 dx 26. ∫( 1
9z − 5

−
1

9z + 5) dz

27. ∫(5 + 4x2)2 dx 28. ∫x(3 +
2
x)

2

 dx

29. ∫x cos 2πx2 dx 30. ∫csc πx cot πx dx

31. ∫ sin x

√cos x
 dx 32. ∫csc2 3t

cot 3t
 dt

33. ∫ 2
e−x + 1

 dx 34. ∫ 4
3 − ex dx

35. ∫ln x2

x
 dx 36. ∫(tan x)[ln(cos x)] dx

37. ∫1 + cos α
sin α  dα 38. ∫ 1

cos θ − 1
 dθ

39. ∫ −1

√1 − (4t + 1)2
 dt 40. ∫ 1

25 + 4x2 dx

41. ∫tan(2�t)
t2  dt 42. ∫e−1�t3

t 4  dt

43. ∫ 6

z√9z2 − 25
 dz

44. ∫ 1

(x − 1)√4x2 − 8x + 3
 dx

45. ∫ 4
4x2 + 4x + 65

 dx

46. ∫ 1
x2 − 4x + 9

 dx

Slope Field In Exercises 47 and 48, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

47. 
ds
dt

=
t

√1 − t4
, (0, −

1
2) 48. 

dy
dx

=
1

√4x − x2
, (2, 

1
2)

t

s

1−1

1

−1

 

4

−1

−2

1

2

x

y
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8.1 Basic Integration Rules 521

Slope Field In Exercises 49 and 50, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

49. 
dy
dx

= 0.8y, y(0) = 4

50. 
dy
dx

= 5 − y, y(0) = 1

Differential Equation In Exercises 51–56, find the general 
solution of the differential equation.

51. 
dy
dx

= (ex + 5)2 52. 
dy
dx

= (4 − e2x)2

53. 
dr
dt

=
10et

√1 − e2t
 54. 

dr
dt

=
(1 + et)2

e3t

55. (4 + tan2 x)y′ = sec2 x

56. y′ =
1

x√4x2 − 9

 Evaluating a Definite Integral In Exercises 
57–72, evaluate the definite integral. Use a 
graphing utility to verify your result.

57. ∫1

2�3
 (2 − 3t)4 dt 58. ∫0

−1
 

5
(t + 2)11 dt

59. ∫π�4

0
cos 2x dx 60. ∫π

0
sin2 t cos t dt

61. ∫1

0
xe−x2

 dx 62. ∫e

1
 
1 − ln x

x
 dx

63. ∫3

2
 
ln(x + 1)3

x + 1
 dx 64. ∫1

−3
 

ex

e2x + 2ex + 1
 dx

65. ∫8

0

2x

√x2 + 36
 dx 66. ∫3

1
 
2x2 + 3x − 2

x
 dx

67. ∫5

3
 

2t
t2 − 4t + 4

 dt 68. ∫4

2
 

4x3

x4 − 6x2 + 9
 dx

69. ∫2�√3

0

1
4 + 9x2 dx 70. ∫7

0

1

√100 − x2
 dx

71. ∫0

−4
 31−x dx 72. ∫1

0
 7x2+2x (x + 1) dx

Area In Exercises 73–76, find the area of the given region.

73. y = (−4x + 6)3�2 74. y =
3x + 2
x2 + 9

y

x
(1.5, 0)

−1 1 2

5

10

15

 y

x
1 2 3 4 5

0.2

0.4

0.6

0.8

75. y2 = x2(1 − x2) 76. y = sin 2x

 

−2 2

−1

−2

1

2

y

x

  

4
π

0.5

1.0

x

y

Finding an Integral Using Technology In Exercises 
77–80, use a computer algebra system to find the integral. Use 
the computer algebra system to graph two antiderivatives. 
Describe the relationship between the graphs of the two 
antiderivatives.

77. ∫ 1
x2 + 4x + 13

 dx 78. ∫ x − 2
x2 + 4x + 13

 dx

79. ∫ 1
1 + sin θ  dθ 80. ∫(ex + e−x

2 )
3

 dx

EXPLORING CONCEPTS
81. Think About It When evaluating

 ∫1

−1
x2 dx

 is it appropriate to substitute

 u = x2, x = √u, and dx =
du

2√u

 to obtain

 
1
2

 ∫1

1
√u du = 0?

 Explain.

82. Deriving a Rule Show that

 sec x =
sin x
cos x

+
cos x

1 + sin x
.

 Then use this identity to derive the basic integration rule

 ∫sec x dx = ln∣sec x + tan x∣ + C.

83.  Finding Constants Determine the constants a and b 
such that

 sin x + cos x = a sin(x + b).

 Use this result to integrate

 ∫ dx
sin x + cos x

.

84.  Area The graphs of f (x) = x and g(x) = ax2 intersect at the 
points (0, 0) and (1�a, 1�a). Find a (a > 0) such that the area 
of the region bounded by the graphs of these two functions is 23.
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522 Chapter 8 Integration Techniques and Improper Integrals

85. Comparing Antiderivatives

(a)  Explain why the antiderivative y1 = ex+C1 is equivalent to 
the antiderivative y2 = Cex.

(b)  Explain why the antiderivative y1 = sec2 x + C1 is 
equivalent to the antiderivative y2 = tan2 x + C.

86. HOW DO YOU SEE IT? Using the graph, is

 ∫5

0
 f (x) dx positive or negative? Explain.

x

y

1 2 3 4 6

1

2

−3

3

1 2 3 4 6

f(x) =   (x3 − 7x2 + 10x)1
5

86.

Approximation In Exercises 87 and 88, determine which 
value best approximates the area of the region between the 
x-axis and the graph of the function over the given interval. 
Make your selection on the basis of a sketch of the region, not 
by performing calculations.

87. f (x) = 4x
x2 + 1

, [0, 2]

(a) 3  (b) 1  (c) −8  (d) 8  (e) 10

88. f (x) = 4
x2 + 1

, [0, 2]

(a) 3  (b) 1  (c) −4  (d) 4  (e) 10

Interpreting Integrals In Exercises 89 and 90, (a) sketch 
the region whose area is given by the integral, (b) sketch the 
solid whose volume is given by the integral when the disk 
method is used, and (c) sketch the solid whose volume is given 
by the integral when the shell method is used. (There is more 
than one correct answer for each part.)

89. ∫2

0
2πx2 dx 90. ∫4

0
πy dy

91.  Volume The region bounded by y = e−x2
, y = 0, x = 0,

and x = b (b > 0) is revolved about the y-axis.

 (a) Find the volume of the solid generated when b = 1.

(b)  Find b such that the volume of the solid generated is 
4
3 cubic units.

92.  Volume Consider the region bounded by the graphs of 
x = 0, y = cos x2, y = sin x2, and x = √x�2. Find the volume 
of the solid generated by revolving the region about the y-axis.

93.  Arc Length Find the arc length of the graph of y = ln(sin x)
from x = π�4 to x = π�2.

94.  Arc Length Find the arc length of the graph of y = ln(cos x)
from x = 0 to x = π�3.

95.  Surface Area Find the area of the surface formed by 
revolving the graph of y = 2√x on the interval [0, 9] about 
the x-axis.

 96.  Centroid Find the centroid of the region bounded by the 
graphs of

  y =
1

2x + 1
, y = 0, x = 0, and x = 2.

Average Value of a Function In Exercises 97 and 98, find 
the average value of the function over the given interval.

 97. f (x) = 1
1 + x2, −3 ≤ x ≤ 3

98. f (x) = sin nx, 0 ≤ x ≤ π�n, n is a positive integer.

Arc Length In Exercises 99 and 100, use the integration 
capabilities of a graphing utility to approximate the arc length 
of the curve over the given interval.

 99. y = tan πx, [0, 14] 100. y = x2�3, [1, 8]

101. Finding a Pattern

(a) Find ∫cos3 x dx.

(b) Find ∫cos5 x dx.

(c) Find ∫cos7 x dx.

(d)  Explain how to find ∫ cos15 x dx without actually 
integrating.

102. Finding a Pattern

(a)  Write ∫ tan3 x dx in terms of ∫ tan x dx. Then find 
∫ tan3 x dx.

(b) Write ∫ tan5 x dx in terms of ∫ tan3 x dx.

(c)  Write ∫ tan2k+1 x dx, where k is a positive integer, in 
terms of ∫ tan2k−1 x dx.

(d)  Explain how to find ∫ tan15 x dx without actually 
integrating.

103.  Methods of Integration Show that the following 
results are equivalent. (You will learn about integration by 
tables in Section 8.7.)

  Integration by tables:

  ∫√x2 + 1 dx =
1
2
(x√x2 + 1 + ln∣x + √x2 + 1∣) + C

Integration by computer algebra system:

∫√x2 + 1 dx =
1
2
[x√x2 + 1 + arcsinh(x)] + C

PUTNAM EXAM CHALLENGE

104. Evaluate ∫4

2

√ln(9 − x) dx

√ln(9 − x) + √ln(x + 3)
.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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8.2 Integration by Parts8.2 Integration by Parts

 Find an antiderivative using integration by parts.

Integration by Parts
In this section, you will study an important integration technique called integration by 
parts. This technique can be applied to a wide variety of functions and is particularly 
useful for integrands involving products of algebraic and transcendental functions. For 
instance, integration by parts works well with integrals such as

∫x ln x dx, ∫x2 ex dx, and ∫ex sin x dx.

Integration by parts is based on the formula for the derivative of a product

 
d
dx

[uv] = u
dv
dx

+ v
du
dx

 = uv′ + vu′

where both u and v are differentiable functions of x. When u′ and v′ are continuous, you 
can integrate both sides of this equation to obtain

 uv = ∫uv′ dx + ∫vu′ dx

 = ∫u dv + ∫v du.

By rewriting this equation, you obtain the next theorem.

This formula expresses the original integral in terms of another integral. Depending on 
the choices of u and dv, it may be easier to find the second integral than the original 
one. Because the choices of u and dv are critical in the integration by parts process, the 
guidelines below are provided.

When using integration by parts, note that you can first choose dv or first choose 
u. After you choose, however, the choice of the other factor is determined—it must be 
the remaining portion of the integrand. Also note that dv must contain the differential 
dx of the original integral.

Exploration
Proof Without Words  
Here is a different approach 
to proving the formula for 
integration by parts. This 
approach is from “Proof 
Without Words: Integration 
by Parts” by Roger B. Nelsen, 
Mathematics Magazine, 64, 
No. 2, April 1991, p. 130, by 
permission of the author.

u

s = g(b)

r = g(a)

u = f(x) v = g(x)

p = f(a) q = f(b)

v

Area■+ Area■= qs − pr

∫s

r

u dv + ∫p

q

v du = [uv]
(q, s)

(p, r)

∫s

r

u dv = [uv]
(q, s)

(p, r)
− ∫p

q

v du

Explain how this graph  
proves the theorem. Which 
notation in this proof is  
unfamiliar? What do you  
think it means?

THEOREM 8.1 Integration by Parts

If u and v are functions of x and have continuous derivatives, then

∫u dv = uv − ∫v du.

GUIDELINES FOR INTEGRATION BY PARTS

1. Try letting dv be the most complicated portion of the integrand that fits a basic 
integration rule. Then u will be the remaining factor(s) of the integrand.

2.  Try letting u be the portion of the integrand whose derivative is a function 
simpler than u. Then dv will be the remaining factor(s) of the integrand.

Note that dv always includes the dx of the original integrand.
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 Integration by Parts

Find ∫xex dx.

Solution To apply integration by parts, you need to write the integral in the form 
∫ u dv. There are several ways to do this.

∫(x)(ex dx), ∫(ex)(x dx), ∫(1)(xex dx), ∫(xex)(dx)

u dv u dv u dv u dv

The guidelines on the preceding page suggest the first option because the derivative of 
u = x is simpler than x, and dv = ex dx is the most complicated portion of the integrand 
that fits a basic integration formula.

dv = ex dx   v = ∫dv = ∫ex dx = ex

 u = x    du = dx

Now, integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts formula

 ∫xex dx = xex − ∫ex dx Substitute.

 = xex − ex + C. Integrate.

To check this, differentiate xex − ex + C to see that you obtain the original integrand.

 Integration by Parts

Find ∫x2 ln x dx.

Solution In this case, x2 is more easily integrated than ln x. Furthermore, the 
derivative of ln x is simpler than ln x. So, you should let dv = x2 dx.

dv = x2 dx   v = ∫x2 dx =
x3

3

 u = ln x    du =
1
x
 dx

Integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts formula

 ∫x2 ln x dx =
x3

3
 ln x − ∫(x3

3 )(
1
x) dx Substitute.

 =
x3

3
 ln x −

1
3

 ∫x2 dx Simplify.

 =
x3

3
 ln x −

x3

9
+ C. Integrate.

You can check this result by differentiating.

d
dx[

x3

3
 ln x −

x3

9
+ C] = x3

3 (
1
x) + (ln x)(x2) − x2

3
= x2 ln x 

REMARK In Example 1, 
note that it is not necessary to 
include a constant of integration 
when solving

v = ∫ex dx = ex + C1.

To illustrate this, replace v = ex 
by v = ex + C1 and apply 
integration by parts to see that 
you obtain the same result.

TECHNOLOGY  
Try graphing

f(x) = ∫x2 ln x dx

and

g(x) = x3

3
 ln x −

x3

9

on your graphing utility. Do  
you get the same graph?
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One surprising application of integration by parts involves integrands consisting 
of single terms, such as

∫ln x dx or ∫arcsin x dx.

In these cases, try letting dv = dx, as shown in the next example.

 An Integrand with a Single Term

Evaluate ∫1

0
arcsin x dx.

Solution Let dv = dx.

 dv = dx   v = ∫dx = x

 u = arcsin x   du =
1

√1 − x2
 dx

Integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts 
formula

 ∫arcsin x dx = x arcsin x − ∫ x

√1 − x2
 dx Substitute.

 = x arcsin x +
1
2

 ∫(1 − x2)−1�2 (−2x) dx Rewrite.

 = x arcsin x + √1 − x2 + C. Integrate.

Using this antiderivative, you can evaluate the definite integral as shown.

 ∫1

0
arcsin x dx = [x arcsin x + √1 − x2]

1

0

 =
π
2
− 1

 ≈ 0.571

The area represented by this definite integral is shown in Figure 8.2. 

TECHNOLOGY Remember that there are several ways to use technology to 
evaluate a definite integral: (1) use a numerical approximation such as the Midpoint 
Rule, or more advanced methods such as the Trapezoidal Rule and Simpson’s 
Rule (see Section 8.6), (2) use a computer algebra system to find the antiderivative 
and then apply the Fundamental Theorem of Calculus, or (3) use the numerical 
integration feature of a graphing utility. However, these methods have shortcomings. 
For instance, to find the possible error when using Simpson’s Rule, the integrand 
must have a continuous fourth derivative in the interval of integration (the integrand 
in Example 3 fails to meet this requirement). To apply the Fundamental Theorem 
of Calculus, the symbolic integration utility must be able to find the antiderivative. 
Often, for the numerical integration feature of a graphing utility, you are given no 
indication of the degree of accuracy of the approximation.

 FOR FURTHER INFORMATION To see how integration by parts is used to prove 
Stirling’s approximation ln(n!) = n ln n − n, see the article “The Validity of Stirling’s 
Approximation: A Physical Chemistry Project” by A. S. Wallner and K. A. Brandt in 
Journal of Chemical Education.

y = arcsin x

x

2 ))1, 

1

y

2
π

π

The area of the region is approximately 
0.571.
Figure 8.2
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Some integrals require repeated use of the integration by parts formula, as shown 
in the next example.

 Repeated Use of Integration by Parts

Find ∫x2 sin x dx.

Solution The factors x2 and sin x are equally easy to integrate. However, the 
derivative of x2 becomes simpler, whereas the derivative of sin x does not. So, you 
should let u = x2.

dv = sin x dx   v = ∫sin x dx = −cos x

 u = x2   du = 2x dx

Now, integration by parts produces

∫x2 sin x dx = −x2 cos x + ∫2x cos x dx. First use of integration by parts

This first use of integration by parts has succeeded in simplifying the original integral, 
but the integral on the right still does not fit a basic integration rule. To find that 
integral, you can apply integration by parts again. This time, let u = 2x.

dv = cos x dx   v = ∫cos x dx = sin x

 u = 2x   du = 2 dx

Now, integration by parts produces

∫2x cos x dx = 2x sin x − ∫2 sin x dx Second use of integration by parts

 = 2x sin x + 2 cos x + C.

Combining these two results, you can write

∫x2 sin x dx = −x2 cos x + 2x sin x + 2 cos x + C. 

When making repeated applications of integration by parts, you need to be careful 
not to interchange the substitutions in successive applications. For instance, in Example 4, 
the first substitution was u = x2 and dv = sin x dx. If, in the second application, you 
had switched the substitution to u = cos x and dv = 2x dx, you would have obtained

 ∫x2 sin x dx = −x2 cos x + ∫2x cos x dx

 = −x2 cos x + x2 cos x + ∫x2 sin x dx

 = ∫x2 sin x dx

thereby undoing the previous integration and returning to the original integral. When 
making repeated applications of integration by parts, you should also watch for the 
appearance of a constant multiple of the original integral. For instance, this occurs 
when you use integration by parts to find ∫ex cos 2x dx, and it also occurs in Example 5  
on the next page.

The integral in Example 5 is an important one. In Section 8.4 (Example 5), you will 
see that it is used to find the arc length of a parabolic segment.
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 Integration by Parts

Find ∫sec3 x dx.

Solution The most complicated portion of the integrand that can be easily integrated is 
sec2 x, so you should let dv = sec2 x dx and u = sec x.

dv = sec2 x dx   v = ∫sec2 x dx = tan x

 u = sec x   du = sec x tan x dx

Integration by parts produces

 ∫u dv = uv − ∫v du 
Integration by parts 
formula

 ∫sec3 x dx = sec x tan x − ∫sec x tan2 x dx Substitute.

 ∫sec3 x dx = sec x tan x − ∫(sec x)(sec2 x − 1) dx Trigonometric identity

 ∫sec3 x dx = sec x tan x − ∫sec3 x dx + ∫sec x dx Rewrite.

2∫sec3 x dx = sec x tan x + ∫sec x dx Collect like integrals.

 2∫sec3 x dx = sec x tan x + ln∣sec x + tan x∣ + C Integrate.

 ∫sec3 x dx =
1
2

 sec x tan x +
1
2

 ln∣sec x + tan x∣ + C. Divide by 2.

 Finding a Centroid

A machine part is modeled by the region bounded by the graph of y = sin x and the 
x-axis, 0 ≤ x ≤ π�2, as shown in Figure 8.3. Find the centroid of this region.

Solution Begin by finding the area of the region.

A = ∫π�2

0
sin x dx = [−cos x]

0

π�2

= 1

Now, you can find the coordinates of the centroid. To evaluate the integral for y, first 
rewrite the integrand using the trigonometric identity sin2 x = (1 − cos 2x)�2.

y =
1
A

 ∫π�2

0
 
sin x

2
(sin x) dx =

1
4

 ∫π�2

0
(1 − cos 2x) dx =

1
4[x −

sin 2x
2 ]

0

π�2

=
π
8

You can evaluate the integral for x, (1�A) ∫π�2
0  x sin x dx, with integration by parts. To 

do this, let dv = sin x dx and u = x. This produces v = −cos x and du = dx, and you 
can write

∫x sin x dx = −x cos x + ∫cos x dx = −x cos x + sin x + C.

Finally, you can determine x to be

x =
1
A

 ∫π�2

0
x sin x dx = [−x cos x + sin x]

0

π�2

= 1.

So, the centroid of the region is (1, π�8). 

1

x

x

Δx

sin x
2

y = sin x

y

2 )) , 1 

2
π

π

Figure 8.3
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As you gain experience in using integration by parts, your skill in determining u
and dv will increase. The next summary lists several common integrals with suggestions 
for the choices of u and dv.

In problems involving repeated applications of integration by parts, a tabular 
method, illustrated in Example 7, can help to organize the work. This method works 
well for integrals of the form

∫xn sin ax dx, ∫xn cos ax dx, and ∫xn eax dx.

 Using the Tabular Method

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x2 sin 4x dx.

Solution Begin as usual by letting u = x2 and dv = v′ dx = sin 4x dx. Next, create 
a table consisting of three columns, as shown.

Alternate u and Its v′ and Its
Signs Derivatives Antiderivatives

 +   x2 sin 4x

 −   2x −1
4 cos 4x

 +   2 − 1
16 sin 4x

 −   0 1
64 cos 4x

Differentiate until you obtain  
0 as a derivative.

The solution is obtained by adding the signed products of the diagonal entries.

∫x2 sin 4x dx = −
1
4

x2 cos 4x +
1
8

x sin 4x +
1

32
 cos 4x + C 

REMARK You can use the 
acronym LIATE as a guideline 
for choosing u in integration by 
parts. In order, check the  
integrand for the following.

Is there a Logarithmic part?

Is there an Inverse trigonometric 
part?

Is there an Algebraic part?

Is there a Trigonometric part?

Is there an Exponential part?

 FOR FURTHER INFORMATION
For more information on the 
tabular method, see the article 
“Tabular Integration by Parts” 
by David Horowitz in The 
College Mathematics Journal, 
and the article “More on 
Tabular Integration by Parts” 
by Leonard Gillman in The 
College Mathematics Journal. 
To view these articles, go to 
MathArticles.com.

SUMMARY: COMMON INTEGRALS USING INTEGRATION BY 
PARTS

1. For integrals of the form

∫xn eax dx, ∫xn sin ax dx, or ∫xn cos ax dx

 let u = xn and let dv = eax dx, sin ax dx, or cos ax dx.

2. For integrals of the form

∫xn ln x dx, ∫xn arcsin ax dx, or ∫xn arctan ax dx

 let u = ln x, arcsin ax, or arctan ax and let dv = xn dx.

3. For integrals of the form

∫eax sin bx dx or ∫eax cos bx dx

 let u = sin bx or cos bx and let dv = eax dx.
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8.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Integration by Parts Integration by parts is based 

on what formula?

2.  Setting Up Integration by Parts In your own 
words, describe how to choose u and dv when using 
integration by parts.

3.  Using Integration by Parts How can you use 
integration by parts on an integrand with a single term that 
does not fit any of the basic integration rules?

4.  Using the Tabular Method When is integrating 
using the tabular method useful?

 Setting Up Integration by Parts In Exercises 
5–10, identify u and dv for finding the integral 
using integration by parts. Do not integrate.

 5. ∫xe9x dx  6. ∫ x2e2x dx

7. ∫ (ln x)2 dx  8. ∫ ln 5x dx

9. ∫ x sec2 x dx 10. ∫ x2 cos x dx

 Using Integration by Parts In Exercises 
11–14, find the indefinite integral using integration 
by parts with the given choices of u and dv.

11. ∫x3 ln x dx; u = ln x, dv = x3 dx

12. ∫(7 − x)ex�2 dx; u = 7 − x, dv = ex�2 dx

13. ∫(2x + 1)sin 4x dx; u = 2x + 1, dv = sin 4x dx

14. ∫x cos 4x dx; u = x, dv = cos 4x dx

 Finding an Indefinite Integral In Exercises 
15–34, find the indefinite integral. (Note: Solve by 
the simplest method—not all require integration 
by parts.)

15. ∫xe4x dx 16. ∫5x
e2x dx

17. ∫x3ex dx 18. ∫e1�t

t2  dt

19. ∫t ln(t + 1) dt 20. ∫x5 ln 3x dx

21. ∫(ln x)2
x

 dx 22. ∫ln x
x3  dx

23. ∫ xe2x

(2x + 1)2 dx 24. ∫ x3ex2

(x2 + 1)2 dx

25. ∫x√x − 5 dx 26. ∫ 2x

√1 − 6x
 dx

27. ∫x csc2 x dx 28. ∫t csc t cot t dt

29. ∫x3 sin x dx 30. ∫x2 cos x dx

31. ∫arctan x dx 32. ∫4 arccos x dx

33. ∫e−3x sin 5x dx 34. ∫e4x cos 2x dx

Differential Equation In Exercises 35–38, find the general 
solution of the differential equation.

35. y′ = ln x 36. y′ = arctan 
x
2

37. 
dy
dt

=
t2

√3 + 5t
 38. 

dy
dx

= x2√x − 3

Slope Field In Exercises 39 and 40, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

39. 
dy
dx

= x√y cos x, (0, 4) 40. 
dy
dx

= e−x�3 sin 2x, (0, −18
37)

x
42−2

11

y

−4

 

x
4

5

−6

−5

y

Slope Field In Exercises 41 and 42, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

41. 
dy
dx

=
x
y

ex�8, y(0) = 2 42. 
dy
dx

=
x
y
 sin x, y(0) = 4

 Evaluating a Definite Integral In Exercises 
43–52, evaluate the definite integral. Use a 
graphing utility to verify your result.

43. ∫3

0
xex�2 dx 44. ∫2

0
x2e−2x dx

45. ∫π�4

0
x cos 2x dx 46. ∫π

0
x sin 2x dx
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47. ∫1�2

0
arccos x dx 48. ∫1

0
x arcsin x2 dx

49. ∫1

0
ex sin x dx 50. ∫1

0
ln(4 + x2) dx

51. ∫4

2
x arcsec x dx 52. ∫π�8

0
x sec2 2x dx

 Using the Tabular Method In Exercises 
53–58, use the tabular method to find the indefinite 
integral.

53. ∫x2e2x dx 54. ∫(1 − x)(e−x + 1) dx

55. ∫(x + 2)2 sin x dx 56. ∫x3 cos 2x dx

57. ∫(6 + x)√4x + 9 dx

58. ∫x2(x − 2)3�2 dx

EXPLORING CONCEPTS
59.  Integration by Parts Write an integral that requires 

three applications of integration by parts. Explain why 
three applications are needed.

60.  Integration by Parts When evaluating ∫x sin x dx, 
explain how letting u = sin x and dv = x dx makes the 
solution more difficult to find.

61.  Integration by Parts State whether you would use 
integration by parts to find each integral. If so, identify what 
you would use for u and dv. Explain your reasoning.

 (a) ∫ln x
x

 dx (b) ∫x ln x dx (c) ∫x2e−3x dx

(d) ∫2xex2
 dx (e) ∫ x

√x + 1
 dx (f ) ∫ x

√x2 + 1
 dx

62.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

−1 1 2 3 4
−1

1

2

3

4

f ′(x) = x  ln x

(a) Approximate the slope of f  at x = 2. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals 
on which it is decreasing. Explain.

62.  

Using Two Methods Together In Exercises 63–66, 
find the indefinite integral by using substitution followed by 
integration by parts.

63. ∫sin√x dx 64. ∫2x3 cos x2 dx

65. ∫x5ex2
 dx 66. ∫e√2x dx

67. Using Two Methods Integrate ∫ x3

√4 + x2
 dx

 (a) by parts, letting dv =
x

√4 + x2
 dx.

 (b) by substitution, letting u = 4 + x2.

68. Using Two Methods Integrate ∫x√4 − x dx

 (a) by parts, letting dv = √4 − x dx.

 (b) by substitution, letting u = 4 − x.

Finding a General Rule In Exercises 69 and 70, use a 
computer algebra system to find the integrals for n = 0, 1, 2, 
and 3. Use the result to obtain a general rule for the integrals 
for any positive integer n and test your results for n = 4.

69. ∫xn ln x dx

70. ∫xnex dx

Proof In Exercises 71–76, use integration by parts to prove 
the formula. (For Exercises 71–74, assume that n is a positive 
integer.)

71. ∫xn sin x dx = −xn cos x + n ∫xn−1 cos x dx

72. ∫xn cos x dx = xn sin x − n ∫xn−1 sin x dx

73. ∫xn ln x dx =
xn+1

(n + 1)2 [−1 + (n + 1) ln x] + C

74. ∫xneax dx =
xneax

a
−

n
a

 ∫xn−1eax dx

75. ∫eax sin bx dx =
eax(a sin bx + b cos bx)

a2 + b2 + C

76. ∫eax cos bx dx =
eax(a cos bx + b sin bx)

a2 + b2 + C

Using Formulas In Exercises 77–82, find the indefinite 
integral by using the appropriate formula from Exercises 
71–76.

77. ∫ x2 sin x dx 78. ∫x2 cos x dx

79. ∫ x
5 ln x dx 80. ∫x3e2x dx

81. ∫ e−3x sin 4x dx 82. ∫e2x cos 3x dx
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Area In Exercises 83–86, use a graphing utility to graph the 
region bounded by the graphs of the equations. Then find the 
area of the region analytically.

83. y = 2xe−x, y = 0, x = 3

84. y =
1
10

xe3x, y = 0, x = 0, x = 2

85. y = e−x sin πx, y = 0, x = 1

86. y = x3 ln x, y = 0, x = 1, x = 3

87.  Area, Volume, and Centroid Given the region bounded 
by the graphs of y = ln x, y = 0, and x = e, find

 (a) the area of the region.

 (b)  the volume of the solid generated by revolving the region 
about the x-axis.

(c)  the volume of the solid generated by revolving the region 
about the y-axis.

(d) the centroid of the region.

88.  Area, Volume, and Centroid Given the region bounded 
by the graphs of y = x sin x, y = 0, x = 0, and x = π, find

 (a) the area of the region.

 (b)  the volume of the solid generated by revolving the region 
about the x-axis.

(c)  the volume of the solid generated by revolving the region 
about the y-axis.

(d)  the centroid of the region.

89.  Centroid Find the centroid of the region bounded by the 
graphs of y = arcsin x, x = 0, and y = π�2. How is this 
problem related to Example 6 in this section?

90.  Centroid Find the centroid of the region bounded by the 
graphs of f (x) = x2, g(x) = 2x, x = 2, and x = 4.

91.  Average Displacement A damping force affects the 
vibration of a spring so that the displacement of the spring is 
given by

 y = e−4t (cos 2t + 5 sin 2t).

Find the average value of y on the interval from t = 0 to t = π.

Present Value In Exercises 93 and 94, find the present 
value P of a continuous income flow of c(t) dollars per year 
using

P = ∫t1

0
c(t)e−rt dt

where t1 is the time in years and r is the annual interest rate 
compounded continuously.

93. c(t) = 100,000 + 4000t, r = 5%, t1 = 10

94. c(t) = 1000 + 120t, r = 2%, t1 = 30

Integrals Used to Find Fourier Coefficients In 
Exercises 95 and 96, verify the value of the definite integral, 
where n is a positive integer.

95. ∫π
−π

 x sin nx dx = {
2π
n

,

−
2π
n

,

n is odd

n is even

96. ∫π
−π

 x2 cos nx dx =
(−1)n 4π

n2

97.  Vibrating String A string stretched between the two 
points (0, 0) and (2, 0) is plucked by displacing the string h 
units at its midpoint. The motion of the string is modeled by a 
Fourier Sine Series whose coefficients are given by

 bn = h ∫1

0
x sin 

nπx
2

 dx + h ∫2

1
(−x + 2) sin 

nπx
2

 dx.

 Find bn.

98.  Finding a Pattern Find the area bounded by the graphs 
of y = x sin x and y = 0 over each interval.

 (a) [0, π]  (b) [π, 2π]  (c) [2π, 3π]
  Describe any patterns that you notice. What is the area 

between the graphs of y = x sin x and y = 0 over the interval 
[nπ, (n + 1)π], where n is any nonnegative integer? Explain.

99.  Finding an Error Find the fallacy in the following 
argument that 0 = 1.

 dv = dx   v = ∫dx = x

 u =
1
x
   du = −

1
x2 dx

 0 + ∫dx
x

= (1x)(x) − ∫(− 1
x2)(x) dx

 = 1 + ∫dx
x

 So, 0 = 1.

PUTNAM EXAM CHALLENGE
100. Find a real number c and a positive number L for which

  lim
r→∞

 
rc ∫π�2

0  xr sin x dx

∫π�2
0  xr cos x dx

= L.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

 A model for the ability M of a child to memorize, measured 
on a scale from 0 to 10, is given by

M = 1 + 1.6t ln t, 0 < t ≤ 4

where t is the child’s age in  
years. Find the average  
value of this model

(a)  between the child’s  
first and second  
birthdays.

(b)  between the child’s  
third and fourth  
birthdays.

92. Memory Model

Juriah Mosin/Shutterstock.com
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8.3 Trigonometric Integrals

 Solve trigonometric integrals involving powers of sine and cosine.
 Solve trigonometric integrals involving powers of secant and tangent.
 Solve trigonometric integrals involving sine-cosine products.

Integrals Involving Powers of Sine and Cosine
In this section, you will study techniques for evaluating integrals of the form

∫sinm x cosn x dx and ∫secm x tann x dx

where either m or n is a positive integer. To find antiderivatives for these forms, try 
to break them into combinations of trigonometric integrals to which you can apply the 
Power Rule.

For instance, you can find 

∫sin5 x cos x dx

with the Power Rule by letting u = sin x. Then, du = cos x dx and you have

∫sin5 x cos x dx = ∫u5 du =
u6

6
+ C =

sin6 x
6

+ C.

To break up ∫ sinm x cosn x dx into forms to which you can apply the Power Rule, 
use these relationships.

sin2 x + cos2 x = 1

sin2 x =
1 − cos 2x

2

cos2 x =
1 + cos 2x

2

Pythagorean identity

Power-reducing formula for sin2 x

Power-reducing formula for  cos2 x

GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SINE AND COSINE

1. When the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. 
Then expand and integrate.

 Odd Convert to cosines Save for du

∫sin2k+1 x cosn x dx = ∫(sin2 x)k cosn x sin x dx = ∫(1 − cos2 x)k cosn x sin x dx

2. When the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to 
sines. Then expand and integrate.

 Odd Convert to sines Save for du

∫sinm x cos2k+1 x dx = ∫ (sinm x)(cos2 x)k cos x dx = ∫ (sinm x)(1 − sin2 x)k cos x dx

3. When the powers of both the sine and cosine are even and nonnegative, make repeated use of the formulas

sin2 x =
1 − cos 2x

2
 and cos2 x =

1 + cos 2x
2

 to convert the integrand to odd powers of the cosine. Then proceed as in the second guideline.

SHEILA SCOTT MACINTYRE  
(1910–1960)

Sheila Scott Macintyre 
published her first paper on 
the asymptotic periods of 
integral functions in 1935. 
She completed her doctorate 
work at Aberdeen University, 
where she taught. In 1958, she 
accepted a visiting research 
fellowship at the University of 
Cincinnati.
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 Power of Sine Is Odd and Positive

Find ∫sin3 x cos4 x dx.

Solution Because you expect to use the Power Rule with u = cos x, save one sine 
factor to form du and convert the remaining sine factors to cosines.

 ∫sin3 x cos4 x dx = ∫(sin2 x cos4 x)(sin x) dx Rewrite.

 = ∫(1 − cos2 x) cos4 x sin x dx Trigonometric identity

 = ∫(cos4 x − cos6 x) sin x dx Multiply.

 = ∫cos4 x sin x dx − ∫cos6 x sin x dx Rewrite.

 = −∫(cos4 x)(−sin x) dx + ∫(cos6 x)(−sin x) dx

 = −
cos5 x

5
+

cos7 x
7

+ C Integrate. 

In Example 1, both of the powers m and n happened to be positive integers. This 
strategy will work as long as either m or n is odd and positive. For instance, in the next 
example, the power of the cosine is 3, but the power of the sine is −1

2.

 Power of Cosine Is Odd and Positive

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate ∫π�3

π�6
 

cos3 x

√sin x
 dx.

Solution Because you expect to use the Power Rule with u = sin x, save one cosine 
factor to form du and convert the remaining cosine factors to sines.

 ∫π�3

π�6
 

cos3 x

√sin x
 dx = ∫π�3

π�6
 
cos2 x cos x

√sin x
 dx Rewrite.

 = ∫π�3

π�6
 
(1 − sin2 x)(cos x)

√sin x
 dx  Trigonometric identity

 = ∫π�3

π�6
 [(sin x)−1�2 − (sin x)3�2] cos x dx Divide.

 = [(sin x)1�2

1�2
−

(sin x)5�2

5�2 ]
π�6

π�3

 Integrate.

 = 2(√3
2 )

1�2

−
2
5 (
√3
2 )

5�2

− √2 +
√32
80

 ≈ 0.239

Figure 8.4 shows the region whose area is represented by this integral. 

TECHNOLOGY A computer algebra system used to find the integral in 
Example 1 yielded the following.

∫sin3 x cos4 x dx = (−cos5 x)(17 sin2 x +
2
35) + C

Is this equivalent to the result obtained in Example 1?

1.0

0.8

0.6

0.4

0.2

y = cos3 x
sin x

x

y

6
π

3
π

The area of the region is approximately 
0.239.
Figure 8.4
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 Power of Cosine Is Even and Nonnegative

Find ∫cos4 x dx.

Solution Because m and n are both even and nonnegative (m = 0), you can replace 
cos4 x by

(1 + cos 2x
2 )

2

.

So, you can integrate as shown.

 ∫cos4 x dx = ∫(1 + cos 2x
2 )

2

 dx Power-reducing 
formula

 = ∫(14 +
cos 2x

2
+

cos2 2x
4 ) dx Expand.

 = ∫[14 +
cos 2x

2
+

1
4 (

1 + cos 4x
2 )] dx Power-reducing 

formula

 =
3
8

 ∫dx +
1
4

 ∫2 cos 2x dx +
1

32∫4 cos 4x dx Rewrite.

 =
3x
8

+
sin 2x

4
+

sin 4x
32

+ C Integrate.

Use a symbolic differentiation utility to verify this. Can you simplify the derivative to 
obtain the original integrand? 

In Example 3, when you evaluate the definite integral from 0 to π�2, you obtain

 ∫π�2

0
cos4 x dx = [3x

8
+

sin 2x
4

+
sin 4x

32 ]
π�2

0

 = (3π16
+ 0 + 0) − (0 + 0 + 0)

 =
3π
16

.

Note that the only term that contributes to the solution is

3x
8

.

This observation is generalized in the following formulas developed by John Wallis 
(1616–1703).

Wallis’s Formulas

1. If n is odd (n ≥ 3), then

∫π�2

0
cosn x dx = (23)(

4
5)(

6
7) .  .  . (

n − 1
n ).

2. If n is even (n ≥ 2), then

∫π�2

0
cosn x dx = (12)(

3
4)(

5
6) .  .  . (

n − 1
n )(π2).

These formulas are also valid when cosn x is replaced by sinn x. (You are asked to 
prove both formulas in Exercise 87.)

JOHN WALLIS (1616–1703)

Wallis did much of his work in 
calculus prior to Newton and 
Leibniz, and he influenced the 
thinking of both of these men. 
Wallis is also credited with 
introducing the present symbol 
(∞) for infinity.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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Integrals Involving Powers of Secant and Tangent
The guidelines below can help you find integrals of the form

∫secm x tann x dx.

 Power of Tangent Is Odd and Positive

Find ∫ tan3 x

√sec x
 dx.

Solution Because you expect to use the Power Rule with u = sec x, save a factor of 
(sec x tan x) to form du and convert the remaining tangent factors to secants.

 ∫ tan3 x

√sec x
 dx = ∫(sec x)−1�2 tan3 x dx Rewrite.

 = ∫(sec x)−3�2(tan2 x)(sec x tan x) dx Rewrite.

 = ∫(sec x)−3�2(sec2 x − 1)(sec x tan x) dx Trigonometric identity

 = ∫[(sec x)1�2 − (sec x)−3�2](sec x tan x) dx Multiply.

 =
2
3
(sec x)3�2 + 2(sec x)−1�2 + C Integrate. 

GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SECANT AND TANGENT

1.  When the power of the secant is even and positive, save a secant-squared factor and convert the remaining 
factors to tangents. Then expand and integrate.

 Even Convert to tangents Save for du

∫sec2k x tann x dx = ∫(sec2 x)k−1 tann x sec2 x dx = ∫(1 + tan2 x)k−1 tann x sec2 x dx

2.  When the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining 
factors to secants. Then expand and integrate.

 Odd Convert to secants Save for du

∫secm x tan2k+1 x dx = ∫ (secm−1 x)(tan2 x)k sec x tan x dx = ∫ (secm−1 x)(sec2 x − 1)k sec x tan x dx

3.  When there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared 
factor to a secant-squared factor, then expand and repeat if necessary.

 Convert to secants

∫tann x dx = ∫ (tann−2 x)(tan2 x) dx = ∫ (tann−2 x)(sec2 x − 1) dx

4. When the integral is of the form

∫secm x dx

 where m is odd and positive, use integration by parts, as illustrated in Example 5 in Section 8.2.

5. When the first four guidelines do not apply, try converting to sines and cosines.
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 Power of Secant Is Even and Positive

Find ∫sec4 3x tan3 3x dx.

Solution Let u = tan 3x. Then du = 3 sec2 3x dx and you can write

 ∫sec4 3x tan3 3x dx = ∫(sec2 3x tan3 3x)(sec2 3x) dx Rewrite.

 = ∫(1 + tan2 3x)(tan3 3x)(sec2 3x) dx Trigonometric identity

 =
1
3∫(tan3 3x + tan5 3x)(3 sec2 3x) dx Multiply.

 =
1
3 (

tan4 3x
4

+
tan6 3x

6 ) + C Integrate.

 =
tan4 3x

12
+

tan6 3x
18

+ C. 

In Example 5, the power of the tangent is odd and positive. So, you could also find 
the integral using the procedure described in the second guideline on the preceding 
page. In Exercises 67 and 68, you are asked to show that the results obtained by these 
two procedures differ only by a constant.

 Power of Tangent Is Even

Evaluate ∫π�4

0
tan4 x dx.

Solution Because there are no secant factors, you can begin by converting a tangent-
squared factor to a secant-squared factor.

 ∫tan4 x dx = ∫ (tan2 x)(tan2 x) dx Rewrite.

 = ∫ (tan2 x)(sec2 x − 1) dx Trigonometric identity

 = ∫tan2 x sec2 x dx − ∫tan2 x dx Rewrite.

 = ∫tan2 x sec2 x dx − ∫(sec2 x − 1) dx Trigonometric identity

 =
tan3 x

3
− tan x + x + C Integrate.

Next, evaluate the definite integral.

 ∫π�4

0
tan4 x dx = [tan3 x

3
− tan x + x]

π�4

0

 =
1
3
− 1 +

π
4

 ≈ 0.119

The area represented by the definite integral is shown in Figure 8.5. Try using the 
Midpoint Rule to approximate this integral. With n = 15, you should obtain an 
approximation that is within 0.001 of the actual value. 

x

0.5

1.0

y = tan4 x

y

8
π

4
π

4 )) , 1 
π

The area of the region is approximately 
0.119.
Figure 8.5
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For integrals involving powers of cotangents and cosecants, you can follow a 
strategy similar to that used for powers of tangents and secants. Also, when integrating 
trigonometric functions, remember that it sometimes helps to convert the entire 
integrand to powers of sines and cosines.

 Converting to Sines and Cosines

Find ∫ sec x
tan2 x

 dx.

Solution Because the first four guidelines on page 535 do not apply, try converting 
the integrand to sines and cosines. In this case, you are able to integrate the resulting 
powers of sine and cosine as shown.

 ∫ sec x
tan2 x

dx = ∫( 1
cos x)(

cos x
sin x)

2

 dx

 = ∫(sin x)−2(cos x) dx

 = −(sin x)−1 + C

 = −csc x + C 

Integrals Involving Sine-Cosine Products
Integrals involving the products of sines and cosines of two angles occur in many 
applications. You can evaluate these integrals using integration by parts. However, you 
may find it simpler to use the following product-to-sum formulas.

sin mx sin nx =
1
2
(cos[(m − n)x] − cos[(m + n)x])

sin mx cos nx =
1
2
(sin[(m − n)x] + sin[(m + n)x])

cos mx cos nx =
1
2
(cos[(m − n)x] + cos[(m + n)x])

 Using a Product-to-Sum Formula

Find ∫sin 5x cos 4x dx.

Solution Considering the second product-to-sum formula above, you can write

 ∫sin 5x cos 4x dx =
1
2∫(sin x + sin 9x) dx

 =
1
2 (−cos x −

cos 9x
9 ) + C

 = −
cos x

2
−

cos 9x
18

+ C. 

 FOR FURTHER INFORMATION  To learn more about integrals involving  
sine-cosine products with different angles, see the article “Integrals of Products of Sine 
and Cosine with Different Arguments” by Sherrie J. Nicol in The College Mathematics 
Journal. To view this article, go to MathArticles.com.
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8.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Analyzing Indefinite Integrals Which integral 

requires more steps to find? Explain. Do not integrate.

 ∫ sin8 x dx ∫ sin8 x cos x dx

2.  Analyzing an Indefinite Integral Describe the 
technique for finding ∫ sec5 x tan7 x dx. Do not integrate.

 Finding an Indefinite Integral Involving 
Sine and Cosine In Exercises 3–14, find the 
indefinite integral.

 3. ∫cos5 x sin x dx  4. ∫sin7 2x cos 2x dx

 5. ∫cos3 x sin4 x dx  6. ∫sin3 3x dx

 7. ∫sin3 x cos2 x dx  8. ∫cos3 
x
3

 dx

 9. ∫sin3 2θ√cos 2θ dθ 10. ∫ cos5 t

√sin t
 dt

11. ∫cos2 3x dx 12. ∫sin4 6θ dθ

13. ∫ 8x cos2 x dx 14. ∫x2 sin2 x dx

Using Wallis’s Formulas In Exercises 15–20, use Wallis’s 
Formulas to evaluate the integral.

15. ∫π�2

0
 cos3 x dx 16. ∫π�2

0
 cos6 x dx

17. ∫π�2

0
 sin2 x dx 18. ∫π�2

0
 sin9 x dx

19. ∫π�2

0
 sin10 x dx 20. ∫π�2

0
 cos11 x dx

 Finding an Indefinite Integral Involving 
Secant and Tangent In Exercises 21–34, find 
the indefinite integral.

21. ∫sec 4x dx 22. ∫sec4 x dx

23. ∫sec3 πx dx 24. ∫tan6 3x dx

25. ∫tan5 
x
2

 dx 26. ∫tan3 
πx
2

 sec2 
πx
2

 dx

27. ∫tan3 2t sec3 2t dt

28. ∫tan5 x sec4 x dx

29. ∫sec6 4x tan 4x dx 30. ∫sec2 
x
2

 tan 
x
2

 dx

31. ∫sec5 x tan3 x dx 32. ∫tan3 3x dx

33. ∫tan2 x
sec x

 dx 34. ∫tan2 x
sec5 x

 dx

Differential Equation In Exercises 35–38, find the general 
solution of the differential equation.

35. 
dr
dθ = sin4 πθ 36. 

ds
dα = sin2 

α
2

 cos2 
α
2

37. y′ = tan3 3x sec 3x 38. y′ = √tan x sec4 x

Slope Field In Exercises 39 and 40, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration  
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

39. 
dy
dx

= sin2 x, (0, 0) 40. 
dy
dx

= sec2 x tan2 x, (0, −
1
4)

x

y

−4 4

4

−4

 

x

y

1.5

1.5

−1.5

−1.5

Slope Field In Exercises 41 and 42, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

41. 
dy
dx

=
3 sin x

y
, y(0) = 2 42. 

dy
dx

= 3√y tan2 x, y(0) = 3

 Using a Product-to-Sum Formula In 
Exercises 43– 48, find the indefinite integral.

43. ∫cos 2x cos 6x dx 44. ∫cos 5θ cos 3θ dθ

45. ∫ sin 2t cos 9t dt 46. ∫ sin 8x cos 7x dx

47. ∫sin θ sin 3θ dθ 48. ∫sin 5x sin 4x dx
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Finding an Indefinite Integral In Exercises 49–58, find 
the indefinite integral. Use a computer algebra system to 
confirm your result.

49. ∫cot3 2x dx 50. ∫tan5 
x
4

 sec4 
x
4

 dx

51. ∫csc4 3x dx 52. ∫cot3 
x
2

 csc4 
x
2

 dx

53. ∫cot2 t
csc t

 dt 54. ∫cot3 t
csc t

 dt

55. ∫ 1
sec x tan x

 dx 56. ∫sin2 x − cos2 x
cos x

 dx

57. ∫(tan4 t − sec4 t) dt 58. ∫1 − sec t
cos t − 1

 dt

 Evaluating a Definite Integral In Exercises 
59–66, evaluate the definite integral.

59. ∫π
−π

sin2 x dx 60. ∫π�3

0
tan2 x dx

61. ∫π�4

0
6 tan3 x dx 62. ∫π�3

0
sec3�2 x tan x dx

63. ∫π�2

0

cot t
1 + sin t

 dt 64. ∫π�3

π�6
sin 6x cos 4x dx

65. ∫π�2

−π�2
3 cos3 x dx

66. ∫π
0

 sin5 x dx

EXPLORING CONCEPTS

Comparing Methods In Exercises 67 and 68, (a) find 
the indefinite integral in two different ways, (b) use a 
graphing utility to graph the antiderivative (without the 
constant of integration) obtained by each method to show 
that the results differ only by a constant, and (c) verify 
analytically that the results differ only by a constant.

67. ∫sec4 3x tan3 3x dx

68. ∫sec2 x tan x dx

69.  Comparing Methods Find the indefinite integral

 ∫ sin x cos x dx

using the given method. Explain how your answers differ 
for each method.

(a) Substitution where u = sin x

(b) Substitution where u = cos x

(c) Integration by parts

(d) Using the identity sin 2x = 2 sin x cos x

70.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

 

x

y

−1.0

−

0.5

1.0

2
π

2
3π

f ′(x) = 8 sin3 x  cos4 x

(a)  Using the interval shown in the graph, approximate 
the value(s) of x where f  is maximum. Explain.

(b)  Using the interval shown in the graph, approximate 
the value(s) of x where f  is minimum. Explain.

70.  

Area In Exercises 71 and 72, find the area of the given 
region.

71. y = sin x, y = sin3 x 72. y = sin2 πx

 

0.5

1.0

4
π

2
π

y = sin x

y = sin3 x

x

y

  y = sin2   x

x

y

0.5 1.0

0.5

1.0

π

Area In Exercises 73 and 74, find the area of the region 
bounded by the graphs of the equations.

73. y = cos2 x, y = sin2 x, x = −
π
4

, x =
π
4

74. y = cos2 x, y = sin x cos x, x = −
π
2

, x =
π
4

Volume In Exercises 75 and 76, find the volume of the solid 
generated by revolving the region bounded by the graphs of 
the equations about the x-axis.

75. y = tan x, y = 0, x = −
π
4

, x =
π
4

76. y = cos 
x
2

, y = sin 
x
2

, x = 0, x =
π
2

Volume and Centroid In Exercises 77 and 78, for the 
region bounded by the graphs of the equations, find (a) the 
volume of the solid generated by revolving the region about the  
x-axis and (b) the centroid of the region.

77. y = sin x, y = 0, x = 0, x = π

78. y = cos x, y = 0, x = 0, x =
π
2
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Verifying a Reduction Formula In Exercises 79–82, 
use integration by parts to verify the reduction formula. (A 
reduction formula reduces a given integral to the sum of a 
function and a simpler integral.)

79. ∫sinn x dx = −
sinn−1 x cos x

n
+

n − 1
n

 ∫sinn−2 x dx

80. ∫cosn x dx =
cosn−1 x sin x

n
+

n − 1
n

 ∫cosn−2 x dx

81. ∫cosm x sinn x dx

  = −
cosm+1 x sinn−1 x

m + n
+

n − 1
m + n

 ∫cosm x sinn−2 x dx

82. ∫ secn x dx =
secn−2 x tan x

n − 1
+

n − 2
n − 1

 ∫ secn−2 x dx

Using Formulas In Exercises 83–86, find the indefinite 
integral by using the appropriate formula from Exercises 
79–82.

83. ∫sin5 x dx 84. ∫cos4 x dx

85. ∫ cos2 x sin4 x dx 86. ∫sec4 
2πx

5
 dx

87.  Wallis’s Formulas Use the result of Exercise 80 to prove 
the following versions of Wallis’s Formulas.

 (a) If n is odd (n ≥ 3), then

  ∫π�2

0
cosn x dx = (23)(

4
5)(

6
7) .  .  . (

n − 1
n ).

 (b) If n is even (n ≥ 2), then

  ∫π�2

0
cosn x dx = (12)(

3
4)(

5
6) .  .  . (

n − 1
n )(π2).

88.  Orthogonal Functions The inner product of two 
functions f  and g on [a, b] is given by 

 〈 f, g〉 = ∫b

a

f (x)g(x) dx.

  Two distinct functions f  and g are said to be orthogonal 
if 〈 f, g〉 = 0. Show that the following set of functions is 
orthogonal on [−π, π].

 {sin x, sin 2x, sin 3x, .  .  . , cos x, cos 2x, cos 3x, .  .  .}

89.  Fourier Series The following sum is a finite Fourier 
series.

  f (x) = ∑
N

i=1
 ai sin ix

  = a1 sin x + a2 sin 2x + a3 sin 3x + .  .  . + aN sin Nx

 (a) Use Exercise 88 to show that the nth coefficient an is

given by an =
1
π∫

π

−π
 f (x) sin nx dx.

 (b) Let f (x) = x. Find a1, a2, and a3.

The formula for π  as an infinite product was derived by English 
mathematician John Wallis in 1655. This product, called the 
Wallis Product, appeared in his book Arithmetica Infinitorum.

π
2
= (2 ∙ 2

1 ∙ 3)(
4 ∙ 4
3 ∙ 5)(

6 ∙ 6
5 ∙ 7) .  .  . (

(2n) ∙ (2n)
(2n − 1) ∙ (2n + 1)) .  .  .

In 2015, physicists Carl Hagen and Tamar Friedmann (also a 
mathematician) stumbled upon a connection between quantum 
mechanics and the Wallis Product when they applied the variational 
principle to higher energy states of the hydrogen atom. This 
principle was previously used only on the ground energy state. The 
Wallis Product appeared naturally in the midst of their calculations 
involving gamma functions.

  Quantum mechanics is the study of matter 
and light on the atomic and subatomic scale.

Consider Wallis’s method of finding a formula for π. Let

I(n) = ∫π�2

0
 sinn x dx.

From Wallis’s Formulas,

I(n) = (12)(
3
4)(

5
6) .  .  . ( 

n − 1
n )(π2), n is even (n ≥ 2)

or 

I(n) = (23)(
4
5)(

6
7) .  .  . (

n − 1
n ), n is odd (n ≥ 3).

(a)  Find I(n) for n = 2, 3, 4, and 5. What do you observe?

(b)  Show that I(n + 1) ≤ I(n) for n ≥ 2.

(c) Show that 

 lim
n→∞

 
I(2n + 1)

I(2n) = 1.

 (Hint: Use the Squeeze Theorem.)

(d) Verify the Wallis Product using the limit in part (c).

The Wallis Product

 FOR FURTHER INFORMATION For an alternative proof 
of the Wallis Product, see the article “An Elementary Proof of 
the Wallis Product Formula for pi” by Johan Wästlund in The 
American Mathematical Monthly. To view this article, go to 
MathArticles.com.

agsandrew/Shutterstock.com
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8.4 Trigonometric Substitution

 Use trigonometric substitution to find an integral.
 Use integrals to model and solve real-life applications.

Trigonometric Substitution
Now that you can find integrals involving powers of trigonometric functions, you can 
use trigonometric substitution to find integrals involving the radicals

√a2 − u2, √a2 + u2, and √u2 − a2.

The objective with trigonometric substitution is to eliminate the radical in the integrand. 
You do this by using the Pythagorean identities.

cos2 θ = 1 − sin2 θ
sec2 θ = 1 + tan2 θ
tan2 θ = sec2 θ − 1

For example, for a > 0, let u = a sin θ, where −π�2 ≤ θ ≤ π�2. Then

 √a2 − u2 = √a2 − a2 sin2 θ
 = √a2(1 − sin2 θ)
 = √a2 cos2 θ
 = a cos θ.

Note that cos θ ≥ 0, because −π�2 ≤ θ ≤ π�2.

Trigonometric Substitution (a > 0)

1. For integrals involving √a2 − u2, let  
a u

θ

a2 − u2

u = a sin θ.

 Then √a2 − u2 = a cos θ, where

−π�2 ≤ θ ≤ π�2.

2. For integrals involving √a2 + u2, let 

a

u

θ

a
2 + u

2

u = a tan θ.

 Then √a2 + u2 = a sec θ, where

−π�2 < θ < π�2.

3. For integrals involving √u2 − a2, let 

a

u

θ

u2 − a2u = a sec θ.

 Then

√u2 − a2 = {a tan θ for u > a, where 0 ≤ θ < π�2
−a tan θ for u < −a, where π�2 < θ ≤ π.

The restrictions on θ ensure that the function that defines the substitution is  
one-to-one. In fact, these are the same intervals over which the arcsine, arctangent, and 
arcsecant are defined.

Exploration
Integrating a Radical 
Function Up to this point 
in the text, you have not 
evaluated the integral

∫1

−1
√1 − x2 dx.

From geometry, you should 
be able to find the exact 
value of this integral—what 
is it? Try finding the exact 
value using the substitution

x = sin θ

and

dx = cos θ dθ.

Does your answer agree with  
the value you obtained using 
geometry?
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542 Chapter 8 Integration Techniques and Improper Integrals

 Trigonometric Substitution: u = a sin θ

Find ∫ dx

x2√9 − x2
.

Solution First, note that the basic integration rules do not apply. To use trigonometric 
substitution, you should observe that

√9 − x2

is of the form √a2 − u2. So, you can use the substitution

x = a sin θ = 3 sin θ.

Using differentiation and the triangle shown in Figure 8.6, you obtain 

dx = 3 cos θ dθ, √9 − x2 = 3 cos θ, and x2 = 9 sin2 θ.

So, trigonometric substitution yields

 ∫ dx

x2√9 − x2
= ∫ 3 cos θ dθ

(9 sin2 θ)(3 cos θ)
 Substitute.

 =
1
9∫ dθ

sin2 θ  Simplify.

 =
1
9∫csc2 θ dθ Trigonometric identity

 = −
1
9

 cot θ + C Apply Cosecant Rule.

 = −
1
9 (
√9 − x2

x ) + C Substitute for cot θ.

 = −
√9 − x2

9x
+ C.

Note that the triangle in Figure 8.6 can be used to convert the θ’s back to x’s, as shown.

 cot θ =
adj.
opp.

 =
√9 − x2

x
 

In Chapter 5, you saw how the inverse hyperbolic functions can be used to find the 
integrals

∫ du

√u2 ± a2
, ∫ du

a2 − u2 , and ∫ du

u√a2 ± u2
.

You can also find these integrals using trigonometric substitution. This is shown in the 
next example.

TECHNOLOGY Use a computer algebra system to find each indefinite integral.

∫ dx

√9 − x2
 ∫ dx

x√9 − x2

∫ dx

x2√9 − x2
 ∫ dx

x3√9 − x2

Then use trigonometric substitution to duplicate the results obtained with the 
computer algebra system.

θ

3 x

9 − x2

sin θ =
x
3

, cot θ =
√9 − x2

x
Figure 8.6
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 Trigonometric Substitution: u = a tan θ

Find ∫ dx

√4x2 + 1
.

Solution Let u = 2x, a = 1, and 2x = tan θ, as shown in Figure 8.7. Then,

dx =
1
2

 sec2 θ dθ and √4x2 + 1 = sec θ.

Trigonometric substitution produces

 ∫ 
dx

√4x2 + 1
=

1
2∫ 

sec2 θ dθ
sec θ  Substitute.

 =
1
2∫sec θ dθ Simplify.

 =
1
2

 ln∣sec θ + tan θ∣ + C Apply Secant Rule.

 =
1
2

 ln∣√4x2 + 1 + 2x∣ + C. Back-substitute.

Try checking this result with a computer algebra system. Is the result given in this form 
or in the form of an inverse hyperbolic function? 

You can extend the use of trigonometric substitution to cover integrals involving 
expressions such as (a2 − u2)n�2 by writing the expression as

(a2 − u2)n�2 = (√a2 − u2)n.

 Trigonometric Substitution: Rational Powers

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ dx
(x2 + 1)3�2.

Solution Begin by writing (x2 + 1)3�2 as

(√x2 + 1)3.
Then let a = 1 and u = x = tan θ, as shown in Figure 8.8. Using

dx = sec2 θ dθ and √x2 + 1 = sec θ

you can apply trigonometric substitution, as shown.

 ∫ dx
(x2 + 1)3�2 = ∫ dx

(√x2 + 1)3
 Rewrite denominator.

 = ∫sec2 θ dθ
sec3 θ  Substitute.

 = ∫ dθ
sec θ  Simplify.

 = ∫cos θ dθ Trigonometric identity

 = sin θ + C Apply Cosine Rule.

 =
x

√x2 + 1
+ C Back-substitute. 

θ
1

2x4x
2 + 1

tan θ = 2x, sec θ = √4x2 + 1
Figure 8.7

θ
1

xx
2  + 1

tan θ = x, sin θ =
x

√x2 + 1
Figure 8.8
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For definite integrals, it is often convenient to determine integration limits for θ 
that avoid converting back to x. You might want to review this procedure in Section 4.5, 
Examples 8 and 9.

 Converting the Limits of Integration

Evaluate ∫2

√3

√x2 − 3
x

 dx.

Solution Because √x2 − 3 has the form √u2 − a2, you can consider 

u = x, a = √3, and x = √3 sec θ

as shown in Figure 8.9. Then

dx = √3 sec θ tan θ dθ and √x2 − 3 = √3 tan θ.

To determine the upper and lower limits of integration, use the substitution 
x = √3 sec θ, as shown.

Lower Limit Upper Limit

When x = √3, sec θ = 1 When x = 2, sec θ =
2

√3
 and θ = 0.
  and θ =

π
6

.

So, you have

 ∫2

√3

√x2 − 3
x

 dx = ∫π�6

0

(√3 tan θ)(√3 sec θ tan θ)
√3 sec θ

 dθ

 = ∫π�6

0
√3 tan2 θ dθ

 = √3∫π�6

0
(sec2 θ − 1) dθ

 = √3[tan θ − θ]
0

π�6

 = √3( 1

√3
−

π
6)

 = 1 −
√3π

6

 ≈ 0.0931. 

In Example 4, try converting back to the variable x and evaluating the  
antiderivative at the original limits of integration. You should obtain

 ∫2

√3

√x2 − 3
x

 dx = √3[√x2 − 3

√3
− arcsec 

x

√3]√3

2

 = √3( 1

√3
−

π
6)

 ≈ 0.0931.

Integration  
limits for x

Integration  
limits for θ

θ

x
x2 − 3

3

sec θ =
x

√3
, tan θ =

√x2 − 3

√3
Figure 8.9
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When using trigonometric substitution to evaluate definite integrals, you must be 
careful to check that the values of θ lie in the intervals discussed at the beginning of this 
section. For instance, if in Example 4 you had been asked to evaluate the definite integral

∫−√3

−2
 
√x2 − 3

x
 dx

then using u = x and a = √3 in the interval [−2, −√3] would imply that u < −a. 
So, when determining the upper and lower limits of integration, you would have to 
choose θ such that π�2 < θ ≤ π. In this case, the integral would be evaluated as shown.

 ∫−√3

−2
 
√x2 − 3

x
 dx = ∫π

5π�6

(−√3 tan θ)(√3 sec θ tan θ) dθ
√3 sec θ

 = ∫π
5π�6

−√3 tan2 θ dθ

 = −√3∫π
5π�6

(sec2 θ − 1) dθ

 = −√3[tan θ − θ]
π

5π�6

 = −√3[(0 − π) − (− 1

√3
−

5π
6 )]

 = −1 +
√3π

6

 ≈ −0.0931

Trigonometric substitution can be used with completing the square. For instance, 
try finding the integral

∫√x2 − 2x dx.

To begin, you could complete the square and write the integral as 

∫√(x − 1)2 − 12 dx.

Because the integrand has the form

√u2 − a2

with u = x − 1 and a = 1, you can now use trigonometric substitution to find the 
integral.

Trigonometric substitution can be used to find the three integrals listed in the next 
theorem. These integrals will be encountered several times in the remainder of the text. 
When this happens, we will simply refer to this theorem. (In Exercise 65, you are asked 
to verify the formulas given in the theorem.)

THEOREM 8.2 Special Integration Formulas (a > 0)

1. ∫√a2 − u2 du =
1
2 (u√a2 − u2 + a2 arcsin 

u
a) + C

2. ∫√u2 − a2 du =
1
2
(u√u2 − a2 − a2 ln∣u + √u2 − a2∣) + C, u > a

3. ∫√u2 + a2 du =
1
2
(u√u2 + a2 + a2 ln∣u + √u2 + a2∣) + C

REMARK Recall from 
Chapter 5 that you used 
completing the square for 
integrands involving quadratic 
functions.
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Applications

 Finding Arc Length

Find the arc length of the graph of f (x) = 1
2 x2 from x = 0 to x = 1 (see Figure 8.10).

Solution Refer to the arc length formula in Section 7.4.

 s = ∫1

0
√1 + [ f ′(x)]2 dx Formula for arc length

 = ∫1

0
√1 + x2 dx f ′(x) = x

 = ∫π�4

0
sec3 θ dθ Let a = 1 and x = tan θ.

 =
1
2[sec θ tan θ + ln∣sec θ + tan θ∣]

0

π�4

 Example 5, Section 8.2

 =
1
2
[√2 + ln(√2 + 1)]

 ≈ 1.148

 Comparing Two Fluid Forces

A sealed barrel of oil (weighing 48 pounds per cubic foot) is floating in seawater 
(weighing 64 pounds per cubic foot), as shown in Figures 8.11 and 8.12. (The barrel is 
not completely full of oil. With the barrel lying on its side, the top 0.2 foot of the barrel 
is empty.) Compare the fluid forces against one end of the barrel from the inside and 
from the outside. (Assume the radius of the barrel is 1 foot and, with the barrel lying 
on its side, the top 0.6 foot of the barrel is above the water.)

Solution In Figure 8.12, locate the coordinate system with the origin at the center 
of the circle

x2 + y2 = 1.

To find the fluid force against an end of the barrel from the inside, integrate between 
−1 and 0.8 (using a weight of w = 48).

 F = w∫d

c

h(y)L(y) dy General equation (See Section 7.7.)

 Finside = 48∫0.8

−1
(0.8 − y)(2)√1 − y2 dy

 = 76.8∫0.8

−1
√1 − y2 dy − 96∫0.8

−1
y√1 − y2 dy

To find the fluid force from the outside, integrate between −1 and 0.4 (using a weight 
of w = 64).

 Foutside = 64∫0.4

−1
(0.4 − y)(2)√1 − y2 dy

 = 51.2∫0.4

−1
√1 − y2 dy − 128∫0.4

−1
y√1 − y2 dy

The details of integration are left for you to complete in Exercise 64. Intuitively, would 
you say that the force from the oil (the inside) or the force from the seawater (the 
outside) is greater? By evaluating these two integrals, you can determine that 

Finside ≈ 121.3 pounds and Foutside ≈ 93.0 pounds. 

1

1
x

x2

1
2

1
2

1, 

f(x) = 

(0, 0)

y

))

The arc length of the curve from (0, 0) 
to (1, 12)
Figure 8.10

The barrel is not quite full of oil––the 
top 0.2 foot of the barrel is empty.
Figure 8.11

x

1

1

−1

−1

x2 + y2 = 1

0.4 ft
0.8 ft

y

Figure 8.12
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8.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.8.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Trigonometric Substitution State the trigonometric 

substitution you would use to find the indefinite integral. 
Do not integrate.

 (a) ∫(9 + x2)−2 dx (b) ∫√4 − x2 dx

 (c) ∫ x2

√25 − x2
 dx (d) ∫x2(x2 − 25)3�2 dx

2.  Trigonometric Substitution Why is completing 
the square useful when you are considering integration by 
trigonometric substitution?

Using Trigonometric Substitution In Exercises 3–6, 
find the indefinite integral using the substitution x = 4 sin θ.

 3. ∫ 1
(16 − x2)3�2 dx  4. ∫ 4

x2√16 − x2
 dx

 5. ∫√16 − x2

x
 dx  6. ∫ x3

√16 − x2
 dx

 Using Trigonometric Substitution In 
Exercises 7–10, find the indefinite integral using 
the substitution x = 5 sec θ.

 7. ∫ 1

√x2 − 25
 dx  8. ∫√x2 − 25

x
 dx

 9. ∫x3√x2 − 25 dx 10. ∫ x3

√x2 − 25
 dx

Using Trigonometric Substitution In Exercises 11–14, 
find the indefinite integral using the substitution x = 2 tan θ.

11. ∫ 
x
2
√4 + x2 dx 12. ∫ 

x3

4√4 + x2
 dx

13. ∫ 
4

(4 + x2)2 dx 14. ∫ 
2x2

(4 + x2)2 dx

Special Integration Formulas In Exercises 15–18, use 
the Special Integration Formulas (Theorem 8.2) to find the 
indefinite integral.

15. ∫ √49 − 16x2 dx 16. ∫√5x2 − 1 dx

17. ∫ √36 − 5x2 dx 18. ∫ √9 + 4x2

 Finding an Indefinite Integral In Exercises 
19–32, find the indefinite integral.

19. ∫√16 − 4x2 dx 20. ∫ 1

√x2 − 4
 dx

21. ∫√1 − x2

x4  dx 22. ∫√25x2 + 4
x4  dx

23. ∫ 1

x√4x2 + 9
 dx 24. ∫ 1

x√9x2 + 1
 dx

25. ∫ −3
(x2 + 3)3�2 dx 26. ∫ 1

(x2 + 5)3�2 dx

27. ∫ex√1 − e2x dx 28. ∫√1 − x

√x
 dx

29. ∫ 1
4 + 4x2 + x4 dx 30. ∫ x3 + x + 1

x4 + 2x2 + 1
 dx

31. ∫arcsec 2x dx, x >
1
2

 32. ∫x arcsin x dx

 Completing the Square In Exercises 33–36, 
complete the square and find the indefinite integral.

33. ∫ x

√4x − x2
 dx 34. ∫ x2

√2x − x2
 dx

35. ∫ x

√x2 + 6x + 12
 dx 36. ∫ x

√x2 − 6x + 5
 dx

 Converting the Limits of Integration In 
Exercises 37–42, evaluate the definite integral 
using (a) the given integration limits and (b) the 
limits obtained by trigonometric substitution.

37. ∫√3�2

0

t2

(1 − t2)3�2 dt 38. ∫√3�2

0

1
(1 − t2)5�2 dt

39. ∫3

0

x3

√x2 + 9
 dx 

40. ∫3�5

0
√9 − 25x2 dx

41. ∫6

4

x2

√x2 − 9
 dx

42. ∫8

4

√x2 − 16
x2  dx

EXPLORING CONCEPTS
Choosing a Method In Exercises 43 and 44, state the 
method of integration you would use to find each integral. 
Explain why you chose that method. Do not integrate.

43. ∫x√x2 + 1 dx 44. ∫x2√x2 − 1 dx

45. Comparing Methods

 (a) Find the integral ∫ 
x

√1 − x2
 dx using u-substitution.

   Then find the integral using trigonometric 
substitution. Discuss the results.

 (b) Find the integral ∫ x2

x2 + 9
 dx algebraically using

   x2 = (x2 + 9) − 9. Then find the integral using 
trigonometric substitution. Discuss the results.
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46.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

2 4

−4

2

4
f ′(x) =

x2 + 4
2x

(a)  Identify the open interval(s) on which the graph 
of f  is increasing or decreasing. Explain.

(b)  Identify the open interval(s) on which the graph 
of f  is concave upward or concave downward. 
Explain.

46.  

True or False? In Exercises 47–50, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

47. If x = sin θ, then

 ∫ dx

√1 − x2
= ∫dθ.

48. If x = sec θ, then

 ∫√x2 − 1
x

 dx = ∫sec θ tan θ dθ.

49. If x = tan θ, then

 ∫√3

0

dx
(1 + x2)3�2 = ∫4π�3

0
 cos θ dθ.

50. If x = sin θ, then

 ∫1

−1
x2√1 − x2 dx = 2∫π�2

0
sin2 θ cos2 θ dθ.

51.  Area Find the area enclosed by the ellipse 
x2

a2 +
y2

b2 = 1
shown in the figure.

 

b

a
x

y

y = − b
a

a2 − x2

y =  b
a

a2 − x2
 

x
a

a

−a

−a
h

y

 Figure for 51 Figure for 52

52.  Area Find the area of the shaded region of the circle of 
radius a when the chord is h units (0 < h < a) from the center 
of the circle (see figure).

Arc Length In Exercises 53 and 54, find the arc length of 
the graph of the function over the given interval.

53. y = ln x, [1, 5] 54. y =
x2

4
− 2x, [4, 8]

Volume of a Torus In Exercises 55 and 56, find the volume 
of the torus generated by revolving the region bounded by the 
graph of the circle about the y-axis.

55. (x − 3)2 + y2 = 1

56. (x − h)2 + y2 = r2, h > r

Centroid In Exercises 57 and 58, find the centroid of the 
region bounded by the graphs of the inequalities.

57. y ≤ 3

√x2 + 9
, y ≥ 0, x ≥ −4, x ≤ 4

58. y ≤ 1
4 x2, (x − 4)2 + y2 ≤ 16, y ≥ 0

59.  Volume The axis of a storage tank in the form of a right 
circular cylinder is horizontal (see figure). The radius and 
length of the tank are 1 meter and 3 meters, respectively.

3 m

1 m

d

(a)  Determine the volume of fluid in the tank as a function of 
its depth d.

(b) Use a graphing utility to graph the function in part (a).

(c) Design a dip stick for the tank with markings of 14, 12, and 34.

(d)  Fluid is entering the tank at a rate of 1
4 cubic meter per 

minute. Determine the rate of change of the depth of the 
fluid as a function of its depth d.

(e)  Use a graphing utility to graph the function in part (d). 
When will the rate of change of the depth be minimum? 
Does this agree with your intuition? Explain.

60.  Field Strength The field strength H of a magnet of length 
2L on a particle r units from the center of the magnet is

 H =
2mL

(r2 + L2)3�2

where ±m are the poles of the magnet (see figure). Find the 
average field strength as the particle moves from 0 to R units 
from the center by evaluating the integral

 
1
R∫

R

0

2mL
(r2 + L2)3�2 dr. 

−m

2L
r

+m
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61.  Tractrix A person moves from the origin along the positive 
y-axis pulling a weight at the end of a 12-meter rope (see 
figure). Initially, the weight is located at the point (12, 0).

 

x

2

2

4

4

6

6

8

8

10

10

12

12

x

12

(x, y)

Weight

y

 (a)  Show that the slope of the tangent line of the path of the 
weight is

  
dy
dx

= −
√144 − x2

x
.

 (b)  Use the result of part (a) to find the equation of the path 
of the weight. Use a graphing utility to graph the path and 
compare it with the figure.

 (c)  Find any vertical asymptotes of the graphs in part (b).

 (d)  When the person has reached the point (0, 12), how far has 
the weight moved?

62. Conjecture

 (a)  Find formulas for the distances between (0, 0) and (a, a2), 
a > 0, along the line between these points and along the 
parabola y = x2.

 (b)  Use the formulas from part (a) to find the distances for 
a = 1, a = 10, and a = 100.

 (c)  Make a conjecture about the difference between the two 
distances as a increases.

64.  Fluid Force Evaluate the following two integrals, which 
yield the fluid forces given in Example 6.

 (a) Finside = 48∫0.8

−1
(0.8 − y)(2)√1 − y2 dy

 (b) Foutside = 64∫0.4

−1
(0.4 − y)(2)√1 − y2 dy

65.  Verifying Formulas Use trigonometric substitution to 
verify the integration formulas given in Theorem 8.2.

66.  Arc Length Show that the arc length of the graph of 
y = sin x on the interval [0, 2π] is equal to the circumference 
of the ellipse x2 + 2y2 = 2 (see figure).

y

x
π π2

−

−

2
3π

π

2
π

π

67.  Area of a Lune The crescent-shaped region bounded by 
two circles forms a lune (see figure). Find the area of the lune 
given that the radius of the smaller circle is 3 and the radius of 
the larger circle is 5.

3

5

68.  Area Two circles of radius 3, with centers at (−2, 0) and 
(2, 0), intersect as shown in the figure. Find the area of the 
shaded region.

y

x
−2−3−4−6 2 3 4 6

−2

−4

4

PUTNAM EXAM CHALLENGE
69. Evaluate

 ∫1

0
 
ln(x + 1)

x2 + 1
 dx.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

Find the fluid force on  
a circular observation  
window of radius 1 foot 
in a vertical wall of a 
large water-filled tank  
at a fish hatchery when  
the center of the window 
is (a) 3 feet and (b) d feet 
(d > 1) below the water’s 
surface (see figure). Use 
trigonometric substitution  

x

2

3

2−2

3 − y

y
x2 + y2 = 1

 
to evaluate the one integral.  
Water weighs 62.4 pounds  
per cubic foot. (Recall that  
in Section 7.7 in a similar  
problem, you evaluated one  
integral by a geometric formula 
and the other by observing that 
the integrand was odd.)

63. Fluid Force

Andrea Izzotti/Shutterstock.com
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8.5 Partial Fractions

 Understand the concept of partial fraction decomposition.
 Use partial fraction decomposition with linear factors to integrate rational functions.
 Use partial fraction decomposition with quadratic factors to integrate rational  

 functions.

Partial Fractions
This section examines a procedure for decomposing a rational function into simpler 
rational functions to which you can apply the basic integration formulas. This 
procedure is called the method of partial fractions. To see the benefit of the method 
of partial fractions, consider the integral

∫ 1
x2 − 5x + 6

 dx.

To find this integral without partial fractions, you can complete the square and use 
trigonometric substitution (see Figure 8.13) to obtain

 ∫ 1
x2 − 5x + 6

 dx = ∫ dx
(x − 5�2)2 − (1�2)2 a = 1

2, x − 5
2 = 1

2 sec θ

 = ∫(1�2) sec θ tan θ dθ
(1�4) tan2 θ  dx = 1

2 sec θ tan θ dθ

 = 2∫csc θ dθ

 = 2 ln∣csc θ − cot θ∣ + C

 = 2 ln∣ 2x − 5

2√x2 − 5x + 6
−

1

2√x2 − 5x + 6∣ + C

 = 2 ln∣ x − 3

√x2 − 5x + 6∣ + C

 = ln∣ (x − 3)2
x2 − 5x + 6∣ + C

 = ln∣ (x − 3)2
(x − 2)(x − 3)∣ + C

 = ln∣x − 3
x − 2∣ + C

 = ln∣x − 3∣ − ln∣x − 2∣ + C.

Now, suppose you had observed that

1
x2 − 5x + 6

=
1

x − 3
−

1
x − 2

. Partial fraction decomposition

Then you could find the integral, as shown.

∫ 1
x2 − 5x + 6

 dx = ∫( 1
x − 3

−
1

x − 2) dx = ln∣x − 3∣ − ln∣x − 2∣ + C

This method is clearly preferable to trigonometric substitution. Its use, however,  
depends on the ability to factor the denominator, x2 − 5x + 6, and to find the partial 
fractions

1
x − 3

 and −
1

x − 2
.

In this section, you will study techniques for finding partial fraction decompositions.

θ

2x −
 5

1

x2 − 5x + 62

sec θ = 2x − 5
Figure 8.13

JOHN BERNOULLI (1667–1748)

The method of partial 
fractions was introduced 
by John Bernoulli, a Swiss 
mathematician who was 
instrumental in the early 
development of calculus. John 
Bernoulli was a professor at 
the University of Basel and 
taught many outstanding 
students, the most famous of 
whom was Leonhard Euler.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection
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Recall from algebra that every polynomial with real coefficients can be factored 
into linear and irreducible quadratic factors.* For instance, the polynomial 

x5 + x4 − x − 1

can be written as

 x5 + x4 − x − 1 = x4(x + 1) − (x + 1)
 = (x4 − 1)(x + 1)
 = (x2 + 1)(x2 − 1)(x + 1)
 = (x2 + 1)(x + 1)(x − 1)(x + 1)
 = (x − 1)(x + 1)2(x2 + 1)

where (x − 1) is a linear factor, (x + 1)2 is a repeated linear factor, and (x2 + 1) is an 
irreducible quadratic factor. Using this factorization, you can write the partial fraction 
decomposition of the rational expression

N(x)
x5 + x4 − x − 1

where N(x) is a polynomial of degree less than 5, as shown.

N(x)
(x − 1)(x + 1)2(x2 + 1) =

A
x − 1

+
B

x + 1
+

C
(x + 1)2 +

Dx + E
x2 + 1

Decomposition of N (x)�D (x) into Partial Fractions

1.  Divide when improper: When N(x)�D(x) is an improper fraction (that is,  
when the degree of the numerator is greater than or equal to the degree of the  
denominator), divide the denominator into the numerator to obtain

N(x)
D(x) = (a polynomial) +

N1(x)
D(x)

  where the degree of N1(x) is less than the degree of D(x). Then apply  
Steps 2, 3, and 4 to the proper rational expression N1(x)�D(x).

2.  Factor denominator: Completely factor the denominator into factors of  
the form

(px + q)m and (ax2 + bx + c)n

 where ax2 + bx + c is irreducible.

3.  Linear factors: For each factor of the form (px + q)m, the partial fraction 
decomposition must include the following sum of m fractions.

A1

(px + q) +
A2

(px + q)2 + .  .  . +
Am

(px + q)m

4.  Quadratic factors: For each factor of the form (ax2 + bx + c)n, the partial  
fraction decomposition must include the following sum of n fractions. 

B1x + C1

ax2 + bx + c
+

B2x + C2

(ax2 + bx + c)2 + .  .  . +
Bnx + Cn

(ax2 + bx + c)n

* For a review of factorization techniques, see Precalculus, 10th edition, or Precalculus: Real Mathematics, Real 
People, 7th edition, both by Ron Larson (Boston, Massachusetts: Cengage Learning, 2018 and 2016, respectively).

REMARK In precalculus,  
you learned how to combine 
functions such as

1
x − 2

+
−1

x + 3
=

5
(x − 2)(x + 3).

The method of partial fractions 
shows you how to reverse this 
process.

5
(x − 2)(x + 3) =

?
x − 2

+
?

x + 3
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Linear Factors
Algebraic techniques for determining the constants in the numerators of a partial fraction 
decomposition with linear or repeated linear factors are shown in Examples 1 and 2.

 Distinct Linear Factors

Write the partial fraction decomposition for 

1
x2 − 5x + 6

.

Solution Because x2 − 5x + 6 = (x − 3)(x − 2), you should include one partial 
fraction for each factor and write

1
x2 − 5x + 6

=
A

x − 3
+

B
x − 2

where A and B are to be determined. Multiplying this equation by the least common 
denominator (x − 3)(x − 2) yields the basic equation

1 = A(x − 2) + B(x − 3). Basic equation

Because this equation is to be true for all x, you can substitute any convenient values 
for x to obtain equations in A and B. The most convenient values are the ones that make 
particular factors equal to 0.

To solve for A, let x = 3.

 1 = A(3 − 2) + B(3 − 3) Let x = 3 in basic equation.

 1 = A(1) + B(0)
 1 = A

To solve for B, let x = 2.

 1 = A(2 − 2) + B(2 − 3) Let x = 2 in basic equation.

 1 = A(0) + B(−1)
 −1 = B

So, the decomposition is

1
x2 − 5x + 6

=
1

x − 3
−

1
x − 2

as shown at the beginning of this section. 

Be sure you see that the method of partial fractions is practical only for integrals 
of rational functions whose denominators factor “nicely.” For instance, when the 
denominator in Example 1 is changed to

x2 − 5x + 5

its factorization as

x2 − 5x + 5 = [x −
5 + √5

2 ][x −
5 − √5

2 ]
would be too cumbersome to use with partial fractions. In such cases, you should use 
completing the square or a computer algebra system to perform the integration. When 
you do this, you should obtain

∫ 1
x2 − 5x + 5

 dx =
√5
5

 ln∣2x − √5 − 5∣ − √5
5

 ln∣2x + √5 − 5∣ + C.

REMARK Note that the  
substitutions for x in Example 1 
are chosen for their convenience 
in determining values for A and 
B; x = 3 is chosen to eliminate 
the term B(x − 3), and x = 2 
is chosen to eliminate the term 
A(x − 2). The goal is to make 
convenient substitutions whenever 
possible.

 FOR FURTHER INFORMATION
To learn a different method for 
finding partial fraction  
decompositions, called the 
Heaviside Method, see the article 
“Calculus to Algebra Connections 
in Partial Fraction Decomposition” 
by Joseph Wiener and Will 
Watkins in The AMATYC Review.
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 Repeated Linear Factors

Find ∫5x2 + 20x + 6
x3 + 2x2 + x

 dx.

Solution Because

x3 + 2x2 + x = x(x2 + 2x + 1) = x(x + 1)2

you should include one partial fraction for each power of x and (x + 1) and write

5x2 + 20x + 6
x(x + 1)2 =

A
x
+

B
x + 1

+
C

(x + 1)2.

Multiplying by the least common denominator x(x + 1)2 yields the basic equation

5x2 + 20x + 6 = A(x + 1)2 + Bx(x + 1) + Cx. Basic equation

To solve for A, let x = 0. This eliminates the B and C terms and yields

6 = A(1) + 0 + 0

6 = A.

To solve for C, let x = −1. This eliminates the A and B terms and yields

 5 − 20 + 6 = 0 + 0 − C

 9 = C.

The most convenient choices for x have been used, so to find the value of B, you can 
use any other value of x along with the calculated values of A and C. Using x = 1, 
A = 6, and C = 9 produces

 5 + 20 + 6 = A(4) + B(2) + C

 31 = 6(4) + 2B + 9

 −2 = 2B

 −1 = B.

So, it follows that

 ∫5x2 + 20x + 6
x(x + 1)2  dx = ∫(6x −

1
x + 1

+
9

(x + 1)2) dx

 = 6 ln∣x∣ − ln∣x + 1∣ + 9
(x + 1)−1

−1
+ C

 = ln∣ x6

x + 1∣ − 9
x + 1

+ C.

Try checking this result by differentiating. Include algebra in your check, simplifying
the derivative until you have obtained the original integrand. 

It is necessary to make as many substitutions for x as there are unknowns 
(A, B, C, .  .  .) to be determined. For instance, in Example 2, three substitutions 
(x = 0, x = −1, and x = 1) were made to solve for A, B, and C.

TECHNOLOGY Most computer algebra systems, such as Maple, Mathematica, 
and the TI-Nspire, can be used to convert a rational function to its partial fraction 
decomposition. For instance, using Mathematica, you obtain the following.

Apart [5 ∗ x ⋀ 2 + 20 ∗ x + 6)�(x ∗ (x + 1) ⋀ 2), x]
6
x
+

9
(1 + x)2 −

1
1 + x

 FOR FURTHER INFORMATION
For an alternative approach to 
using partial fractions, see the  
article “A Shortcut in Partial 
Fractions” by Xun-Cheng Huang  
in The College Mathematics 
Journal.
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Quadratic Factors
When using the method of partial fractions with linear factors, a convenient choice of x 
immediately yields a value for one of the coefficients. With quadratic factors, a system 
of linear equations usually has to be solved, regardless of the choice of x.

 Distinct Linear and Quadratic Factors

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ 2x3 − 4x − 8
(x2 − x)(x2 + 4) dx.

Solution Because

(x2 − x)(x2 + 4) = x(x − 1)(x2 + 4)

you should include one partial fraction for each factor and write

2x3 − 4x − 8
x(x − 1)(x2 + 4) =

A
x
+

B
x − 1

+
Cx + D
x2 + 4

.

Multiplying by the least common denominator

x(x − 1)(x2 + 4)

yields the basic equation

2x3 − 4x − 8 = A(x − 1)(x2 + 4) + Bx(x2 + 4) + (Cx + D)(x)(x − 1).

To solve for A, let x = 0 and obtain

 −8 = A(−1)(4) + 0 + 0

 2 = A.

To solve for B, let x = 1 and obtain

 −10 = 0 + B(5) + 0

 −2 = B.

At this point, C and D are yet to be determined. You can find these remaining constants 
by choosing two other values for x and solving the resulting system of linear equations. 
Using x = −1, A = 2, and B = −2, you can write

 −6 = (2)(−2)(5) + (−2)(−1)(5) + (−C + D)(−1)(−2)
 2 = −C + D.

For x = 2, you have

 0 = (2)(1)(8) + (−2)(2)(8) + (2C + D)(2)(1)
 8 = 2C + D.

Solving the linear system by subtracting the first equation from the second

 −C + D = 2

 2C + D = 8

yields C = 2. Consequently, D = 4, and it follows that

 ∫ 2x3 − 4x − 8
x(x − 1)(x2 + 4) dx = ∫(2x −

2
x − 1

+
2x

x2 + 4
+

4
x2 + 4) dx

 = 2 ln∣x∣ − 2 ln∣x − 1∣ + ln(x2 + 4) + 2 arctan 
x
2
+ C.
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In Examples 1, 2, and 3, the solution of the basic equation began with substituting 
values of x that made the linear factors equal to 0. This method works well when 
the partial fraction decomposition involves linear factors. When the decomposition 
involves only quadratic factors, however, an alternative procedure is often more 
convenient. For instance, try writing the right side of the basic equation in polynomial 
form and equating the coefficients of like terms. This method is shown in Example 4.

 Repeated Quadratic Factors

Find ∫8x3 + 13x
(x2 + 2)2  dx.

Solution Include one partial fraction for each power of (x2 + 2) and write

8x3 + 13x
(x2 + 2)2 =

Ax + B
x2 + 2

+
Cx + D
(x2 + 2)2.

Multiplying by the least common denominator (x2 + 2)2 yields the basic equation

8x3 + 13x = (Ax + B)(x2 + 2) + Cx + D.

Expanding the basic equation and collecting like terms produce

8x3 + 13x = Ax3 + 2Ax + Bx2 + 2B + Cx + D

8x3 + 13x = Ax3 + Bx2 + (2A + C)x + (2B + D).

Now, you can equate the coefficients of like terms on opposite sides of the equation.

 8 = A 0 = 2B + D

8x3 + 0x2 + 13x + 0 = Ax3 + Bx2 + (2A + C)x + (2B + D)

 13 = 2A + C

Using the known values A = 8 and B = 0, you can write

13 = 2A + C  13 = 2(8) + C  −3 = C

 0 = 2B + D   0 = 2(0) + D   0 = D.

Finally, you can conclude that

 ∫8x3 + 13x
(x2 + 2)2  dx = ∫( 8x

x2 + 2
+

−3x
(x2 + 2)2) dx

 = 4 ln(x2 + 2) + 3
2(x2 + 2) + C. 

0 = B

TECHNOLOGY You can use a graphing utility to confirm the decomposition 
found in Example 4. To do this, graph

y1 =
8x3 + 13x
(x2 + 2)2  

10

−6

−10

6

Graphs of y1
and y2 are
identical.and

y2 =
8x

x2 + 2
+

−3x
(x2 + 2)2

in the same viewing window. The graphs  
should be identical, as shown at the right.
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When integrating rational expressions, keep in mind that for improper rational 
expressions such as

N(x)
D(x) =

2x3 + x2 − 7x + 7
x2 + x − 2

you must first divide to obtain

N(x)
D(x) = 2x − 1 +

−2x + 5
x2 + x − 2

.

The proper rational expression is then decomposed into its partial fractions by the usual 
methods. 

Here are some guidelines for solving the basic equation that is obtained in a partial 
fraction decomposition.

GUIDELINES FOR SOLVING THE BASIC EQUATION

Linear Factors

1.  Substitute the roots of the distinct linear factors in the basic equation.

2.  For repeated linear factors, use the coefficients determined in the first  
guideline to rewrite the basic equation. Then substitute other convenient  
values of x and solve for the remaining coefficients.

Quadratic Factors

1.  Expand the basic equation.

2.  Collect terms according to powers of x.

3.  Equate the coefficients of like powers to obtain a system of linear equations 
involving A, B, C, and so on.

4.  Solve the system of linear equations.

Before concluding this section, here are a few things you should remember. First, 
it is not necessary to use the partial fractions technique on all rational functions. For 
instance, the following integral is found more easily by the Log Rule.

 ∫ x2 + 1
x3 + 3x − 4

 dx =
1
3∫ 3x2 + 3

x3 + 3x − 4
 dx

 =
1
3

 ln∣x3 + 3x − 4∣ + C

Second, when the integrand is not in reduced form, reducing it may eliminate the need 
for partial fractions, as shown in the following integral.

 ∫ x2 − x − 2
x3 − 2x − 4

 dx = ∫ (x + 1)(x − 2)
(x − 2)(x2 + 2x + 2) dx

 = ∫ x + 1
x2 + 2x + 2

 dx

 =
1
2

 ln∣x2 + 2x + 2∣ + C

Finally, partial fractions can be used with some quotients involving transcendental 
functions. For instance, the substitution u = sin x allows you to write

∫ cos x
(sin x)(sin x − 1) dx = ∫ du

u(u − 1). u = sin x, du = cos x dx 

 FOR FURTHER INFORMATION
To read about another method of 
evaluating integrals of rational 
functions, see the article “Alternate 
Approach to Partial Fractions to 
Evaluate Integrals of Rational 
Functions” by N. R. Nandakumar 
and Michael J. Bossé in The Pi  
Mu Epsilon Journal. To view this 
article, go to MathArticles.com.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



8.5 Partial Fractions 557

8.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Partial Fraction Decomposition Write the form 

of the partial fraction decomposition of each rational 
expression. Do not solve for the constants.

 (a) 
4

x2 − 8x
 (b) 

2x2 + 1
(x − 3)3

(c) 
2x − 3

x3 + 10x
 (d) 

2x − 1
x(x2 + 1)2

2.  Guidelines for Solving the Basic Equation In 
your own words, explain how to solve a basic equation 
obtained in a partial fraction decomposition that involves 
quadratic factors.

 Using Partial Fractions In Exercises 3–20, use 
partial fractions to find the indefinite integral.

 3. ∫ 1
x2 − 9

 dx  4. ∫ 2
9x2 − 1

 dx

5. ∫ 5
x2 + 3x − 4

 dx  6. ∫ 3 − x
3x2 − 2x − 1

 dx

7. ∫x2 + 12x + 12
x3 − 4x

 dx  8. ∫x3 − x + 3
x2 + x − 2

 dx

9. ∫2x3 − 4x2 − 15x + 5
x2 − 2x − 8

 dx 10. ∫ x + 2
x2 + 5x

 dx

11. ∫4x2 + 2x − 1
x3 + x2  dx 12. ∫ 5x − 2

(x − 2)2 dx

13. ∫ x2 − 6x + 2
x3 + 2x2 + x

 dx 14. ∫ 8x
x3 + x2 − x − 1

 dx

15. ∫ 9 − x2

7x3 + x
 dx 16. ∫ 6x

x3 − 8
 dx

17. ∫ x2

x4 − 2x2 − 8
 dx 18. ∫ x

16x4 − 1
 dx

19. ∫ x2 + 5
x3 − x2 + x + 3

 dx

20. ∫ x2 + 6x + 4
x4 + 8x2 + 16

 dx

 Evaluating a Definite Integral In Exercises 
21–24, use partial fractions to evaluate the definite 
integral. Use a graphing utility to verify your 
result.

21. ∫2

0

3
4x2 + 5x + 1

 dx 22. ∫5

1

x − 1
x2(x + 1) dx

23. ∫2

1

x + 1
x(x2 + 1) dx 24. ∫1

0

x2 − x
x2 + x + 1

 dx

Finding an Indefinite Integral In Exercises 25–32, use 
substitution and partial fractions to find the indefinite integral.

25. ∫ sin x
cos x + cos2 x

 dx 26. ∫ 5 cos x
sin2 x + 3 sin x − 4

 dx

27. ∫ sec2 x
tan2 x + 5 tan x + 6

 dx 28. ∫ sec2 x
(tan x)(tan x + 1) dx

29. ∫ ex

(ex − 1)(ex + 4) dx 30. ∫ ex

(e2x + 1)(ex − 1) dx

31. ∫ √x
x − 4

 dx 32. ∫ 1

x(√3 − √x)
 dx

Verifying a Formula In Exercises 33–36, use the method of 
partial fractions to verify the integration formula.

33. ∫ 1
x(a + bx) dx =

1
a

 ln∣ x
a + bx∣ + C

34. ∫ 1
a2 − x2 dx =

1
2a

 ln∣a + x
a − x∣ + C

35. ∫ x
(a + bx)2 dx =

1
b2 ( a

a + bx
+ ln∣a + bx∣) + C

36. ∫ 1
x2(a + bx) dx = −

1
ax

−
b
a2 ln∣ x

a + bx∣ + C

EXPLORING CONCEPTS
Choosing a Method In Exercises 37–39, state the 
method of integration you would use to find each integral. 
Explain why you chose that method. Do not integrate.

37. ∫ x + 1
x2 + 2x − 8

 dx 38. ∫ 7x + 4
x2 + 2x − 8

 dx

39. ∫ 4
x2 + 2x + 5

 dx

 40.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

2−2 4
−2

2

4

f ′(x) = 5x3 + 10x
(x2 + 1)2

(a) Is f (3) − f (2) > 0? Explain.

(b)  Which is greater, the area under the graph of f ′ from 
1 to 2 or the area under the graph of f ′ from 3 to 4?

40.  
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Area In Exercises 41 – 44, use partial fractions to find the 
area of the given region.

41. y =
12

x2 + 5x + 6
 42. y =

15
x2 + 7x + 12

 

x

y

1 2 3 4 5

1

2

4

  

x

y

1 2

1

2

43. y =
15

9 − x2 44. y =
7

16 − x2

 

x

y

−1 1 2 3

1

2

3

4

x

y

1 2 3 4

1

2

3

45.  Modeling Data The predicted cost C (in hundreds of 
thousands of dollars) for a company to remove p% of a 
chemical from its waste water is shown in the table.

 
P 0 10 20 30 40

C 0 0.7 1.0 1.3 1.7

P 50 60 70 80 90

C 2.0 2.7 3.6 5.5 11.2

 A model for the data is given by

 C =
124p

(10 + p)(100 − p)

  for 0 ≤ p < 100. Use the model to find the average cost of 
removing between 75% and 80% of the chemical.

46.  Average Value of a Function Find the average value of

 f (x) = 1
4x2 − 1

 from x = 1 to x = 4.

47.  Volume and Centroid Consider the region bounded by 
the graphs of

 y =
2x

x2 + 1
, y = 0, x = 0, and x = 3.

 (a)  Find the volume of the solid generated by revolving the 
region about the x-axis.

 (b) Find the centroid of the region.

48. Volume Consider the region bounded by the graph of

 y2 =
(2 − x)2
(1 + x)2

  on the interval [0, 1]. Find the volume of the solid generated 
by revolving this region about the x-axis.

49.  Epidemic Model A single infected individual enters a 
community of n susceptible individuals. Let x be the number 
of newly infected individuals at time t. The common epidemic 
model assumes that the disease spreads at a rate proportional 
to the product of the total number infected and the number 
not yet infected. So, dx�dt = k(x + 1)(n − x) and you obtain

 ∫ 1
(x + 1)(n − x) dx = ∫k dt.

 Solve for x as a function of t.

51. Using Two Methods Evaluate

 ∫1

0

x
1 + x4 dx

 in two different ways, one of which is partial fractions.

PUTNAM EXAM CHALLENGE

52. Prove 
22
7

− π = ∫1

0
 
x4(1 − x)4

1 + x2  dx.

53.  Let p(x) be a nonzero polynomial of degree less than 
1992 having no nonconstant factor in common with 
x3 − x. Let

 
d1992

dx1992 ( p(x)
x3 − x) =

f (x)
g(x)

  for polynomials f (x) and g(x). Find the smallest possible 
degree of f (x).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

In a chemical reaction, one unit of compound Y and one unit 
of compound Z are converted into a single unit of compound 
X. Let x be the amount of compound X formed. The rate of 
formation of X is proportional 
to the product of the 
amounts of unconverted 
compounds Y and Z. So, 
dx�dt = k(y0 − x)(z0 − x),
where y0 and z0 are 
the initial amounts of 
compounds Y and Z. From 
this equation, you obtain

 ∫ 1
(y0 − x)(z0 − x) dx = ∫k dt.

(a)  Solve for x as a function of t.

(b)  Use the result of part (a) to find x as t→∞ for  
(1) y0 < z0, (2) y0 > z0, and (3) y0 = z0.

50. Chemical Reaction

,

Dextroza/Shutterstock.com
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8.6 Numerical Integration

 Approximate a definite integral using the Trapezoidal Rule.
 Approximate a definite integral using Simpson’s Rule.
 Analyze the approximate errors in the Trapezoidal Rule and Simpson’s Rule.

The Trapezoidal Rule
Some elementary functions simply do not have antiderivatives that are elementary 
functions. For example, there is no elementary function that has any of the following 
functions as its derivative.

3√x√1 − x,  √x cos x,  
cos x

x
,  √1 − x3,  sin x2

If you need to evaluate a definite integral involving a function whose antiderivative 
cannot be found, then while the Fundamental Theorem of Calculus is still true, it cannot 
be easily applied. In this case, it is easier to resort to an approximation technique. Two 
such techniques are described in this section.

One way to approximate a definite integral is to use n trapezoids, as shown in 
Figure 8.14. In the development of this method, assume that f  is continuous and  
positive on the interval [a, b]. So, the definite integral

∫b

a

 f(x) dx

represents the area of the region bounded by the graph of f  and the x-axis, from 
x = a to x = b. First, partition the interval [a, b] into n subintervals, each of width 
∆x = (b − a)�n, such that

a = x0 < x1 < x2 < .  .  . < xn = b.

Then form a trapezoid for each subinterval (see Figure 8.15). The area of the ith 
trapezoid is

Area of ith trapezoid = [f(xi−1) + f(xi)
2 ](b − a

n ).
This implies that the sum of the areas of the n trapezoids is

 Area = (b − a
n )[f(x0) + f(x1)

2
+ .  .  . +

f(xn−1) + f(xn)
2 ]

 = (b − a
2n )[ f(x0) + f(x1) + f(x1) + f(x2) + .  .  . + f(xn−1) + f(xn)]

 = (b − a
2n )[ f(x0) + 2f(x1) + 2f(x2) + .  .  . + 2f(xn−1) + f(xn)].

Letting ∆x = (b − a)�n, you can take the limit as n→∞ to obtain

lim
n→∞(

b − a
2n )[ f(x0) + 2f(x1) + .  .  . + 2f(xn−1) + f(xn)]

= lim
n→∞

 [[ f(a) − f(b)] ∆x
2

+ ∑
n

i=1
 f(xi) ∆x]

= lim
n→∞

[ f(a) − f(b)](b − a)
2n

+ lim
n→∞

 ∑
n

i=1
 f(xi) ∆x

= 0 + ∫b

a

 f(x) dx.

The result is summarized in the next theorem.

x

f

x1 x2 x3x0 = a x4 = b

y

The area of the region can be  
approximated using four trapezoids.
Figure 8.14

x
x0 x1

b − a
n

f (x1)

f (x0)

y

The area of the first trapezoid is 

[f (x0) + f (x1)
2 ](b − a

n ).
Figure 8.15
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 Approximation with the Trapezoidal Rule

Use the Trapezoidal Rule to approximate

∫π
0

 sin x dx.

Compare the results for n = 4 and n = 8, as shown in Figure 8.16.

Solution When n = 4, ∆x = π�4, and you obtain

 ∫π
0

 sin x dx ≈
π
8 (sin 0 + 2 sin 

π
4
+ 2 sin 

π
2
+ 2 sin 

3π
4

+ sin π)
 =

π
8
(0 + √2 + 2 + √2 + 0)

 =
π(1 + √2)

4

 ≈ 1.896.

When n = 8, ∆x = π�8, and you obtain

 ∫π
0

 sin x dx ≈
π
16 (sin 0 + 2 sin 

π
8
+ 2 sin 

π
4
+ 2 sin 

3π
8

+ 2 sin 
π
2

 + 2 sin 
5π
8

+ 2 sin 
3π
4

+ 2 sin 
7π
8

+ sin π)
 =

π
16 (2 + 2√2 + 4 sin 

π
8
+ 4 sin 

3π
8 )

 ≈ 1.974.

For this particular integral, you could have found an antiderivative and determined that 
the exact area of the region is 2. 

REMARK Observe that the coefficients in the Trapezoidal Rule have the 
following pattern.

1 2 2 2 .  .  . 2 2 1

THEOREM 8.3 The Trapezoidal Rule

Let f  be continuous on [a, b]. The Trapezoidal Rule for approximating  
∫b

a  f(x) dx is

∫b

a

 f(x) dx ≈
b − a

2n
[ f(x0) + 2f(x1) + 2f(x2) + .  .  . + 2f(xn−1) + f(xn)].

Moreover, as n→∞, the right-hand side approaches ∫b
a  f(x) dx.

TECHNOLOGY Most graphing utilities have a numerical integration feature 
that can be used to approximate the value of a definite integral. Use this feature to 
approximate the integral in Example 1. How close is your approximation? When 
you use this feature, you need to be aware of its limitations. Often, you are given no 
indication of the degree of accuracy of the approximation. Other times, you may be 
given a result that is incorrect. For instance, use a graphing utility to evaluate

∫2

−1
 
1
x
 dx.

Your graphing utility should give an error message. Does yours?

π ππ π
2 44

3
x

1

Four subintervals

y

y = sin x

y = sin x

ππππ π
2848

3
x

1

Eight subintervals

y

π
8

5 π
8

7π
4

3

Trapezoidal approximations
Figure 8.16
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It is interesting to compare the Trapezoidal Rule with the Midpoint Rule given in 
Section 4.2. For the Trapezoidal Rule, you average the function values at the endpoints 
of the subintervals, but for the Midpoint Rule, you take the function values of the 
subinterval midpoints.

∫b

a

f (x) dx ≈ ∑
n

i=1
f (xi−1 + xi

2 ) ∆x Midpoint Rule

∫b

a

 f(x) dx ≈ ∑
n

i=1
(f(xi−1) + f(xi)

2 ) ∆x Trapezoidal Rule

There are two important points that should be made concerning the Trapezoidal 
Rule (or the Midpoint Rule). First, the approximation tends to become more accurate 
as n increases. For instance, in Example 1, when n = 16, the Trapezoidal Rule yields 
an approximation of 1.994. Second, although you could have used the Fundamental 
Theorem to evaluate the integral in Example 1, this theorem cannot be used to evaluate 
an integral as simple as ∫π0  sin x2 dx because sin x2 has no elementary antiderivative. Yet 
the Trapezoidal Rule can be applied to estimate this integral.

Simpson’s Rule
One way to view the trapezoidal approximation of a definite integral is to say that on 
each subinterval, you approximate f  by a first-degree polynomial. In Simpson’s Rule, 
named after the English mathematician Thomas Simpson (1710–1761), you take this 
procedure one step further and approximate f  by second-degree polynomials.

Before presenting Simpson’s Rule, consider the next theorem for evaluating 
integrals of polynomials of degree 2 (or less).

THEOREM 8.4 Integral of p(x) = Ax2 + Bx + C
If p(x) = Ax2 + Bx + C, then

∫b

a

 p(x) dx = (b − a
6 )[p(a) + 4p(a + b

2 ) + p(b)].

Proof

∫b

a

 p(x) dx = ∫b

a

 (Ax2 + Bx + C) dx

 = [Ax3

3
+

Bx2

2
+ Cx]

b

a

 =
A(b3 − a3)

3
+

B(b2 − a2)
2

+ C(b − a)

 = (b − a
6 )[2A(a2 + ab + b2) + 3B(b + a) + 6C]

By expansion and collection of terms, the expression inside the brackets becomes

(Aa2 + Ba + C) + 4[A(b + a
2 )2

+ B(b + a
2 ) + C] + (Ab2 + Bb + C)

p(a) 4p(a + b
2 ) p(b)

and you can write

∫b

a

p(x) dx = (b − a
6 )[p(a) + 4p(a + b

2 ) + p(b)]. 
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To develop Simpson’s Rule for approximating a definite integral, you again 
partition the interval [a, b] into n subintervals, each of width ∆x = (b − a)�n. This 
time, however, n is required to be even, and the subintervals are grouped in pairs such 
that

a = x0 < x1 < x2 < x3 < x4 < .  .  . < xn−2 < xn−1 < xn = b.

[x0, x2] [x2, x4] [xn−2, xn]

On each (double) subinterval [xi−2, xi], you can approximate f  by a polynomial p
of degree less than or equal to 2. (See Exercise 47.) For example, on the subinterval 
[x0, x2], choose the polynomial of least degree passing through the points (x0, y0),
(x1, y1), and (x2, y2), as shown in Figure 8.17. Now, using p as an approximation of f
on this subinterval, you have, by Theorem 8.4,

∫x2

x0

 f(x) dx ≈ ∫x2

x0

 p(x) dx

 =
x2 − x0

6 [p(x0) + 4p(x0 + x2

2 ) + p(x2)]
 =

2[(b − a)�n]
6

[p(x0) + 4p(x1) + p(x2)]

 =
b − a

3n
[ f(x0) + 4 f(x1) + f(x2)].

Repeating this procedure on the entire interval [a, b] produces the next theorem.

THEOREM 8.5 Simpson’s Rule

Let f  be continuous on [a, b] and let n be an even integer. Simpson’s Rule for 
approximating ∫b

a  f(x) dx is

∫b

a

 f(x) dx ≈
b − a

3n
[ f(x0) + 4 f(x1) + 2 f(x2) + 4 f(x3) + .  .  .

 + 2 f (xn−2) + 4 f(xn−1) + f(xn)].

Moreover, as n→∞, the right-hand side approaches ∫b
a  f(x) dx.

In Example 1, the Trapezoidal Rule was used to estimate ∫π0  sin x dx. In the next 
example, Simpson’s Rule is applied to the same integral.

 Approximation with Simpson’s Rule

See LarsonCalculus.com for an interactive version of this type of example.

Use Simpson’s Rule to approximate

∫π
0

sin x dx.

Compare the results for n = 4 and n = 8.

Solution When n = 4, you have

∫π
0

 sin x dx ≈
π
12(sin 0 + 4 sin 

π
4
+ 2 sin 

π
2
+ 4 sin 

3π
4

+ sin π) ≈ 2.005.

When n = 8, you have ∫π
0

 sin x dx ≈ 2.0003. 

REMARK In Section 4.2, 
Example 8, the Midpoint Rule 
with n = 4 approximates 

∫π

0
 sin x dx as 2.052. In 

Example 1, the Trapezoidal 
Rule with n = 4 gives an 
approximation of 1.896. In 
Example 2, Simpson’s Rule 
with n = 4 gives an  
approximation of 2.005. The 
antiderivative would produce  
the true value of 2.

x

p
f

x0 x1 x2 xn

(x0, y0)

(x2 , y2)

(x1, y1)

y

∫x2

x0

 p(x) dx ≈ ∫x2

x0

 f (x) dx

Figure 8.17

REMARK Observe that the 
coefficients in Simpson’s Rule 
have the following pattern.

1 4 2 4 2 4 .  .  . 4 2 4 1
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Error Analysis
When you use an approximation technique, it is important to know how accurate you 
can expect the approximation to be. The next theorem, which is listed without proof, 
gives the formulas for estimating the errors involved in the use of Simpson’s Rule and 
the Trapezoidal Rule. In general, when using an approximation, you can think of the 
error E as the difference between ∫b

a  f(x) dx and the approximation.

THEOREM 8.6 Errors in the Trapezoidal Rule and Simpson’s Rule

If f  has a continuous second derivative on [a, b], then the error E in 
approximating ∫b

a  f(x) dx by the Trapezoidal Rule is

∣E∣ ≤
(b − a)3

12n2 [max ∣ f ″(x)∣], a ≤ x ≤ b. Trapezoidal Rule

Moreover, if f  has a continuous fourth derivative on [a, b], then the error E 
in approximating ∫b

a  f(x) dx by Simpson’s Rule is

∣E∣ ≤
(b − a)5

180n4 [max ∣ f (4)(x)∣], a ≤ x ≤ b. Simpson’s Rule

Theorem 8.6 states that the errors generated by the Trapezoidal Rule and 
Simpson’s Rule have upper bounds dependent on the extreme values of f ″(x) and 
f (4)(x) in the interval [a, b]. Furthermore, these errors can be made arbitrarily small by  
increasing n, provided that f ″ and f (4) are continuous and therefore bounded in [a, b].

 The Approximate Error in the Trapezoidal Rule

Determine a value of n such that the Trapezoidal Rule will approximate the value of

∫1

0
 √1 + x2 dx

with an error that is less than or equal to 0.01.

Solution Begin by letting f(x) = √1 + x2 and finding the second derivative of f.

f′(x) = x(1 + x2)−1�2 and f ″(x) = (1 + x2)−3�2

The maximum value of ∣ f ″(x)∣ on the interval [0, 1] is ∣ f ″(0)∣ = 1. So, by Theorem 
8.6, you can write

∣E∣ ≤
(b − a)3

12n2  ∣ f ″(0)∣ = 1
12n2 (1) =

1
12n2.

To obtain an error E that is less than or equal to 0.01, you must choose n such that 
1�(12n2) ≤ 1�100.

100 ≤ 12n2  n ≥ √100
12 ≈ 2.89

So, you can choose n = 3 (because n must be greater than or equal to 2.89) and apply 
the Trapezoidal Rule, as shown in Figure 8.18, to obtain

 ∫1

0
√1 + x2 dx ≈ 1

6 [√1 + 02 + 2√1 + (1
3)2 + 2√1 + (2

3)2 + √1 + 12]
 ≈ 1.154.

So, by adding and subtracting the error from this estimate, you know that

1.144 ≤ ∫1

0
√1 + x2 dx ≤ 1.164. 

 FOR FURTHER INFORMATION
For proofs of the formulas used 
for estimating the errors involved 
in the use of the Midpoint Rule 
and Simpson’s Rule, see the article 
“Elementary Proofs of Error 
Estimates for the Midpoint and 
Simpson’s Rules” by Edward C. 
Fazekas, Jr. and Peter R. Mercer in 
Mathematics Magazine. To view 
this article, go to MathArticles.com.

x
1

1

2

2

y

y =    1 + x2

n = 3

1.144 ≤ ∫1

0
√1 + x2 dx ≤ 1.164

Figure 8.18

TECHNOLOGY If you have 
access to a computer algebra 
system, use it to evaluate the 
definite integral in Example 3. 
You should obtain a value of

∫1

0
√1 + x2 dx

=
1
2
[√2 + ln(1 + √2)]

≈ 1.14779.
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8.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Finding an Interval Would you use numerical 

 integration to evaluate ∫2

0
(ex + 5x) dx? Explain.

2.  Errors in the Trapezoidal Rule and Simpson’s 
Rule Describe how to decrease the error between an 
approximation and the exact value of an integral using the 
Trapezoidal Rule and Simpson’s Rule.

 Using the Trapezoidal Rule and Simpson’s 
Rule  In Exercises 3–14, use the Trapezoidal Rule 
and Simpson’s Rule to approximate the value of 
the definite integral for the given value of n. Round 
your answer to four decimal places and compare 
the results with the exact value of the definite 
integral.

 3. ∫2

0
 x2 dx, n = 4  4. ∫2

1
 (x

2

4
+ 1) dx, n = 4

5. ∫4

3
 

1
x − 2

 dx, n = 4  6. ∫3

2
 
2
x2 dx, n = 4

7. ∫3

1
 x3 dx, n = 6  8. ∫8

0
 3√x dx, n = 8

9. ∫9

4
 √x dx, n = 8 10. ∫4

1
 (4 − x2) dx, n = 6

11. ∫1

0
 

2
(x + 2)2 dx, n = 4 12. ∫2

0
 x√x2 + 1 dx, n = 4

13. ∫2

0
xe−x dx, n = 4 14. ∫2

0
x ln(x + 1) dx, n = 4

 Using the Trapezoidal Rule and Simpson’s 
Rule In Exercises 15–24, approximate the definite 
integral using the Trapezoidal Rule and Simpson’s 
Rule with n = 4. Compare these results with the 
approximation of the integral using a graphing utility.

15. ∫2

0
 √1 + x3 dx 16. ∫1

0
 √x √1 − x dx

17. ∫1

0
 

1
1 + x2 dx 18. ∫2

0
 

1

√1 + x3
 dx

19. ∫4

0
 √xex dx 20. ∫3

1
ln x dx

21. ∫√π�2

0
 sin x2 dx 22. ∫π

π�2
 √x sin x dx

23. ∫π�4

0
 x tan x dx

24. ∫π
0

 f (x) dx, f (x) = {sin x
x

,

1,

 x > 0

 x = 0

 Estimating Errors  In Exercises 25–28, use 
the error formulas in Theorem 8.6 to estimate 
the errors in approximating the integral, with 
n = 4, using (a) the Trapezoidal Rule and  
(b) Simpson’s Rule.

25. ∫2

0
(x2 + 2x) dx 26. ∫3

1
 2x3 dx

27. ∫4

2
 

1
(x − 1)2 dx 28. ∫1

0
ex3 dx

 Estimating Errors  In Exercises 29–32, use the 
error formulas in Theorem 8.6 to find n such that 
the error in the approximation of the definite 
integral is less than or equal to 0.00001 using (a) 
the Trapezoidal Rule and (b) Simpson’s Rule.

29. ∫3

1
 
1
x
 dx 30. ∫1

0
 

1
1 + x

 dx

31. ∫2

0
 √x + 2 dx 32. ∫3

1
e2x dx

Estimating Errors Using Technology  In Exercises 33 and 
34, use a computer algebra system and the error formulas to 
find n such that the error in the approximation of the definite  
integral is less than or equal to 0.00001 using (a) the Trapezoidal 
Rule and (b) Simpson’s Rule.

33. ∫1

0
 tan x2 dx

34. ∫2

0
 (x + 1)2�3 dx

35.  Finding the Area of a Region Approximate the area of 
the shaded region using the Trapezoidal Rule and Simpson’s 
Rule with n = 4.

x
1 2 3 4 5

2

4

6

8

10

y  

x
2 4 6 8 10

2

4

6

8

10

y

Figure for 35 Figure for 36

36.  Finding the Area of a Region Approximate the area of 
the shaded region using the Trapezoidal Rule and Simpson’s 
Rule with n = 8.

37.  Area Use Simpson’s Rule with n = 14 to approximate the 
area of the region bounded by the graphs of y = √x cos x,
y = 0, x = 0, and x = π�2.
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38.  HOW DO YOU SEE IT? The function f  is 
concave upward on the interval [0, 2] and the 
function g is concave downward on the interval 
[0, 2], as shown in the figure.

1 2

2

3

4

5 f

x

y  

1 2

2

1

3

4

5

g

x

y

(a)  Using the Trapezoidal Rule with n = 4, which 
integral would be overestimated, ∫2

0  f (x) dx
  or ∫2

0  g(x) dx? Which integral would be 
underestimated? Explain your reasoning.

(b)  Which rule would you use for more accurate 
approximations of ∫2

0  f (x) dx and ∫2
0  g(x) dx, the 

Trapezoidal Rule or Simpson’s Rule? Explain 
your reasoning.

38.  

EXPLORING CONCEPTS
39.  Think About It Explain how the Trapezoidal Rule 

is related to the approximations using left-hand and  
right-hand sums.

40.  Describing an Error Describe the size of the error 
when the Trapezoidal Rule is used to approximate 
∫b

a  f (x) dx when f (x) is a linear function. Use a graph to 
explain your answer.

41.  Surveying Use the Trapezoidal Rule to estimate the 
number of square meters of land, where x and y are measured 
in meters, as shown in the figure. The land is bounded by a 
stream and two straight roads that meet at right angles.

 
x 0 100 200 300 400 500

y 125 125 120 112 90 90

x 600 700 800 900 1000

y 95 88 75 35 0

 

x

150

100

50

200 400 600 800 1000

Road

Road

Stream

y

42. Circumference The elliptic integral

 8√3 ∫π�2

0
 √1 − 2

3 sin2 θ dθ

  gives the circumference of an ellipse. Use Simpson’s Rule 
with n = 8 to approximate the circumference.

43.  Work To determine the size of the motor required to  
operate a press, a company must know the amount of work 
done when the press moves an object linearly 5 feet. The  
variable force to move the object is

 F(x) = 100x√125 − x3

  where F is given in pounds and x gives the position of the unit 
in feet. Use Simpson’s Rule with n = 12 to approximate the 
work W (in foot-pounds) done through one cycle when 

 W = ∫5

0
 F(x) dx.

44.  Approximating a Function  The table lists several  
measurements gathered in an experiment to approximate an 
unknown continuous function y = f (x).

x 0.00 0.25 0.50 0.75 1.00

y 4.32 4.36 4.58 5.79 6.14

x 1.25 1.50 1.75 2.00

y 7.25 7.64 8.08 8.14

 (a) Approximate the integral

 ∫2

0
 f (x) dx

 using the Trapezoidal Rule and Simpson’s Rule.

 (b)  Use a graphing utility to find a model of the form 
y = ax3 + bx2 + cx + d for the data. Integrate the  
resulting polynomial over [0, 2] and compare the result 
with the integral from part (a).

45.  Using Simpson’s Rule Use Simpson’s Rule with 
n = 10 and a computer algebra system to approximate t in the 
integral equation

 ∫t

0
 sin √x dx = 2.

46.  Proof Prove that Simpson’s Rule is exact when 
approximating the integral of a cubic polynomial function, 
and demonstrate the result with n = 4 for

 ∫1

0
 x3 dx.

47. Proof Prove that you can find a polynomial

 p(x) = Ax2 + Bx + C

  that passes through any three points (x1, y1), (x2, y2), and 
(x3, y3), where the xi’s are distinct.
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8.7 Integration by Tables and Other Integration Techniques

 Find an indefinite integral using a table of integrals.
 Find an indefinite integral using reduction formulas.
 Find an indefinite integral involving rational functions of sine and cosine.

Integration by Tables
So far in this chapter, you have studied several integration techniques that can be used 
with the basic integration rules. But merely knowing how to use the various techniques 
is not enough. You also need to know when to use them. Integration is first and 
foremost a problem of recognition. That is, you must recognize which rule or technique 
to apply to obtain an antiderivative. Frequently, a slight alteration of an integrand will 
require a different integration technique (or produce a function whose antiderivative is 
not an elementary function), as shown below.

 ∫x ln x dx =
x2

2
 ln x −

x2

4
+ C Integration by parts

 ∫ln x
x

 dx =
(ln x)2

2
+ C Power Rule

 ∫ 1
x ln x

 dx = ln∣ln x∣ + C Log Rule

 ∫ x
ln x

 dx = ? Not an elementary function

Many people find tables of integrals to be a valuable supplement to the integration 
techniques discussed in this chapter. Tables of common integrals can be found in 
Appendix B. Integration by tables is not a “cure-all” for all of the difficulties that can 
accompany integration—using tables of integrals requires considerable thought and 
insight and often involves substitution.

Each integration formula in Appendix B can be developed using one or more of 
the techniques in this chapter. You should try to verify several of the formulas. For 
instance, Formula 4

∫ u
(a + bu)2 du =

1
b2 ( a

a + bu
+ ln∣a + bu∣) + C Formula 4

can be verified using the method of partial fractions, Formula 19

∫√a + bu
u

 du = 2√a + bu + a∫ du

u√a + bu
 Formula 19

can be verified using integration by parts, and Formula 84

∫ 1
1 + eu

 du = u − ln(1 + eu) + C Formula 84

can be verified using substitution. Note that the integrals in Appendix B are classified 
according to the form of the integrand. Several of the forms are listed below.

un (a + bu)
(a + bu + cu2) √a + bu

(a2 ± u2) √u2 ± a2

√a2 − u2 Trigonometric functions

Inverse trigonometric functions Exponential functions

Logarithmic functions

TECHNOLOGY A computer 
algebra system consists, in part, 
of a database of integration  
formulas. The primary  
difference between using a  
computer algebra system and 
using tables of integrals is that 
with a computer algebra system, 
the computer searches through 
the database to find a fit. With 
integration tables, you must do 
the searching.
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 Integration by Tables

Find ∫ dx

x√x − 1
.

Solution Because the expression inside the radical is linear, you should consider 
forms involving √a + bu.

∫ du

u√a + bu
=

2

√−a
 arctan √a + bu

−a
+ C Formula 17 (a < 0)

Let a = −1, b = 1, and u = x. Then du = dx, and you can write

∫ dx

x√x − 1
= 2 arctan √x − 1 + C.

 Integration by Tables

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x√x4 − 9 dx.

Solution Because the radical has the form √u2 − a2, you should consider 
Formula 26.

∫√u2 − a2 du =
1
2
(u√u2 − a2 − a2 ln∣u + √u2 − a2∣) + C

Let u = x2 and a = 3. Then du = 2x dx, and you have

 ∫x√x4 − 9 dx =
1
2∫√(x2)2 − 32 (2x) dx

 =
1
4
(x2√x4 − 9 − 9 ln∣x2 + √x4 − 9∣) + C.

 Integration by Tables

Evaluate ∫2

0
 

x
1 + e−x2 dx.

Solution Of the forms involving eu, consider the formula

∫ du
1 + eu

= u − ln(1 + eu) + C. Formula 84

Let u = −x2. Then du = −2x dx, and you have

 ∫ x
1 + e−x2 dx = −

1
2∫ −2x dx

1 + e−x2

 = −
1
2
[−x2 − ln(1 + e−x2)] + C

 =
1
2
[x2 + ln(1 + e−x2)] + C.

So, the value of the definite integral is

∫2

0

x
1 + e−x2 dx =

1
2[x2 + ln(1 + e−x2)]

0

2
=

1
2
[4 + ln(1 + e−4) − ln 2] ≈ 1.66.

Figure 8.19 shows the region whose area is represented by this integral. 

1 2

1

2 y = x

x

y

1 + e−x2

Figure 8.19

Exploration
Use the tables of integrals 
in Appendix B and the 
substitution

u = √x − 1

to find the integral in 
Example 1. When you do 
this, you should obtain

∫ dx

x√x − 1
= ∫ 2 du

u2 + 1
.

Does this produce the same 
result as that obtained in 
Example 1?
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Reduction Formulas
Several of the integrals in the integration tables have the form 

∫ f (x) dx = g(x) + ∫ h(x) dx.

Such integration formulas are called reduction formulas because they reduce a given 
integral to the sum of a function and a simpler integral.

 Using a Reduction Formula

Find ∫x3 sin x dx.

Solution Consider the three formulas listed below.

 ∫u sin u du = sin u − u cos u + C Formula 52

 ∫un sin u du = −un cos u + n∫un−1 cos u du Formula 54

 ∫un cos u du = un sin u − n∫un−1 sin u du Formula 55

Using Formula 54, Formula 55, and then Formula 52 produces

 ∫x3 sin x dx = −x3 cos x + 3∫x2 cos x dx

 = −x3 cos x + 3(x2 sin x − 2∫x sin x dx)
 = −x3 cos x + 3x2 sin x + 6x cos x − 6 sin x + C.

 Using a Reduction Formula

Find ∫√3 − 5x
2x

 dx.

Solution Consider the two formulas listed below.

 ∫ du

u√a + bu
=

1

√a
 ln∣√a + bu − √a

√a + bu + √a∣ + C Formula 17 (a > 0)

 ∫√a + bu
u

 du = 2√a + bu + a∫ du

u√a + bu
 Formula 19

Using Formula 19, with a = 3, b = −5, and u = x, produces

 
1
2∫√3 − 5x

x
 dx =

1
2 (2√3 − 5x + 3∫ dx

x√3 − 5x)
 = √3 − 5x +

3
2∫ dx

x√3 − 5x
.

Using Formula 17, with a = 3, b = −5, and u = x, produces

 ∫ 
√3 − 5x

2x
 dx = √3 − 5x +

3
2 (

1

√3
 ln∣√3 − 5x − √3

√3 − 5x + √3∣) + C

 = √3 − 5x +
√3
2

 ln∣√3 − 5x − √3

√3 − 5x + √3∣ + C.  

TECHNOLOGY Sometimes 
when you use computer algebra 
systems, you obtain results that 
look very different, but are  
actually equivalent. Two 
different systems were used to 
find the integral in Example 5. 
The results are shown below.

Maple

√3 − 5x −
√3 arctanh(1

3√3 − 5x√3)
Mathematica

√3 − 5x −

√3 ArcTanh [√1 −
5x
3 ]

Notice that computer algebra 
systems do not include a  
constant of integration.
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Rational Functions of Sine and Cosine

 Integration by Tables

Find ∫ sin 2x
2 + cos x

 dx.

Solution Substituting 2 sin x cos x for sin 2x produces

∫ 
sin 2x

2 + cos x
 dx = 2∫ 

sin x cos x
2 + cos x

 dx.

A check of the forms involving sin u or cos u in Appendix B shows that those listed do 
not apply. So, you can consider forms involving a + bu. For example,

∫ u du
a + bu

=
1
b2 (bu − a ln∣a + bu∣) + C. Formula 3

Let a = 2, b = 1, and u = cos x. Then du = −sin x dx, and you have

 2∫sin x cos x
2 + cos x

 dx = −2∫(cos x)(−sin x dx)
2 + cos x

 = −2(cos x − 2 ln∣2 + cos x∣) + C

 = −2 cos x + 4 ln∣2 + cos x∣ + C. 

Example 6 involves a rational expression of sin x and cos x. When you are unable 
to find an integral of this form in the integration tables, try using the following special 
substitution to convert the trigonometric expression to a standard rational expression.

Substitution for Rational Functions of Sine and Cosine

For integrals involving rational functions of sine and cosine, the substitution

u =
sin x

1 + cos x
= tan 

x
2

yields

cos x =
1 − u2

1 + u2, sin x =
2u

1 + u2, and dx =
2 du

1 + u2.

Proof From the substitution for u, it follows that

u2 =
sin2 x

(1 + cos x)2 =
1 − cos2 x
(1 + cos x)2 =

1 − cos x
1 + cos x

.

Solving for cos x produces

cos x =
1 − u2

1 + u2.

To find sin x, write u = (sin x)
(1 + cos x) as

sin x = u(1 + cos x) = u(1 +
1 − u2

1 + u2) = 2u
1 + u2.

Finally, to find dx, consider u = tan(x
2). Then you have arctan u = x
2 and

dx =
2 du

1 + u2. 
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8.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Integration by Tables Which formula from the 

table of integrals would you use to find the integral below? 
Explain.

 ∫ 
√5 − 9x2

x2  dx

2.  Reduction Formula Describe what is meant by a 
reduction formula. Give an example.

 Integration by Tables In Exercises 3 and 4, 
use a table of integrals with forms involving a + bu
to find the indefinite integral.

 3. ∫ x2

5 + x
 dx  4. ∫ 2

x2(4 + 3x)2 dx

Integration by Tables In Exercises 5 and 6, use a table of 
integrals with forms involving √a2 − u2 to find the indefinite 
integral.

 5. ∫ 1

x2√1 − x2
 dx  6. ∫√64 − x4

x
 dx

Integration by Tables In Exercises 7–10, use a table of 
integrals with forms involving the trigonometric functions to 
find the indefinite integral.

 7. ∫cos4 3x dx  8. ∫sin4 √x

√x
 dx

9. ∫ 1

√x (1 − cos √x)
 dx 10. ∫ 1

1 + cot 4x
 dx

Integration by Tables In Exercises 11 and 12, use a table 
of integrals with forms involving eu to find the indefinite 
integral.

11. ∫ 1
1 + e2x dx 12. ∫e−4x sin 3x dx

Integration by Tables In Exercises 13 and 14, use a 
table of integrals with forms involving ln u to find the indefinite 
integral.

13. ∫x6 ln x dx 14. ∫(ln x)3 dx

 Using Two Methods In Exercises 15–18, find 
the indefinite integral (a) using a table of integrals 
and (b) using the given method.

 Integral Method

15. ∫ln 
x
3

 dx Integration by parts

16. ∫sin2 3x dx Power-reducing formula

 Integral Method

17. ∫ 1
x2(x − 1) dx Partial fractions

18. ∫ dx
(4 + x2)3
2 Trigonometric substitution

Finding an Indefinite Integral In Exercises 19– 40, use a 
table of integrals to find the indefinite integral.

19. ∫x arccsc(x2 + 1) dx 20. ∫arccot(4x − 5) dx

21. ∫ 2

x3√x4 − 1
 dx 22. ∫ 1

x2 + 4x + 8
 dx

23. ∫ x
(7 − 6x)2 dx 24. ∫ θ3

1 + sin θ4 dθ

25. ∫ex arccos ex dx 26. ∫ ex

1 − tan ex
 dx

27. ∫ x
1 − sec x2 dx 28. ∫ 1

t [1 + (ln t)2] dt

29. ∫ cos θ
3 + 2 sin θ + sin2 θ  dθ 30. ∫x2√3 + 25x2 dx

31. ∫ 1

x2√2 + 9x2
 dx 32. ∫√x arctan x3
2 dx

33. ∫ ln x
x(3 + 2 ln x) dx 34. ∫ ex

(1 − e2x)3
2 dx

35. ∫ x
(x2 − 6x + 10)2 dx 36. ∫√5 − x

5 + x
 dx

37. ∫ x

√x4 − 6x2 + 5
 dx 38. ∫ cos x

√sin2 x + 1
 dx

39. ∫ e3x

(1 + ex)3 dx 40. ∫cot4 θ dθ

 Evaluating a Definite Integral In Exercises 
41– 48, use a table of integrals to evaluate the 
definite integral.

41. ∫1

0
 

x

√1 + x
 dx 42. ∫1

0
 2x3ex

2
 dx

43. ∫2

1
x4 ln x dx 44. ∫π
2

0
x sin 2x dx

45. ∫π
2

−π
2
 

cos x
1 + sin2 x

 dx 46. ∫5

0

x2

(5 + 2x)2 dx

47. ∫π
2

0
t3 cos t dt 48. ∫3

0
√x2 + 16 dx

Verifying a Formula In Exercises 49–54, verify the 
integration formula.

49. ∫ u2

(a + bu)2 du =
1
b3 (bu −

a2

a + bu
− 2a ln∣a + bu∣) + C

50. ∫ un

√a+ bu
 du=

2
(2n+ 1)b (un√a+ bu− na∫ un−1

√a+ bu
 du)
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51. ∫ 1
(u2 ± a2)3
2

 du =
±u

a2√u2 ± a2
+ C

52. ∫un cos u du = un sin u − n∫un−1 sin u du

53. ∫arctan u du = u arctan u − ln√1 + u2 + C

54. ∫(ln u)n du = u(ln u)n − n∫(ln u)n−1 du

Finding or Evaluating an Integral In Exercises 55–62, 
find or evaluate the integral.

55. ∫ 1
2 − 3 sin θ  dθ 56. ∫ sin θ

1 + cos2 θ  dθ

57. ∫π
2

0

1
1 + sin θ + cos θ  dθ 58. ∫π
2

0

1
3 − 2 cos θ  dθ

59. ∫ sin θ
3 − 2 cos θ  dθ 60. ∫ cos θ

1 + cos θ  dθ

61. ∫sin√θ
√θ

 dθ

62. ∫ 4
csc θ − cot θ  dθ

Area In Exercises 63 and 64, find the area of the region 
bounded by the graphs of the equations.

63. y=
x

√x+ 3
, y= 0, x= 6

64. y =
x

1 + ex
2, y = 0, x = 2

EXPLORING CONCEPTS
65. Finding a Pattern

 (a)  Find ∫xn ln x dx for n = 1, 2, and 3. Describe any 
patterns you notice.

 (b)  Write a general rule for evaluating the integral in 
part (a) for an integer n ≥ 1.

 (c)  Verify your rule from part (b) using integration by 
parts.

66.  Choosing a Method State the method or integration 
formula you would use to find the antiderivative. Explain 
why you chose that method or formula. Do not integrate.

 (a) ∫ ex

e2x + 1
 dx   (b) ∫ ex

ex + 1
 dx   (c) ∫xex2

 dx

 (d) ∫xex dx (e) ∫e2x√e2x + 1 dx

67.  Work A hydraulic cylinder on an industrial machine pushes 
a steel block a distance of x feet (0 ≤ x ≤ 5), where the 
variable force required is F(x) = 2000xe−x pounds. Find the 
work done in pushing the block the full 5 feet through the 
machine.

68. Work Repeat Exercise 67, using F(x) = 500x

√26 − x2
 pounds.

69.  Population A population is growing according to the 
logistic model

 N =
5000

1 + e4.8−1.9t

  where t is the time in days. Find the average population over 
the interval [0, 2].

 70.  HOW DO YOU SEE IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

x

f ′(x) = −0.15x    x4 + 9

−1−2−3 2 3

−2

−3

1

2

3

(a) Approximate the slope of f  at x = −1. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals on 
which it is decreasing. Explain.

70.  

71. Volume Consider the region bounded by the graphs of

 y = x√16 − x2, y = 0, x = 0, and x = 4.

  Find the volume of the solid generated by revolving the region 
about the y-axis.

72.  Building Design The cross section of a precast concrete 
beam for a building is bounded by the graphs of the equations

 x =
2

√1 + y2
, x =

−2

√1 + y2
, y = 0, and y = 3

  where x and y are measured in feet. The length of the beam is 
20 feet (see figure).

x
1 2

3

2

1

3−1−2−3

20 ft

y

 (a)  Find the volume V and the weight W of the beam. Assume 
the concrete weighs 148 pounds per cubic foot.

 (b) Find the centroid of a cross section of the beam.

PUTNAM EXAM CHALLENGE

73. Evaluate ∫π
2

0

dx

1 + (tan x)√2
.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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8.8 Improper Integrals

 Evaluate an improper integral that has an infinite limit of integration.
 Evaluate an improper integral that has an infinite discontinuity.

Improper Integrals with Infinite Limits of Integration
The definition of a definite integral

∫b

a

f (x) dx

requires that the interval [a, b] be finite. Furthermore, the Fundamental Theorem of 
Calculus, by which you have been evaluating definite integrals, requires that f  be 
continuous on [a, b]. In this section, you will study a procedure for evaluating integrals 
that do not satisfy these requirements—usually because either one or both of the limits 
of integration are infinite or because f  has a finite number of infinite discontinuities  
in the interval [a, b]. Integrals that possess either property are improper integrals. 
Note that a function f  is said to have an infinite discontinuity at c when, from the 
right or left,

lim
x→c

 f (x) = ∞ or lim
x→c

 f (x) = −∞.

To get an idea of how to evaluate an improper integral, consider the integral

∫b

1
 
dx
x2 = −

1
x]1

b

= −
1
b
+ 1 = 1 −

1
b

which can be interpreted as the area of the shaded region shown in Figure 8.20. Taking 
the limit as b→∞ produces

∫∞
1

 
dx
x2 = lim

b→∞
 (∫b

1
 
dx
x2) = lim

b→∞
 (1 −

1
b) = 1.

This improper integral can be interpreted as the area of the unbounded region between 
the graph of f (x) = 1�x2 and the x-axis (to the right of x = 1).

Definition of Improper Integrals with Infinite Integration Limits

1. If f  is continuous on the interval [a, ∞), then

∫∞
a

f (x) dx = lim
b→∞

 ∫b

a

f (x) dx.

2. If f  is continuous on the interval (−∞, b], then

∫b

−∞
 f (x) dx = lim

a→−∞∫
b

a

f (x) dx.

3. If f  is continuous on the interval (−∞, ∞), then

∫∞
−∞

  f (x) dx = ∫c

−∞
 f (x) dx + ∫∞

c
 f (x) dx

 where c is any real number (see Exercise 107).

In the first two cases, the improper integral converges when the limit exists—
otherwise, the improper integral diverges. In the third case, the improper integral 
on the left diverges when either of the improper integrals on the right diverges.

432

2

1

1
x

1
dx

x2

b

1 x2

b

1
f(x) =

b → ∞

y

The unbounded region has an area of 1.
Figure 8.20
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 An Improper Integral That Diverges

Evaluate ∫b

1
 
dx
x

.

Solution

 ∫∞
1

 
dx
x

= lim
b→∞

 ∫b

1
 
dx
x

 Take limit as b→∞.

 = lim
b→∞

 [ln x]
1

b

 Apply Log Rule.

 = lim
b→∞

 (ln b − 0) Apply Fundamental Theorem of Calculus.

 = ∞ Evaluate limit.

The limit does not exist. So, you can conclude that the improper integral diverges. See 
Figure 8.21. 

Try comparing the regions shown in Figures 8.20 and 8.21. They look similar, yet 
the region in Figure 8.20 has a finite area of 1 and the region in Figure 8.21 has an  
infinite area.

 Improper Integrals That Converge

Evaluate each improper integral.

a. ∫∞
0

e−x dx

b. ∫∞
0

1
x2 + 1

 dx

Solution

a.  ∫∞
0

e−x dx = lim
b→∞

 ∫b

0
e−x dx b.  ∫∞

0

1
x2 + 1

 dx = lim
b→∞

 ∫b

0
 

1
x2 + 1

 dx

  = lim
b→∞

 [−e−x]
0

b

  = lim
b→∞

 [arctan x]
0

b

  = lim
b→∞

 (−e−b + 1)  = lim
b→∞

 arctan b

  = 1  =
π
2

See Figure 8.22. See Figure 8.23.

2

1

321
x

y

y = e−x

 

2

1

321
x

y

1
x2 + 1

y =

  The area of the unbounded The area of the unbounded 
region is 1. region is π�2.

 Figure 8.22 Figure 8.23 

2

1

321
x

1
x

Diverges
(in�nite area)

y =

y

This unbounded region has an infinite 
area.
Figure 8.21
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In the next example, note how L’Hôpital’s Rule can be used to evaluate an improper 
integral.

 Using L’Hôpital’s Rule with an Improper Integral

Evaluate ∫∞
1
(1 − x)e−x dx.

Solution Use integration by parts, with dv = e−x dx and u = (1 − x).

 ∫(1 − x)e−x dx = −e−x(1 − x) − ∫e−x dx

 = −e−x + xe−x + e−x + C

 = xe−x + C

Now, apply the definition of an improper integral.

 ∫∞
1
(1 − x)e−x dx = lim

b→∞
 [xe−x]

1

b

 = lim
b→∞

 ( b
eb −

1
e)

 = lim
b→∞

 
b
eb − lim

b→∞
 
1
e

For the first limit, use L’Hôpital’s Rule.

lim
b→∞

 
b
eb = lim

b→∞
 
1
eb = 0

So, you can conclude that

 ∫∞
1
(1 − x)e−x dx = lim

b→∞
 
b
eb − lim

b→∞
 
1
e

 = 0 −
1
e

 = −
1
e
. See Figure 8.24.

 Infinite Upper and Lower Limits of Integration

Evaluate ∫∞
−∞

 
ex

1 + e2x dx.

Solution Note that the integrand is continuous on (−∞, ∞). To evaluate the 
integral, you can break it into two parts, choosing c = 0 as a convenient value.

 ∫∞
−∞

 
ex

1 + e2x dx = ∫0

−∞
 

ex

1 + e2x dx + ∫∞
0

ex

1 + e2x dx

 = lim
a→−∞

 [arctan ex]
a

  0

+ lim
b→∞

 [arctan ex]
b

0

 = lim
a→−∞

 (π4 − arctan ea) + lim
b→∞

 (arctan eb −
π
4)

 =
π
4
− 0 +

π
2
−

π
4

 =
π
2

 See Figure 8.25. 

x

−0.03

−0.06

−0.09

−0.12

−0.15

y = (1 − x)e−x

42 8

y

The area of the unbounded region is 

∣−1�e∣.
Figure 8.24

2−1−2 1
x

ex

1 + e2xy =

y

1
2

The area of the unbounded region is 
π�2.
Figure 8.25
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 Sending a Space Module into Orbit

In Example 3 in Section 7.5, you found that it would require 10,000 mile-tons of work 
to propel a 15-metric-ton space module to a height of 800 miles above Earth. How 
much work is required to propel the module an unlimited distance away from Earth’s 
surface?

Solution At first you might think that an infinite amount of work would be required. 
But if this were the case, it would be impossible to send rockets into outer space. 
Because this has been done, the work required must be finite. You can determine the 
work in the following manner. Using the integral in Example 3, Section 7.5, replace the 
upper bound of 4800 miles by ∞ and write

 W = ∫∞
4000

240,000,000
x2  dx

 = lim
b→∞

 [−240,000,000
x ]

4000

b

 Integrate.

 = lim
b→∞

 (−240,000,000
b

+
240,000,000

4000 )
 = 60,000 mile-tons

 = 6.985 × 1011 foot-pounds. 1 mile = 5280 feet;
1 metric ton ≈ 2205 pounds

In SI units, using a conversion factor of

1 foot-pound ≈ 1.35582 joules

the work done is W ≈ 9.47 × 1011 joules. 

Improper Integrals with Infinite Discontinuities
The second basic type of improper integral is one that has an infinite discontinuity at 
or between the limits of integration.

Definition of Improper Integrals with Infinite Discontinuities

1.  If f  is continuous on the interval [a, b) and has an infinite discontinuity at  
b, then

∫b

a

 f (x) dx = lim
c→b−

 ∫c

a

 f (x) dx.

2.  If f  is continuous on the interval (a, b] and has an infinite discontinuity at  
a, then

∫b

a

 f (x) dx = lim
c→a+

 ∫b

c

 f (x) dx.

3.  If f  is continuous on the interval [a, b], except for some c in (a, b) at which  
f  has an infinite discontinuity, then

∫b

a

 f (x) dx = ∫c

a

 f (x) dx + ∫b

c

 f (x) dx.

In the first two cases, the improper integral converges when the limit exists—
otherwise, the improper integral diverges. In the third case, the improper 
integral on the left diverges when either of the improper integrals on the right 
diverges.

The work required to move a 
15-metric-ton space module 
an unlimited distance away 
from Earth is about 6.985 × 1011 
foot-pounds.

Creations/Shutterstock.com
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576 Chapter 8 Integration Techniques and Improper Integrals

 An Improper Integral with an Infinite Discontinuity

Evaluate ∫1

0

dx
3√x

Solution The integrand has an infinite  

21

2

1

x

1
3y =

(1, 1)

x

y

Infinite discontinuity at x = 0

 
discontinuity at x = 0, as shown in the figure 
at the right. You can evaluate this integral 
as shown below.

 ∫1

0
x−1�3 dx = lim

b→0+
 [x

2�3

2�3]b
1

 = lim
b→0+

 
3
2
(1 − b2�3)

 =
3
2

 An Improper Integral That Diverges

Evaluate ∫2

0
 
dx
x3 .

Solution Because the integrand has an infinite discontinuity at x = 0, you can write

 ∫2

0
 
dx
x3 = lim

b→0+
 [− 1

2x2]
b

2

 = lim
b→0+

 (−1
8
+

1
2b2)

 = ∞.

So, you can conclude that the improper integral diverges.

 An Improper Integral with an Interior Discontinuity

Evaluate ∫2

−1
 
dx
x3 .

Solution This integral is improper because the integrand has an infinite discontinuity at 
the interior point x = 0, as shown in Figure 8.26. So, you can write

∫2

−1
 
dx
x3 = ∫0

−1
 
dx
x3 + ∫2

0
 
dx
x3 .

From Example 7, you know that the second integral diverges. So, the original improper 
integral also diverges. 

Remember to check for infinite discontinuities at interior points as well as at 
endpoints when determining whether an integral is improper. For instance, if you had 
not recognized that the integral in Example 8 was improper, you would have obtained 
the incorrect result

∫2

−1
 
dx
x3 =

−1
2x2]

−1

2

= −
1
8
+

1
2
=

3
8

. Incorrect evaluation

1

1

2

2
y =

−1

−1

−2

x

y

x3
1

The improper integral ∫2

−1
 
dx
x3  diverges.

Figure 8.26
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8.8 Improper Integrals 577

The integral in the next example is improper for two reasons. One limit of 
integration is infinite, and the integrand has an infinite discontinuity at the other limit 
of integration.

 A Doubly Improper Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate ∫∞
0

dx

√x(x + 1)
.

Solution To evaluate this integral, split it at a convenient point (say, x = 1) and write

 ∫∞
0

dx

√x(x + 1)
= ∫1

0

dx

√x(x + 1)
+ ∫∞

1

dx

√x(x + 1)

 = lim
b→0+

 [2 arctan √x]
b

1

+ lim
c→∞

 [2 arctan √x]
1

c

 = lim
b→0+

 (2 arctan 1 − 2 arctan √b) + lim
c→∞

 (2 arctan  √c − 2 arctan 1)

 = 2(π4) − 0 + 2(π2) − 2(π4)
 = π.

See Figure 8.27.

 An Application Involving Arc Length

Use the formula for arc length to show that the circumference of the circle x2 + y2 = 1 
is 2π.

Solution To simplify the work, consider the quarter circle given by y = √1 − x2, 
where 0 ≤ x ≤ 1. The function y is differentiable for any x in this interval except 
x = 1. Therefore, the arc length of the quarter circle is given by the improper integral

 s = ∫1

0
√1 + (y′)2 dx

 = ∫1

0
√1 + ( −x

√1 − x2)
2

 dx

 = ∫1

0

dx

√1 − x2
.

This integral is improper because it has an infinite discontinuity at x = 1. So, you can 
write

 s = ∫1

0

dx

√1 − x2

 = lim
b→1−

 [arcsin x]
0

b

 = lim
b→1−

 (arcsin b − arcsin 0)

 =
π
2
− 0

 =
π
2

.

Finally, multiplying by 4, you can conclude that the circumference of the circle is 
4s = 2π, as shown in Figure 8.28. 

1

1

2

2

x

y = 1
x (x + 1)

y

The area of the unbounded region is π.
Figure 8.27

1

1

−1

−1
x

1 − x2y =
y

, 0 ≤ x ≤ 1

The circumference of the circle is 2π.
Figure 8.28
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578 Chapter 8 Integration Techniques and Improper Integrals

This section concludes with a useful theorem describing the convergence or  
divergence of a common type of improper integral. The proof of this theorem is left as 
an exercise (see Exercise 49).

 An Application Involving a Solid of Revolution

The solid formed by revolving (about the x-axis) the unbounded region lying between 
the graph of f (x) = 1�x and the x-axis (x ≥ 1) is called Gabriel’s Horn. (See  
Figure 8.29.) Show that this solid has a finite volume and an infinite surface area.

Solution Using the disk method and Theorem 8.7, you can determine the volume  
to be

 V = π∫∞
1
(1x)

2

 dx Theorem 8.7, p = 2 > 1

 = π( 1
2 − 1)

 = π.

The surface area is given by

S = 2π∫∞
1

 f (x)√1 + [ f ′(x)]2 dx = 2π∫∞
1

 
1
x√1 +

1
x4 dx.

Because

√1 +
1
x4 > 1

on the interval [1, ∞), and the improper integral

∫∞
1

 
1
x
 dx

diverges, you can conclude that the improper integral

∫∞
1

 
1
x√1 +

1
x4 dx

also diverges. (See Exercise 52.) So, the surface area is infinite.

x
5 6 7 8 9 10

1

−1

−1

y

f (x) = 1
x

, x ≥ 1

 Gabriel’s Horn has a finite volume and an infinite surface area.
 Figure 8.29 

 FOR FURTHER INFORMATION
For further investigation of solids 
that have finite volumes and  
infinite surface areas, see the article 
“Supersolids: Solids Having Finite 
Volume and Infinite Surfaces” by 
William P. Love in Mathematics 
Teacher. To view this article, go to 
MathArticles.com.

 FOR FURTHER INFORMATION
To learn about another function 
that has a finite volume and an  
infinite surface area, see the article 
“Gabriel’s Wedding Cake” by 
Julian F. Fleron in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

THEOREM 8.7 A Special Type of Improper Integral

 ∫∞
1

 
dx
xp = { 1

p − 1
,

diverges,

p > 1

p ≤ 1
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8.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Improper Integrals Describe two ways for an 

integral to be improper.

2.  Improper Integrals What does it mean for an 
improper integral to converge?

3.  Indefinite Integration Limits Explain how to 
evaluate an improper integral that has an infinite limit of 
integration.

4.  Finding Values For what values of a is each integral 
improper? Explain.

 (a) ∫5

a

1
x + 2

 dx (b) ∫4

a

x
3x − 1

 dx

Determining Whether an Integral Is Improper In 
Exercises 5–12, decide whether the integral is improper. 
Explain your reasoning.

 5. ∫1

0

dx
5x − 3

  6. ∫2

1
 
dx
x3

 7. ∫1

0

2x − 5
x2 − 5x + 6

 dx  8. ∫∞
1

ln x2 dx

 9. ∫2

0
e−x dx 10. ∫∞

0
cos x dx

11. ∫∞
−∞

 
sin x

4 + x2 dx 12. ∫π�4

0
csc x dx

 Evaluating an Improper Integral In 
Exercises 13–16, explain why the integral is 
improper and determine whether it diverges or 
converges. Evaluate the integral if it converges.

13. ∫4

0

1

√x
 dx 14. ∫4

3

1
(x − 3)3�2 dx

 

x
1

1

2

2

4

4

3

3

y   

x
1 2 4 5

10

20

40

30

50

y

15. ∫2

0

1
(x − 1)2 dx 16. ∫0

−∞
e3x dx

 

x

1

2

2

y   y

x
−1

1

Evaluating an Improper Integral In 
Exercises 17–32, determine whether the improper 
integral diverges or converges. Evaluate the 
integral if it converges.

17. ∫∞
2

1
x3 dx 18. ∫∞

3

1
(x − 1)4 dx

19. ∫∞
1

3
3√x

 dx 20. ∫∞
1

4
4√x

 dx

21. ∫∞
0

ex�3 dx 22. ∫0

−∞
 xe−4x dx

23. ∫∞
0

x2e−x dx 24. ∫∞
0

e−x cos x dx

25. ∫∞
4

1
x(ln x)3 dx 26. ∫∞

1
 
ln x

x
 dx

27. ∫∞
−∞

 
4

16 + x2 dx 28. ∫∞
0

x3

(x2 + 1)2 dx

29. ∫∞
0

1
ex + e−x dx 30. ∫∞

0

ex

1 + ex dx

31. ∫∞
0

cos πx dx 32. ∫∞
0

sin 
x
2

 dx

 Evaluating an Improper Integral In Exercises 
33–48, determine whether the improper integral 
diverges or converges. Evaluate the integral if it 
converges, and check your results with the results 
obtained by using the integration capabilities of a 
graphing utility.

33. ∫1

0
 
1
x2 dx 34. ∫5

0
 
10
x

 dx

35. ∫2

0

1
3√x − 1

 dx 36. ∫8

0

3

√8 − x
 dx

37. ∫1

0
x ln x dx 38. ∫e

0
ln x2 dx

39. ∫π�2

0
tan θ dθ 40. ∫π�2

0
sec θ dθ

41. ∫4

2

2

x√x2 − 4
 dx 42. ∫6

3

1

√36 − x2
 dx

43. ∫5

3

1

√x2 − 9
 dx

44. ∫5

0

1
25 − x2 dx

45. ∫∞
3

1

x√x2 − 9
 dx

46. ∫∞
4

√x2 − 16
x2  dx

47. ∫∞
0

4

√x (x + 6)
 dx

48. ∫∞
1

1
x ln x

 dx

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



580 Chapter 8 Integration Techniques and Improper Integrals

Finding Values In Exercises 49 and 50, determine all 
values of p for which the improper integral converges.

49. ∫∞
1

 
1
xp dx

50. ∫1

0
 
1
xp dx

51.  Mathematical Induction Use mathematical induction 
to verify that the following integral converges for any positive 
integer n.

 ∫∞
0

xne−x dx

52.  Comparison Test for Improper Integrals In some 
cases, it is impossible to find the exact value of an improper 
integral, but it is important to determine whether the integral 
converges or diverges. Suppose the functions f  and g are 
continuous and 0 ≤ g(x) ≤ f (x) on the interval [a, ∞). It can

  be shown that if ∫∞a  f (x) dx converges, then ∫∞a  g(x) dx also
  converges, and if ∫∞a  g(x) dx diverges, then ∫∞a  f (x) dx also 

diverges. This is known as the Comparison Test for improper 
integrals.

 (a)  Use the Comparison Test to determine whether ∫∞1  e−x2
 dx  

converges or diverges. (Hint: Use the fact that e−x2 ≤ e−x 
for x ≥ 1.)

 (b) Use the Comparison Test to determine whether

 ∫∞
1

1
x5 + 1

 dx converges or diverges. (Hint: Use the fact

  that 
1

x5 + 1
≤ 1

x5 for x ≥ 1.)

Convergence or Divergence In Exercises 53–60, use the 
results of Exercises 49–52 to determine whether the improper 
integral converges or diverges.

53. ∫1

0
 

1
6√x

 dx 54. ∫1

0
 
1
x9 dx

55. ∫∞
1

 
1
x5 dx 56. ∫∞

0
x4e−x dx

57. ∫∞
1

1
x2 + 5

 dx 58. ∫∞
2

1

√x − 1
 dx

59. ∫∞
1

 
1 − sin x

x2  dx 60. ∫∞
0

1
ex + x

 dx

EXPLORING CONCEPTS

61. Improper Integral Explain why ∫1

−1
 
1
x3 dx ≠ 0.

62. Improper Integral Consider the integral

 ∫3

0

10
x2 − 2x

 dx.

  To determine the convergence or divergence of the 
integral, how many improper integrals must be analyzed? 
What must be true of each of these integrals for the given 
integral to converge?

 Area In Exercises 63–66, find the area of the 
unbounded shaded region.

63. y = −
7

(x − 1)3, 64. y = −ln x

 −∞ < x ≤ −1  

1 2 3 4

1

2

3

x

y

 

x

y

−1−2−3−4

1

4

65. Witch of Agnesi: 66. Witch of Agnesi:

 y =
1

x2 + 1
  y =

8
x2 + 4

 

−1−2−3 1 2 3
−1

−2

−3

2

3

y

x

 y

x
−2−4−6 2 4 6
−2

−4

−6

4

6

 Area and Volume In Exercises 67 and 68, 
consider the region satisfying the inequalities.  
(a) Find the area of the region. (b) Find the volume 
of the solid generated by revolving the region 
about the x-axis. (c) Find the volume of the solid 
generated by revolving the region about the y-axis.

67. y ≤ e−x, y ≥ 0, x ≥ 0

68. y ≤ 1
x2, y ≥ 0, x ≥ 1

69.  Arc Length Find the arc length of the graph of 
y = √16 − x2 over the interval [0, 4].

70.  Surface Area  Find the area of the surface formed by 
revolving the graph of y = 2e−x on the interval [0, ∞) about 
the x-axis.

Propulsion In Exercises 71 and 72, use the weight of the 
rocket to answer each question. (Use 4000 miles as the radius of 
Earth and do not consider the effect of air resistance.)

(a)  How much work is required to propel the rocket an 
unlimited distance away from Earth’s surface?

(b)  How far has the rocket traveled when half of the total work 
has occurred?

71. 5-metric-ton rocket 72. 10-metric-ton rocket
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8.8 Improper Integrals 581

Probability A nonnegative function f  is called a probability  
density function if

∫∞
−∞

 f (t) dt = 1.

The probability that x lies between a and b is given by

P(a ≤ x ≤ b) = ∫b

a
 f (t) dt.

In Exercises 73 and 74, (a) show that the nonnegative function 
is a probability density function, and (b) find P(0 ≤ x ≤ 6).

73. f (t) = {1
9e−t�9,

0,

    t ≥ 0

    t < 0
 74. f (t) = {5

6e−5t�6,

0,

    t ≥ 0

    t < 0

75.  Normal Probability The mean height of American men 
between 20 and 29 years old is 69 inches, and the standard 
deviation is 3 inches. A 20- to 29-year-old man is chosen 
at random from the population. The probability that he is  
6 feet tall or taller is

 P(72 ≤ x < ∞) = ∫∞
72

1

3√2π
e−(x−69)2�18 dx.

(Source: National Center for Health Statistics)

(a)  Use a graphing utility to graph the integrand. Use the 
graphing utility to convince yourself that the area between 
the x-axis and the integrand is 1.

 (b) Use a graphing utility to approximate P(72 ≤ x < ∞).
(c)  Approximate 0.5 − P(69 ≤ x ≤ 72) using a graphing 

utility. Use the graph in part (a) to explain why this result 
is the same as the answer in part (b).

76.  HOW DO YOU SEE IT? The graph shows 
the probability density function for a car brand 
that has a mean fuel efficiency of 26 miles per 
gallon and a standard deviation of 2.4 miles  
per gallon.

16 18 20 22 24 26 28 30 32 34 36

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

x

Miles per gallon

Pr
ob

ab
ili

ty

y

(a)  Which is greater, the probability of choosing a car 
at random that gets between 26 and 28 miles per 
gallon or the probability of choosing a car at random 
that gets between 22 and 24 miles per gallon?

(b)  Which is greater, the probability of choosing a 
car at random that gets between 20 and 22 miles 
per gallon or the probability of choosing a car at 
random that gets at least 30 miles per gallon?

76.  

Capitalized Cost In Exercises 77 and 78, find the capitalized 
cost C of an asset (a) for n = 5 years, (b) for n = 10 years, and 
(c) forever. The capitalized cost is given by

C = C0 + ∫n

0
c(t)e−rt dt

where C0 is the original investment, t is the time in years, r is 
the annual interest rate compounded continuously, and c(t) is 
the annual cost of maintenance.

77. C0 = $700,000 78. C0 = $700,000

 c(t) = $25,000  c(t) = $25,000(1 + 0.08t)
r = 0.06  r = 0.06

79.  Electromagnetic Theory The magnetic potential P at a 
point on the axis of a circular coil is given by

 P =
2πNIr

k
 ∫∞

c

1
(r2 + x2)3�2 dx

 where N, I, r, k, and c are constants. Find P.

80.  Gravitational Force A “semi-infinite” uniform rod 
occupies the nonnegative x-axis. The rod has a linear density 
δ, which means that a segment of length dx has a mass of 
δ dx. A particle of mass M is located at the point (−a, 0). The 
gravitational force F that the rod exerts on the mass is given by

 F = ∫∞
0

GMδ
(a + x)2 dx

 where G is the gravitational constant. Find F.

True or False? In Exercises 81–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

81.  If f  is continuous on [0, ∞) and lim
x→∞

 f (x) = 0, then ∫∞0  f (x) dx
converges.

82.  If f  is continuous on [0, ∞) and ∫∞0  f (x) dx diverges, then 
lim

x→∞
 f (x) ≠ 0.

83. If f ′ is continuous on [0, ∞) and lim
x→∞

 f (x) = 0, then

 ∫∞
0

f ′(x) dx = −f (0).

84.  If the graph of f  is symmetric with respect to the origin or the
  y-axis, then ∫∞0  f (x) dx converges if and only if ∫∞−∞ f (x) dx

converges.

85. ∫∞
0

eax dx converges for a < 0.

86. If lim
x→∞

 f (x) = L, then ∫∞
0

f (x) dx converges.

87. Comparing Integrals

(a) Show that ∫∞−∞ sin x dx diverges.

 (b) Show that lim
a→∞

 ∫a
−a sin x dx = 0.

(c)  What do parts (a) and (b) show about the definition of 
improper integrals?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



582 Chapter 8 Integration Techniques and Improper Integrals

88. Exploration Consider the integral

 ∫π�2

0

4
1 + (tan x)n dx

 where n is a positive integer.

 (a) Is the integral improper? Explain.

 (b)  Use a graphing utility to graph the integrand for n = 2, 4, 
8, and 12.

 (c) Use the graphs to approximate the integral as n→∞.

 (d)  Use a computer algebra system to evaluate the integral for 
the values of n in part (b). Make a conjecture about the 
value of the integral for any positive integer n. Compare 
your results with your answer in part (c).

89.  Comparing Integrals Let f  be continuous on the interval 
[a, ∞). Show that if the improper integral ∫∞a  ∣ f (x)∣ dx 
converges, then the improper integral ∫∞a  f (x) dx also 
converges.

90.  Writing

 (a) The improper integrals

  ∫∞
1

 
1
x
 dx and ∫∞

1
 
1
x2 dx

   diverge and converge, respectively. Describe the essential 
difference between the integrands that cause one integral 
to converge and the other to diverge.

 (b)  Use a graphing utility to graph the function y = (sin x)�x 
over the interval (1, ∞). Use your knowledge of the 
definite integral to make an inference as to whether the 
integral

  ∫∞
1

 
sin x

x
 dx

  converges. Give reasons for your answer.

 (c)  Use one application of integration by parts and the result 
of Exercise 89 to determine the divergence or convergence 
of the integral in part (b).

Laplace Transforms Let f (t) be a function defined for all 
positive values of t. The Laplace Transform of f (t) is defined by

F(s) = ∫∞
0

e−stf (t) dt

when the improper integral exists. Laplace Transforms are 
used to solve differential equations. In Exercises 91–98, find 
the Laplace Transform of the function.

91. f (t) = 1 92. f (t) = t

93. f (t) = t2

94. f (t) = eat

95. f (t) = cos at

96. f (t) = sin at

97. f (t) = cosh at

98. f (t) = sinh at

 99.  The Gamma Function The Gamma Function Γ(n) is 
defined by

  Γ(n) = ∫∞
0

xn−1e−x dx, n > 0.

  (a) Find Γ(1), Γ(2), and Γ(3).
  (b) Use integration by parts to show that Γ(n + 1) = nΓ(n).
  (c)  Write Γ(n) using factorial notation where n is a positive 

integer.

100. Proof Prove that In = (n − 1
n + 2)In−1, where

  In = ∫∞
0

x2n−1

(x2 + 1)n+3 dx, n ≥ 1.

  Then evaluate each integral.

  (a) ∫∞
0

x
(x2 + 1)4 dx   (b) ∫∞

0

x3

(x2 + 1)5 dx

  (c) ∫∞
0

x5

(x2 + 1)6 dx

101. Finding a Value For what value of c does the integral

  ∫∞
0
( 1

√x2 + 1
−

c
x + 1) dx

  converge? Evaluate the integral for this value of c.

102. Finding a Value For what value of c does the integral

  ∫∞
1
( cx

x2 + 2
−

1
3x) dx

  converge? Evaluate the integral for this value of c.

103.  Volume  Find the volume of the solid generated by revolving 
the region bounded by the graph of f  about the x-axis.

  f (x) = {x ln x,
0,

 0 < x ≤ 2
 x = 0

104.  Volume  Find the volume of the solid generated by  
revolving the unbounded region lying between y = −ln x 
and the y-axis (y ≥ 0) about the x-axis.

u-Substitution In Exercises 105 and 106, rewrite the 
improper integral as a proper integral using the given  
u-substitution. Then use the Trapezoidal Rule with n = 5 to 
approximate the integral.

105. ∫1

0
 
sin x

√x
 dx, u = √x

106. ∫1

0

cos x

√1 − x
 dx, u = √1 − x

107. Rewriting an Integral Let ∫∞
−∞

 f (x) dx be convergent

   and let a and b be real numbers where a ≠ b. Show that

  ∫a

−∞
 f (x) dx + ∫∞

a

 f (x) dx = ∫b

−∞
 f (x) dx + ∫∞

b

 f (x) dx.
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 Review Exercises 583

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Using Basic Integration Rules In Exercises 1–8, use the 
basic integration rules to find or evaluate the integral.

 1. ∫x2 √x3 − 27 dx  2. ∫xe5−x2 dx

3. ∫csc2 (x + 8
4 ) dx  4. ∫ x

3√4 − x2
 dx

5. ∫e

1
 
ln 2x

x
 dx 6. ∫2

3�2
 2x√2x − 3 dx

7. ∫ 100

√100 − x2
 dx  8. ∫ 2x

x − 3
 dx

Using Integration by Parts In Exercises 9–16, use 
integration by parts to find the indefinite integral.

 9. ∫x e1−x dx 10. ∫x2ex�2 dx

11. ∫e2x sin 3x dx 12. ∫x√x − 1 dx

13. ∫x sec2 x dx 14. ∫ln√x2 − 4 dx

15. ∫x arcsin 2x dx 16. ∫arctan 2x dx

Finding a Trigonometric Integral In Exercises 17–26, 
find the trigonometric integral.

17. ∫sin x cos4 x dx 18. ∫sin2 x cos3 x dx

19. ∫cos3(πx − 1) dx 20. ∫sin2 
πx
2

 dx

21. ∫sec4 
x
2

 dx 22. ∫tan θ sec4 θ dθ

23. ∫x tan4 x2 dx 24. ∫tan2 x
sec3 x

 dx

25. ∫ 1
1 − sin θ  dθ

26. ∫(cos 2θ)(sin θ + cos θ)2 dθ

Area In Exercises 27 and 28, find the area of the given 
region.

27. y = sin4 x 28. y = sin 3x cos 2x
y

x

4
3π

4
π

2
π

2
π

4
π π

  y

x

6

1

−1

π
3
π

4 )) , 0 
π

Using Trigonometric Substitution In Exercises 29–34, 
use trigonometric substitution to find or evaluate the integral.

29. ∫ −12

x2√4 − x2
 dx 30. ∫√x2 − 9

x
 dx

31. ∫ x3

√4 + x2
 dx 32. ∫√25 − 9x2 dx

33. ∫1

0

6x3

√16 + x2
 dx 34. ∫4

3
x3√x2 − 9 dx

Using Different Methods In Exercises 35 and 36, find the 
indefinite integral using each method.

35. ∫ x3

√4 + x2
 dx

 (a) Trigonometric substitution

 (b) Substitution: u2 = 4 + x2

 (c) Integration by parts: dv =
x

√4 + x2
 dx

36. ∫x√4 + x dx

 (a) Trigonometric substitution

 (b) Substitution: u2 = 4 + x

 (c) Substitution: u = 4 + x

 (d) Integration by parts: dv = √4 + x dx

Using Partial Fractions In Exercises 37– 44, use partial 
fractions to find the indefinite integral.

37. ∫ x − 8
x2 − x − 6

 dx 38. ∫5x − 2
x2 − x

 dx

39. ∫ x2 + 2x
x3 − x2 + x − 1

 dx 40. ∫ 4x − 2
3(x − 1)2 dx

41. ∫ x2

x2 − 2x + 1
 dx 42. ∫ x3 + 4

x2 − 4x
 dx

43. ∫ 4ex

(e2x − 1)(ex + 3) dx 44. ∫ sec2 θ
(tan θ)(tan θ − 1) dθ

Using the Trapezoidal Rule and Simpson’s Rule In 
Exercises 45–48, approximate the definite integral using the 
Trapezoidal Rule and Simpson’s Rule with n = 4. Compare 
these results with the approximation of the integral using a 
graphing utility.

45. ∫3

2

2
1 + x2 dx

46. ∫1

0

x3�2

3 − x2 dx

47. ∫π�2

0
√x cos x dx

48. ∫π
0
√1 + sin2 x dx
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Integration by Tables In Exercises 49–56, use integration 
tables to find or evaluate the integral.

49. ∫ x
(4 + 5x)2 dx 50. ∫ x

√4 + 5x
 dx

51. ∫√π�2

0
 

x
1 + sin x2 dx 52. ∫1

0

x
1 + ex2 dx

53. ∫ x
x2 + 4x + 8

 dx 54. ∫ 3

2x√9x2 − 1
 dx, x >

1
3

55. ∫ 1
sin πx cos πx

 dx 56. ∫ 1
1 + tan πx

 dx

Finding an Indefinite Integral In Exercises 57–64, find 
the indefinite integral using any method.

57. ∫θ sin θ cos θ dθ 58. ∫csc√2x

√x
 dx

59. ∫ x1�4

1 + x1�2 dx 60. ∫√1 + √x dx

61. ∫√1 + cos x dx 62. ∫3x3 + 4x
(x2 + 1)2 dx

63. ∫cos x ln(sin x) dx 64. ∫(sin θ + cos θ)2 dθ

Differential Equation In Exercises 65–68, find the general 
solution of the differential equation using any method.

65. 
dy
dx

=
25

x2 − 25
 66. 

dy
dx

=
√4 − x2

2x

67. y′ = ln(x2 + x) 68. y′ = √1 − cos θ

Evaluating a Definite Integral In Exercises 69–74, 
evaluate the definite integral using any method. Use a graphing 
utility to verify your result.

69. ∫√5

2
x(x2 − 4)3�2 dx 70. ∫1

0

x
(x − 2)(x − 4) dx

71. ∫4

1
 
ln x

x
 dx 72. ∫2

0
xe3x dx

73. ∫π
2
(x2 − 4) sin x dx 74. ∫5

0

x

√4 + x
 dx

Area In Exercises 75 and 76, find the area of the given region 
using any method.

75. y = x√3 − 2x 76. y =
1

25 − x2

 y

x
1 2

1

2

2 4

0.5

1

x

y

Centroid In Exercises 77 and 78, find the centroid of the 
region bounded by the graphs of the equations using any 
method.

77. y = √1 − x2, y = 0

78. (x − 1)2 + y2 = 1, (x − 4)2 + y2 = 4

Evaluating an Improper Integral In Exercises 79–86, 
determine whether the improper integral diverges or converges. 
Evaluate the integral if it converges.

79. ∫16

0
 

1
4√x

 dx 80. ∫2

0
 

7
x − 2

 dx

81. ∫∞
1

x2 ln x dx 82. ∫∞
0

 
e−1�x

x2  dx

83. ∫∞
1

 
ln x
x2  dx 84. ∫∞

1
 

1
4√x

 dx

85. ∫∞
2

1

x√x2 − 4
 dx 86. ∫∞

0

2

√x (x + 4)
 dx

87.  Present Value The board of directors of a corporation is 
calculating the price to pay for a business that is forecast to 
yield a continuous flow of profit of $500,000 per year. The 
money will earn a nominal rate of 5% per year compounded 
continuously. The present value of the business for t0 years is

 Present value = ∫t0

0
500,000e−0.05t dt.

 (a) Find the present value of the business for 20 years.

 (b)  Find the present value of the business in perpetuity 
(forever).

88.  Volume Find the volume of the solid generated by 
revolving the region bounded by the graphs of y ≤ xe−x,
y ≥ 0, and x ≥ 0 about the x-axis.

89.  Probability The average lengths (from beak to tail) of 
different species of warblers in the eastern United States 
are approximately normally distributed with a mean of 
12.9 centimeters and a standard deviation of 0.95 centimeter 
(see figure). The probability that a randomly selected warbler 
has a length between a and b centimeters is

 P(a ≤ x ≤ b) = 1

0.95√2π
 ∫b

a

e−(x−12.9)2�1.805 dx.

  Use a graphing utility to approximate the probability that a 
randomly selected warbler has a length of (a) 13 centimeters 
or greater and (b) 15 centimeters or greater. (Source: 
Peterson’s Field Guide: Eastern Birds)

x
10 12 14 16

0.25

0.50

9 11 13 15

P
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 P.S. Problem Solving 585

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Wallis’s Formulas

 (a) Evaluate the integrals

 ∫1

−1
 (1 − x2) dx and ∫1

−1
 (1 − x2)2 dx.

 (b) Use Wallis’s Formulas to prove that

 ∫1

−1
 (1 − x2)n dx =

22n+1(n!)2
(2n + 1)!

 for all positive integers n.

2. Proof

 (a) Evaluate the integrals

 ∫1

0
 ln x dx and ∫1

0
 (ln x)2 dx.

 (b) Prove that

 ∫1

0
 (ln x)n dx = (−1)n n!

 for all positive integers n.

3.  Comparing Methods Let I = ∫4
0  f (x) dx, where f  is 

shown in the figure. Let L(n) and R(n) represent the Riemann 
sums using the left-hand endpoints and right-hand endpoints of 
n subintervals of equal width. (Assume n is even.) Let T(n) and 
S(n) be the corresponding values of the Trapezoidal Rule and 
Simpson’s Rule.

 

x

4

2 41 3

2

3

1

f

y

 (a) For any n, list L(n), R(n), T(n), and I in increasing order. 

 (b) Approximate S(4).
4.  Area Consider the problem of finding the area of the region 

bounded by the x-axis, the line x = 4, and the curve

 y =
x2

(x2 + 9)3�2.

 (a)  Use a graphing utility to graph the region and approximate 
its area.

 (b)  Use an appropriate trigonometric substitution to find the 
exact area.

 (c)  Use the substitution x = 3 sinh u to find the exact area and 
verify that you obtain the same answer as in part (b).

5.  Area Use the substitution

 u = tan 
x
2

 to find the area of the shaded region under the graph of

 y =
1

2 + cos x

 for 0 ≤ x ≤ π�2 (see figure).

 

x

y

1

2
π π

2
3π 2π

6.  Arc Length Find the arc length of the graph of the function 
y = ln(1 − x2) on the interval 0 ≤ x ≤ 1

2 (see figure).

 

x

y

1
2

1
2

−

7.  Centroid Find the centroid of the region bounded by the 
x-axis and the curve y = e−c2x2

, where c is a positive constant 
(see figure).

 (Hint: Show that ∫∞
0

e−c2x2
 dx =

1
c
 ∫∞

0
e−x2

 dx.)

x

y = e−c
2x2

y

8.  Proof Prove the following generalization of the Mean Value 
Theorem. If f  is twice differentiable on the closed interval 
[a, b], then

 f (b) − f (a) = f ′(a)(b − a) − ∫b

a

f ″(t)(t − b) dt.
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 9. Inverse Function and Area

(a)  Let y = f −1(x) be the inverse function of f. Use integration 
by parts to derive the formula

 ∫ f −1(x) dx = xf −1(x) − ∫ f (y) dy.

(b) Use the formula in part (a) to find the integral

∫arcsin x dx.

(c)  Use the formula in part (a) to find the area under the graph 
of y = ln x, 1 ≤ x ≤ e (see figure).

  

x

y

1 2 3

−1

1

2

e

 

x

y

1

1

Figure for 9 Figure for 10

10.  Area Factor the polynomial p(x) = x4 + 1 and then find 
the area under the graph of

y =
1

x4 + 1
, 0 ≤ x ≤ 1 (see figure).

11.  Partial Fraction Decomposition Suppose the 
denominator of a rational function can be factored into distinct 
linear factors

 D(x) = (x − c1)(x − c2) .  .  . (x − cn)

for a positive integer n and distinct real numbers c1,
c2, .  .  . , cn. If N is a polynomial of degree less than n, show 
that

 
N(x)
D(x) =

P1

x − c1
+

P2

x − c2
+ .  .  . +

Pn

x − cn

where Pk = N(ck)�D′(ck) for k = 1, 2, .  .  . , n. Note that this 
is the partial fraction decomposition of N(x)�D(x).

12.  Partial Fraction Decomposition Use the result of 
Exercise 11 to find the partial fraction decomposition of 

 
x3 − 3x2 + 1

x4 − 13x2 + 12x
.

13. Evaluating an Integral

(a) Use the substitution u =
π
2
− x to evaluate the integral

  ∫π�2

0

sin x
cos x + sin x

 dx.

(b) Let n be a positive integer. Evaluate the integral

  ∫π�2

0

sinn x
cosn x + sinn x

 dx.

14.  Elementary Functions Some elementary functions, 
such as f (x) = sin(x2), do not have antiderivatives that are 
elementary functions. Joseph Liouville proved that

 ∫ex

x
 dx

does not have an elementary antiderivative. Use this fact to 
prove that

∫ 1
ln x

 dx

does not have an elementary antiderivative.

15.  Rocket The velocity v (in feet per second) of a rocket 
whose initial mass (including fuel) is m is given by

 v = −gt + u ln 
m

m − rt
, t <

m
r

where u is the expulsion speed of the fuel, r is the rate at which 
the fuel is consumed, and g = 32 feet per second per second is 
the acceleration due to gravity. Find the position equation for 
a rocket for which m = 50,000 pounds, u = 12,000 feet per 
second, and r = 400 pounds per second. What is the height of 
the rocket when t = 100 seconds? (Assume that the rocket was 
fired from ground level and is moving straight upward.)

16.  Proof Suppose that f (a) = f (b) = g(a) = g(b) = 0 and 
the second derivatives of f  and g are continuous on the closed 
interval [a, b]. Prove that

 ∫b

a

 f (x)g″(x) dx = ∫b

a

 f ″(x)g(x) dx.

17.  Proof Suppose that f (a) = f (b) = 0 and the second 
derivatives of f  exist on the closed interval [a, b]. Prove that

 ∫b

a

(x − a)(x − b) f ″(x) dx = 2 ∫b

a

 f (x) dx.

18. Approximating an Integral Using the inequality

 
1
x5 +

1
x10 +

1
x15 <

1
x5 − 1

<
1
x5 +

1
x10 +

2
x15

for x ≥ 2, approximate ∫∞
2

 
1

x5 − 1
 dx.

19.  Volume Consider the shaded region between the graph 
of y = sin x, where 0 ≤ x ≤ π, and the line y = c, where 
0 ≤ c ≤ 1, as shown in the figure. A solid is formed by 
revolving the region about the line y = c.

(a) For what value of c does the solid have minimum volume?

 (b) For what value of c does the solid have maximum volume?

y

x
π

y = sin x

y = c
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Infinite Series
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9.2 Series and Convergence 599

9.2 Series and Convergence

 Understand the definition of a convergent infinite series.
 Use properties of infinite geometric series.
 Use the nth-Term Test for Divergence of an infinite series.

Infinite Series
One important application of infinite sequences is in representing “infinite  summations.” 
Informally, if {an} is an infinite sequence, then

∑
∞

n=1
 an = a1 + a2 + a3 + .  .  . + an + .  .  .    Infinite series

is an infinite series (or simply a series). The numbers a1, a2, a3, and so on are the terms 
of the series. For some series, it is convenient to begin the index at n = 0 (or some 
other  integer). As a typesetting convention, it is common to represent an infinite series 
as ∑ an. In such cases, the starting value for the index must be taken from the  context 
of the statement.

To find the sum of an infinite series, consider the sequence of partial sums listed 
below.

 S1 = a1

 S2 = a1 + a2

 S3 = a1 + a2 + a3

 S4 = a1 + a2 + a3 + a4

 S5 = a1 + a2 + a3 + a4 + a5

 ⋮
 Sn = a1 + a2 + a3 + a4 + a5 + .  .  . + an

If this sequence of partial sums converges, then the series is said to converge and has 
the sum indicated in the next definition.

Definitions of Convergent and Divergent Series

For the infinite series ∑
∞

n=1
 an, the nth partial sum is

Sn = a1 + a2 + .  .  . + an.

If the sequence of partial sums {Sn} converges to S, then the series ∑
∞

n=1
 an  

 converges. The limit S is called the sum of the series.

S = a1 + a2 + .  .  . + an + .  .  . S = ∑
∞

n=1
 an

If {Sn} diverges, then the series diverges.

As you study this chapter, you will see that there are two basic questions involving 
infinite series.

• Does a series converge or does it diverge?

• When a series converges, what is its sum?

These questions are not always easy to answer, especially the second one.

REMARK As you study  
this chapter, it is important to  
distinguish between an infinite 
series and a sequence. A 
sequence is an ordered  
collection of numbers

a1, a2, a3, .  .  . , an, .  .  .

whereas a series is an infinite 
sum of terms from a sequence

a1 + a2 + a3 + .  .  . + an + .  .  . .

INFINITE SERIES

The study of infinite series was 
considered a novelty in the 
fourteenth century. Logician 
Richard Suiseth, whose 
nickname was Calculator, 
solved this problem.

If throughout the first half of 
a given time interval a variation 
continues at a certain intensity, 
throughout the next quarter 
of the interval at double the 
intensity, throughout the following 
eighth at triple the intensity and 
so ad infinitum, then the average 
intensity for the whole interval will 
be the intensity of the variation 
during the second subinterval  
(or double the intensity). 
This is the same as saying that 
the sum of the infinite series

1
2
+

2
4
+

3
8
+ .  .  . +

n
2n + .  .  .

is 2.
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 Convergent and Divergent Series

a. The series

∑
∞

n=1
 
1
2n =

1
2
+

1
4
+

1
8
+

1
16

+ .  .  .

  has the partial sums listed below. 

 S1 =
1
2

 S2 =
1
2
+

1
4
=

3
4

 S3 =
1
2
+

1
4
+

1
8
=

7
8

 ⋮
 Sn =

1
2
+

1
4
+

1
8
+ .  .  . +

1
2n =

2n − 1
2n

 Because

lim
n→∞

 
2n − 1

2n = 1

  it follows that the series converges and its sum is 1. (You can also determine the 
partial sums of the series geometrically, as shown in Figure 9.5.)

b. The nth partial sum of the series

∑
∞

n=1
 (1n −

1
n + 1) = (1 −

1
2) + (

1
2
−

1
3) + (

1
3
−

1
4) + .  .  .

 is

Sn = 1 −
1

n + 1
.

 Because the limit of Sn is 1, the series converges and its sum is 1.

c. The series

∑
∞

n=1
 1 = 1 + 1 + 1 + 1 + .  .  .

 diverges because Sn = n and the sequence of partial sums diverges. 

The series in Example 1(b) is a telescoping series of the form

(b1 − b2) + (b2 − b3) + (b3 − b4) + (b4 − b5) + .  .  . .    Telescoping series

Note that b2 is canceled by the second term, b3 is canceled by the third term, and so on. 
Because the nth partial sum of this series is

Sn = b1 − bn+1

it follows that a telescoping series will converge if and only if bn approaches a finite 
number as n→∞. Moreover, if the series converges, then its sum is

S = b1 − lim
n→∞

 bn+1.

1

1

1
4

1
2

1
8

1
32

1
64

1
16

You can determine the partial sums of 
the series in Example 1(a) geometrically 
using this figure.
Figure 9.5

 FOR FURTHER INFORMATION
To learn more about the partial 
sums of infinite series, see the  
article “Six Ways to Sum a Series” 
by Dan Kalman in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.2 Series and Convergence 601

 Writing a Series in Telescoping Form

Find the sum of the series ∑
∞

n=1
 

2
4n2 − 1

.

Solution

Using partial fractions, you can write

an =
2

4n2 − 1
=

2
(2n − 1)(2n + 1) =

1
2n − 1

−
1

2n + 1
.

From this telescoping form, you can see that the nth partial sum is

Sn = (11 −
1
3) + (

1
3
−

1
5) + .  .  . + ( 1

2n − 1
−

1
2n + 1) = 1 −

1
2n + 1

.

So, the series converges and its sum is 1. That is,

∑
∞

n=1
 

2
4n2 − 1

= lim
n→∞

 Sn = lim
n→∞

 (1 −
1

2n + 1) = 1. 

Geometric Series
The series in Example 1(a) is a geometric series. In general, the series

∑
∞

n=0
 arn = a + ar + ar2 + .  .  . + arn + .  .  . ,   a ≠ 0    Geometric series

is a geometric series with ratio r, r ≠ 0.

THEOREM 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges when ∣r∣ ≥ 1. If ∣r∣ < 1, then  
the series converges to the sum

∑
∞

n=0
 arn =

a
1 − r

, ∣r∣ < 1.

Proof It is easy to see that the series diverges when r = ±1. If r ≠ ±1, then

Sn = a + ar + ar2 + .  .  . + arn−1.

Multiplication by r yields

rSn = ar + ar2 + ar3 + .  .  . + arn.

Subtracting the second equation from the first produces Sn − rSn = a − arn. Therefore, 
Sn(1 − r) = a(1 − rn), and the nth partial sum is

Sn =
a

1 − r
(1 − rn).

When ∣r∣ < 1, it follows that rn→0 as n→∞, and you obtain

lim
n→∞

 Sn = lim
n→∞

 [ a
1 − r

 (1 − rn)] = a
1 − r

 [ lim
n→∞

 (1 − rn)] = a
1 − r

which means that the series converges and its sum is a�(1 − r). It is left to you to
show that the series diverges when ∣r∣ > 1. 

Exploration
In “Proof Without Words,” 
by Benjamin G. Klein and 
Irl C. Bivens, the authors 
present the diagram below. 
Explain why the second 
statement after the diagram 
is valid. How is this result 
related to Theorem 9.6?

P

Q

R

S1

1 1

1 − r r

r

r2

r2r3
r3

T

∆PQR ~ ∆TSP

1 + r + r2 + r3 + .  .  . =
1

1 − r

Exercise taken from “Proof 
Without Words” by Benjamin 
G. Klein and Irl C. Bivens, 
Mathematics Magazine, 61, 
No. 4, October 1988, p. 219, 
by permission of the authors.
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 Convergent and Divergent Geometric Series

a. The geometric series

∑
∞

n=0
 
3
2n = ∑

∞

n=0
 3(12)

n

= 3(1) + 3(12) + 3(12)
2

+ .  .  .

   has a ratio of r = 1
2 with a = 3. Because ∣r∣ < 1, the series converges and its sum is 

S =
a

1 − r
=

3
1 − (1�2) = 6. See Figure 9.6.

b. The geometric series

∑
∞

n=0
 (32)

n

= 1 +
3
2
+

9
4
+

27
8

+ .  .  .

 has a ratio of r = 3
2. Because ∣r∣ ≥ 1, the series diverges. 

The formula for the sum of a geometric series can be used to write a repeating  
decimal as the ratio of two integers, as demonstrated in the next example.

 A Geometric Series for a Repeating Decimal

See LarsonCalculus.com for an interactive version of this type of example.

Use a geometric series to write 0.08 as the ratio of two integers.

Solution For the repeating decimal 0.08, you can write

 0.080808 .  .  . =
8

102 +
8

104 +
8

106 +
8

108 + .  .  .

 = ∑
∞

n=0
 ( 8

102)( 1
102)

n

.

For this series, you have a = 8�102 and r = 1�102. So,

 0.080808 .  .  . =
a

1 − r
=

8�102

1 − (1�102) =
8
99

.

Try dividing 8 by 99 on a calculator to see that it produces 0.08. 

The convergence of a series is not affected by the removal of a finite number of 
terms from the beginning of the series. For instance, the geometric series

∑
∞

n=4
 (12)

n

 and ∑
∞

n=0
 (12)

n

both converge. Furthermore, because the sum of the second series is 

a
1 − r

=
1

1 − (1�2) = 2 

you can conclude that the sum of the first series is

 S = 2 − [(12)
0

+ (12)
1

+ (12)
2

+ (12)
3

]
 = 2 −

15
8

 =
1
8

.

TECHNOLOGY Figure 9.6 
shows the first 20 partial sums 
of the infinite series in  
Example 3(a). Notice how the 
values appear to approach the 
line y = 6. Using a graphing 
utility to sum the first 20 terms, 
you should obtain a sum of 
about 5.999994.

19
0

0

7

Figure 9.6

REMARK In words, 
Theorem 9.6 states that “the 
sum of a convergent geometric 
series is the first term of the 
series divided by the difference 
of 1 and the ratio r.” For the 
series

∑
∞

n=4
 (12)

n

note that the first term is (1�2)4 
and r = 1�2. So, the sum is

S =
(1�2)4

1 − (1�2) =
1
8

.
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The properties in the next theorem are direct consequences of the corresponding 
properties of limits of sequences.

THEOREM 9.7 Properties of Infinite Series

Let ∑ an and ∑ bn be convergent series, and let A, B, and c be real numbers. If 
∑ an = A and ∑ bn = B, then the following series converge to the indicated sums.

1. ∑
∞

n=1
 can = cA

2. ∑
∞

n=1
 (an + bn) = A + B

3. ∑
∞

n=1
 (an − bn) = A − B

nth-Term Test for Divergence
The next theorem states that when a series converges, the limit of its nth term must be 0.

THEOREM 9.8 Limit of the nth Term of a Convergent Series

If ∑
∞

n=1
 an converges, then lim

n→∞
 an = 0.

Proof Assume that

∑
∞

n=1
 an = lim

n→∞
 Sn = L.

Then, because Sn = Sn−1 + an and

lim
n→∞

 Sn = lim
n→∞

 Sn−1 = L

it follows that

 L = lim
n→∞

 Sn

 = lim
n→∞

 (Sn−1 + an)

 = lim
n→∞

 Sn−1 + lim
n→∞

 an

 = L + lim
n→∞

 an

which implies that {an} converges to 0. 

The contrapositive of Theorem 9.8 provides a useful test for divergence. This 
nth-Term Test for Divergence states that if the limit of the nth term of a series does 
not converge to 0, then the series must diverge.

THEOREM 9.9 nth-Term Test for Divergence

If lim
n→∞

 an ≠ 0 then ∑
∞

n=1
 an diverges.

REMARK Be sure you see 
that the converse of Theorem 9.8 
is generally not true. That is, 
if the sequence {an} converges 
to 0, then the series ∑ an may 
either converge or diverge. 
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 Using the nth-Term Test for Divergence

a. For the series ∑
∞

n=0
 2n, you have

lim
n→∞

 2n = ∞.

  So, the limit of the nth term is not 0, and the series diverges.

b. For the series ∑
∞

n=1
 

n!
2n! + 1

, you have

lim
n→∞

 
n!

2n! + 1
=

1
2

.

 So, the limit of the nth term is not 0, and the series diverges.

c. For the series ∑
∞

n=1
 
1
n

, you have

lim
n→∞

 
1
n
= 0.

 Because the limit of the nth term is 0, the nth-Term Test for Divergence does not 
apply and you can draw no conclusions about convergence or divergence. (In the 
next section, you will see that this particular series diverges.)

 Bouncing Ball Problem

A ball is dropped from a height of 6 feet and begins bouncing, as shown in Figure 9.7. 
The height of each bounce is three-fourths the height of the previous bounce. Find the  
total vertical distance traveled by the ball.

Solution When the ball hits the ground for the first time, it has traveled a distance 
of D1 = 6 feet. For subsequent bounces, let Di be the distance traveled up and down. 
For example, D2 and D3 are

D2 = 6(34) + 6(34) = 12(34)
 Up Down

and

D3 = 6(34)(
3
4) + 6(34)(

3
4) = 12(34)

2

.

 Up Down

By continuing this process, it can be determined that the total vertical distance is

 D = 6 + 12(34) + 12(34)
2

+ 12(34)
3

+ .  .  .

 = 6 + 12 ∑
∞

n=0
 (34)

n+1

 = 6 + 12(34) ∑
∞

n=0
 (34)

n

 = 6 + 9[ 1
1 − (3�4)]

 = 6 + 9(4)
 = 42 feet. 

REMARK The series in 
Example 5(c) will play an 
important role in this chapter.

∑
∞

n=1
 
1
n
=

1 +
1
2
+

1
3
+

1
4
+ .  .  .

You will see that this series 
diverges even though the  
nth term approaches 0 as n 
approaches ∞.

i
1 2 3 4 5 6 7

1

2

3

4

5

6

7

D

The height of each bounce is 
three-fourths the height of the 
preceding bounce.
Figure 9.7
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9.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Sequence and Series Describe the difference

 between lim
n→∞

 an = 5 and ∑
∞

n=1
an = 5.

2.  Geometric Series Define a geometric series, state 
when it converges, and give the formula for the sum of a 
convergent geometric series.

3.  Limit of the nth term of a Series The limit of the 
nth term of a series converges to 0. What can you conclude 
about the convergence or divergence of the series?

4.  Limit of the nth Term of a Series The limit of the 
nth term of a series does not converge to 0. What can you 
conclude about the convergence or divergence of the series?

Finding Partial Sums In Exercises 5–10, find the sequence 
of partial sums S1, S2, S3, S4, and S5.

 5. 1 + 1
4 + 1

9 + 1
16 + 1

25 + .  .  .

 6. 
1

2 ∙ 3
+

2
3 ∙ 4

+
3

4 ∙ 5
+

4
5 ∙ 6

+
5

6 ∙ 7
+  .  .  .

 7. 3 − 9
2 + 27

4 − 81
8 + 243

16 − .  .  .

 8. 1 + 1
2 + 1

4 + 1
6 + 1

8 + 1
10 + .  .  .

 9. ∑
∞

n=1
 

3
2n−1 10. ∑

∞

n=1
 
(−1)n+1

n!

 Verifying Divergence In Exercises 11–18, 
verify that the infinite series diverges.

11. ∑
∞

n=0
 5(52)

n

 12. ∑
∞

n=0
 4(−1.05)n

13. ∑
∞

n=1
 

n
n + 1

 14. ∑
∞

n=1
 

n
2n + 3

15. ∑
∞

n=1
 
n3 + 1
n3 + n2 16. ∑

∞

n=1
 

2n

√n2 + 1

17. ∑
∞

n=1
 
4n + 3
4n+1  18. ∑

∞

n=1
 
(n + 1)!

5n!

 Verifying Convergence In Exercises 19–24, 
verify that the infinite series converges.

19. ∑
∞

n=0
 (56)

n

 20. ∑
∞

n=1
 2 (−1

2)
n

21. ∑
∞

n=0
 (0.9)n = 1 + 0.9 + 0.81 + 0.729 + .  .  .

22. ∑
∞

n=0
 (−0.2)n = 1 − 0.2 + 0.04 − 0.008 + .  .  .

23. ∑
∞

n=1
 

1
n(n + 1) (Hint: Use partial fractions.)

24. ∑
∞

n=1
 

1
n(n + 2) (Hint: Use partial fractions.)

Numerical, Graphical, and Analytic Analysis In 
Exercises 25–28, (a) find the sum of the series, (b) use a 
graphing utility to find the indicated partial sum Sn and 
complete the table, (c) use a graphing utility to graph the first 
10 terms of the sequence of partial sums and a horizontal line 
representing the sum, and (d) explain the relationship between 
the magnitudes of the terms of the series and the rate at which 
the sequence of partial sums approaches the sum of the series.

n 5 10 20 50 100

Sn

25. ∑
∞

n=1
 

6
n(n + 3) 26. ∑

∞

n=1
 

4
n(n + 4)

27. ∑
∞

n=1
 2(0.9)n−1 28. ∑

∞

n=1
 10(−1

4)
n−1

 Finding the Sum of a Convergent Series In 
Exercises 29–38, find the sum of the convergent 
series.

29. ∑
∞

n=0
 5(23)

n

 30. ∑
∞

n=0
 (−1

5)
n

31. ∑
∞

n=1
 

4
n(n + 2) 32. ∑

∞

n=1
 

1
(2n + 1)(2n + 3)

33. 8 + 6 + 9
2 + 27

8 + .  .  . 34. 9 − 3 + 1 − 1
3 + .  .  .

35. ∑
∞

n=0
 ( 1

2n −
1
3n) 36. ∑

∞

n=0
 [(0.3)n + (0.8)n]

37. ∑
∞

n=1
 (sin 1)n 38. ∑

∞

n=1
 

1
9n2 + 3n − 2

 Using a Geometric Series In Exercises 
39– 44, (a) write the repeating decimal as a 
geometric series and (b) write the sum of the series 
as the ratio of two integers.

39. 0.4  40. 0.63

41. 0.12 42. 0.01

43. 0.075 44. 0.215

 Determining Convergence or Divergence 
In Exercises 45–58, determine the convergence or 
divergence of the series.

45. ∑
∞

n=0
 (1.075)n 46. ∑

∞

n=0
 

6n

n + 1

47. ∑
∞

n=1
 

n + 1
2n − 1

 48. ∑
∞

n=1
 
4n + 1
3n − 1

49. ∑
∞

n=1
 (1n −

1
n + 2) 50. ∑

∞

n=1
 ( 1

n + 1
−

1
n + 2)

51. ∑
∞

n=1
 
3n

n3 52. ∑
∞

n=0
 
7
5n
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53. ∑
∞

n=2
 

n
ln n

 54. ∑
∞

n=1
 ln 

1
n

55. ∑
∞

n=1
 (1 +

k
n)

n

 56. ∑
∞

n=1
 e−n

57. ∑
∞

n=1
 arctan n 58. ∑

∞

n=1
 ln(n + 1

n )

EXPLORING CONCEPTS
59.  Using a Series You delete a finite number of 

terms from a divergent series. Will the new series still 
diverge? Explain your reasoning.

60.  Using a Series You add a finite number of 
terms to a convergent series. Will the new series still 
converge? Explain your reasoning.

Making a Series Converge In Exercises 61–66, find all 
values of x for which the series converges. For these values of 
x, write the sum of the series as a function of x.

61. ∑
∞

n=1
 (3x)n 62. ∑

∞

n=0
 (2x)

n

63. ∑
∞

n=1
 (x − 1)n 64. ∑

∞

n=0
 5(x − 2

3 )
n

65. ∑
∞

n=0
 (−1)n xn

66. ∑
∞

n=0
 (−1)n x2n

Using a Geometric Series In Exercises 67 and 68, (a) find 
the common ratio of the  geometric series, (b) write the function 
that gives the sum of the series, and (c) use a graphing utility 
to graph the function and the partial sums S3 and S5. What do 
you notice?

67. 1 + x + x2 + x3 + .  .  . 68. 1 −
x
2
+

x2

4
−

x3

8
+ .  .  .

Writing In Exercises 69 and 70, use a graphing utility to 
determine the first term that is less than 0.0001 in each of the 
convergent series. Note that the answers are very different. 
Explain how this will affect the rate at which the series converges.

69. ∑
∞

n=1
 

1
n(n + 1), ∑

∞

n=1
 (18)

n

70. ∑
∞

n=1
 
1
2n, ∑

∞

n=1
 (0.01)n

71.  Marketing An electronic games manufacturer producing 
a new product estimates the annual sales to be 8000 units.  
Each year, 5% of the units that have been sold will become 
inoperative. So, 8000 units will be in use after 1 year, 
[8000 + 0.95(8000)] units will be in use after 2 years, and so 
on. How many units will be in use after n years?

72.  Depreciation A company buys a machine for $475,000 
that depreciates at a rate of 30% per year. Find a formula for 
the value of the machine after n years. What is its value after 
5 years?

74.  Multiplier Effect Repeat Exercise 73 when the percent of 
the  revenue that is spent again in the city decreases to 60%.

75.  Distance A ball is dropped from a height of 16 feet. Each 
time it drops h feet, it rebounds 0.81h feet. Find the total 
 distance traveled by the ball.

76.  Time The ball in Exercise 75 takes the following times for 
each fall.

 s1 = −16t2 + 16, s1 = 0 when t = 1

 s2 = −16t2 + 16(0.81), s2 = 0 when t = 0.9

 s3 = −16t2 + 16(0.81)2, s3 = 0 when t = (0.9)2

 s4 = −16t2 + 16(0.81)3, s4 = 0 when t = (0.9)3

 ⋮ ⋮
 sn = −16t2 + 16(0.81)n−1,  sn = 0 when t = (0.9)n−1

  Beginning with s2, the ball takes the same amount of time to 
bounce up as it does to fall, so the total time elapsed before it 
comes to rest is given by

 t = 1 + 2∑
∞

n=1
 (0.9)n.

 Find this total time.

Probability In Exercises 77 and 78, the random variable n 
 represents the number of units of a product sold per day in a 
store. The probability distribution of n is given by P(n). Find 
the probability that two units are sold in a given day [P(2)] and 
show that P(0) + P(1) + P(2) + P(3) + .  .  . = 1.

77. P(n) = 1
2 (

1
2)

n

 78. P(n) = 1
3 (

2
3)

n

79.  Probability A fair coin is tossed repeatedly. The probability 
that the first head occurs on the nth toss is given by

 P(n) = (1
2)n, where n ≥ 1.

 (a) Show that ∑
∞

n=1
 (12)

n

= 1.

 (b)  The expected number of tosses required until the first head 
occurs in the experiment is given by

  ∑
∞

n=1
 n(12)

n

.

  Is this series geometric?

 (c) Use a computer algebra system to find the sum in part (b).

The total annual  
spending by tourists 
in a resort city is  
$200 million.  
Approximately 75% 
of that revenue is again 
spent in the resort city, 
and of that amount 
approximately 75% is 
again spent in the same city, and so on. Write the geometric 
series that gives the total amount of spending generated by 
the $200 million and find the sum of the series.

73. Multiplier Effect

Littleny/Dreamstime.com
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80.  Probability In an experiment, three people toss a fair coin 
one at a time until one of them tosses a head. Determine, for 
each person, the probability that he or she tosses the first head. 
Verify that the sum of the three probabilities is 1.

81.  Area The sides of a square are 16 inches in length. A new 
square is formed by connecting the midpoints of the sides of 
the original square, and two of the triangles outside the second 
square are shaded (see figure). Determine the area of the shaded 
regions (a) when this process is continued five more times and 
(b) when this pattern of shading is continued infinitely.

16 in.

 

Y Zx1

y1
y2

y3 y4 y5

x2 x3 x4 x5

z

X
θ

Figure for 81 Figure for 82

82.  Length A right triangle XYZ is shown above where 

∣XY∣ = z and ∠X = θ. Line segments are continually drawn 
to be perpendicular to the triangle, as shown in the figure.

 (a)  Find the total length of the perpendicular line segments 

∣Yy1∣ + ∣x1y1∣ + ∣x1y2∣ + .  .  . in terms of z and θ.

 (b)  Find the total length of the perpendicular line segments 
when z = 1 and θ = π�6.

Using a Geometric Series In Exercises 83– 86, use the 
formula for the nth partial sum of a geometric series

∑
n−1

i=0
 ari =

a(1 − rn)
1 − r

.

83.  Present Value The winner of a $2,000,000 sweepstakes 
will be paid $100,000 per year for 20 years. The money earns 
6% interest per year. The present value of the winnings is 

 ∑
20

n=1
 100,000( 1

1.06)
n

. Compute the present value and interpret

 its meaning.

84.  Annuities When an employee receives a paycheck at the 
end of each month, P dollars is invested in a retirement account. 
These deposits are made each month for t years and the account 
earns interest at the annual percentage rate r. When the interest 
is compounded monthly, the amount A in the account at the end 
of t years is

  A = P + P(1 +
r

12) + .  .  . + P(1 +
r

12)
12t−1

  = P(12
r )[(1 +

r
12)

12t

− 1].
  When the interest is compounded continuously, the amount A 

in the account after t years is

  A = P + Per�12 + Pe2r�12 + .  .  . + Pe(12t−1)r�12

  =
P(ert − 1)
er�12 − 1

.

 Verify the formulas for the sums given above.

85.  Salary You go to work at a company that pays $0.01 for the 
first day, $0.02 for the second day, $0.04 for the third day, and 
so on. If the daily wage keeps doubling, what would your total 
income be for working (a) 29 days, (b) 30 days, and (c) 31 days?

Annuities In Exercises 87–90, consider making monthly 
deposits of P dollars in a savings account at an annual interest 
rate r. Use the results of Exercise 84 to find the balance A in 
the account after t years when the interest is compounded  
(a) monthly and (b) continuously.

87. P = $50, r = 2%, t = 20 years

88. P = $200, r = 5.5%, t = 25 years

89. P = $1050, r = 0.9%, t = 35 years

90. P = $175, r = 4%, t = 50 years

True or False? In Exercises 91–96, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

91. If lim
n→∞

 an = 0, then ∑
∞

n=1
 an converges.

92. If ∑
∞

n=1
 an = L, then ∑

∞

n=0
 an = L + a0.

93. If ∣r∣ < 1, then ∑
∞

n=1
 arn =

a
1 − r

.

94. The series ∑
∞

n=1
 

n
1000(n + 1) diverges.

95. 0.75 = 0.749999 .  .  . 

96.  Every decimal with a repeating pattern of digits is a rational 
number.

97.  Using Divergent Series Find two divergent series ∑ an 
and ∑ bn such that ∑(an + bn) converges.

The sphereflake shown below is a computer-generated  
fractal that was created by Eric Haines. The radius of the 
large sphere is 1. To the large sphere, nine spheres of radius 
1
3 are attached. To each of these, nine spheres of radius 19 are 
attached. This process is continued infinitely. Prove that the 
sphereflake has an infinite surface area.

86. Sphereflake

Courtesy of Eric Haines
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 98.  Proof Given two infinite series ∑ an and ∑ bn such that 
∑ an  converges and ∑ bn diverges, prove that ∑(an + bn) 
diverges.

 99.  Fibonacci Sequence The Fibonacci sequence is defined 
recursively by an+2 = an + an+1, where a1 = 1 and a2 = 1.

  (a) Show that 
1

an+1an+3
=

1
an+1an+2

−
1

an+2an+3
.

  (b) Show that ∑
∞

n=0
 

1
an+1an+3

= 1.

100. Remainder Let ∑ an be a convergent series, and let

  RN = aN+1 + aN+2 + .  .  .

   be the remainder of the series after the first N terms. Prove 
that lim

N→∞
 RN = 0.

101.  Proof Prove that 
1
r
+

1
r2 +

1
r3 + .  .  . =

1
r − 1

, for 

∣r∣ > 1.

 102.  HOW DO YOU SEE IT? The figure below  
represents an informal way of showing that

  ∑
∞

n=1
 
1
n2 < 2. Explain how the figure implies this

  conclusion.

11

1

1
32

1
22

1
42

1
52

1
62

1
72

1
2

1
4

102.  

 FOR FURTHER INFORMATION For more on this exercise, 
see the article “Convergence with Pictures” by P. J. Rippon in 
American Mathematical Monthly.

PUTNAM EXAM CHALLENGE

103.  Express ∑
∞

k=1
 

6k

(3k+1 − 2k+1)(3k − 2k) as a rational 

  number.

104.  Let f (n) be the sum of the first n terms of the sequence 
0, 1, 1, 2, 2, 3, 3, 4, .  .  . , where the nth term is given by

  an = {n�2,
(n − 1)�2,

     if n is even
     if n is odd

             .

   Show that if x and y are positive integers and x > y then 
xy = f (x + y) − f (x − y).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The following procedure shows how to make a table disappear by 
removing only half of the table!

(a) Original table has a length of L.

L

(b)  Remove 1
4 of the table centered at the midpoint. Each  

remaining piece has a length that is less than 12L.

(c)  Remove 1
8 of the table by taking sections of length 1

16L from 
the centers of each of the two remaining pieces. Now you have 

 removed 14 + 1
8 of the table. Each remaining piece has a length

 that is less than 14L.

(d)  Remove 1
16 of the table by taking sections of length 1

64L from 
the centers of each of the four remaining pieces. Now you

  have removed 1
4 + 1

8 + 1
16 of the table. Each remaining piece

 has a length that is less than 18L.

Will continuing this process cause the table to disappear, even 
though you have removed only half of the table? Why?

Cantor’s Disappearing Table

 FOR FURTHER INFORMATION Read the article “Cantor’s 
Disappearing Table” by Larry E. Knop in The College Mathematics 
Journal. To view this article, go to MathArticles.com.
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9.3 The Integral Test and p-Series

  Use the Integral Test to determine whether an infinite series converges 
or diverges.

 Use properties of p-series and harmonic series.

The Integral Test
In this and the next section, you will study several convergence tests that apply to series 
with positive terms.

THEOREM 9.10 The Integral Test

If f  is positive, continuous, and decreasing for x ≥ 1 and an = f (n), then

∑
∞

n=1
 an and ∫∞

1
f (x) dx

either both converge or both diverge.

Proof Begin by partitioning the interval [1, n] into (n − 1) unit intervals, as shown 
in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed  
rectangles are

∑
n

i=2
 f (i) = f (2) + f (3) + .  .  . + f (n) Inscribed area

and

∑
n−1

i=1
 f (i) = f (1) + f (2) + .  .  . + f (n − 1). Circumscribed area

The exact area under the graph of f  from x = 1 to x = n lies between the inscribed 
and circumscribed areas.

∑
n

i=2
 f (i) ≤ ∫n

1
 f (x) dx ≤ ∑

n−1

i=1
 f (i)

Using the nth partial sum, Sn = f (1) + f (2) + .  .  . + f (n), you can write this 
 inequality as

Sn − f (1) ≤ ∫n
1
f (x) dx ≤ Sn−1.

Now, assuming that ∫∞1  f (x) dx converges to L, it follows that for n ≥ 1,

Sn − f (1) ≤ L  Sn ≤ L + f (1).

Consequently, {Sn} is bounded and monotonic, and by Theorem 9.5 it converges. 
So, ∑ an converges. For the other direction of the proof, assume that the improper 
integral diverges. Then ∫n1  f (x) dx approaches infinity as n→∞, and the inequality
Sn−1 ≥ ∫n1  f (x) dx implies that {Sn} diverges. So, ∑ an diverges. 

Remember that the convergence or divergence of ∑ an is not affected by deleting 
the first N terms. Similarly, when the conditions for the Integral Test are satisfied for 
all x ≥ N > 1, you can simply use the integral ∫∞N  f (x) dx to test for convergence or  
divergence. (This is illustrated in Example 4.)

x
1 2 3 4 n − 1 n

a

a4 = f (4)
a3 = f (3)

a2 = f (2)

an = f (n)

∑ f (i) = area
n

i = 2

Inscribed rectangles:

y

x
1 2 3 4 n − 1 n

a1 = f (1)
a2 = f (2)

a3 = f (3)

an − 1 = f (n − 1)

∑ f (i) = area
n − 1

i = 1

Circumscribed rectangles:

y

Figure 9.8
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610 Chapter 9 Infinite Series

 Using the Integral Test

Apply the Integral Test to the series ∑
∞

n=1
 

n
n2 + 1

.

Solution The function f (x) = x�(x2 + 1) is positive and continuous for x ≥ 1. To 
determine whether f  is decreasing, find the derivative.

f′(x) = (x2 + 1)(1) − x(2x)
(x2 + 1)2 =

−x2 + 1
(x2 + 1)2

So, f′(x) < 0 for x > 1 and it follows that f  satisfies the conditions for the Integral 
Test. You can integrate to obtain

 ∫∞
1

x
x2 + 1

 dx =
1
2∫∞1  

2x
x2 + 1

 dx

 =
1
2

 lim
b→∞

 ∫b
1

 
2x

x2 + 1
 dx

 =
1
2

 lim
b→∞

 [ln(x2 + 1)]
1

b

 =
1
2

 lim
b→∞

 [ln(b2 + 1) − ln 2]

 = ∞.

So, the series diverges.

 Using the Integral Test

See LarsonCalculus.com for an interactive version of this type of example.

Apply the Integral Test to the series ∑
∞

n=1
 

1
n2 + 1

.

Solution Because f (x) = 1�(x2 + 1) satisfies the conditions for the Integral Test 
(check this), you can integrate to obtain

 ∫∞
1

 
1

x2 + 1
 dx = lim

b→∞
 ∫b

1
 

1
x2 + 1

 dx

 = lim
b→∞

 [arctan x]
1

b

 = lim
b→∞

 (arctan b − arctan 1)

 =
π
2
−

π
4

 =
π
4

.

So, the series converges (see Figure 9.9). 

In Example 2, the fact that the improper integral converges to π�4 does not imply 
that the infinite series converges to π�4. To approximate the sum of the series, you can 
use the inequality

∑
N

n=1
 

1
n2 + 1

≤ ∑
∞

n=1
 

1
n2 + 1

≤ ∑
N

n=1
 

1
n2 + 1

+ ∫∞
N

 
1

x2 + 1
 dx.

(See Exercise 52.) The larger the value of N, the better the approximation. For instance, 
using N = 200 produces 1.072 ≤ ∑ [1�(n2 + 1)] ≤ 1.077.

x
1 2 3 4 5

0.25

0.50

0.75

1.00

1.25

f(x) =
x2 + 1

1

y

Because the improper integral 
converges, the infinite series  
also converges.
Figure 9.9

REMARK Before applying 
the Integral Test, be sure 
to check that the function 
is positive, continuous, and 
decreasing for x ≥ 1. When the 
function fails to satisfy one or 
more of these conditions, you 
cannot apply the Integral Test.
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9.3 The Integral Test and p-Series 611

p-Series and Harmonic Series
In the remainder of this section, you will investigate a second type of series that has a 
 simple arithmetic test for convergence or divergence. A series of the form

 ∑
∞

n=1
 
1
np

=
1
1p

+
1
2p +

1
3p + .  .  .    p-series

is a p-series, where p is a positive constant. For p = 1, the series

∑
∞

n=1
 
1
n
= 1 +

1
2
+

1
3
+ .  .  .    Harmonic series

is the harmonic series. A general harmonic series is of the form ∑ [1�(an + b)]. In 
music, strings of the same material, diameter, and tension, and whose lengths form a 
 harmonic series, produce harmonic tones.

The Integral Test is convenient for establishing the convergence or divergence of 
p-series. This is shown in the proof of Theorem 9.11.

THEOREM 9.11 Convergence of p-Series

The p-series

∑
∞

n=1
 
1
np

=
1
1p

+
1
2p +

1
3p +

1
4p + .  .  .

converges for p > 1 and diverges for 0 < p ≤ 1.

Proof The proof follows from the Integral Test and from Theorem 8.7, which states 
that

∫∞
1

 
1
xp

 dx

converges for p > 1 and diverges for 0 < p ≤ 1.  

 Convergent and Divergent p-Series

Discuss the convergence or divergence of (a) the harmonic series and (b) the p-series 
with p = 2.

Solution

a. From Theorem 9.11, it follows that the harmonic series

∑
∞

n=1
 
1
n
=

1
1
+

1
2
+

1
3
+ .  .  . p = 1

 diverges.

b. From Theorem 9.11, it follows that the p-series

∑
∞

n=1
 
1
n2 =

1
12 +

1
22 +

1
32 + .  .  . p = 2

 converges. 

HARMONIC SERIES

Pythagoras and his students 
paid close attention to the 
development of music as an 
abstract science. This led to the 
discovery of the relationship 
between the tone and the 
length of a vibrating string. It 
was observed that the most 
beautiful musical harmonies 
corresponded to the simplest 
ratios of whole numbers. Later 
mathematicians developed 
this idea into the harmonic 
series, where the terms in the 
harmonic series correspond 
to the nodes on a vibrating 
string that produce multiples 
of the fundamental frequency. 
For example, 12 is twice the 
fundamental frequency, 13 is 
three times the  fundamental 
frequency, and so on.
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612 Chapter 9 Infinite Series

The sum of the series in Example 3(b) can be shown to be π2�6. (This was proved 
by Leonhard Euler, but the proof is too difficult to present here.) Be sure you see that 
the Integral Test does not tell you that the sum of the series is equal to the value of the 
integral. For instance, the sum of the series in Example 3(b) is 

∑
∞

n=1
 
1
n2 =

π2

6
≈ 1.645

whereas the value of the corresponding improper integral is

∫∞
1

 
1
x2 dx = 1.

 Testing a Series for Convergence

Determine whether the series

∑
∞

n=2
 

1
n ln n

converges or diverges.

Solution This series is similar to the divergent harmonic series. If its terms were  
greater than those of the harmonic series, you would expect it to diverge. However, 
because its terms are less than those of the harmonic series, you are not sure what to 
expect. The function

f (x) = 1
x ln x

is positive and continuous for x ≥ 2. To determine whether f  is decreasing, first 
rewrite f  as

f (x) = (x ln x)−1

and then find its derivative.

f′(x) = (−1)(x ln x)−2(1 + ln x) = −
1 + ln x
x2(ln x)2

So, f′(x) < 0 for x > 2 and it follows that f  satisfies the conditions for the Integral 
Test.

 ∫∞
2

 
1

x ln x
 dx = ∫∞

2
 
1�x
ln x

 dx

 = lim
b→∞

 [ln(ln x)]
2

b

 = lim
b→∞

 [ln(ln b) − ln(ln 2)]

 = ∞
The series diverges. 

Note that the infinite series in Example 4 diverges very slowly. For instance, as 
shown in the table, the sum of the first 10 terms is approximately 1.6878196, whereas 
the sum of the first 100 terms is just slightly greater: 2.3250871. In fact, the sum of the 
first 10,000 terms is approximately 3.0150217. You can see that although the infinite 
series “adds up to infinity,” it does so very slowly.

n 11 101 1001 10,001 100,001

Sn 1.6878 2.3251 2.7275 3.0150 3.2382
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9.3 The Integral Test and p-Series 613

9.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Integral Test What conditions have to be satisfied to 

use the Integral Test?

2.  p-Series Determine whether each series is a p-series.

 (a) ∑
∞

n=1
 

1
n1.4  (b) ∑

∞

n=1
 

1
n−2  (c) ∑

∞

n=1
 
1
n3

 Using the Integral Test In Exercises 3–22, 
confirm that the Integral Test can be applied to the 
series. Then use the Integral Test to determine the 
convergence or divergence of the series.

 3. ∑
∞

n=1
 

1
n + 3

  4. ∑
∞

n=1
 

2
3n + 5

5. ∑
∞

n=1
 
1
2n

  6. ∑
∞

n=1
 3−n

7. ∑
∞

n=1
 e−n  8. ∑

∞

n=1
 ne−n�2

9. 
ln 2

2
+

ln 3
3

+
ln 4

4
+

ln 5
5

+
ln 6

6
+ .  .  .

10. 
ln 2

√2
+

ln 3

√3
+

ln 4

√4
+

ln 5

√5
+

ln 6

√6
+ .  .  .

11. 
1
3
+

1
5
+

1
7
+

1
9
+

1
11

+ .  .  .

12. 
1
4
+

2
7
+

3
12

+
4
19

+
5
28

+ .  .  .

13. ∑
∞

n=1
 
arctan n
n2 + 1

 14. ∑
∞

n=2
 
ln n
n3

15. ∑
∞

n=1
 
ln n
n2  16. ∑

∞

n=2
 

1

n√ln n

17. ∑
∞

n=1
 

1
(2n + 3)3 18. ∑

∞

n=1
 
n + 2
n + 1

19. ∑
∞

n=1
 

4n
2n2 + 1

 20. ∑
∞

n=1
 

1
3√n + 9

21. ∑
∞

n=1
 

n
n4 + 1

 22. ∑
∞

n=1
 

n
n4 + 2n2 + 1

Using the Integral Test In Exercises 23 and 24, use the 
Integral Test to determine the convergence or divergence of 
the series, where k is a positive integer.

23. ∑
∞

n=1
 
nk−1

nk + c
 24. ∑

∞

n=1
 nke−n

 Conditions of the Integral Test In Exercises 
25–28, explain why the Integral Test does not 
apply to the series.

25. ∑
∞

n=1
 
(−1)n
n

 26. ∑
∞

n=1
 e−n cos n

27. ∑
∞

n=1
 
2 + sin n

n
 28. ∑

∞

n=1
 (sin n

n )
2

Using the Integral Test In Exercises 29–32, use the 
Integral Test to determine the  convergence or divergence of 
the p-series.

29. ∑
∞

n=1
 
1
n7 30. ∑

∞

n=1
 

1
n1�2

31. ∑
∞

n=1
 

1
n0.9 32. ∑

∞

n=1
 

1
n1.001

 Using a p-Series In Exercises 33–38, use 
Theorem 9.11 to determine the convergence or 
divergence of the p-series.

33. ∑
∞

n=1
 

1
5√n

34. ∑
∞

n=1
 

3
n5�3

35. 1 +
1

2√2
+

1

3√3
+

1

4√4
+

1

5√5
+ .  .  .

36. 1 +
1

3√4
+

1
3√9

+
1

3√16
+

1
3√25

+ .  .  .

37. ∑
∞

n=1
 

1
n1.03

38. ∑
∞

n=1
 
1
nπ

39.  Numerical and Graphical Analysis Use a graphing 
 utility to find the indicated partial sum Sn and complete the 
table. Then use a graphing utility to graph the first 10 terms 
of the sequence of partial sums. For each series, compare the 
rate at which the sequence of  partial sums approaches the sum 
of the series.

 
n 5 10 20 50 100

Sn

(a) ∑
∞

n=1
 3(15)

n−1

=
15
4

 (b) ∑
∞

n=1
 
1
n2 =

π2

6

40.  Numerical Reasoning Because the harmonic series 
diverges, it follows that for any positive real number M, there 
exists a  positive integer N such that the partial sum

 ∑
N

n=1
 
1
n

> M.

(a) Use a graphing utility to complete the table.

M 2 4 6 8

N

 (b)  As the real number M increases in equal increments, does 
the number N increase in equal increments? Explain.
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614 Chapter 9 Infinite Series

EXPLORING CONCEPTS
41.  Think About It Without performing any calculations, 

determine whether the following series converges. 
Explain.

 
1

10,000
+

1
10,001

+
1

10,002
+ .  .  .

42.  Using a Function Let f  be a positive, continuous, 
and decreasing function for x ≥ 1, such that an = f (n). 
Use a graph to rank the following quantities in decreasing 
order. Explain your reasoning.

 (a) ∑
7

n=2
 an  (b) ∫7

1
f (x) dx  (c) ∑

6

n=1
 an

43.  Using a Series Use a graph to show that the inequality 
is true. What can you conclude about the convergence or 
divergence of the series? Explain.

 (a) ∑
∞

n=1
 

1

√n
> ∫∞

1
 

1

√x
 dx

(b) ∑
∞

n=2
 
1
n2 < ∫∞

1
 
1
x2 dx

44.  HOW DO YOU SEE IT? The graphs show 
the sequences of partial sums of the p-series

 ∑
∞

n=1
 

1
n0.4 and ∑

∞

n=1
 

1
n1.5.

Using Theorem 9.11, the first series diverges 
and the second series converges. Explain how 
the graphs show this.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

n

Sn

1
n0.4∑

∞

n = 1

 

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

n

Sn

1
n1.5∑

∞

n = 1

44.  

Finding Values In Exercises 45–50, find the positive values 
of p for which the series converges.

45. ∑
∞

n=2
 

1
n(ln n)p 46. ∑

∞

n=2
 
ln n
np

47. ∑
∞

n=1
 

n
(1 + n2)p 48. ∑

∞

n=1
 n(1 + n2)p

49. ∑
∞

n=1
 (3p)

n

50. ∑
∞

n=3
 

1
n(ln n)[ln(ln n)]p

51.  Proof Let f  be a positive, continuous, and decreasing 
function for x ≥ 1, such that an = f (n). Prove that if the series

 ∑
∞

n=1
 an

converges to S, then the remainder RN = S − SN is bounded by

 0 ≤ RN ≤ ∫∞
N

 f (x) dx.

52.  Using a Remainder Show that the result of Exercise 51 
can be written as

 ∑
N

n=1
 an ≤ ∑

∞

n=1
 an ≤ ∑

N

n=1
 an + ∫∞

N

 f (x) dx.

Approximating a Sum In Exercises 53–58, use the result 
of Exercise 51 to approximate the sum of the convergent series 
using the indicated number of terms. Include an estimate of the 
maximum error for your approximation.

53. ∑
∞

n=1
 
1
n4, three terms 54. ∑

∞

n=1
 

1
(n + 1)3, six terms

55. ∑
∞

n=1
 

1
n2 + 1

, eight terms

56. ∑
∞

n=1
 

1
(n + 1)[ln(n + 1)]3, ten terms

57. ∑
∞

n=1
 ne−n2, four terms

58. ∑
∞

n=1
 e−2n, five terms

Finding a Value In Exercises 59–62, use the result of 
Exercise 51 to find N such that RN ≤ 0.001 for the convergent 
series.

59. ∑
∞

n=1
 
1
n4 60. ∑

∞

n=1
 

1
n3�2

61. ∑
∞

n=1
 e−n�2 62. ∑

∞

n=1
 

1
n2 + 1

63. Comparing Series

 (a) Show that ∑
∞

n=2
 

1
n1.1 converges and ∑

∞

n=2
 

1
n ln n

 diverges.

 (b) Compare the first five terms of each series in part (a).

 (c) Find n > 3 such that 
1
n1.1 <

1
n ln n

.

64.  Using a p-Series Ten terms are used to approximate a 
convergent p-series. Therefore, the remainder is a function of 
p and is

 0 ≤ R10(p) ≤ ∫∞
10

 
1
xp

 dx, p > 1.

 (a) Perform the integration in the inequality.

 (b)  Use a graphing utility to represent the inequality graphically.

 (c)  Identify any asymptotes of the remainder function and 
interpret their meaning.
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9.3 The Integral Test and p-Series 615

65. Euler’s Constant Let

 Sn = ∑
n

k=1
 
1
k
= 1 +

1
2
+ .  .  . +

1
n

.

 (a) Show that ln(n + 1) ≤ Sn ≤ 1 + ln n.

 (b) Show that the sequence {an} = {Sn − ln n} is bounded.

 (c) Show that the sequence {an} is decreasing.

 (d)  Show that the sequence {an} converges to a limit γ (called 
Euler’s constant).

 (e) Approximate γ using a100.

66. Finding a Sum Find the sum of the series

 ∑
∞

n=2
 ln(1 −

1
n2).

67. Using a Series Consider the series ∑
∞

n=2
 xln n.

 (a)  Determine the convergence or divergence of the series for 
x = 1.

 (b)  Determine the convergence or divergence of the series for 
x = 1�e.

 (c) Find the positive values of x for which the series converges.

68.   Riemann Zeta Function The Riemann zeta function 
for real numbers is defined for all x for which the series

 ζ(x) = ∑
∞

n=1
 n−x

 converges. Find the domain of the function.

Review In Exercises 69–80, determine the convergence or 
divergence of the series.

69. ∑
∞

n=1
 

1
3n − 2

 70. ∑
∞

n=2
 

1

n√n2 − 1

71. ∑
∞

n=1
 

1

n 4√n
 72. 3∑

∞

n=1
 

1
n0.95

73. ∑
∞

n=0
 (23)

n

 74. ∑
∞

n=0
 (75)

n

75. ∑
∞

n=1
 

n

√3n2 + 3
 76. ∑

∞

n=1
 ( 1
n2 −

1
n3)

77. ∑
∞

n=1
 (1 +

1
n)

n

 78. ∑
∞

n=4
 ln 

n
2

79. ∑
∞

n=2
 

1
n(ln n)3 80. ∑

∞

n=3
 

1
n(ln n)[ln(ln n)]4

The harmonic series

∑
∞

n=1
 
1
n
= 1 +

1
2
+

1
3
+

1
4
+ .  .  . +

1
n
+ .  .  .

is one of the most important series in this chapter. Even though its 
terms tend to zero as n increases,

lim
n→∞

 
1
n
= 0

the harmonic series diverges. In other words, even though the terms 
are getting smaller and smaller, the sum “adds up to infinity.”

(a)  One way to show that the harmonic series diverges is attributed 
to James Bernoulli. He grouped the terms of the harmonic 
series as follows:

 1 +
1
2
+

1
3
+

1
4
+

1
5
+ .  .  . +

1
8
+

1
9
+ .  .  . +

1
16

+

 > 1
2 > 1

2 > 1
2

 
1
17

+ .  .  . +
1
32

+ .  .  .

 > 1
2

  Write a short paragraph explaining how you can use this 
grouping to show that the harmonic series diverges.

(b) Use the proof of the Integral Test, Theorem 9.10, to show that

 ln(n + 1) ≤ 1 +
1
2
+

1
3
+

1
4
+ . .  . +

1
n

≤ 1 + ln n.

(c)  Use part (b) to determine how many terms M you would need 
so that

 ∑
M

n=1
 
1
n

> 50.

(d)  Show that the sum of the first million terms of the harmonic 
series is less than 15.

(e) Show that the following inequalities are valid.

 ln 
21
10

≤ 1
10

+
1
11

+ .  .  . +
1
20

≤ ln 
20
9

 ln 
201
100

≤ 1
100

+
1

101
+ . .  . +

1
200

≤ ln 
200
99

(f) Use the inequalities in part (e) to find the limit

 lim
m→∞

 ∑
2m

n=m

 
1
n

.

The Harmonic Series
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9.4 Comparisons of Series

  Use the Direct Comparison Test to determine whether a series converges 
or diverges.

  Use the Limit Comparison Test to determine whether a series converges  
or diverges.

Direct Comparison Test
For the convergence tests developed so far, the terms of the series have to be fairly 
simple and the series must have special characteristics in order for the convergence 
tests to be applied. A slight deviation from these special characteristics can make a test 
inapplicable. For example, in the pairs listed below, the second series cannot be tested 
by the same convergence test as the first series, even though it is similar to the first.

1. ∑
∞

n=0
 
1
2n is geometric, but ∑

∞

n=0
 
n
2n is not.

2. ∑
∞

n=1
 
1
n3 is a p-series, but ∑

∞

n=1
 

1
n3 + 1

 is not.

3. an =
n

(n2 + 3)2 is easily integrated, but bn =
n2

(n2 + 3)2 is not.

In this section, you will study two additional tests for positive-term series. These 
two tests greatly expand the variety of series you are able to test for convergence or 
divergence. They allow you to compare a series having complicated terms with a 
simpler series whose convergence or divergence is known.

THEOREM 9.12 Direct Comparison Test

Let 0 < an ≤ bn for all n.

1. If ∑
∞

n=1
 bn converges, then ∑

∞

n=1
 an converges.

2. If ∑
∞

n=1
 an diverges, then ∑

∞

n=1
 bn diverges.

Proof To prove the first property, let L = ∑
∞

n=1
 bn and let

Sn = a1 + a2 + .  .  . + an.

Because 0 < an ≤ bn, the sequence S1, S2, S3, .  .  . is nondecreasing and bounded 
above by L. So, it must converge. Because

lim
n→∞

 Sn = ∑
∞

n=1
 an

it follows that ∑
∞

n=1
 an converges. The second property is logically equivalent to the first.

 

 FOR FURTHER INFORMATION Is the Direct Comparison Test just for nonnegative 
series? To read about the generalization of this test to real series, see the article “The 
Comparison Test––Not Just for Nonnegative Series” by Michele Longo and Vincenzo 
Valori in Mathematics Magazine. To view this article, go to MathArticles.com.

REMARK As stated, the 
Direct Comparison Test requires 
that 0 < an ≤ bn for all n. 
Because the convergence of a 
series is not dependent on its 
first several terms, you could 
modify the test to require only 
that 0 < an ≤ bn for all n 
greater than some integer N. 
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9.4 Comparisons of Series 617

 Using the Direct Comparison Test

Determine the convergence or divergence of

∑
∞

n=1
 

1
2 + 3n.

Solution This series resembles

∑
∞

n=1
 
1
3n. Convergent geometric series

Term-by-term comparison yields

an =
1

2 + 3n <
1
3n = bn, n ≥ 1.

So, by the Direct Comparison Test, the given series converges. This conclusion is 
supported by Figure 9.10, which shows that the sequence of partial sums of ∑ an is less 
than the sequence of partial sums of the convergent geometric series ∑ bn.

 Using the Direct Comparison Test

See LarsonCalculus.com for an interactive version of this type of example.

Determine the convergence or divergence of 

∑
∞

n=1
 

1

2 + √n
.

Solution This series resembles

∑
∞

n=1
 

1
n1�2. Divergent p-series

Term-by-term comparison yields

1

2 + √n
≤ 1

√n
, n ≥ 1

which does not meet the requirements for divergence. (Remember that when term-by-term 
comparison reveals a series that is less than a divergent series, the Direct Comparison Test 
tells you nothing.) Still expecting the series to diverge, you can compare the series with

∑
∞

n=1
 
1
n

. Divergent harmonic series

In this case, term-by-term comparison yields

an =
1
n

≤ 1

2 + √n
= bn, n ≥ 4

and, by the Direct Comparison Test, the given series diverges (see Figure 9.11). To 
verify the last inequality, try showing that

2 + √n ≤ n

whenever n ≥ 4. 

Remember that both parts of the Direct Comparison Test require that 0 < an ≤ bn. 
Informally, the test says the following about the two series with nonnegative terms.

1. If the “larger” series converges, then the “smaller” series must also converge.

2. If the “smaller” series diverges, then the “larger” series must also diverge.

20
0

0

0.7

20
0

0

1
2 + 3nSequence of partial sums of ∑

∞

n = 1

1
3nSequence of partial sums of∑

∞

n = 1

For the given series in Example 1, the 
sequence of partial sums is less than 
the sequence of partial sums of the 
indicated convergent geometric series.
Figure 9.10

20
0

0

44

20

1
n

Sequence of partial sums of ∑
∞

n = 4

1
2 +     n

Sequence of partial sums of∑
∞

n = 4

For the given series in Example 2, the 
sequence of partial sums is greater than 
the sequence of partial sums of the 
divergent harmonic series.
Figure 9.11
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618 Chapter 9 Infinite Series

Limit Comparison Test
Sometimes a series closely resembles a p-series or a geometric series, yet you cannot 
establish the term-by-term comparison necessary to apply the Direct Comparison Test. 
Under these circumstances, you may be able to apply a second comparison test, called 
the Limit Comparison Test.

THEOREM 9.13 Limit Comparison Test

If an > 0, bn > 0, and

lim
n→∞

 
an

bn

= L

 where L is finite and positive, then

∑
∞

n=1
 an and ∑

∞

n=1
 bn

either both converge or both diverge.

Proof Because an > 0, bn > 0, and 

lim
n→∞

 
an

bn

= L

there exists N > 0 such that

0 <
an

bn

< L + 1, for n ≥ N.

This implies that

0 < an < (L + 1)bn.

So, by the Direct Comparison Test, the convergence of ∑ bn implies the convergence 
of ∑ an. Similarly, the fact that

lim
n→∞

 
bn

an

=
1
L

can be used to show that the convergence of ∑ an implies the convergence of ∑ bn. 
 

 Using the Limit Comparison Test

Show that the general harmonic series below diverges.

∑
∞

n=1
 

1
an + b

, a > 0, b > 0

Solution By comparison with

∑
∞

n=1
 
1
n

 Divergent harmonic series

you have

lim
n→∞

 
1�(an + b)

1�n
= lim

n→∞
 

n
an + b

=
1
a

.

Because this limit is greater than 0, you can conclude from the Limit Comparison Test
that the series diverges. 

REMARK As with the 
Direct Comparison Test, the 
Limit Comparison Test could 
be modified to require only that 
an and bn be positive for all n 
greater than some integer N.
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9.4 Comparisons of Series 619

The Limit Comparison Test works well for comparing a “messy” algebraic series 
with a p-series. In choosing an appropriate p-series, you must choose one with an nth 
term of the same magnitude as the nth term of the given series.

Given Series Comparison Series Conclusion

∑
∞

n=1
 

1
3n2 − 4n + 5

 ∑
∞

n=1
 
1
n2 Both series converge.

∑
∞

n=1
 

1

√3n − 2
 ∑

∞

n=1
 

1

√n
 Both series diverge.

∑
∞

n=1
 
n2 − 10
4n5 + n3 ∑

∞

n=1
 
n2

n5 = ∑
∞

n=1
 
1
n3 Both series converge.

In other words, when choosing a series for comparison, you can disregard all but the 
highest powers of n in both the numerator and the denominator.

 Using the Limit Comparison Test

Determine the convergence or divergence of 

∑
∞

n=1
 
√n

n2 + 1
.

Solution Disregarding all but the highest powers of n in the numerator and the 
denominator, you can compare the series with

∑
∞

n=1
 
√n
n2 = ∑

∞

n=1
 

1
n3�2. Convergent p-series

Because

 lim
n→∞

 
an

bn

= lim
n→∞

 ( √n
n2 + 1)(n

3�2

1 )
 = lim

n→∞
 

n2

n2 + 1

 = 1

you can conclude by the Limit Comparison Test that the series converges.

 Using the Limit Comparison Test

Determine the convergence or divergence of 

∑
∞

n=1
 

n2n

4n3 + 1
.

Solution A reasonable comparison would be with the series

∑
∞

n=1
 
2n

n2. Divergent series

Note that this series diverges by the nth-Term Test. From the limit

 lim
n→∞

 
an

bn

= lim
n→∞

 ( n2n

4n3 + 1)(
n2

2n)
 = lim

n→∞
 

n3

4n3 + 1

 =
1
4

you can conclude by the Limit Comparison Test that the series diverges. 

REMARK Recall when 
finding limits at ±∞ of a 
rational function that if the 
degree of the numerator is 
equal to the degree of the 
denominator, then the limit  
of the rational function is the 
ratio of the leading coefficients.
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620 Chapter 9 Infinite Series

9.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Direct Comparison Test You want to compare 

the series ∑ an and ∑ bn, where an > 0, bn > 0, and 
∑ bn converges. For 1 ≤ n ≤ 5, an > bn, and for n ≥ 6, 
an < bn. Explain whether the Direct Comparison Test can 
be used to compare the two series.

2.  Limit Comparison Test When using the Limit 
Comparison Test, describe in your own words how to 
choose a series for comparison.

Graphical Analysis In Exercises 3 and 4, the figures show 
the graphs of the first 10 terms, and the graphs of the first  
10 terms of the sequence of partial sums, of each series.

(a)  Identify the series in each figure.

(b)  Which series is a p-series? Does it converge or diverge?

(c)  For the series that are not p-series, how do the magnitudes 
of the terms compare with the magnitudes of the terms 
of the p-series? What conclusion can you draw about the 
convergence or divergence of the series?

(d)  Explain the relationship between the magnitudes of the 
terms of the series and the magnitudes of the terms of the 
partial sums.

3.  ∑
∞

n=1
 

6
n3�2, ∑

∞

n=1
 

6
n3�2 + 3

, and ∑
∞

n=1
 

6

n√n2 + 0.5

 

n

2

1

2

4

3

4

6

5

6 8 10

an  

n

2

4

6

8

10

12

Sn

2 4 6 8 10

 Graphs of terms Graphs of partial sums

4. ∑
∞

n=1
 

2

√n
, ∑

∞

n=1
 

2

√n − 0.5
, and ∑

∞

n=1
 

4

√n + 0.5

 

n

2

4

1

3

an

2 4 6 8 10

 

n

4

8

12

16

20

Sn

2 4 6 8 10

 Graphs of terms Graphs of partial sums

 Using the Direct Comparison Test In 
Exercises 5–16, use the Direct Comparison Test 
to determine the convergence or divergence of the 
series.

 5. ∑
∞

n=1
 

1
2n − 1

  6. ∑
∞

n=1
 

1
3n2 + 2

 7. ∑
∞

n=2
 

1

√n − 1
  8. ∑

∞

n=0
 

4n

5n + 3

 9. ∑
∞

n=2
 

ln n
n + 1

 10. ∑
∞

n=1
 

1

√n3 + 1

11. ∑
∞

n=0
 
1
n!

 12. ∑
∞

n=1
 

1

4 3√n − 1

13. ∑
∞

n=0
 e−n2 14. ∑

∞

n=1
 
6n + n
5n − 1

15. ∑
∞

n=1
 
sin2 n

n3  16. ∑
∞

n=1
 
cos n + 2

√n

 Using the Limit Comparison Test In 
Exercises 17–26, use the Limit Comparison Test 
to determine the convergence or divergence of the 
series.

17. ∑
∞

n=1
 

n
n2 + 1

 18. ∑
∞

n=1
 

5
4n + 1

19. ∑
∞

n=0
 

1

√n2 + 1
 20. ∑

∞

n=1
 
2n + 1
5n + 1

21. ∑
∞

n=1
 

2n2 − 1
3n5 + 2n + 1

 22. ∑
∞

n=1
 

1
n2(n2 + 4)

23. ∑
∞

n=1
 

1

n√n2 + 1
 24. ∑

∞

n=1
 

n
(n + 1)2n−1

25. ∑
∞

n=1
 

nk−1

nk + 1
, k > 2 26. ∑

∞

n=1
 sin 

1
n

Determining Convergence or Divergence In Exercises 
27–34, test for convergence or divergence, using each test at 
least once. Identify which test was used.

(a) nth-Term Test (b) Geometric Series Test

(c) p-Series Test (d) Telescoping Series Test

(e) Integral Test (f ) Direct Comparison Test

(g) Limit Comparison Test

27. ∑
∞

n=1
 

3√n
n

 28. ∑
∞

n=0
 5(−4

3)
n

29. ∑
∞

n=1
 

1
5n + 1

 30. ∑
∞

n=3
 

1
n3 − 8

31. ∑
∞

n=1
 

2n
3n − 2

 32. ∑
∞

n=1
 ( 1

n + 1
−

1
n + 2)

33. ∑
∞

n=1
 

n
(n2 + 1)2 34. ∑

∞

n=1
 

3
n(n + 3)
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35.  Using the Limit Comparison Test Use the Limit 
Comparison Test with the harmonic series to show that the 
series ∑ an (where 0 < an < an−1) diverges when lim

n→∞
 nan is 

finite and nonzero.

36.  Proof Prove that, if P(n) and Q(n) are polynomials of 
degree j and k, respectively, then the series

 ∑
∞

n=1
 
P(n)
Q(n)

 converges if j < k − 1 and diverges if j ≥ k − 1.

Determining Convergence or Divergence In Exercises 
37–40, use the polynomial test given in Exercise 36 to determine 
whether the series converges or diverges.

37. 1
2 + 2

5 + 3
10 + 4

17 + 5
26 + .  .  .

38. 1
3 + 1

8 + 1
15 + 1

24 + 1
35 + .  .  .

39. ∑
∞

n=1
 

1
n3 + 1

40. ∑
∞

n=1
 
4n5 + n2 + 1

n4

Verifying Divergence In Exercises 41 and 42, use the 
divergence test given in Exercise 35 to show that the series 
diverges.

41. ∑
∞

n=1
 

n3

5n4 + 3
 42. ∑

∞

n=1
 
3n2 + 1
4n3 + 2

Determining Convergence or Divergence In Exercises 
43–46, determine the convergence or divergence of the series.

43. 1
200 + 1

400 + 1
600 + 1

800 + .  .  .

44. 1
200 + 1

208 + 1
216 + 1

224 + .  .  .

45. 1
201 + 1

204 + 1
209 + 1

216 + .  .  .

46. 1
201 + 1

208 + 1
227 + 1

264 + .  .  .

EXPLORING CONCEPTS
47.  Using Series Review the results of Exercises 43–46. 

Explain why careful analysis is required to determine 
the convergence or divergence of a series and why 
considering only the magnitudes of the terms of a series 
could be misleading.

48.  Comparing Series It appears that the terms of the 
series

 1
1000 + 1

1001 + 1
1002 + 1

1003 + .  .  .

  are less than the corresponding terms of the convergent 
series

 1 + 1
4 + 1

9 + 1
16 + .  .  . .

  If the statement above is correct, then the first series 
converges. Is this correct? Why or why not? Make a 
statement about how the divergence or convergence of a 
series is affected by the inclusion or exclusion of the first 
finite number of terms.

49. Using a Series Consider the series ∑
∞

n=1
 

1
(2n − 1)2.

 (a) Verify that the series converges.

 (b) Use a graphing utility to complete the table.

  
n 5 10 20 50 100

Sn

 (c) The sum of the series is π2�8. Find the sum of the series

 ∑
∞

n=3
 

1
(2n − 1)2.

 (d) Use a graphing utility to find the sum of the series

  ∑
∞

n=10
 

1
(2n − 1)2.

50. Using a Series Consider the series ∑
∞

n=1
 

1
(n + 2)2.

 (a)  Verify that the series converges.

 (b) Use a graphing utility to complete the table.

  
n 5 10 20 50 100

Sn

 (c)  The sum of the series is (π2�6) − (5�4). Find the sum of 
the series

  ∑
∞

n=6
 

1
(n + 2)2.

 (d)  Use a graphing utility to find the sum of the series

  ∑
∞

n=15
 

1
(n + 2)2.

51.  Decimal Representation of a Number Show that the 
series

 
x1

10
+

x2

102 +
x3

103 +
x4

104 + .  .  .

 converges, where xi is one of the numbers 0, 1, 2, .  .  ., 9.

 52.  HOW DO YOU SEE IT? The figure shows 
the first 20 terms of the series ∑ cn using 
squares and the first 20 terms of the series 
∑ dn using circles. If ∑ dn converges, can you 
determine anything about the convergence or 
divergence of ∑ cn? Explain.

 

0.2

0.4

0.6

0.8

1.0

n
4 8 12 16 20

52.  
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622 Chapter 9 Infinite Series

True or False?  In Exercises 53–58, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

53. If 0 < an ≤ bn and ∑
∞

n=1
 an converges, then ∑

∞

n=1
 bn diverges.

54.  If 0 < an+10 ≤ bn and ∑
∞

n=1
 bn converges, then ∑

∞

n=1
 an

 converges.

55. If an + bn ≤ cn and ∑
∞

n=1
 cn converges, then the series ∑

∞

n=1
 an

  and ∑
∞

n=1
 bn both converge. (Assume that the terms of all three

 series are positive.)

56. If an ≤ bn + cn and ∑
∞

n=1
 an diverges, then the series ∑

∞

n=1
 bn and

  ∑
∞

n=1
 cn both diverge. (Assume that the terms of all three series

 are positive.)

57. If 0 < an ≤ bn and ∑
∞

n=1
 an diverges, then ∑

∞

n=1
 bn diverges.

58. If 0 < an ≤ bn and ∑
∞

n=1
 bn diverges, then ∑

∞

n=1
 an diverges.

59. Proof Prove that if the nonnegative series

 ∑
∞

n=1
 an and ∑

∞

n=1
 bn

 converge, then so does the series ∑
∞

n=1
 anbn.

60.   Proof Use the result of Exercise 59 to prove that if the 
nonnegative series

 ∑
∞

n=1
 an

 converges, then so does the series

 ∑
∞

n=1
 an 

2.

61.  Finding Series Find two series that demonstrate the result 
of Exercise 59.

62.  Finding Series Find two series that demonstrate the result 
of Exercise 60.

63.  Proof Suppose that ∑ an and ∑ bn are series with positive 
terms. Prove that if

 lim
n→∞

 
an

bn

= 0

 and ∑ bn converges, then ∑ an also converges.

64.  Proof Suppose that ∑ an and ∑ bn are series with positive 
terms. Prove that if

 lim
n→∞

 
an

bn

= ∞

 and ∑ bn diverges, then ∑ an also diverges.

65.  Verifying Convergence Use the result of Exercise 63 to 
show that each series converges.

 (a) ∑
∞

n=1
 

1
(n + 1)3

 (b) ∑
∞

n=1
 

1

√nπn

 (c) ∑
∞

n=2
 
ln n
n3

 (d) ∑
∞

n=1
 
n2 + 1

en

66.  Verifying Divergence Use the result of Exercise 64 to 
show that each series diverges.

 (a) ∑
∞

n=1
 (n + 2)2 (b) ∑

∞

n=1
 
ln n

n

 (c) ∑
∞

n=2
 

1
ln n

 (d) ∑
∞

n=1
 

en

√n

67.  Proof Suppose that ∑ an is a series with positive terms. 
Prove that if ∑ an converges, then ∑ sin an also converges.

68. Proof Prove that the series

 ∑
∞

n=1
 

1
1 + 2 + 3 + .  .  . + n

 converges.

69. Comparing Series Show that

 ∑
∞

n=1
 
ln n

n√n

 converges by comparison with

 ∑
∞

n=1
 

1
n5�4.

70.  Determining Convergence or Divergence  
Determine whether the every-other-term harmonic series

 1 +
1
3
+

1
5
+

1
7
+ .  .  .

 converges or diverges.

PUTNAM EXAM CHALLENGE
71. Is the infinite series

 ∑
∞

n=1
 

1
n(n+1)�n 

 convergent? Prove your statement.

72. Prove that if ∑
∞

n=1
 an is a convergent series of positive real

 numbers, then so is

 ∑
∞

n=1
 (an)n�(n+1).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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9.5 Alternating Series

 Use the Alternating Series Test to determine whether an infinite series converges.
  Use the Alternating Series Remainder to approximate the sum of an alternating 

series.
 Classify a convergent series as absolutely or conditionally convergent.
 Rearrange an infinite series to obtain a different sum.

Alternating Series
So far, most series you have dealt with have had positive terms. In this section and the 
next section, you will study series that contain both positive and negative terms. The 
simplest such series is an alternating series, whose terms alternate in sign. For example, 
the geometric series

 ∑
∞

n=0
 (−1

2)
n

= ∑
∞

n=0
 (−1)n 1

2n

 = 1 −
1
2
+

1
4
−

1
8
+

1
16

− .  .  .

is an alternating geometric series with r = −1
2. Alternating series occur in two ways: 

either the odd terms are negative or the even terms are negative.

THEOREM 9.14 Alternating Series Test

Let an > 0. The alternating series

∑
∞

n=1
 (−1)n an and ∑

∞

n=1
 (−1)n+1 an

converge when these two conditions are met.

1. lim
n→∞

 an = 0

2. an+1 ≤ an, for all n

Proof Consider the alternating series

∑
∞

n=1
 (−1)n+1an.

For this series, the partial sum (where 2n is even)

S2n = (a1 − a2) + (a3 − a4) + (a5 − a6) + .  .  . + (a2n−1 − a2n)

has all nonnegative terms, and therefore {S2n} is a nondecreasing sequence. But you 
can also write

S2n = a1 − (a2 − a3) − (a4 − a5) − .  .  . − (a2n−2 − a2n−1) − a2n

which implies that S2n ≤ a1 for every integer n. So, {S2n} is a bounded,  nondecreasing 
sequence that converges to some value L. Because S2n−1 − a2n = S2n and a2n→0, you 
have

 lim
n→∞

 S2n−1 = lim
n→∞

 S2n + lim
n→∞

 a2n

 = L + lim
n→∞

 a2n

 = L.

Because both S2n and S2n−1 converge to the same limit L, it follows that {Sn} also 
 converges to L. Consequently, the given alternating series converges. 

REMARK The second 
condition in the Alternating 
Series Test can be modified to 
require only that 0 < an+1 ≤ an 
for all n greater than some  
integer N.
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624 Chapter 9 Infinite Series

 Using the Alternating Series Test

Determine the convergence or divergence of

∑
∞

n=1
 (−1)n+1 

1
n

.

Solution Note that lim
x→∞

 an = lim
n→∞

(1�n) = 0. So, the first condition of Theorem 9.14

is satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

an+1 =
1

n + 1
≤ 1

n
= an

for all n. So, applying the Alternating Series Test, you can conclude that the series  
converges.

 Using the Alternating Series Test

Determine the convergence or divergence of

∑
∞

n=1
 

n
(−2)n−1.

Solution To apply the Alternating Series Test, note that, for n ≥ 1,

 
1
2

≤ n
n + 1

 
2n−1

2n ≤ n
n + 1

 (n + 1)2n−1 ≤ n2n

 
n + 1

2n ≤ n
2n−1.

So, an+1 = (n + 1)�2n ≤ n�2n−1 = an for all n. Furthermore, by L’Hôpital’s Rule,

lim
x→∞

 
x

2x−1 = lim
x→∞

 
1

2x−1(ln 2) = 0  lim
n→∞

 
n

2n−1 = 0.

Therefore, by the Alternating Series Test, the series converges.

 When the Alternating Series Test Does Not Apply

a. The alternating series

∑
∞

n=1
 
(−1)n+1(n + 1)

n
=

2
1
−

3
2
+

4
3
−

5
4
+

6
5
− .  .  .

   passes the second condition of the Alternating Series Test because an+1 ≤ an for all 
n. You cannot apply the Alternating Series Test, however, because the series does 
not pass the first condition. In fact, the series diverges.

b. The alternating series

2
1
−

1
1
+

2
2
−

1
2
+

2
3
−

1
3
+

2
4
−

1
4
+ .  .  .

   passes the first condition because an approaches 0 as n→∞. You cannot apply the 
Alternating Series Test, however, because the series does not pass the second 
condition. To conclude that the series diverges, you can argue that S2N equals the  
Nth partial sum of the divergent harmonic series. This implies that the sequence of 
partial sums diverges. So, the series diverges. 

REMARK The series in 
Example 1 is called the  
alternating harmonic series. 
More is said about this series  
in Example 8.

REMARK In Example 3(a), 
remember that whenever a 
series does not pass the first 
condition of the Alternating 
Series Test, you can use the  
nth-Term Test for Divergence 
to conclude that the series 
diverges.
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Alternating Series Remainder
For a convergent alternating series, the partial sum SN can be a useful approximation 
for the sum S of the series. The error involved in using S ≈ SN is the remainder 
RN = S − SN.

THEOREM 9.15 Alternating Series Remainder

If a convergent alternating series satisfies the condition an+1 ≤ an, then the 
absolute value of the remainder RN involved in approximating the sum S by SN  
is less than (or equal to) the first neglected term. That is,

∣S − SN∣ = ∣RN∣ ≤ aN+1.

A proof of this theorem is given in Appendix A.

 Approximating the Sum of an Alternating Series

See LarsonCalculus.com for an interactive version of this type of example.

Approximate the sum of the series by its first six terms.

∑
∞

n=1
 (−1)n+1 ( 1

n!) =
1
1!

−
1
2!

+
1
3!

−
1
4!

+
1
5!

−
1
6!

+ .  .  .

Solution The series converges by the Alternating Series Test because

1
(n + 1)! ≤ 1

n!
 and lim

n→∞
 
1
n!

= 0.

The sum of the first six terms is

S6 = 1 −
1
2
+

1
6
−

1
24

+
1

120
−

1
720

=
91
144

≈ 0.63194

and, by the Alternating Series Remainder, you have

∣S − S6∣ = ∣R6∣ ≤ a7 =
1

5040
≈ 0.0002.

So, the sum S lies between 0.63194 − 0.0002 and 0.63194 + 0.0002, and you have 
0.63174 ≤ S ≤ 0.63214.

 Finding the Number of Terms

Determine the number of terms required to approximate the sum of the series with an 
error of less than 0.001.

∑
∞

n=1
 
(−1)n+1

n4

Solution By Theorem 9.15, you know that 

∣RN∣ ≤ aN+1 =
1

(N + 1)4.

For an error of less than 0.001, N must satisfy the inequality 1�(N + 1)4 < 0.001.

1
(N + 1)4 < 0.001  (N + 1)4 > 1000  N > 4√1000 − 1 ≈ 4.6

So, you will need at least five terms. Using five terms, the sum is S ≈ S5 ≈ 0.94754, 
which has an error of less than 0.001. 

TECHNOLOGY Later, using 
the techniques in Section 9.10, 
you will be able to show that the 
series in Example 4 converges to 

e − 1
e

≈ 0.63212.

(See Section 9.10, Exercise 58.) 
For now, try using a graphing 
utility to obtain an approximation 
of the sum of the series. How 
many terms do you need to 
obtain an approximation that  
is within 0.00001 of the actual 
sum?
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Absolute and Conditional Convergence
Occasionally, a series may have both positive and negative terms and not be an 
 alternating series. For instance, the series

∑
∞

n=1
 
sin n

n2 =
sin 1

1
+

sin 2
4

+
sin 3

9
+ .  .  .

has both positive and negative terms, yet it is not an alternating series. One way to 
obtain some information about the convergence of this series is to investigate the 
convergence of the series

∑
∞

n=1
 ∣sin n

n2 ∣.
By direct comparison, you have ∣sin n∣ ≤ 1 for all n, so

∣sin n
n2 ∣ ≤ 1

n2, n ≥ 1.

Therefore, by the Direct Comparison Test, the series ∑ ∣(sin n)�n2∣ converges. The next 
theorem tells you that the original series also converges.

THEOREM 9.16 Absolute Convergence

If the series ∑ ∣an∣ converges, then the series ∑ an also converges.

Proof Because 0 ≤ an + ∣an∣ ≤ 2∣an∣ for all n, the series

∑
∞

n=1
(an + ∣an∣)

converges by comparison with the convergent series

∑
∞

n=1
 2∣an∣.

Furthermore, because an = (an + ∣an∣) − ∣an∣, you can write

∑
∞

n=1
 an = ∑

∞

n=1
 (an + ∣an∣) − ∑

∞

n=1
∣an∣

where both series on the right converge. So, it follows that ∑ an converges. 

The converse of Theorem 9.16 is not true. For instance, the alternating  harmonic 
series

∑
∞

n=1
 
(−1)n+1

n
=

1
1
−

1
2
+

1
3
−

1
4
+ .  .  .

converges by the Alternating Series Test. Yet the harmonic series diverges. This type 
of convergence is called conditional.

Definitions of Absolute and Conditional Convergence

1. The series ∑ an is absolutely convergent when ∑ ∣an∣ converges.

2.  The series ∑ an is conditionally convergent when ∑ an converges but 
∑ ∣an∣ diverges.
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 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any 
convergent series as absolutely or conditionally convergent.

a. ∑
∞

n=0
 
(−1)nn!

2n =
0!
20 −

1!
21 +

2!
22 −

3!
23 + .  .  .

b. ∑
∞

n=1
 
(−1)n

√n
= −

1

√1
+

1

√2
−

1

√3
+

1

√4
− .  .  .

Solution

a.  This is an alternating series, but the Alternating Series Test does not apply because 
the limit of the nth term is not zero. By the nth-Term Test for Divergence, however, 
you can conclude that this series diverges.

b.  This series can be shown to be convergent by the Alternating Series Test. Moreover, 
because the p-series

∑
∞

n=1
 ∣(−1)n

√n ∣ = 1

√1
+

1

√2
+

1

√3
+

1

√4
+ .  .  .

diverges, the given series is conditionally convergent.

 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent 
series as absolutely or conditionally convergent.

a. ∑
∞

n=1
 
(−1)n(n+1)�2

3n = −
1
3
−

1
9
+

1
27

+
1
81

− .  .  .

b. ∑
∞

n=1
 

(−1)n
ln(n + 1) = −

1
ln 2

+
1

ln 3
−

1
ln 4

+
1

ln 5
− .  .  .

Solution

a. This is not an alternating series (the signs change in pairs). However, note that

∑
∞

n=1
 ∣(−1)n(n+1)�2

3n ∣ = ∑
∞

n=1
 
1
3n

is a convergent geometric series, with

r =
1
3

.

Consequently, by Theorem 9.16, you can conclude that the given series is absolutely  
convergent (and therefore convergent).

b.  In this case, the Alternating Series Test indicates that the series converges. However, 
the series

∑
∞

n=1
 ∣ (−1)n

ln(n + 1)∣ = 1
ln 2

+
1

ln 3
+

1
ln 4

+ .  .  .

  diverges by direct comparison with the terms of the harmonic series. Therefore, the 
given series is conditionally convergent. 

 FOR FURTHER INFORMATION To read more about the convergence of  
alternating harmonic series, see the article “Almost Alternating Harmonic Series” 
by Curtis Feist and Ramin Naimi in The College Mathematics Journal. To view this 
article, go to MathArticles.com.
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Rearrangement of Series
A finite sum such as

1 + 3 − 2 + 5 − 4

can be rearranged without changing the value of the sum. This is not necessarily true 
of an infinite series––it depends on whether the series is absolutely convergent or  
conditionally convergent.

1.  If a series is absolutely convergent, then its terms can be rearranged in any order 
without changing the sum of the series.

2.  If a series is conditionally convergent, then its terms can be rearranged to give a  
different sum.

The second case is illustrated in Example 8.

 Rearrangement of a Series

The alternating harmonic series converges to ln 2. That is,

∑
∞

n=1
 (−1)n+1 

1
n
=

1
1
−

1
2
+

1
3
−

1
4
+ .  .  . = ln 2. See Exercise 55, Section 9.10.

Rearrange the terms of the series to produce a different sum.

Solution Consider the rearrangement below.

 1 −
1
2
−

1
4
+

1
3
−

1
6
−

1
8
+

1
5
−

1
10

−
1
12

+
1
7
−

1
14

− .  .  .

 = (1 −
1
2) −

1
4
+ (13 −

1
6) −

1
8
+ (15 −

1
10) −

1
12

+ (17 −
1
14) − .  .  .

 =
1
2
−

1
4
+

1
6
−

1
8
+

1
10

−
1
12

+
1
14

− .  .  .

 =
1
2

 (1 −
1
2
+

1
3
−

1
4
+

1
5
−

1
6
+

1
7
− .  .  .)

 =
1
2

 (ln 2)

By rearranging the terms, you obtain a sum that is half the original sum. 

Exploration
In Example 8, you learned that the alternating harmonic series

∑
∞

n=1
 (−1)n+1 

1
n
= 1 −

1
2
+

1
3
−

1
4
+

1
5
−

1
6
+ .  .  .

converges to ln 2 ≈ 0.693. Rearrangement of the terms of the series produces a 
different sum, 12 ln 2 ≈ 0.347.

In this exploration, you will rearrange the terms of the alternating harmonic 
series in such a way that two positive terms follow each negative term. That is,

1 −
1
2
+

1
3
+

1
5
−

1
4
+

1
7
+

1
9
−

1
6
+

1
11

+ .  .  . .

Now calculate the partial sums S4, S7, S10, S13, S16, and S19. Then estimate the 
sum of this series to three decimal places.

 FOR FURTHER INFORMATION
Georg Friedrich Bernhard Riemann 
(1826–1866) proved that if ∑ an 
is conditionally convergent and S 
is any real number, then the terms 
of the series can be rearranged to 
converge to S. For more on this 
topic, see the article “Riemann’s 
Rearrangement Theorem” by 
Stewart Galanor in Mathematics 
Teacher. To view this article, go to 
MathArticles.com.
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9.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Alternating Series An alternating series does 

not meet the first condition of the Alternating Series 
Test. What can you conclude about the convergence or 
divergence of the series? Explain.

2.  Alternating Series Remainder What is the 
remainder of a convergent alternating series whose sum is 
approximated by the first N terms?

3.  Absolute and Conditional Convergence In 
your own words, describe the difference between absolute 
and conditional convergence of an alternating series.

4.  Rearrangement of Series Does rearranging the 
terms of a convergent series change the sum of the series? 
Explain.

Numerical and Graphical Analysis In Exercises 5–8, 
explore the Alternating Series Remainder.

 (a)  Use a graphing utility to find the indicated partial sum 
Sn and complete the table. 

 
n 1 2 3 4 5 6 7 8 9 10

Sn

 (b)  Use a graphing utility to graph the first 10 terms of 
the sequence of partial sums and a horizontal line 
representing the sum. 

 (c)  What pattern exists between the plot of the successive 
points in part (b) relative to the horizontal line 
representing the sum of the series? Do the distances 
between the successive points and the horizontal line 
increase or decrease? 

 (d)  Discuss the relationship between the answers in part 
(c) and the Alternating Series Remainder as given in 
Theorem 9.15.

 5. ∑
∞

n=1
 
(−1)n−1

2n − 1
=

π
4

  6. ∑
∞

n=1

(−1)n−1

(n − 1)! =
1
e

 7. ∑
∞

n=1
 
(−1)n−1

n2 =
π2

12
  8. ∑

∞

n=1
 
(−1)n−1

(2n − 1)! = sin 1

 Determining Convergence or Divergence 
In Exercises 9–30, determine the convergence or 
divergence of the series.

 9. ∑
∞

n=1
 
(−1)n+1

n + 1
 10. ∑

∞

n=1
 
(−1)n+1 n

3n + 2

11. ∑
∞

n=1
 
(−1)n

3n  12. ∑
∞

n=1
 
(−1)n

en

13. ∑
∞

n=1
 
(−1)n(5n − 1)

4n + 1
 14. ∑

∞

n=1
 
(−1)n+1 n

n2 + 5

15. ∑
∞

n=1
 
(−1)n n

ln(n + 1) 16. ∑
∞

n=1
 

(−1)n
ln(n + 1)

17. ∑
∞

n=1
 
(−1)n

√n
 18. ∑

∞

n=1
 
(−1)n+1 n2

n2 + 4

19. ∑
∞

n=1

(−1)n+1(n + 1)
ln(n + 1)  20. ∑

∞

n=1
 
(−1)n+1 ln(n + 1)

n + 1

21. ∑
∞

n=1
 sin 

(2n − 1)π
2

 22. ∑
∞

n=1
 
1
n

 cos nπ

23. ∑
∞

n=0
 
(−1)n

n!
 24. ∑

∞

n=0
 

(−1)n
(2n + 1)!

25. ∑
∞

n=1
 
(−1)n+1 √n

n + 2
 26. ∑

∞

n=1
 
(−1)n+1 √n

3√n

27. ∑
∞

n=1
 

(−1)n+1 n!
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

28. ∑
∞

n=1
 (−1)n+1 

1 ∙ 3 ∙ 5 .  .  . (2n − 1)
1 ∙ 4 ∙ 7 .  .  . (3n − 2)

29. ∑
∞

n=1
 
2(−1)n+1

en − e−n = ∑
∞

n=1
 (−1)n+1 csch n

30. ∑
∞

n=1
 
2(−1)n+1

en + e−n = ∑
∞

n=1
 (−1)n+1 sech n

 Approximating the Sum of an Alternating 
Series In Exercises 31–34, approximate the sum 
of the series by using the first six terms. (See 
Example 4.)

31. ∑
∞

n=0
 
(−1)n 5

n!
 32. ∑

∞

n=1
 
(−1)n+1 4
ln(n + 1)

33. ∑
∞

n=1
 
(−1)n+1 2

n3  34. ∑
∞

n=1
 
(−1)n+1 n

3n

 Finding the Number of Terms In Exercises 
35–40, use Theorem 9.15 to determine the number 
of terms required to approximate the sum of the 
series with an error of less than 0.001.

35. ∑
∞

n=1
 
(−1)n+1

n3  36. ∑
∞

n=1
 
(−1)n+1

n2

37. ∑
∞

n=1
 
(−1)n+1

2n3 − 1
 38. ∑

∞

n=1
 
(−1)n+1

n5

39. ∑
∞

n=0
 
(−1)n

n!
 40. ∑

∞

n=0
 
(−1)n
(2n)!

 Determining Absolute and Conditional 
Convergence In Exercises 41–58, determine 
whether the series converges absolutely or 
conditionally, or diverges.

41. ∑
∞

n=1
 
(−1)n

2n  42. ∑
∞

n=1
 
(−1)n+1

n2

43. ∑
∞

n=1
 
(−1)n

n!
 44. ∑

∞

n=1
 
(−1)n+1

n + 3
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45. ∑
∞

n=1
 
(−1)n+1

√n
 46. ∑

∞

n=1
 
(−1)n+1

n√n

47. ∑
∞

n=1
 
(−1)n+1 n2

(n + 1)2  48. ∑
∞

n=1
 
(−1)n+1n

5n + 1

49. ∑
∞

n=2
 
(−1)n
n ln n

 50. ∑
∞

n=0
 (−1)n e−n2

51. ∑
∞

n=2
 
(−1)n n
n3 − 5

 52. ∑
∞

n=1
 
(−1)n+1

n4�3

53. ∑
∞

n=0
 

(−1)n
(2n + 1)! 54. ∑

∞

n=0
 
(−1)n

√n + 4

55. ∑
∞

n=0
 
cos nπ
n + 1

 56. ∑
∞

n=1
 (−1)n+1 arctan n

57. ∑
∞

n=1
 
cos(nπ�3)

n2  58. ∑
∞

n=1
 
sin[(2n − 1)π�2]

n

EXPLORING CONCEPTS
59.  Alternating Series Determine whether S50 is an 

underestimate or an overestimate of the sum of the 
alternating series below. Explain.

 ∑
∞

n=1
 
(−1)n

n

60.  Alternating Series Give an example of convergent 
alternating series ∑ an and ∑ bn such that ∑ anbn diverges.

61.  Think About It Do you agree with the following  
statements? Why or why not?

 (a)  If both ∑ an and ∑ (−an) converge, then ∑ ∣an∣
converges.

 (b) If ∑ an diverges, then ∑ ∣an∣ diverges.

 62.  HOW DO YOU SEE IT? The graphs of 
the sequences of partial sums of two series are 
shown in the figures. Which graph represents the 
partial sums of an alternating series? Explain.

(a) 

n

−2

−3

−1

1

2 4 6

Sn  (b) 

n

4

3

2

1

2 4 6

Sn

62.  

Finding Values In Exercises 63 and 64, find the values of p 
for which the series converges.

63. ∑
∞

n=1
 (−1)n( 1

np) 64. ∑
∞

n=1
 (−1)n( 1

n + p)
65.  Proof Prove that if ∑ ∣an∣ converges, then ∑ an

2 converges. Is 
the converse true? If not, give an example that shows it is false.

66.  Finding a Series Use the result of Exercise 63 to give an 
example of an alternating p-series that converges but whose 
corresponding p-series diverges.

67.  Finding a Series Give an example of a series that 
demonstrates the statement you proved in Exercise 65.

68.  Finding Values Find all values of x for which the series 
∑ (xn�n) (a) converges absolutely and (b) converges conditionally.

Using a Series In Exercises 69 and 70, use the given series.

(a)  Does the series meet the conditions of Theorem 9.14? 
Explain why or why not.

(b) Does the series converge? If so, what is the sum?

69. 
1
2
−

1
3
+

1
4
−

1
9
+

1
8
−

1
27

+ .  .  . +
1
2n −

1
3n + .  .  .

70. ∑
∞

n=1
 (−1)n+1an, an = {

1

√n
,

1
n3,

     if n is odd

     if n is even

Review In Exercises 71–80, determine the convergence or 
divergence of the series and identify the test used.

71. ∑
∞

n=1
 

8
3√n

 72. ∑
∞

n=1
 

3n + 5
n3 + 2n2 + 4

73. ∑
∞

n=1
 
3n

n2 74. ∑
∞

n=1
 

1
6n − 5

75. ∑
∞

n=1
 (98)

n

 76. ∑
∞

n=1
 

2n2

(n + 1)2

77. ∑
∞

n=1
 100e−n�2 78. ∑

∞

n=0
 
(−1)n
n + 4

79. ∑
∞

n=1
 
(−1)n+1 4
3n2 − 1

 80. ∑
∞

n=2
 
ln n

n

81.  Describing an Error The following argument, that 
0 = 1, is incorrect. Describe the error.

  0 = 0 + 0 + 0 + .  .  .

  = (1 − 1) + (1 − 1) + (1 − 1) + .  .  .

  = 1 + (−1 + 1) + (−1 + 1) + .  .  .

  = 1 + 0 + 0 + .  .  .

  = 1

PUTNAM EXAM CHALLENGE
82.  Assume as known the (true) fact that the alternating  

harmonic series

 (1) 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + .  .  .

  is convergent, and denote its sum by s. Rearrange the 
series (1) as follows:

 (2) 1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + 1

9 + 1
11 − 1

6 + .  .  . .

  Assume as known the (true) fact that the series (2) is also 
convergent, and denote its sum by S. Denote by sk, Sk the  
kth partial sum of the series (1) and (2), respectively. 
Prove the following statements.

 (i) S3n = s4n +
1
2s2n, (ii) S ≠ s

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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9.6 The Ratio and Root Tests

 Use the Ratio Test to determine whether a series converges or diverges.
 Use the Root Test to determine whether a series converges or diverges.
 Review the tests for convergence and divergence of an infinite series.

The Ratio Test
This section begins with a test for absolute convergence—the Ratio Test.

THEOREM 9.17 Ratio Test

Let ∑ an be a series with nonzero terms.

1. The series ∑ an converges absolutely when lim
n→∞

 ∣an+1

an ∣ < 1.

2. The series ∑ an diverges when lim
n→∞

 ∣an+1

an ∣ > 1 or lim
n→∞

 ∣an+1

an ∣ = ∞.

3. The Ratio Test is inconclusive when lim
n→∞

 ∣an+1

an ∣ = 1.

Proof To prove Property 1, assume that

lim
n→∞

 ∣an+1

an ∣ = r < 1

and choose R such that 0 ≤ r < R < 1. By the definition of the limit of a sequence, 
there exists some N > 0 such that ∣an+1�an∣ < R for all n > N. Therefore, you can 
write the following inequalities.

 ∣aN+1∣ < ∣aN∣R
 ∣aN+2∣ < ∣aN+1∣R < ∣aN∣R2

 ∣aN+3∣ < ∣aN+2∣R < ∣aN+1∣R2 < ∣aN∣R3

 ⋮

The geometric series ∑
∞

n=1
 ∣aN∣Rn = ∣aN∣R + ∣aN∣R2 + .  .  . + ∣aN∣Rn + .  .  . converges,

and so, by the Direct Comparison Test, the series

∑
∞

n=1
 ∣aN+n∣ = ∣aN+1∣ + ∣aN+2∣ + .  .  . + ∣aN+n∣ + .  .  .

also converges. This in turn implies that the series ∑ ∣an∣ converges, because  discarding 
a finite number of terms (n = N − 1) does not affect convergence. Consequently, by 
Theorem 9.16, the series ∑ an converges absolutely. The proof of Property 2 is similar 
and is left as an exercise (see Exercise 97). 

The fact that the Ratio Test is inconclusive when ∣an+1�an∣→1 can be seen by  
comparing the two series ∑ (1�n) and ∑ (1�n2). The first series diverges and the second 
one converges, but in both cases

lim
n→∞

 ∣an+1

an ∣ = 1.

REMARK The Ratio Test is 
always inconclusive for any 
p-series. 
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Although the Ratio Test is not a cure for all ills related to testing for convergence, 
it is particularly useful for series that converge rapidly. Series involving factorials or 
exponentials are frequently of this type.

 Using the Ratio Test

Determine the convergence or divergence of 

∑
∞

n=0
 
2n

n!
.

Solution Recall from Section 9.1 that the factorial function grows faster than any 
exponential function. So, you expect this series to converge. Because

an =
2n

n!

you can write the following.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [ 2n+1

(n + 1)! ÷
2n

n!]
 = lim

n→∞
 [ 2n+1

(n + 1)! ∙
n!
2n]

 = lim
n→∞

 
2

n + 1

 = 0 < 1

This series converges because the limit of ∣an+1�an∣ is less than 1.

 Using the Ratio Test

Determine whether each series converges or diverges.

a. ∑
∞

n=0
 
n2 2n+1

3n   b. ∑
∞

n=1
 
nn

n!

Solution

a. This series converges because the limit of ∣an+1�an∣ is less than 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(n + 1)2(2
n+2

3n+1)( 3n

n2 2n+1)]
 = lim

n→∞
 
2(n + 1)2

3n2

 =
2
3

< 1

b. This series diverges because the limit of ∣an+1�an∣ is greater than 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(n + 1)n+1

(n + 1)!  (n!
nn)]

 = lim
n→∞

 [(n + 1)n+1

(n + 1)  ( 1
nn)]

 = lim
n→∞

 
(n + 1)n

nn

 = lim
n→∞

 (1 +
1
n)

n

 = e > 1 

REMARK A step frequently 
used in applications of the Ratio 
Test involves simplifying  
quotients of factorials. In 
Example 1, for instance,  
notice that

n!
(n + 1)! =

n!
(n + 1)n!

=
1

n + 1
.
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 A Failure of the Ratio Test

See LarsonCalculus.com for an interactive version of this type of example.

Determine the convergence or divergence of

∑
∞

n=1
 (−1)n √n

n + 1
.

Solution The limit of ∣an+1�an∣ is equal to 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(√n + 1
n + 2 )(

n + 1

√n )]
 = lim

n→∞
 [√n + 1

n
 (n + 1

n + 2)]
 = √1 (1)
 = 1

So, the Ratio Test is inconclusive. To determine whether the series converges, you need 
to try a different test. In this case, you can apply the Alternating Series Test. To show 
that an+1 ≤ an, let

f (x) = √x
x + 1

.

Then the derivative is

f′(x) = −x + 1

2√x(x + 1)2
.

Because the derivative is negative for x > 1, you know that f  is a decreasing function. 
Also, by L’Hôpital’s Rule,

 lim
x→∞

 
√x

x + 1
= lim

x→∞
 
1�(2√x)

1

 = lim
x→∞

 
1

2√x
 = 0.

Therefore, by the Alternating Series Test, the series converges. 

The series in Example 3 is conditionally convergent. This follows from the fact 
that the series

∑
∞

n=1
 ∣an∣

diverges (by the Limit Comparison Test with ∑ 1�√n), but the series

∑
∞

n=1
 an

converges.

TECHNOLOGY A graphing utility can reinforce the conclusion that the series 
in Example 3 converges conditionally. By adding the first 100 terms of the series, 
you obtain a sum of about −0.2. (The sum of the first 100 terms of the series ∑ ∣an∣ 
is about 17.)
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The Root Test
The next test for convergence or divergence of series works especially well for series 
involving nth powers. The proof of this theorem is similar to the proof given for the 
Ratio Test and is left as an exercise (see Exercise 98).

THEOREM 9.18 Root Test

1. The series ∑ an converges absolutely when lim
n→∞

 n√∣an∣ < 1.

2. The series ∑ an diverges when lim
n→∞

 n√∣an∣ > 1 or lim
n→∞

 n√∣an∣ = ∞.

3. The Root Test is inconclusive when lim
n→∞

 n√∣an∣ = 1.

 Using the Root Test

Determine the convergence or divergence of

∑
∞

n=1
 
e2n

nn .

Solution You can apply the Root Test as follows.

 lim
n→∞

 n√∣an∣ = lim
n→∞

 n√e2n

nn

 = lim
n→∞

 
e2n�n

nn�n

 = lim
n→∞

 
e2

n

 = 0 < 1

Because this limit is less than 1, you can conclude that the series converges absolutely 
(and therefore converges). 

To see the usefulness of the Root Test for the series in Example 4, try applying the 
Ratio Test to that series. When you do this, you obtain the following.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [ e2(n+1)

(n + 1)n+1 ÷
e2n

nn ]
 = lim

n→∞
 [ e2(n+1)

(n + 1)n+1 ∙
nn

e2n]
 = lim

n→∞
 e2 

nn

(n + 1)n+1

 = lim
n→∞

 e2 ( n
n + 1)

n

( 1
n + 1)

 = 0

Note that this limit is not as easily evaluated as the limit obtained by the Root Test in 
Example 4.

 FOR FURTHER INFORMATION For more information on the usefulness of the 
Root Test, see the article “N! and the Root Test” by Charles C. Mumma II in The 
American Mathematical Monthly. To view this article, go to MathArticles.com. 

REMARK The Root Test is 
always inconclusive for any 
p-series.
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Strategies for Testing Series
You have now studied 10 tests for determining the convergence or divergence of an 
infinite series. (See the summary in the table on the next page.) Skill in choosing and 
applying the various tests will come only with practice. Below is a set of guidelines for 
choosing an appropriate test.

GUIDELINES FOR TESTING A SERIES FOR CONVERGENCE OR 
DIVERGENCE

1. Does the nth term approach 0? If not, the series diverges.

2.  Is the series one of the special types—geometric, p-series, telescoping, or 
alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?

In some instances, more than one test is applicable. However, your objective 
should be to learn to choose the most efficient test.

 Applying the Strategies for Testing Series

Determine the convergence or divergence of each series.

a. ∑
∞

n=1
 

n + 1
3n + 1

 b. ∑
∞

n=1
 (π6)

n

 c. ∑
∞

n=1
 ne−n2

d. ∑
∞

n=1
 

1
3n + 1

 e. ∑
∞

n=1
 (−1)n 3

4n + 1
 f. ∑

∞

n=1
 

n!
10n

g. ∑
∞

n=1
 ( n + 1

2n + 1)
n

Solution

a.  For this series, the limit of the nth term is not 0 (an→
1
3 as n→∞). So, by the  

nth-Term Test, the series diverges.

b. This series is geometric. Moreover, because the ratio of the terms

r =
π
6

 is less than 1 in absolute value, you can conclude that the series converges.

c. Because the function

f (x) = xe−x2

  is easily integrated, you can use the Integral Test to conclude that the series converges.

d.  The nth term of this series can be compared to the nth term of the harmonic series. 
After using the Limit Comparison Test, you can conclude that the series diverges.

e.  This is an alternating series whose nth term approaches 0. Because an+1 ≤ an, you 
can use the Alternating Series Test to conclude that the series converges.

f.  The nth term of this series involves a factorial, which indicates that the Ratio Test 
may work well. After applying the Ratio Test, you can conclude that the series 
diverges.

g.  The nth term of this series involves a variable that is raised to the nth power, which 
indicates that the Root Test may work well. After applying the Root Test, you can 
conclude that the series converges. 
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636 Chapter 9 Infinite Series

SUMMARY OF TESTS FOR SERIES

Test Series Condition(s) 
of Convergence 

Condition(s) 
of Divergence

Comment

nth-Term ∑
∞

n=1
 an lim

n→∞
 an ≠ 0 This test cannot be used 

to show convergence.

Geometric Series 
(r ≠ 0) ∑

∞

n=0
 arn ∣r∣ < 1 ∣r∣ ≥ 1 Sum: S =

a
1 − r

Telescoping Series ∑
∞

n=1
 (bn − bn+1) lim

n→∞
 bn = L Sum: S = b1 − L

p-Series ∑
∞

n=1
 
1
np

p > 1 0 < p ≤ 1

Alternating Series 
(an > 0) ∑

∞

n=1
 (−1)n−1an

an+1 ≤ an and

lim
n→∞

 an = 0
Remainder: 
∣RN∣ ≤ aN+1

Integral 
( f  is continuous, 
positive, and 
decreasing)

∑
∞

n=1
 an,

an = f (n) ≥ 0
∫∞

1
 f (x) dx converges ∫∞

1
f (x) dx diverges

Remainder:

0 < RN < ∫∞
N

f (x) dx

Root ∑
∞

n=1
 an lim

n→∞
 n√∣an∣ < 1

lim
n→∞

 n√∣an∣ > 1 or

= ∞

Test is inconclusive when

lim
n→∞

 n√∣an∣ = 1.

Ratio ∑
∞

n=1
 an lim

n→∞
 ∣an+1

an ∣ < 1
lim

n→∞
 ∣an+1

an ∣ > 1 or

= ∞
Test is inconclusive when

lim
n→∞

 ∣an+1

an ∣ = 1.

Direct Comparison 
(an, bn > 0) ∑

∞

n=1
 an

0 < an ≤ bn

and ∑
∞

n=1
 bn converges

0 < bn ≤ an

and ∑
∞

n=1
 bn diverges

Limit Comparison 
(an, bn > 0) ∑

∞

n=1
 an

lim
n→∞

  
an

bn

= L > 0

and ∑
∞

n=1
 bn converges

lim
n→∞

  
an

bn

= L > 0

and ∑
∞

n=1
 bn diverges
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9.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
Ratio and Root Tests In Exercises 1–6, what can you 
conclude about the convergence or divergence of ∑ an?

1. lim
n→∞

 ∣an+1

an ∣ = 0 2. lim
n→∞

 ∣an+1

an ∣ = 1

3. lim
n→∞

 ∣an+1

an ∣ = 3
2

 4. lim
n→∞

 n√∣an∣ = 2

5. lim
n→∞

 n√∣an∣ = 1 6. lim
n→∞

 n√∣an∣ = e

Verifying a Formula In Exercises 7 and 8, verify the 
formula.

 7. 
9n+1(n − 1)!

9n(n − 2)! = 9(n − 1)

8. 
(2k − 2)!
(2k)! =

1
(2k)(2k − 1)

Matching In Exercises 9–14, match the series with the 
graph of its sequence of partial sums. [The graphs are labeled 
(a), (b), (c), (d), (e), and (f).]

(a) Sn

n
1

2

2
3
4
5
6
7

64 8 10

 (b) Sn

n

1

2

2 64 8 10

3
2

1
2

(c) Sn

n

1

2 64 8 10

3
2

1
2

 (d) Sn

n

4

2

2

6

8

10

64 8 10

(e) Sn

n
1

2

2
3
4
5
6
7

64 8 10

 (f) Sn

n

8
6
4
2

−2
−4

2 6 8 10

 9. ∑
∞

n=1
 n(34)

n

 10. ∑
∞

n=1
 (34)

n

( 1
n!)

11. ∑
∞

n=1
 
(−3)n+1

n!
 12. ∑

∞

n=1
 
(−1)n−1 4

(2n)!

13. ∑
∞

n=1
 ( 4n

5n − 3)
n

 14. ∑
∞

n=0
 4e−n

Numerical, Graphical, and Analytic Analysis In 
Exercises 15 and 16, (a) use the Ratio Test to verify that the 
series converges, (b) use a graphing utility to find the indicated 
partial sum Sn and complete the table, (c) use a graphing 
utility to graph the first 10 terms of the sequence of partial 
sums, (d) use the table to estimate the sum of the series, and  
(e) explain the relationship between the  magnitudes of the 
terms of the series and the rate at which the sequence of partial 
sums approaches the sum of the series.

n 5 10 15 20 25

Sn

15. ∑
∞

n=1
 n3(12)

n

 16. ∑
∞

n=1
 
n2 + 1

n!

 Using the Ratio Test In Exercises 17–38, 
use the Ratio Test to determine the convergence 
or divergence of the series. If the Ratio Test 
is inconclusive, determine the convergence or 
divergence of the series using other methods.

17. ∑
∞

n=1
 
1
8n 18. ∑

∞

n=1
 
5
n!

19. ∑
∞

n=1
 
(n − 1)!

4n  20. ∑
∞

n=0
 

2n

(n + 2)!

21. ∑
∞

n=0
 (n + 2)(97)

n+1

 22. ∑
∞

n=1
 n2(56)

n

23. ∑
∞

n=1
 
9n

n5 24. ∑
∞

n=0
 

6n

(n + 1)3

25. ∑
∞

n=1
 
n3

3n 26. ∑
∞

n=1
 
(−1)n+1(n + 2)

n(n + 1)

27. ∑
∞

n=0
 
(−1)n 2n

n!
 28. ∑

∞

n=1
 
(−1)n−1(3�2)n

n2

29. ∑
∞

n=1
 

n2

(n + 1)(n2 + 2) 30. ∑
∞

n=1
 
(2n)!

n5

31. ∑
∞

n=0
 
en

n!

32. ∑
∞

n=1
 
n!
nn

33. ∑
∞

n=0
 

6n

(n + 1)n

34. ∑
∞

n=0
 
(n!)2
(3n)!

35. ∑
∞

n=0
 

5n

2n + 1

36. ∑
∞

n=0
 
(−1)n24n

(2n + 1)!

37. ∑
∞

n=0
 

(−1)n+1n!
1 ∙ 3 ∙ 5 .  .  . (2n + 1)

38. ∑
∞

n=1
 
(−1)n[2 ∙ 4 ∙ 6 .  .  . (2n)]

2 ∙ 5 ∙ 8 .  .  . (3n − 1)
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638 Chapter 9 Infinite Series

 Using the Root Test In Exercises 39–52, use 
the Root Test to determine the convergence or 
divergence of the series.

39. ∑
∞

n=1
 ( n

2n + 1)
n

 40. ∑
∞

n=1
 
1
nn

41. ∑
∞

n=1
 (3n + 2

n + 3 )
n

 42. ∑
∞

n=1
 ( n − 2

5n + 1)
n

43. ∑
∞

n=2
 
(−1)n
(ln n)n 44. ∑

∞

n=1
 ( −3n

2n + 1)
3n

45. ∑
∞

n=1
 (2 n√n + 1)n 46. ∑

∞

n=0
 e−3n

47. ∑
∞

n=1
 
n
3n 48. ∑

∞

n=1
 ( n

500)
n

49. ∑
∞

n=1
 (1n −

1
n2)

n

 50. ∑
∞

n=1
 (ln n

n )
n

51. ∑
∞

n=2
 

n
(ln n)n 52. ∑

∞

n=1
 
(n!)n
(nn)2

 Review In Exercises 53–70, determine the 
convergence or divergence of the series using any 
appropriate test from this chapter. Identify the 
test used.

53. ∑
∞

n=1
 
(−1)n+1 5

n
 54. ∑

∞

n=1
 
100
n

55. ∑
∞

n=1
 

3

n√n
 56. ∑

∞

n=1
 (2π3 )

n

57. ∑
∞

n=1
 

5n
2n − 1

 58. ∑
∞

n=1
 

n
2n2 + 1

59. ∑
∞

n=1
 
(−1)n 3n−2

2n

60. ∑
∞

n=1
 

10

3√n3

61. ∑
∞

n=1
 
10n + 3

n2n

62. ∑
∞

n=1
 

2n

4n2 − 1

63. ∑
∞

n=1
 
cos n

3n

64. ∑
∞

n=2
 
(−1)n
n ln n

65. ∑
∞

n=1
 

n!
n7n

66. ∑
∞

n=1
 
ln n
n2

67. ∑
∞

n=1
 
(−1)n 3n−1

n!

68. ∑
∞

n=1
 
(−1)n 3n

n2n

69. ∑
∞

n=1
 

(−3)n
3 ∙ 5 ∙ 7 .  .  . (2n + 1)

70. ∑
∞

n=1
 
3 ∙ 5 ∙ 7 .  .  . (2n + 1)

18n(2n − 1)n!

Identifying Series In Exercises 71–74, identify the two 
series that are the same.

71. (a) ∑
∞

n=1
 
n5n

n!

(b) ∑
∞

n=0
 

n5n

(n + 1)!

(c) ∑
∞

n=0
 
(n + 1)5n+1

(n + 1)!

72. (a) ∑
∞

n=4
 n(34)

n

(b) ∑
∞

n=0
 (n + 1)(34)

n

(c) ∑
∞

n=1
 n(34)

n−1

73. (a) ∑
∞

n=0
 

(−1)n
(2n + 1)!

(b) ∑
∞

n=1
 
(−1)n−1

(2n − 1)!

(c) ∑
∞

n=1
 
(−1)n−1

(2n + 1)!

74. (a) ∑
∞

n=2
 

(−1)n
(n − 1)2n−1

(b) ∑
∞

n=1
 
(−1)n+1

n2n

(c) ∑
∞

n=0
 
(−1)n+1

(n + 1)2n

Writing an Equivalent Series In Exercises 75 and 76, 
write an equivalent series with the index of summation 
beginning at n = 0.

75. ∑
∞

n=1
 
n
7n

76. ∑
∞

n=2
 

4n+1

(n − 2)!

Using a Recursively Defined Series In Exercises 77–82,

the terms of a series ∑
∞

n=1
 an are defined recursively. Determine

the convergence or divergence of the series. Explain your  
reasoning.

77. a1 =
1
2

, an+1 =
4n − 1
3n + 2

 an

78. a1 = 2, an+1 =
2n + 1
5n − 4

 an

79. a1 = 1, an+1 =
sin n + 1

√n
 an

80. a1 =
1
5

, an+1 =
cos n + 1

n
 an

81. a1 =
1
3

, an+1 = (1 +
1
n)an

82. a1 =
1
4

, an+1 = n√an
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Using the Ratio Test or Root Test In Exercises 83– 86, 
use the Ratio Test or the Root Test to determine the convergence 
or divergence of the series.

83. 1 +
1 ∙ 2
1 ∙ 3

+
1 ∙ 2 ∙ 3
1 ∙ 3 ∙ 5

+
1 ∙ 2 ∙ 3 ∙ 4
1 ∙ 3 ∙ 5 ∙ 7

+ .  .  .

84. 1 +
2
3
+

3
32 +

4
33 +

5
34 +

6
35 + .  .  .

85. 
1

(ln 3)3 +
1

(ln 4)4 +
1

(ln 5)5 +
1

(ln 6)6 + .  .  .

86.  1 +
1 ∙ 3

1 ∙ 2 ∙ 3
+

1 ∙ 3 ∙ 5
1 ∙ 2 ∙ 3 ∙ 4 ∙ 5

+
1 ∙ 3 ∙ 5 ∙ 7

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7

  + .  .  .

Finding Values In Exercises 87–92, find the values of x for 
which the series converges.

87. ∑
∞

n=0
 2(x3)

n

 88. ∑
∞

n=0
 (x − 3

5 )
n

89. ∑
∞

n=1
 
(−1)n(x + 1)n

n
 90. ∑

∞

n=0
 3(x − 4)n

91. ∑
∞

n=0
 n!(x2)

n

 92. ∑
∞

n=0
 
(x + 1)n

n!

EXPLORING CONCEPTS
93.  Think About It What can you conclude about the 

convergence or divergence of ∑ an using the Ratio Test
 when an is a rational function of n? Explain.

94.  Using Different Methods Describe two ways to

 show that the geometric series ∑
∞

n=0
 arn, r ≠ 0 converges

  when ∣r∣ < 1. Verify that both methods give the same result.

95.  Think About It You are told that the terms of a  
positive series appear to approach zero rapidly as n 
approaches infinity. In fact, a7 ≤ 0.0001. Given no other 
information, does this imply that the series converges? 
Support your conclusion with examples.

 96.  HOW DO YOU SEE IT? The graphs show 
the sequences of partial sums of the series

  ∑
∞

n=1
 
2n

n
 and ∑

∞

n=1
 
n
3n.

  Using the Ratio Test, the first series diverges 
and the second series converges. Explain how 
the graphs show this.

96.  

1 2 3 4 5 6 7 8 9 10

0.2
0.1

0.3
0.4

0.6
0.5

0.7
0.8

n

Sn

n
3n∑

∞

n = 1

1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

n

Sn

2n

n∑
∞

n = 1

 97. Proof Prove Property 2 of Theorem 9.17.

 98.  Proof Prove Theorem 9.18. (Hint for Property 1: If 
the limit equals r < 1, choose a real number R such that 
r < R < 1. By the definitions of the limit, there exists some

  N > 0 such that n√∣an∣ < R  for n > N.)

Verifying an Inconclusive Test In Exercises 99–102,  
verify that the Ratio Test is inconclusive for the p-series.

 99. ∑
∞

n=1
 

1
n3�2 100. ∑

∞

n=1
 

1
n0.05

101. ∑
∞

n=1
 
1
n4 102. ∑

∞

n=1
 
1
np

103.  Verifying an Inconclusive Test Show that the Root 
Test is inconclusive for the p-series

  ∑
∞

n=1
 
1
np.

104.  Verifying Inconclusive Tests Show that the Ratio  
Test and the Root Test are both inconclusive for the  
logarithmic p-series

  ∑
∞

n=2
 

1
n(ln n)p.

105.  Using Values Determine the convergence or divergence 
of the series

  ∑
∞

n=1
 
(n!)2
(xn)!

   when (a) x = 1, (b) x = 2, (c) x = 3, and (d) x is a positive 
integer.

106. Using a Series Show that if

  ∑
∞

n=1
 an

  is absolutely convergent, then

  ∣∑∞n=1
 an∣ ≤ ∑

∞

n=1
 ∣an∣.

PUTNAM EXAM CHALLENGE
107. Show that if the series

  a1 + a2 + a3 + .  .  . + an + .  .  .

  converges, then the series

  a1 +
a2

2
+

a3

3
+ .  .  . +

an

n
+ .  .  .

  converges also.

108. Is the following series convergent or divergent?

  1 +
1
2
∙ 19

7
+

2!
32(19

7 )
2

+
3!
43 (19

7 )
3

+
4!
54(19

7 )
4

+ .  .  .

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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9.7 Taylor Polynomials and Approximations

  Find polynomial approximations of elementary functions and compare them with 
the elementary functions.

 Find Taylor and Maclaurin polynomial approximations of elementary functions.
 Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary Functions
The goal of this section is to show how polynomial functions can be used as 
 approximations for other elementary functions. To find a polynomial function P that 
approximates another function f, begin by choosing a number c in the domain of f  at 
which f  and P have the same value. That is,

P(c) = f (c). Graphs of f  and P pass through (c, f (c)).

The approximating polynomial is said to be expanded about c or centered at c. 
Geometrically, the requirement that P(c) = f (c) means that the graph of P passes 
through the point (c, f (c)). Of course, there are many polynomials whose graphs pass 
through the point (c, f (c)). Your task is to find a polynomial whose graph resembles the 
graph of f  near this point. One way to do this is to impose the additional requirement 
that the slope of the polynomial function be the same as the slope of the graph of f  at 
the point (c, f (c)).

P′(c) = f′(c) Graphs of f  and P have the same slope at (c, f (c)).

With these two requirements, you can obtain a simple linear approximation of f, as 
shown in Figure 9.12.

 First-Degree Polynomial Approximation of f (x) = ex

For the function f (x) = ex, find a first-degree polynomial function P1(x) = a0 + a1x 
whose value and slope agree with the value and slope of f  at x = 0.

Solution Because f (x) = ex and f′(x) = ex, the value and the slope of f  at x = 0 are 

f (0) = e0 = 1 Value of f  at x = 0

and

f′(0) = e0 = 1. Slope of f  at x = 0

Because P1(x) = a0 + a1x, you can use the condition that P1(0) = f (0) to conclude that 
a0 = 1. Moreover, because P1′(x) = a1, you can use the condition that P1′(0) = f′(0) 
to conclude that a1 = 1. Therefore, P1(x) = 1 + x. The figure shows the graphs of 
P1(x) = 1 + x and f (x) = ex.

1 2

2

1

y

x

P1(x) = 1 + x

f (x) = ex

  P1 is the first-degree polynomial  
approximation of f (x) = ex. 

x

P(c) = f (c)

P ′(c) = f ′(c)

(c, f (c))f

P

y

Near (c, f (c)), the graph of P can be 
used to approximate the graph of f.
Figure 9.12

REMARK Example 1 is not 
the first time you have used a 
linear function to approximate 
another function. The same  
procedure was used as the basis 
for Newton’s Method. 
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In Figure 9.13, you can see that, at points near (0, 1), the graph of the first-degree 
polynomial function

P1(x) = 1 + x 1st-degree approximation

is reasonably close to the graph of f (x) = ex. As you move away from (0, 1), 
however, the graphs move farther and farther from each other and the accuracy of the  
approximation decreases. To improve the approximation, you can impose yet another 
requirement—that the values of the second derivatives of P and f  agree when x = 0. 
The polyno mial, P2, of least degree that satisfies all three requirements P2(0) = f (0),  
P2′(0) = f′(0), and P2″(0) = f ″(0) can be shown to be

P2(x) = 1 + x +
1
2

x2. 2nd-degree approximation

Moreover, in Figure 9.13, you can see that P2 is a better approximation of f  than P1. 
By requiring that the values of Pn(x) and its first n derivatives match those of f (x) = ex 
at x = 0, you obtain the nth-degree approximation shown below.

 Pn(x) = 1 + x +
1
2

x2 +
1
3!

x3 + .  .  . +
1
n!

xn nth-degree approximation

 ≈ ex

 Third-Degree Polynomial Approximation of f (x) = ex

Construct a table comparing the values of the polynomial

P3(x) = 1 + x +
1
2

x2 +
1
3!

x3 3rd-degree approximation

with f (x) = ex for several values of x near 0.

Solution Using a graphing utility, you can obtain the results shown in the table. 
Note that for x = 0, the two functions have the same value, but that as x moves  farther 
away from 0, the accuracy of the approximating polynomial P3(x) decreases.

x −1 −0.2 −0.1 0 0.1 0.2 1

ex 0.3679 0.81873 0.904837 1 1.105171 1.22140 2.7183

P3(x) 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667

 

1 2

2

1

y

x

P1

1
2

P2(x) = 1 + x +   x2

f (x) = ex

P2 is the second-degree polynomial 
approximation of f (x) = ex.
Figure 9.13

3

−1

−3

9
f P3

f P3

P3 is the third-degree polynomial 
approximation of f (x) = ex.
Figure 9.14

TECHNOLOGY A graphing utility can be used to compare the graph of  
the approximating polynomial with the graph of the function f. For instance, in 
Figure 9.14, the graph of

P3(x) = 1 + x + 1
2x2 + 1

6x3 3rd-degree approximation

is compared with the graph of f (x) = ex. Use a graphing utility to compare the 
graphs of 

P4(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 4th-degree approximation

P5(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5 5th-degree approximation

and

P6(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5 + 1
720 x6 6th-degree approximation

with the graph of f. What do you notice?
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Taylor and Maclaurin Polynomials
The polynomial approximation of

f (x) = ex

in Example 2 is expanded about c = 0. For expansions about an arbitrary value of c, it 
is convenient to write the  polynomial in the form

Pn(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + .  .  . + an(x − c)n.

In this form, repeated differentiation produces

 Pn′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + .  .  . + nan(x − c)n−1

 Pn″(x) = 2a2 + 2(3a3)(x − c) + .  .  . + n(n − 1)an(x − c)n−2

 Pn′″(x) = 2(3a3) + .  .  . + n(n − 1)(n − 2)an(x − c)n−3

 ⋮
 Pn
(n)(x) = n(n − 1)(n − 2) .  .  . (2)(1)an.

Letting x = c, you then obtain

Pn(c) = a0, Pn′(c) = a1, Pn″(c) = 2a2,  .  .  . , Pn
(n)(c) = n!an

and because the values of f  and its first n derivatives must agree with the values of Pn 
and its first n derivatives at x = c, it follows that

f (c) = a0, f′(c) = a1, 
f ″(c)

2!
= a2, .  .  . , 

f (n)(c)
n!

= an.

With these coefficients, you can obtain the following definition of Taylor  polynomials, 
named after the English mathematician Brook Taylor, and Maclaurin polynomials, 
named after the Scottish mathematician Colin Maclaurin (1698–1746).

Definitions of nth Taylor Polynomial and nth Maclaurin  
Polynomial

If f  has n derivatives at c, then the polynomial

Pn(x) = f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  . +
f (n)(c)

n!
(x − c)n

is called the nth Taylor polynomial for f  at c. If c = 0, then

Pn(x) = f (0) + f′(0)x +
f ″(0)

2!
 x2 +

f′″(0)
3!

 x3 + .  .  . +
f (n)(0)

n!
 xn

is also called the nth Maclaurin polynomial for f.

 A Maclaurin Polynomial for f (x) = ex

From the discussion on the preceding page, the nth Maclaurin polynomial for f (x) = ex 
is given by

Pn(x) = 1 + x +
1
2!

 x2 +
1
3!

 x3 + .  .  . +
1
n!

 xn. 

REMARK Maclaurin  
polynomials are special types  
of Taylor polynomials for  
which c = 0.

 FOR FURTHER INFORMATION
To see how to use series to obtain other approximations to e, see the article “Novel 
Series-based Approximations to e” by John Knox and Harlan J. Brothers in The College 
Mathematics Journal. To view this article, go to MathArticles.com.

BROOK TAYLOR (1685–1731)

Although Taylor was not 
the first to seek polynomial 
approximations of 
transcendental functions, his 
account published in 1715 was 
one of the first comprehensive 
works on the subject.  
See LarsonCalculus.com  
to read more of this biography.

The Granger Collection
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 Finding Taylor Polynomials for ln x  

Find the Taylor polynomials P0, P1, P2, P3, and P4 for

f (x) = ln x

centered at c = 1.

Solution Expanding about c = 1 yields the following.

 f (x) = ln x   f (1) = ln 1 = 0

 f′(x) = 1
x

  f′(1) = 1
1
= 1

 f ″(x) = −
1
x2  f ″(1) = −

1
12 = −1

 f′″(x) = 2!
x3   f′″(1) = 2!

13 = 2

 f (4)(x) = −
3!
x4  f (4)(1) = −

3!
14 = −6

Therefore, the Taylor polynomials are as follows.

 P0(x) = f (1) = 0

 P1(x) = f (1) + f′(1)(x − 1) = (x − 1)

 P2(x) = f (1) + f′(1)(x − 1) + f ″(1)
2!

(x − 1)2

 = (x − 1) − 1
2
(x − 1)2

 P3(x) = f (1) + f′(1)(x − 1) + f ″(1)
2!

(x − 1)2 + f′″(1)
3!

(x − 1)3

 = (x − 1) − 1
2
(x − 1)2 + 1

3
(x − 1)3

 P4(x) = f (1) + f′(1)(x − 1) + f ″(1)
2!

(x − 1)2 + f′″(1)
3!

(x − 1)3 + f (4)(1)
4!

(x − 1)4

 = (x − 1) − 1
2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4

Figure 9.15 compares the graphs of P1, P2, P3, and P4 with the graph of f (x) = ln x. 
Note that near x = 1, the graphs are nearly indistinguishable. For instance,

P4(1.1) ≈ 0.0953083

and

ln(1.1) ≈ 0.0953102.

x

1

2

−1

−2

1 2 3 4

P4

y

f

x

1

2

−1

−2

1 2 3 4

y

f

P3

P2

x

1

2

−1
1 2 3 4

y

f

x

1

2

−1

−2

1 2 3 4

y

P1

f

As n increases, the graph of Pn becomes a better and better approximation of the graph of f (x) = ln x near x = 1.
Figure 9.15  

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



644 Chapter 9 Infinite Series

 Finding Maclaurin Polynomials for cos x

Find the Maclaurin polynomials P0, P2, P4, and P6 for f (x) = cos x. Use P6(x) to 
approximate the value of cos(0.1).

Solution Expanding about c = 0 yields the following.

 f (x) = cos x   f (0) = cos 0 = 1

 f′(x) = −sin x   f′(0) = −sin 0 = 0

 f ″(x) = −cos x  f ″(0) = −cos 0 = −1

 f′″(x) = sin x   f′″(0) = sin 0 = 0

Through repeated differentiation, you can see that the pattern 1, 0, −1, 0 continues, and 
you obtain the Maclaurin polynomials

P0(x) = 1, P2(x) = 1 −
1
2!

x2, P4(x) = 1 −
1
2!

x2 +
1
4!

x4,

and 

P6(x) = 1 −
1
2!

x2 +
1
4!

x4 −
1
6!

x6.

To nine decimal places, the approximation

P6(0.1) ≈ 0.995004165

is the same as cos(0.1). Figure 9.16 compares the graphs of f (x) = cos x and P6. 

Note in Example 5 that the Maclaurin polynomials for cos x have only even   
powers of x. Similarly, the Maclaurin polynomials for sin x have only odd powers of 
x (see Exercise 19). This is not generally true of the Taylor polynomials for sin x and 
cos x expanded about c ≠ 0, as shown in the next example.

 Finding a Taylor Polynomial for sin x

See LarsonCalculus.com for an interactive version of this type of example.

Find the third Taylor polynomial for f (x) = sin x, expanded about c = π�6.

Solution Expanding about c = π�6 yields the following.

 f (x) = sin x   f (π6) = sin 
π
6
=

1
2

 f′(x) = cos x   f′(π6) = cos 
π
6
=
√3
2

 f ″(x) = −sin x   f ″(π6) = −sin 
π
6
= −

1
2

 f′″(x) = −cos x  f′″(π6) = −cos 
π
6
= −
√3
2

So, the third Taylor polynomial for f (x) = sin x, expanded about c = π�6, is 

 P3(x) = f (π6) + f′(π6)(x −
π
6) +

f ″(π6)
2! (x −

π
6)

2

+
f′″(π6)

3! (x −
π
6)

3

 =
1
2
+
√3
2 (x −

π
6) −

1
2(2!) (x −

π
6)

2

−
√3

2(3!) (x −
π
6)

3

.

Figure 9.17 compares the graphs of f (x) = sin x and P3. 

P6

x

2

2

−2

−1

f (x) = cos x

y

πππ−

Near (0, 1), the graph of P6 can be 
used to approximate the graph of 
f (x) = cos x.
Figure 9.16

x

2

1

−2

−1

P3

f (x) = sin x

y

π− −
2
π

2
ππ

Near (π�6, 1�2), the graph of P3 can 
be used to approximate the graph of 
f (x) = sin x.
Figure 9.17
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Taylor polynomials and Maclaurin polynomials can be used to approximate the 
value of a function at a specific point. For instance, to approximate the value of ln(1.1), 
you can use Taylor polynomials for f (x) = ln x expanded about c = 1, as shown in 
Example 4, or you can use Maclaurin polynomials, as shown in Example 7.

 Approximation Using Maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of ln(1.1).

Solution Because 1.1 is closer to 1 than to 0, you should consider Maclaurin 
 polynomials for the function g(x) = ln(1 + x).

 g(x) = ln(1 + x)   g(0) = ln(1 + 0) = 0

 g′(x) = (1 + x)−1   g′(0) = (1 + 0)−1 = 1

 g″(x) = −(1 + x)−2   g″(0) = −(1 + 0)−2 = −1

 g″′(x) = 2(1 + x)−3   g″′(0) = 2(1 + 0)−3 = 2

 g(4)(x) = −6(1 + x)−4  g(4)(0) = −6(1 + 0)−4 = −6

Note that you obtain the same coefficients as in Example 4. Therefore, the fourth 
Maclaurin polynomial for g(x) = ln(1 + x) is

 P4(x) = g(0) + g′(0)x +
g″(0)

2!
x2 +

g′″(0)
3!

x3 +
g(4)(0)

 4!
x4

 = x −
1
2

x2 +
1
3

x3 −
1
4

x4.

Consequently,

ln(1.1) = ln(1 + 0.1) ≈ P4(0.1) ≈ 0.0953083. 

The table below illustrates the accuracy of the Maclaurin polynomial approximation 
of the calculator value of ln(1.1). You can see that as n increases, Pn(0.1) approaches 
the value of ln(1.1) ≈  0.0953102.

 Maclaurin Polynomial Approximations of ln(1 + x) at x = 0.1

n 1 2 3 4

Pn(0.1) 0.1000000 0.0950000 0.0953333 0.0953083

On the other hand, the table below illustrates that as you move away from the  
expansion point c = 0, the accuracy of the approximation decreases.

 Fourth Maclaurin Polynomial Approximation of ln(1 + x)

x 0 0.1 0.5 0.75 1.0

ln(1 + x) 0 0.0953102 0.4054651 0.5596158 0.6931472

P4(x) 0 0.0953083 0.4010417 0.5302734 0.5833333

These two tables illustrate two very important points about the accuracy of Taylor 
(or Maclaurin) polynomials for use in approximations.

1.  The approximation is usually better for higher-degree Taylor (or Maclaurin) 
 polynomials than for those of lower degree.

2.  The approximation is usually better at x-values close to c than at x-values far from c.

Exploration
Check to see that the fourth 
Taylor polynomial (from 
Example 4), evaluated 
at x = 1.1, yields the 
same result as the fourth 
Maclaurin polynomial in 
Example 7.
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Remainder of a Taylor Polynomial
An approximation technique is of little value without some idea of its accuracy. To 
measure the accuracy of approximating a function value f (x) by the Taylor  polynomial 
Pn(x), you can use the concept of a remainder Rn(x), defined as follows.

f (x) = Pn(x) + Rn(x)

So, Rn(x) = f (x) − Pn(x). The absolute value of Rn(x) is called the error associated 
with the approximation. That is,

Error = ∣Rn(x)∣ = ∣ f (x) − Pn(x)∣.

The next theorem gives a general procedure for estimating the remainder  associated 
with a Taylor polynomial. This important theorem is called Taylor’s Theorem, and the 
remainder given in the theorem is called the Lagrange form of the remainder.

THEOREM 9.19 Taylor’s Theorem

If a function f  is differentiable through order n + 1 in an interval I containing c,  
then, for each x in I, there exists z between x and c such that

f (x) = f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  . +
f (n)(c)

n!
(x − c)n + Rn(x)

where

Rn(x) =
f (n+1)(z)
(n + 1)! (x − c)n+1.

A proof of this theorem is given in Appendix A.

One useful consequence of Taylor’s Theorem is that

∣Rn(x)∣ ≤ ∣x − c∣n+1

(n + 1)! max∣ f (n+1)(z)∣
where max∣f (n+1)(z)∣ is the maximum value of f (n+1)(z) between x and c.

For n = 0, Taylor’s Theorem states that if f  is differentiable in an interval I 
 containing c, then, for each x in I, there exists z between x and c such that

f (x) = f (c) + f′(z)(x − c) or f′(z) = f (x) − f (c)
x − c

.

Do you recognize this special case of Taylor’s Theorem? (It is the Mean Value 
Theorem.)

When applying Taylor’s Theorem, you should not expect to be able to find the 
exact value of z. (If you could do this, an approximation would not be necessary.) 
Rather, you are trying to find bounds for f (n+1)(z) from which you are able to tell how 
large the remainder Rn(x) is.

Exact 
value

Approximate 
value

Remainder
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 Determining the Accuracy of an Approximation

The third Maclaurin polynomial for sin x is

P3(x) = x −
x3

3!
.

Use Taylor’s Theorem to approximate sin(0.1) by P3(0.1) and determine the accuracy 
of the approximation.

Solution Using Taylor’s Theorem, you have

sin x = x −
x3

3!
+ R3(x) = x −

x3

3!
+

f (4)(z)
4!

x4

where 0 < z < 0.1. Therefore,

sin(0.1) ≈ 0.1 −
(0.1)3

3!
≈ 0.1 − 0.000167 = 0.099833.

Because f (4)(z) = sin z, it follows that the error ∣R3(0.1)∣ can be bounded as follows.

 0 < R3(0.1) = sin z
4!

(0.1)4 <
0.0001

4!
≈ 0.000004

This implies that

0.099833 < sin(0.1) ≈ 0.099833 + R3(0.1) < 0.099833 + 0.000004

or

0.099833 < sin(0.1) < 0.099837.

 Approximating a Value to a Desired Accuracy

Determine the degree of the Taylor polynomial Pn(x) expanded about c = 1 that should 
be used to approximate ln(1.2) so that the error is less than 0.001.

Solution Following the pattern of Example 4, you can see that the (n + 1)st 
 derivative of f (x) = ln x is

f (n+1)(x) = (−1)n n!
xn+1.

Using Taylor’s Theorem, you know that the error ∣Rn(1.2)∣ is 

 ∣Rn(1.2)∣ = ∣ f (n+1)(z)
(n + 1)! (1.2 − 1)n+1∣

 =
n!

zn+1[ 1
(n + 1)!](0.2)n+1

 =
(0.2)n+1

zn+1(n + 1)

where 1 < z < 1.2. In this interval, (0.2)n+1�[zn+1(n + 1)] is less than (0.2)n+1�(n + 1). 
So, you are seeking a value of n such that

(0.2)n+1

(n + 1) < 0.001 1000 < (n + 1)5n+1.

By trial and error, you can determine that the least value of n that satisfies this inequality 
is n = 3. So, you would need the third Taylor polynomial to achieve the desired 
accuracy in approximating ln(1.2). 

REMARK Note that when 
you use a calculator,

sin(0.1) ≈ 0.0998334.

REMARK Note that when 
you use a calculator,

P3(1.2) ≈ 0.1827

and

ln(1.2) ≈ 0.1823.
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9.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Polynomial Approximation An elementary 

function is approximated by a polynomial. In your 
own words, describe what is meant by saying that the 
polynomial is expanded about c or centered at c.

2.  Taylor and Maclaurin Polynomials How are 
Taylor polynomials and Maclaurin polynomials related?

3.  Accuracy of a Taylor Polynomial Describe 
the accuracy of the nth-degree Taylor polynomial of f  
centered at c as the distance between c and x increases.

4.  Accuracy of a Taylor Polynomial In general, 
how does the accuracy of a Taylor polynomial change 
as the degree of the polynomial increases? Explain your 
reasoning.

Matching In Exercises 5–8, match the Taylor polynomial 
approximation of the function f (x) = e−x2�2 with its graph. 
[The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
1

2

2
−1

−1

−2

−2

y  (b) 

x
1

2

2
−1

−2

−2

y

(c) 

x
1

2

2
−1

−1

−2

−2

y  (d) 

x
1

2

2
−1

−1

−2

−2

y

 5. g(x) = −1
2 x2 + 1

 6. g(x) = 1
8 x4 − 1

2 x2 + 1

 7. g(x) = e−1�2 [(x + 1) + 1]
 8. g(x) = e−1�2 [13 (x − 1)3 − (x − 1) + 1]

 Finding a First-Degree Polynomial 
Approximation In Exercises 9–12, find a first-
degree polynomial function P1 whose value and 
slope agree with the value and slope of f  at x = c. 
Use a graphing utility to graph f  and P1. 

 9. f (x) = √x
4

, c = 4 10. f (x) = 6
3√x

, c = 8

11. f (x) = sec x, c =
π
6

12. f (x) = tan x, c =
π
4

 Graphical and Numerical Analysis In 
Exercises 13 and 14, use a graphing utility to graph 
f  and its second-degree polynomial approximation 
P2 at x = c. Complete the table comparing the 
values of f  and P2.

13. f (x) = 4

√x
, c = 1

 P2(x) = 4 − 2(x − 1) + 3
2(x − 1)2

 
x 0 0.8 0.9 1 1.1 1.2 2

f (x)

P2(x)

14. f (x) = sec x, c =
π
4

 P2(x) = √2 + √2(x −
π
4) +

3
2
√2(x −

π
4)

2

 
x −2.15 0.585 0.685

π
4 0.885 0.985 1.785

f (x)

P2(x)

15.  Conjecture Consider the function f (x) = cos x and its 
Maclaurin polynomials P2, P4, and P6 (see Example 5).

 (a)  Use a graphing utility to graph f  and the indicated 
polynomial approximations.

 (b)  Evaluate and compare the values of f (n)(0) and Pn
(n)(0) for 

n = 2, 4, and 6.

 (c)  Use the results in part (b) to make a conjecture about 
f (n)(0) and Pn

(n)(0).
16. Conjecture Consider the function f (x) = x2ex.

 (a) Find the Maclaurin polynomials P2, P3, and P4 for f.

 (b) Use a graphing utility to graph f, P2, P3, and P4.

 (c)  Evaluate and compare the values of f (n)(0) and Pn
(n)(0) for 

n = 2, 3, and 4.

 (d)  Use the results in part (c) to make a conjecture about 
f (n)(0) and Pn

(n)(0).

 Finding a Maclaurin Polynomial In 
Exercises 17–26, find the nth Maclaurin polynomial 
for the function.

17. f (x) = e4x, n = 4 18. f (x) = e−x, n = 5

19. f (x) = sin x, n = 5 20. f (x) = cos πx, n = 4

21. f (x) = xex, n = 4 22. f (x) = x2e−x, n = 4

23. f (x) = 1
1 − x

, n = 5 24. f (x) = x
x + 1

, n = 4

25. f (x) = sec x, n = 2 26. f (x) = tan x, n = 3
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 Finding a Taylor Polynomial In Exercises 
27–32, find the nth Taylor polynomial for the 
function, centered at c.

27. f (x) = 2
x
, n = 3, c = 1

28. f (x) = 1
x2, n = 4, c = −2

29. f (x) = √x, n = 2, c = 4

30. f (x) = 3√x, n = 3, c = 8

31. f (x) = ln x, n = 4, c = 2

32. f (x) = x2 cos x, n = 2, c = π

Finding Taylor Polynomials Using Technology In 
Exercises 33 and 34, use a computer algebra system to find 
the indicated Taylor polynomials for the function f. Graph the 
function and the Taylor polynomials.

33. f (x) = tan πx 34. f (x) = 1
x2 + 1

(a) n = 3, c = 0  (a) n = 4, c = 0

(b) n = 3, c = 1�4  (b) n = 4, c = 1

35. Numerical and Graphical Approximations

(a)  Use the Maclaurin polynomials P1(x), P3(x), and P5(x) for 
f (x) = sin x to complete the table.

  
x 0 0.25 0.50 0.75 1

sin x 0 0.2474 0.4794 0.6816 0.8415

P1(x)

P3(x)

P5(x)

 (b)  Use a graphing utility to graph f (x) = sin x and the 
Maclaurin polynomials in part (a).

 (c)  Describe the change in accuracy of a polynomial  
approximation as the distance from the point where the 
 polynomial is centered increases.

36. Numerical and Graphical Approximations

 (a)  Use the Taylor polynomials P1(x), P2(x), and P4(x) for 
f (x) = ex, centered at c = 1, to complete the table.

  
x 1 1.25 1.50 1.75 2

ex e 3.4903 4.4817 5.7546 7.3891

P1(x)

P2(x)

P4(x)

 (b)  Use a graphing utility to graph f (x) = ex and the Taylor 
polynomials in part (a).

 (c)  Describe the change in accuracy of polynomial  
approximations as the degree increases.

Numerical and Graphical Approximations In Exercises 
37 and 38, (a) find the Maclaurin polynomial P3(x) for f (x),  
(b) complete the table for f (x) and P3(x), and (c) sketch the 
graphs of f (x) and P3(x), on the same set of coordinate axes.

x −0.75 −0.50 −0.25 0 0.25 0.50 0.75

f (x)

P3(x)

37. f (x) = arcsin x 38. f (x) = arctan x

 Approximating a Function Value In 
Exercises 39–44, approximate the function at the 
given value of x, using the polynomial found in the 
indicated exercise.

39. f (x) = e4x, f (1
4), Exercise 17

40. f (x) = x2e−x, f (1
5), Exercise 22

41. f (x) = 1
x2, f (−2.1), Exercise 28

42. f (x) = 3√x, f (8.05), Exercise 30

43. f (x) = ln x, f (2.1), Exercise 31

44. f (x) = x2 cos x, f (7π8 ), Exercise 32

 Using Taylor’s Theorem In Exercises 45–50, 
use Taylor’s Theorem to obtain an upper bound 
for the error of the approximation. Then calculate 
the exact value of the error.

45. cos(0.3) ≈ 1 −
(0.3)2

2!
+

(0.3)4
4!

46. arccos(0.15) ≈ π
2
− 0.15

47. sinh(0.2) ≈ 0.2 +
(0.2)3

3!
+

(0.2)5
5!

48. e ≈ 1 + 1 +
12

2!
+

13

3!
+

14

4!
+

15

5!

49. arcsin(0.4) ≈ 0.4 +
(0.4)3
2 ∙ 3

50. arctan(0.4) ≈ 0.4 −
(0.4)3

3

 Finding a Degree In Exercises 51–56, 
determine the degree of the Maclaurin polynomial 
required for the error in the approximation of the 
function at the indicated value of x to be less than 
0.001.

51. f (x) = sin x, approximate f (0.3)
52. f (x) = cos x, approximate f (0.4)
53. f (x) = ex, approximate f (0.6)
54. f (x) = ln(x + 1), approximate f (1.25)

55. f (x) = 1
x − 2

, approximate f (0.15)

56. f (x) = 1
x + 1

, approximate f (0.2)
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Finding a Degree Using Technology In Exercises 57 
and 58, determine the degree of the Maclaurin polynomial 
required for the error in the approximation of the function at 
the indicated value of x to be less than 0.0001. Use a computer  
algebra system to obtain and evaluate the required derivative.

57. f (x) = ln(x + 1), approximate f (0.5).
58. f (x) = e−πx, approximate f (1.3).

Finding Values In Exercises 59–62, determine the values of 
x for which the function can be replaced by the Taylor polynomial 
if the error cannot exceed 0.001.

59. f (x) = ex ≈ 1 + x +
x2

2!
+

x3

3!
, x < 0

60. f (x) = sin x ≈ x −
x3

3!

61. f (x) = cos x ≈ 1 −
x2

2!
+

x4

4!

62. f (x) = e−2x ≈ 1 − 2x + 2x2 −
4
3

x3

EXPLORING CONCEPTS
63.  Think About It What is the relationship between the 

equation of a tangent line to a differentiable function at 
a point and the first Taylor polynomial for that function 
centered at the point?

64.  Maclaurin Polynomial Without performing any 
calculations, find the second Maclaurin polynomial for

 f (x) = a + bx2.

Explain your reasoning.

65.  Maclaurin Polynomials Find the fourth Maclaurin 
polynomials for

 f (x) = ex and g(x) = e2x.

Explain how you can use the fourth Maclaurin polynomial 
for f  to find the fourth Maclaurin polynomial for g.

66.  HOW DO YOU SEE IT? The figure shows 
the graphs of the first-, second-, and third-
degree polynomial approximations P1, P2, and 
P3 of a function f. Label the graphs of P1, P2, 
and P3. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 

x
20−20 10

2

−2
−4

4

6

8

10 f

y

66.  

67. Comparing Maclaurin Polynomials

 (a)  Compare the Maclaurin polynomials of degree 4 and 
degree 5, respectively, for the functions

  f (x) = ex and g(x) = xex.

  What is the relationship between them?

 (b)  Use the result in part (a) and the Maclaurin polynomial of 
degree 5 for f (x) = sin x to find a Maclaurin polynomial 
of degree 6 for the function g(x) = x sin x.

 (c)  Use the result in part (a) and the Maclaurin polynomial of 
degree 5 for f (x) = sin x to find a Maclaurin polynomial 
of degree 4 for the function g(x) = (sin x)�x.

68. Differentiating Maclaurin Polynomials

 (a)  Differentiate the Maclaurin polynomial of degree 5 for 
f (x) = sin x and compare the result with the Maclaurin 
polynomial of degree 4 for g(x) = cos x.

 (b)  Differentiate the Maclaurin polynomial of degree 6 for 
f (x) = cos x and compare the result with the Maclaurin 
polynomial of degree 5 for g(x) = sin x.

 (c)  Differentiate the Maclaurin polynomial of degree 4 for 
f (x) = ex. Describe the relationship between the two 
series.

69.  Graphical Reasoning The figure shows the graphs of 
the function f (x) = sin(πx�4) and the second-degree Taylor  
polynomial P2(x) = 1 − (π2�32)(x − 2)2 centered at x = 2.

x

2

4

−4

2 4

y

f(x)

P2(x)

 (a)  Use the symmetry of the graph of f  to write the second-
degree Taylor polynomial Q2(x) for f  centered at x = −2.

 (b)  Use a horizontal translation of the result in part (a) to find 
the second-degree Taylor polynomial R2(x) for f  centered 
at x = 6.

 (c)  Is it possible to use a horizontal translation of the result in 
part (a) to write a second-degree Taylor polynomial for f  
centered at x = 4? Explain.

70.  Proof Prove that if f  is an odd function, then its nth 
Maclaurin polynomial contains only terms with odd powers of x.

71.  Proof Prove that if f  is an even function, then its nth 
Maclaurin polynomial contains only terms with even powers 
of x.

72.  Proof Let Pn(x) be the nth Taylor polynomial for f  at c. 
Prove that Pn(c) = f (c) and P(k)(c) = f (k)(c) for 1 ≤ k ≤ n.

73.  Proof Consider a function f  with continuous first and 
second derivatives at x = c. Prove that if f  has a relative 
maximum at x = c, then the second Taylor polynomial 
centered at x = c also has a relative maximum at x = c.
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9.8 Power Series

 Understand the definition of a power series.
 Find the radius and interval of convergence of a power series.
 Determine the endpoint convergence of a power series.
 Differentiate and integrate a power series.

Power Series
In Section 9.7, you were introduced to the concept of approximating functions by 
Taylor polynomials. For instance, the function f (x) = ex can be approximated by its 
third-degree Maclaurin polynomial

ex ≈ 1 + x +
x2

2!
+

x3

3!
.

In that section, you saw that the higher the degree of the approximating polynomial, the 
better the approximation becomes.

In this and the next two sections, you will see that several important types of 
functions, including f (x) = ex, can be represented exactly by an infinite series called a 
power series. For example, the power series representation for ex is

ex = 1 + x +
x2

2!
+

x3

3!
+ .  .  . +

xn

n!
+ .  .  . .

For each real number x, it can be shown that the infinite series on the right converges 
to the number ex. Before doing this, however, some preliminary results dealing with 
power series will be discussed—beginning with the next definition.

Definition of Power Series

If x is a variable, then an infinite series of the form

∑
∞

n=0
 anx

n = a0 + a1x + a2x
2 + a3x

3 + .  .  . + anx
n + .  .  .

is called a power series. More generally, an infinite series of the form

∑
∞

n=0
 an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + .  .  . + an(x − c)n + .  .  .

is called a power series centered at c, where c is a constant.

 Power Series

a. The following power series is centered at 0.

∑
∞

n=0
 
xn

n!
= 1 + x +

x2

2
+

x3

3!
+ .  .  .

b. The following power series is centered at −1.

∑
∞

n=0
 (−1)n(x + 1)n = 1 − (x + 1) + (x + 1)2 − (x + 1)3 + .  .  .

c. The following power series is centered at 1.

∑
∞

n=1
 
1
n
(x − 1)n = (x − 1) + 1

2
(x − 1)2 + 1

3
(x − 1)3 + .  .  . 

REMARK To simplify 
the notation for power series, 
assume that (x − c)0 = 1, even 
when x = c.

Exploration
Graphical Reasoning  
Use a graphing utility to 
approximate the graph of 
each power series near 
x = 0. (Use the first several 
terms of each series.) 
Each series represents a 
well-known function. What 
is the function?

a. ∑
∞

n=0
 
(−1)nxn

n!

b. ∑
∞

n=0
 
(−1)nx2n

(2n)!

c. ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!

d. ∑
∞

n=0
 
(−1)nx2n+1

2n + 1

e. ∑
∞

n=0
 
2nxn

n!
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Radius and Interval of Convergence
A power series in x can be viewed as a function of x

f (x) = ∑
∞

n=0
 an(x − c)n

where the domain of f  is the set of all x for which the power series converges. 
Determination of the domain of a power series is the primary concern in this section. 
Of course, every power series converges at its center c because

  f (c) = ∑
∞

n=0
 an(c − c)n

 = a0(1) + 0 + 0 + .  .  . + 0 + .  .  . 

 = a0.

So, c always lies in the domain of f. Theorem 9.20 (see below) states that the domain 
of a power series can take three basic forms: a single point, an interval centered at c, or 
the entire real number line, as shown in Figure 9.18.

c
x

A single point

c
x

R R

An interval

c
x

The real number line

 The domain of a power series has only three  
basic forms: a single point, an interval centered  
at c, or the entire real number line.

 Figure 9.18

THEOREM 9.20 Convergence of a Power Series

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2.  There exists a real number R > 0 such that the series converges  
absolutely for

∣x − c∣ < R

 and diverges for

∣x − c∣ > R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the  
series converges only at c, then the radius of convergence is R = 0. If the 
series converges for all x, then the radius of convergence is R = ∞. The  
set of all values of x for which the power series converges is the  
interval of convergence of the power series.

A proof of this theorem is given in Appendix A.
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To determine the radius of convergence of a power series, use the Ratio Test, as 
demonstrated in Examples 2, 3, and 4.

 Finding the Radius of Convergence

Find the radius of convergence of ∑
∞

n=0
 n!xn.

Solution For x = 0, you obtain

f (0) = ∑
∞

n=0
 n!0n = 1 + 0 + 0 + .  .  . = 1.

For any fixed value of x such that ∣x∣ > 0, let un = n!xn. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣(n + 1)!xn+1

n!xn ∣
 = ∣x∣ lim

n→∞
 (n + 1)

 = ∞.

Therefore, by the Ratio Test, the series diverges for ∣x∣ > 0 and converges only at its 
center, 0. So, the radius of convergence is R = 0.

 Finding the Radius of Convergence

Find the radius of convergence of

∑
∞

n=0
 3(x − 2)n.

Solution For x ≠ 2, let un = 3(x − 2)n. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣3(x − 2)n+1

3(x − 2)n ∣
 = lim

n→∞
 ∣x − 2∣

 = ∣x − 2∣.
By the Ratio Test, the series converges for ∣x − 2∣ < 1 and diverges for ∣x − 2∣ > 1.
Therefore, the radius of convergence of the series is R = 1.

 Finding the Radius of Convergence

Find the radius of convergence of 

∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)! .

Solution Let un = (−1)n x2n+1�(2n + 1)!. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ (−1)n+1 x2n+3

(2n + 3)!  

(−1)n x2n+1

(2n + 1)! ∣
 = lim

n→∞
 

x2

(2n + 3)(2n + 2).

For any fixed value of x, this limit is 0. So, by the Ratio Test, the series converges for 
all x. Therefore, the radius of convergence is R = ∞. 
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Endpoint Convergence
Note that for a power series whose radius of convergence is a finite number R,
Theorem 9.20 says nothing about the convergence at the endpoints of the interval of 
convergence. Each endpoint must be tested separately for convergence or divergence. 
As a result, the interval of convergence of a power series can take any one of the six 
forms shown in Figure 9.19.

c
x

Radius: 0

  

Radius: ∞

c
x

c
x

R

(c − R, c + R)

RRadius:

  

c
x

(c − R, c + R]

R

  

c
x

[c − R, c + R)

R

  

c
x

[c − R, c + R]

R

 Intervals of convergence
 Figure 9.19

 Finding the Interval of Convergence

See LarsonCalculus.com for an interactive version of this type of example.

Find the interval of convergence of

∑
∞

n=1
 
xn

n
.

Solution Letting un = xn�n produces

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ xn+1

n + 1
 

xn

n ∣
 = lim

n→∞
 ∣ nx

n + 1∣
 = ∣x∣.

So, by the Ratio Test, the radius of convergence is R = 1. Moreover, because the 
series is centered at 0, it converges in the interval (−1, 1). This interval, however, 
is not necessarily the interval of convergence. To determine this, you must test for 
convergence at each endpoint. When x = 1, you obtain the divergent harmonic series

∑
∞

n=1
 
1
n
=

1
1
+

1
2
+

1
3
+ .  .  . . Diverges when x = 1.

When x = −1, you obtain the convergent alternating harmonic series

∑
∞

n=1
 
(−1)n

n
= −1 +

1
2
−

1
3
+

1
4
− .  .  . . Converges when x = −1.

So, the interval of convergence for the series is [−1, 1), as shown in Figure 9.20.

Radius: R = 1

c = 0
x

−1 1

Interval: [−1, 1)

 Figure 9.20 
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 Finding the Interval of Convergence

Find the interval of convergence of ∑
∞

n=0
 
(−1)n(x + 1)n

2n .

Solution Letting un = (−1)n(x + 1)n�2n produces

lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ (−1)n+1(x + 1)n+1

2n+1  

(−1)n(x + 1)n
2n ∣

 = lim
n→∞

 ∣x + 1
2 ∣

 = ∣x + 1
2 ∣.

By the Ratio Test, the series converges for 

∣x + 1
2 ∣ < 1

or ∣x + 1∣ < 2. So, the radius of convergence is R = 2. Because the series is centered 
at x = −1, it will converge in the interval (−3, 1). Furthermore, at the endpoints, 
you have

∑
∞

n=0
 
(−1)n(−2)n

2n = ∑
∞

n=0
 
2n

2n = ∑
∞

n=0
 1 Diverges when x = −3.

and

∑
∞

n=0
 
(−1)n(2)n

2n = ∑
∞

n=0
 (−1)n Diverges when x = 1.

both of which diverge. So, the interval of convergence is (−3, 1), as shown in Figure 9.21.

 Finding the Interval of Convergence

Find the interval of convergence of

∑
∞

n=1
 
xn

n2.

Solution Letting un = xn�n2 produces

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣xn+1�(n + 1)2
xn�n2 ∣

 = lim
n→∞

 ∣ n2x
(n + 1)2∣

 = ∣x∣.
So, the radius of convergence is R = 1. Because the series is centered at x = 0, it 
converges in the interval (−1, 1). When x = 1, you obtain the convergent p-series

∑
∞

n=1
 
1
n2 =

1
12 +

1
22 +

1
32 +

1
42 + .  .  . . Converges when x = 1.

When x = −1, you obtain the convergent alternating series

∑
∞

n=1
 
(−1)n

n2 = −
1
12 +

1
22 −

1
32 +

1
42 − .  .  . . Converges when x = −1.

Therefore, the interval of convergence is [−1, 1], as shown in Figure 9.22. 

Figure 9.21

Radius: R = 2

c = −1
x

−3 −2 10

Interval: (−3, 1)

Figure 9.22

Radius: R = 1

c = 0
x

−1 1

Interval: [−1, 1]
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Differentiation and Integration of Power Series
Power series representation of functions has played an important role in the development 
of calculus. In fact, much of Newton’s work with differentiation and integration was 
done in the context of power series—especially his work with complicated algebraic 
functions and transcendental functions. Euler, Lagrange, Leibniz, and the Bernoullis all 
used power series extensively in calculus.

Once you have defined a function with a power series, it is natural to wonder how 
you can determine the characteristics of the function. Is it continuous? Differentiable?  
Theorem 9.21, which is stated without proof, answers these questions.

THEOREM 9.21 Properties of Functions Defined by Power Series

If the function

  f (x) = ∑
∞

n=0
 an(x − c)n

 = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + .  .  .

has a radius of convergence of R > 0, then, on the interval 

(c − R, c + R)

f  is differentiable (and therefore continuous). Moreover, the derivative and 
antiderivative of f  are as follows.

1.   f′(x) = ∑
∞

n=1
 nan(x − c)n−1

 = a1 + 2a2(x − c) + 3a3(x − c)2 + .  .  .

2.  ∫f (x) dx = C + ∑
∞

n=0
 an 

(x − c)n+1

n + 1

 = C + a0(x − c) + a1 
(x − c)2

2
+ a2

(x − c)3
3

+ .  .  .

The radius of convergence of the series obtained by differentiating or integrating 
a power series is the same as that of the original power series. The interval of 
convergence, however, may differ as a result of the behavior at the endpoints.

Theorem 9.21 states that, in many ways, a function defined by a power series 
behaves like a polynomial. It is continuous in its interval of convergence, and both its 
derivative and its antiderivative can be determined by differentiating and integrating 
each term of the power series. For instance, the derivative of the power series 

f (x) = ∑
∞

n=0
 
xn

n!

 = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ .  .  .

is

f′(x) = 1 + (2) x
2
+ (3) x2

3!
+ (4) x3

4!
+ .  .  .

 = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ .  .  .

 = f (x).

Notice that f′(x) = f (x). Do you recognize this function?

JAMES GREGORY (1638–1675)

One of the earliest 
mathematicians to work 
with power series was a 
Scotsman, James Gregory. He 
developed a power series 
method for interpolating table 
values––a method that was 
later used by Brook Taylor 
in the development of Taylor 
polynomials and Taylor series.

The Granger Collection
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 Intervals of Convergence for f (x), f ′(x), and ∫f (x) dx

Consider the function

f (x) = ∑
∞

n=1
 
xn

n
= x +

x2

2
+

x3

3
+ .  .  . .

Find the interval of convergence for each of the following.

a. ∫ f (x) dx  b. f (x)  c. f′(x)

Solution By Theorem 9.21, you have

 f′(x) = ∑
∞

n=1
 xn−1

 = 1 + x + x2 + x3 + .  .  .

and

∫ f (x) dx = C + ∑
∞

n=1
 

xn+1

n(n + 1)

 = C +
x2

1 ∙ 2
+

x3

2 ∙ 3
+

x4

3 ∙ 4
+ .  .  . .

By the Ratio Test, you can show that each series has a radius of convergence of R = 1.
Considering the interval (−1, 1), you have the following.

a. For ∫ f (x) dx, the series

∑
∞

n=1
 

xn+1

n(n + 1) Interval of convergence: [−1, 1]

converges for x = ±1, and its interval of convergence is [−1, 1]. See Figure 9.23(a).

b. For f (x), the series

∑
∞

n=1
 
xn

n
 Interval of convergence: [−1, 1)

converges for x = −1 and diverges for x = 1. So, its interval of convergence is 
[−1, 1). See Figure 9.23(b).

c. For f′(x), the series

∑
∞

n=1
 xn−1 Interval of convergence: (−1, 1)

diverges for x = ±1, and its interval of convergence is (−1, 1). See Figure 9.23(c).

Radius: R = 1

c = 0

x

−1 1

Interval: [−1, 1]   
Radius: R = 1

c = 0

x

−1 1

Interval: [−1, 1)   
Radius: R = 1

c = 0

x

−1 1

Interval: (−1, 1)

 (a) (b) (c)
 Figure 9.23 

From Example 8, it appears that of the three series, the one for the derivative, f′(x), 
is the least likely to converge at the endpoints. In fact, it can be shown that if the series 
for f′(x) converges at the endpoints 

x = c ± R

then the series for f (x) will also converge there.

REMARK Notice in 
Example 8 that when 
differentiating the power 
series, differentiation is done 
on a term-by-term basis. 
Likewise, when integrating a 
series, integration is done on a 
term-by-term basis.
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9.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Representing a Function Explain how a Maclaurin 

polynomial and a power series centered at 0 for a function 
are different.

2.  Domain What does the domain of

 f (x) = ∑
∞

n=0
 an(x − c)n

represent?

3.  Radius of Convergence Determine the radius of

 convergence for the power series ∑
∞

n=0
 an(x − 2)n given the

 following result of the Ratio Test, where un = an(x − 2)n.

lim
n→∞

 ∣un+1

un ∣ = ∣x − 2
5 ∣

4.  Properties of Functions Defined by Power 
Series In your own words, describe how a function 
defined by a power series behaves like a polynomial.

 Finding the Center of a Power Series In 
Exercises 5–8, state where the power series is 
centered.

 5. ∑
∞

n=0
 nxn  6. ∑

∞

n=1
 
(−1)n(2n − 1)

2nn!
xn

7. ∑
∞

n=1
 
(x − 2)n

n3   8. ∑
∞

n=0
 
(−1)n(x − π)2n

(2n)!

 Finding the Radius of Convergence In 
Exercises 9–14, find the radius of convergence of 
the power series.

 9. ∑
∞

n=0
 (−1)n xn

n + 1
 10. ∑

∞

n=0
 (3x)n

11. ∑
∞

n=1
 
(4x)n

n2  12. ∑
∞

n=0
 
(−1)n xn

5n

13. ∑
∞

n=0
 

x2n

(2n)! 14. ∑
∞

n=0
 
(2n)!x3n

n!

 Finding the Interval of Convergence In 
Exercises 15–38, find the interval of convergence 
of the power series. (Be sure to include a check for 
convergence at the endpoints of the interval.)

15. ∑
∞

n=0
 (x4)

n

 16. ∑
∞

n=0
 (2x)n

17. ∑
∞

n=1
 
(−1)n xn

n
 18. ∑

∞

n=0
 (−1)n+1(n + 1)xn

19. ∑
∞

n=0
 
x5n

n!
 20. ∑

∞

n=0
 
(3x)n
(2n)!

21. ∑
∞

n=0
 (2n)! (x3)

n

 22. ∑
∞

n=0
 

(−1)n xn

(n + 1)(n + 2)

23. ∑
∞

n=1
 
(−1)n+1 xn

6n  24. ∑
∞

n=0
 
(−1)n n!(x − 5)n

3n

25. ∑
∞

n=1
 
(−1)n+1(x − 4)n

n9n  26. ∑
∞

n=0
 
(x − 3)n+1

(n + 1)4n+1

27. ∑
∞

n=0
 
(−1)n+1(x − 1)n+1

n + 1
 28. ∑

∞

n=1
 
(−1)n+1(x − 2)n

n2n

29. ∑
∞

n=1
 
(x − 3)n−1

3n−1  30. ∑
∞

n=0
 
(−1)nx2n+1

2n + 1

31. ∑
∞

n=1
 

n
n + 1

 (−2x)n−1 32. ∑
∞

n=0
 
(−1)n x2n

n!

33. ∑
∞

n=0
 

x3n+1

(3n + 1)! 34. ∑
∞

n=1
 
n!xn

(2n)!

35. ∑
∞

n=1
 
2 ∙ 3 ∙ 4 .  .  . (n + 1)xn

 n!

36. ∑
∞

n=1
 [ 2 ∙ 4 ∙ 6 .  .  . 2n

3 ∙ 5 ∙ 7 .  .  . (2n + 1)] x2n+1

37. ∑
∞

n=1
 
(−1)n+1 3 ∙ 7 ∙ 11 .  .  . (4n − 1)(x − 3)n

4n

38. ∑
∞

n=1
 

n!(x + 1)n
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

Finding the Radius of Convergence In Exercises 39 and 
40, find the radius of convergence of the power series, where 
c > 0 and k is a positive integer.

39. ∑
∞

n=1
 
(x − c)n−1

cn−1  40. ∑
∞

n=0
 
(n!)k xn

(kn)!

Finding the Interval of Convergence In Exercises 
41–44, find the interval of convergence of the power series, 
where c > 0 and k is a positive integer. (Be sure to include a 
check for convergence at the endpoints of the interval.)

41. ∑
∞

n=0
 (xk)

n

 42. ∑
∞

n=1
 
(−1)n+1(x − c)n

ncn

43. ∑
∞

n=1
 
k(k + 1)(k + 2) .  .  . (k + n − 1)xn

n!

44. ∑
∞

n=1
 

n!(x − c)n
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

Writing an Equivalent Series In Exercises 45–48, write 
an equivalent series with the index of summation beginning at 
n = 1.

45. ∑
∞

n=0
 
xn

n!

46. ∑
∞

n=0
 (−1)n+1(n + 1)xn

47. ∑
∞

n=2
 

xn−1

(7n − 1)!

48. ∑
∞

n=2
 

x3n−1

(2n − 1)!
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 Finding Intervals of Convergence In 
Exercises 49–52, find the intervals of convergence 
of (a) f (x), (b) f ′(x), (c) f ″(x), and (d) ∫ f (x) dx.
(Be sure to include a check for convergence at the 
endpoints of the intervals.)

49. f (x) = ∑
∞

n=0
 (x3)

n

50. f (x) = ∑
∞

n=1
 
(−1)n+1(x − 5)n

n5n

51. f (x) = ∑
∞

n=0
 
(−1)n+1(x − 1)n+1

n + 1

52. f (x) = ∑
∞

n=1
 
(−1)n+1(x − 2)n

n

EXPLORING CONCEPTS
Writing a Power Series In Exercises 53 and 54, 
write a power series that has the indicated interval of 
convergence. Explain your reasoning.

53. (−3, 3) 54. [−3, 7]

55.  Conditional or Absolute Convergence Give 
examples that show that the convergence of a power 
series at an endpoint of its interval of convergence may 
be either conditional or absolute. Explain your reasoning.

56.  HOW DO YOU SEE IT? Match the graph 
of the first 10 terms of the sequence of partial 
sums of the series

 g(x) = ∑
∞

n=0
 (x3)

n

with the indicated value of the function. [The 
graphs are labeled (i), (ii), (iii), and (iv).] 
Explain how you made your choice.

 (i) Sn

n
2

2

4 6 8

1

3

 (ii) Sn

n
2

2
4
6
8
10
12

4 6 8

(iii) Sn

n
2

2

4 6 8

1

 (iv) Sn

n
2 4 6 8

1
3
4

1
2

1
4

(a) g(1) (b) g(2)
(c) g(3) (d) g(−2)

56.  

57. Using Power Series Let f (x) = ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!  and

 g(x) = ∑
∞

n=0
 
(−1)n x2n

(2n)! .

 (a) Find the intervals of convergence of f  and g.

 (b) Show that f ′(x) = g(x) and g′(x) = −f (x).
 (c) Identify the functions f  and g.

58. Using a Power Series Let f (x) = ∑
∞

n=0
 

x2n+1

(2n + 1)! and

 g(x) = ∑
∞

n=0
 

x2n

(2n)!.

 (a) Find the intervals of convergence of f  and g.

 (b) Show that f ′(x) = g(x) and g′(x) = f (x).
 (c) Identify the functions f  and g.

Differential Equation In Exercises 59–64, show that the 
function represented by the power series is a solution of the 
differential equation.

59. y = ∑
∞

n=0
 
(−1)n + x2n+1

(2n + 1)! , y″ + y = 0

60. y = ∑
∞

n=0
 
(−1)n x2n

(2n)! , y″ + y = 0

61. y = ∑
∞

n=0
 

x2n+1

(2n + 1)!, y″ − y = 0

62. y = ∑
∞

n=0
 

x2n

(2n)!, y″ − y = 0

63. y = ∑
∞

n=0
 

x2n

2n n!
, y″ − xy′ − y = 0

64. y = 1 + ∑
∞

n=1
 

(−1)n x4n

22n n! ∙ 3 ∙ 7 ∙ 11 .  .  . (4n − 1),

 y″ + x2y = 0

65. Bessel Function The Bessel function of order 0 is

 J0(x) = ∑
∞

k=0
 
(−1)k x2k

22k(k!)2 .

 (a) Show that the series converges for all x.

 (b)  Show that the series is a solution of the differential 
equation x2 J0″ + x J0′ + x2 J0 = 0.

 (c)  Use a graphing utility to graph the polynomial composed 
of the first four terms of J0.

 (d) Approximate ∫1
0  J0 dx accurate to two decimal places.

66. Bessel Function The Bessel function of order 1 is

 J1(x) = x∑
∞

k=0
 

(−1)kx2k

22k+1 k!(k + 1)!

 (a) Show that the series converges for all x.

 (b)  Show that the series is a solution of the differential equation 
x2 J1″ + x J1′ + (x2 − 1) J1 = 0.

 (c)  Use a graphing utility to graph the polynomial composed 
of the first four terms of J1.

 (d) Use J0 from Exercise 65 to show that J0′(x) = −J1(x).
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67.   Investigation The interval of convergence of the geometric

 series ∑
∞

n=0
 (x4)

n

 is (−4, 4).

(a)  Find the sum of the series when x = 5
2. Use a graphing 

utility to graph the first six terms of the sequence of partial 
sums and the horizontal line representing the sum of the 
series.

 (b) Repeat part (a) for x = −5
2.

(c)  Write a short paragraph comparing the rates of convergence 
of the partial sums with the sums of the series in parts (a) 
and (b). How do the plots of the partial sums differ as they 
converge toward the sum of the series?

(d)  Given any positive real number M, there exists a positive 
integer N such that the partial sum

  ∑
N

n=0
 (54)

n

> M.

Use a graphing utility to complete the table.

M 10 100 1000 10,000

N

68. Investigation The interval of convergence of the series

 ∑
∞

n=0
 (3x)n is (−1

3, 13).

 (a)  Find the sum of the series when x = 1
6. Use a graphing 

utility to graph the first six terms of the sequence of partial 
sums and the horizontal line representing the sum of the 
series.

 (b) Repeat part (a) for x = −1
6.

 (c)  Write a short paragraph comparing the rates of convergence 
of the partial sums with the sums of the series in parts (a) 
and (b). How do the plots of the partial sums differ as they 
converge toward the sum of the series?

 (d)  Given any positive real number M, there exists a positive 
integer N such that the partial sum

  ∑
N

n=0
 (3 ∙ 2

3)
n

> M.

  Use a graphing utility to complete the table.

M 10 100 1000 10,000

N

Identifying a Function In Exercises 69–72, the series 
represents a well-known function. Use a computer algebra 
system to graph the partial sum S10 and identify the function 
from the graph.

69. f (x) = ∑
∞

n=0
(−1)n π

2nx2n

(2n)!

70. f (x) = ∑
∞

n=0
(−1)n+1 

x2n+1

(2n + 1)!

71. f (x) = ∑
∞

n=0
 (−1)n xn, −1 < x < 1

72. f (x) = ∑
∞

n=0
(3x)n

True or False? In Exercises 73–76, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73. If the power series ∑
∞

n=1
 anx n converges for x = 2, then it also

 converges for x = −2.

74.  It is possible to find a power series whose interval of 
convergence is [0, ∞).

75. If the interval of convergence for ∑
∞

n=0
 anx n is (−1, 1), then the 

 interval of convergence for ∑
∞

n=0
 an(x − 1)n is (0, 2).

76. If f (x) = ∑
∞

n=0
 anxn converges for ∣x∣ < 2, then

 ∫1

0
 f (x) dx = ∑

∞

n=0
 

an

n + 1
.

77. Proof Prove that the power series

 ∑
∞

n=0
 
(n + p)!

n!(n + q)! x
n

  has a radius of convergence of R = ∞ when p and q are 
positive integers.

78. Using a Power Series Let

 g(x) = 1 + 2x + x2 + 2x3 + x4 + .  .  .

 where the coefficients are c2n = 1 and c2n+1 = 2 for n ≥ 0.

 (a) Find the interval of convergence of the series.

 (b) Find an explicit formula for g(x).

79.  Using a Power Series Let

 f (x) = ∑
∞

n=0
 cnxn

 where cn+3 = cn for n ≥ 0.

 (a) Find the interval of convergence of the series.

 (b) Find an explicit formula for f (x).

80.  Proof Prove that if the power series ∑
∞

n=0
 cnxn has a radius of

 convergence of R, then ∑
∞

n=0
 cnx2n has a radius of convergence

 of √R.

81.  Proof For n > 0, let R > 0 and cn > 0. Prove that if the 
interval of convergence of the series

 ∑
∞

n=0
 cn(x − x0)n

  is [x0 − R, x0 + R], then the series converges conditionally at 
x = x0 − R.
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9.9 Representation of Functions by Power Series

 Find a geometric power series that represents a function.
 Construct a power series using series operations.

Geometric Power Series
In this section and the next, you will study several techniques for finding a power series 
that represents a function. Consider the function

f (x) = 1
1 − x

.

The form of f  closely resembles the sum of a geometric series

∑
∞

n=0
 arn =

a
1 − r

, ∣r∣ < 1.

In other words, when a = 1 and r = x, a power series representation for 1�(1 − x),
centered at 0, is

1
1 − x

= ∑
∞

n=0
 arn

 = ∑
∞

n=0
 xn

 = 1 + x + x2 + x3 + .  .  . , ∣x∣ < 1.

Of course, this series represents f (x) = 1�(1 − x) only on the interval (−1, 1),
whereas f  is defined for all x ≠ 1, as shown in Figure 9.24. To represent f  in another 
interval, you must develop a different series. For instance, to obtain the power series 
centered at −1, you could write

1
1 − x

=
1

2 − (x + 1) =
1�2

1 − [(x + 1)�2] =
a

1 − r

which implies that a = 1
2 and r = (x + 1)�2. So, for ∣x + 1∣ < 2, you have

 
1

1 − x
= ∑

∞

n=0
 (12)(

x + 1
2 )

n

 =
1
2[1 +

(x + 1)
2

+
(x + 1)2

4
+

(x + 1)3
8

+ .  .  .], ∣x + 1∣ < 2

which converges on the interval (−3, 1).

f (x) = 1
1 − x

, Domain: all x ≠ 1

x

2

1

−1

−2

1 2 3−1

y    

x

2

1

−1

−2

1 2 3−1

f (x) = ∑
∞

n = 0
xn, Domain: −1 < x < 1

y

Figure 9.24

JOSEPH FOURIER (1768–1830)

Some of the early work in 
representing functions by 
power series was done by 
the French mathematician 
Joseph Fourier. Fourier’s work 
is important in the history 
of calculus, partly because it 
forced eighteenth-century 
mathematicians to question the 
then-prevailing narrow concept 
of a function. Both Cauchy and 
Dirichlet were motivated by 
Fourier’s work with series, and 
in 1837, Dirichlet published the 
general definition of a function 
that is used today.

The Granger Collection
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 Finding a Geometric Power Series Centered at 0

Find a power series for f (x) = 4
x + 2

, centered at 0.

Solution Writing f (x) in the form a�(1 − r) produces

4
2 + x

=
2

1 − (−x�2) =
a

1 − r

which implies that a = 2 and

r = −
x
2

.

So, the power series for f (x) is

 
4

x + 2
= ∑

∞

n=0
 arn

 = ∑
∞

n=0
 2(−x

2)
n

 = 2(1 −
x
2
+

x2

4
−

x3

8
+ .  .  .).

This power series converges when

∣−x
2∣ < 1

which implies that the interval of convergence is (−2, 2). 

Another way to determine a power series for a rational function such as the one in 
Example 1 is to use long division. For instance, by dividing 2 + x into 4, you obtain 
the result shown at the left.

 Finding a Geometric Power Series Centered at 1

Find a power series for f(x) = 1
x
, centered at 1.

Solution Writing f (x) in the form a�(1 − r) produces

1
x
=

1
1 − (−x + 1) =

a
1 − r

which implies that a = 1 and r = 1 − x = −(x − 1). So, the power series for f (x) is

1
x
= ∑

∞

n=0
 arn

 = ∑
∞

n=0
 [−(x − 1)]n

 = ∑
∞

n=0
 (−1)n(x − 1)n

 = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + .  .  . .

This power series converges when

∣x − 1∣ < 1

which implies that the interval of convergence is (0, 2). 

Long Division

 2 −   x + 1
2x2 − 1

4x3 + .  .  .

2 + x )  4                                         
 4 + 2x

−2x
 −2x −   x2

x2

x2 + 1
2x3

 −1
2x3

 −1
2x3 − 1

4x4

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.9 Representation of Functions by Power Series 663

Operations with Power Series
The versatility of geometric power series will be shown later in this section, following 
a discussion of power series operations. These operations, used with differentiation and 
integration, provide a means of developing power series for a variety of elementary 
functions. (For simplicity, the operations are stated for a series centered at 0.)

Operations with Power Series

Let f (x) = ∑
∞

n=0
 anxn and g(x) = ∑

∞

n=0
 bnxn.

1. f (kx) = ∑
∞

n=0
 ank

nxn

2. f (xN) = ∑
∞

n=0
 anx

nN

3. f (x) ± g(x) = ∑
∞

n=0
 (an ± bn)xn

The operations described above can change the interval of convergence for the 
resulting series. For example, in the addition shown below, the interval of convergence 
for the sum is the intersection of the intervals of convergence of the two original series.

∑
∞

n=0
 xn + ∑

∞

n=0
 (x2)

n

= ∑
∞

n=0
 (1 +

1
2n)xn

  
(−1, 1) ∩  (−2, 2) =  (−1, 1)

 Adding Two Power Series

Find a power series for

f (x) = 3x − 1
x2 − 1

centered at 0.

Solution Using partial fractions, you can write f (x) as

3x − 1
x2 − 1

=
2

x + 1
+

1
x − 1

.

By adding the two geometric power series

2
x + 1

=
2

1 − (−x) = ∑
∞

n=0
 2(−1)nxn, ∣x∣ < 1

and

1
x − 1

=
−1

1 − x
= −∑

∞

n=0
 xn, ∣x∣ < 1

you obtain the power series shown below.

3x − 1
x2 − 1

= ∑
∞

n=0
 [2(−1)n − 1] xn

 = 1 − 3x + x2 − 3x3 + x4 − .  .  .

The interval of convergence for this power series is (−1, 1). 
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 Finding a Power Series by Integration

Find a power series for

f (x) = ln x

centered at 1.

Solution From Example 2, you know that

1
x
= ∑

∞

n=0
 (−1)n(x − 1)n. Interval of convergence: (0, 2)

Integrating this series produces

ln x = ∫ 
1
x
 dx + C

 = C + ∑
∞

n=0
 (−1)n (x − 1)n+1

n + 1
.

By letting x = 1, you can conclude that C = 0. Therefore,

 ln x = ∑
∞

n=0
 (−1)n (x − 1)n+1

n + 1

 =
(x − 1)

1
−

(x − 1)2
2

+
(x − 1)3

3
−

(x − 1)4
4

+ .  .  . . Interval of 
convergence: (0, 2]

Note that the series converges at x = 2. This is consistent with the observation in the 
preceding section that integration of a power series may alter the convergence at the 
endpoints of the interval of convergence. 

 FOR FURTHER INFORMATION To read about finding a power series using 
integration by parts, see the article “Integration by Parts and Infinite Series” by Shelby 
J. Kilmer in Mathematics Magazine. To view this article, go to MathArticles.com.

In Section 9.7, Example 4, the fourth-degree Taylor polynomial (centered at c = 1)
for the natural logarithmic function

ln x ≈ (x − 1) − (x − 1)2
2

+
(x − 1)3

3
−

(x − 1)4
4

was used to approximate ln(1.1).

ln(1.1) ≈ (0.1) − 1
2
(0.1)2 + 1

3
(0.1)3 − 1

4
(0.1)4

 ≈ 0.0953083

You now know from Example 4 in this section that this polynomial represents the 
first four terms of the power series for ln x. Moreover, using the Alternating Series 
Remainder, you can determine that the error in this approximation is less than

∣R4∣ ≤ ∣a5∣
 =

1
5
(0.1)5

 = 0.000002.

During the seventeenth and eighteenth centuries, mathematical tables for logarithms 
and values of other transcendental functions were computed in this manner. Such 
numerical techniques are far from outdated, because it is precisely by such means that 
many modern calculating devices are programmed to evaluate transcendental functions.
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 Finding a Power Series by Integration

See LarsonCalculus.com for an interactive version of this type of example.

Find a power series for

g(x) = arctan x

centered at 0.

Solution Because Dx [arctan x] = 1�(1 + x2), you can use the series

f (x) = 1
1 + x

= ∑
∞

n=0
 (−1)nxn. Interval of convergence: (−1, 1)

Substituting x2 for x produces

f (x2) = 1
1 + x2 = ∑

∞

n=0
 (−1)n x2n.

Finally, by integrating, you obtain

arctan x = ∫ 
1

1 + x2 dx + C

 = C + ∑
∞

n=0
 (−1)n x2n+1

2n + 1

 = ∑
∞

n=0
 (−1)n x2n+1

2n + 1
 Let x = 0, then C = 0.

 = x −
x3

3
+

x5

5
−

x7

7
+ .  .  . . Interval of convergence: (−1, 1) 

It can be shown that the power series developed for arctan x in Example 5 also 
converges (to arctan x) for x = ±1. For instance, when x = 1, you can write

 arctan 1 = 1 −
1
3
+

1
5
−

1
7
+ .  .  .

 =
π
4

.

However, this series (developed by James Gregory in 1671) is not a practical way of 
approximating π  because it converges so slowly that hundreds of terms would have 
to be used to obtain reasonable accuracy. Example 6 shows how to use two different 
arctangent series to obtain a very good approximation of π  using only a few terms. This 
approximation was developed by John Machin in 1706.

 Approximating p with a Series

Use the trigonometric identity

4 arctan 
1
5
− arctan 

1
239

=
π
4

to approximate the number π. [See Exercise 44(b).]

Solution By using only five terms from each of the series for arctan(1�5) and 
arctan(1�239), you obtain

4(4 arctan 
1
5
− arctan 

1
239) ≈ 3.1415927

which agrees with the exact value of π  with an error of less than 0.0000001.

 FOR FURTHER INFORMATION
To read about other methods 
for approximating π, see the 
article “Two Methods for 
Approximating π” by Chien-Lih 
Hwang in Mathematics Magazine. 
To view this article, go to 
MathArticles.com. 

SRINIVASA RAMANUJAN  
(1887–1920)

Series that can be used to 
approximate π  have interested 
mathematicians for the past 
300 years.  An amazing series 
for approximating 1�π  was 
discovered by the Indian 
mathematician Srinivasa 
Ramanujan in 1914 (see 
Exercise 57). Each successive 
term of Ramanujan’s series 
adds roughly eight more 
correct digits to the value of 
1�π . For more information 
about Ramanujan’s work, see 
the article “Ramanujan and Pi” 
by Jonathan M. Borwein and 
Peter B. Borwein in Scientific 
American.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NY
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9.9 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Using Power Series Explain how to use a 

geometric power series to represent a function of the form

 f (x) = b
c − x

.

2.  Power Series Operations Consider f (x) = ∑
∞

n=0
 5x2n.

What are the values of a and b in terms of n?

f (x
3

5 ) = ∑
∞

n=0
 
x a

5b

 Finding a Geometric Power Series In 
Exercises 3–6, find a geometric power series for the 
function, centered at 0, (a) by the technique shown 
in Examples 1 and 2 and (b) by long division.

 3. f (x) = 1
4 − x

  4. f (x) = 1
2 + x

5. f (x) = 4
3 + x

  6. f (x) = 2
5 − x

 Finding a Power Series In Exercises 7–18, 
find a power series for the function, centered at c,
and determine the interval of convergence.

 7. f (x) = 1
6 − x

, c = 1  8. f (x) = 2
6 − x

, c = −2

9. f (x) = 1
1 − 3x

, c = 0 10. h(x) = 1
1 − 4x

, c = 0

11. g(x) = 5
2x − 3

, c = −3 12. f (x) = 3
2x − 1

, c = 2

13. f (x) = 2
5x + 4

, c = −1 14. f (x) = 4
3x + 2

, c = 3

15. g(x) = 4x
x2 + 2x − 3

, c = 0

16. g(x) = 3x − 8
3x2 + 5x − 2

, c = 0

17. f (x) = 2
1 − x2, c = 0 18. f (x) = 5

4 − x2, c = 0

 Using a Power Series In Exercises 19–28, use 
the power series

 
1

1 + x
= ∑

∞

n=0
 (−1)n xn, ∣x∣ < 1

to find a power series for the function, centered 
at 0, and determine the interval of convergence.

19. h(x) = −2
x2 − 1

=
1

1 + x
+

1
1 − x

20. h(x) = x
x2 − 1

=
1

2(1 + x) −
1

2(1 − x)

21. f (x) = −
1

(x + 1)2 =
d
dx

 [ 1
x + 1]

22. f (x) = 2
(x + 1)3 =

d2

dx2 [ 1
x + 1]

23. f (x) = ln(x + 1) = ∫ 
1

x + 1
 dx

24. f (x) = ln(1 − x2) = ∫ 
1

1 + x
 dx − ∫ 

1
1 − x

 dx

25. g(x) = 1
x2 + 1

26. f (x) = ln(x2 + 1)

27. h(x) = 1
4x2 + 1

 28. f (x) = arctan 2x

Graphical and Numerical Analysis In Exercises 29 
and 30, let

Sn = x −
x2

2
+

x3

3
−

x4

4
+ .  .  . ±

xn

n
.

Use a graphing utility to confirm the inequality graphically. 
Then complete the table to confirm the inequality numerically.

x 0.0 0.2 0.4 0.6 0.8 1.0

Sn

ln(x + 1)

Sn+1

29. S2 ≤ ln(x + 1) ≤ S3

30. S4 ≤ ln(x + 1) ≤ S5

Approximating a Sum In Exercises 31 and 32, (a) use a 
graphing utility to graph several partial sums of the series,  
(b) find the sum of the series and its radius of convergence, 
(c) use a graphing utility and 50 terms of the series to 
approximate the sum when x = 0.5, and (d) determine what the 
approximation represents and how good the approximation is.

31. ∑
∞

n=1
 
(−1)n+1(x − 1)n

n

32. ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!

 Approximating a Value In Exercises 33–36, 
use the power series for f (x) = arctan x to 
approximate the value, using RN ≤ 0.001.

33. arctan 
1
4

 34. ∫3�4

0
 arctan x2 dx

35. ∫1�2

0
 
arctan x2

x
 dx 36. ∫1�2

0
 x2 arctan x dx
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9.9 Representation of Functions by Power Series 667

Using a Power Series In Exercises 37–40, use the power 
series

1
1 − x

= ∑
∞

n=0
 xn, ∣x∣ < 1

to find a power series for the function, centered at 0, and 
determine the interval of convergence.

37. f (x) = 1
(1 − x)2 38. f (x) = x

(1 − x)2

39. f (x) = 1 + x
(1 − x)2 40. f (x) = x(1 + x)

(1 − x)2

41.  Probability A fair coin is tossed repeatedly. The probability

  that the first head occurs on the nth toss is P(n) = (1
2)

n
. When 

this game is repeated many times, the average number of 
tosses required until the first head occurs is

 E(n) = ∑
∞

n=1
 nP(n).

(This value is called the expected value of n.) Use the results 
of Exercises 37–40 to find E(n). Is the answer what you 
expected? Why or why not?

42.  Finding the Sum of a Series Use the results of 
Exercises 37–40 to find the sum of each series.

 (a) 
1
3∑
∞

n=1
 n(23)

n

 (b) 
1
10∑

∞

n=1
 n( 9

10)
n

43. Proof Prove that

 arctan x + arctan y = arctan 
x + y
1 − xy

for xy ≠ 1 provided the value of the left side of the equation is 
between −π�2 and π�2.

44.  Verifying an Identity Use the result of Exercise 43 to 
verify each identity.

 (a) arctan 
120
119

− arctan 
1

239
=

π
4

(b) 4 arctan 
1
5
− arctan 

1
239

=
π
4

 [Hint: Use Exercise 43 twice to find 4 arctan 15. Then use 
part (a).]

Approximating Pi In Exercises 45 and 46, (a) use the 
result of Exercise 43 to verify the given identity and (b) use the 
identity and the series for the arctangent to approximate π by 
using four terms of each series.

45. 2 arctan 
1
2
− arctan 

1
7
=

π
4

46. arctan 
1
2
+ arctan 

1
3
=

π
4

Finding the Sum of a Series In Exercises 47–52, find the 
sum of the convergent series by using a well-known function. 
Identify the function and explain how you obtained the sum.

47. ∑
∞

n=1
 (−1)n+1 

1
2nn

 48. ∑
∞

n=1
 (−1)n+1 

1
3nn

49. ∑
∞

n=1
 (−1)n+1 

2n

5nn

50. ∑
∞

n=0
 (−1)n 1

2n + 1

51. ∑
∞

n=0
 (−1)n 1

22n+1(2n + 1)

52. ∑
∞

n=1
 (−1)n+1 

1
32n−1(2n − 1)

EXPLORING CONCEPTS
53.  Using Series One of the series in Exercises 47–52 

converges to its sum at a much lower rate than the 
other five series. Which is it? Explain why this series 
converges so slowly. Use a graphing utility to illustrate 
the rate of convergence.

54.  Radius of Convergence The radius of convergence

 of the power series ∑
∞

n=0
 anxn is 3. What is the radius of

 convergence of the series

 ∑
∞

n=1
 nanxn−1?

Explain.

55.  Convergence of a Power Series The power series

 ∑
∞

n=0
 anxn converges for ∣x + 1∣ < 4. What can you

 conclude about the convergence of the series

 ∑
∞

n=0
 an 

xn+1

n + 1
?

Explain.

56.  HOW DO YOU SEE IT? The figure on the 
left shows the graph of a function. The figure 
on the right shows the graph of a power series 
representation of the function.

−2 2 4 6
−2

2

6 (0, 5)
4

x

y  

x

y

1 2 3 4 5

1

2

3

4

5 (0, 5)

(a) Identify the function.

(b)  What are the center and interval of convergence of 
the power series?

56.  

57. Ramanujan and Pi Use a graphing utility to show that

 
√8

9801
 ∑
∞

n=0
 
(4n)!(1103 + 26,390n)

(n!)3964n =
1
π .
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9.10 Taylor and Maclaurin Series

 Find a Taylor or Maclaurin series for a function.
 Find a binomial series.
 Use a basic list of  Taylor series to find other Taylor series.

Taylor Series and Maclaurin Series
In Section 9.9, you derived power series for several functions using geometric series 
with term-by-term differentiation or integration. In this section, you will study a 
general procedure for deriving the power series for a function that has derivatives of all 
orders. The next theorem gives the form that every convergent power series must take.

THEOREM 9.22 The Form of a Convergent Power Series

If f  is represented by a power series f (x) = ∑ an(x − c)n for all x in an open  
interval I containing c, then 

an =
f (n)(c)

n!
 

and

 f (x) = f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  .

 +
f (n)(c)

n!
(x − c)n + .  .  . .

Proof Consider a power series ∑ an(x − c)n that has a radius of convergence R. 
Then, by Theorem 9.21, you know that the nth derivative of f  exists for ∣x − c∣ < R, 
and by successive differentiation you obtain the following.

 f (0)(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + a4(x − c)4 + .  .  .

 f (1)(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + 4a4(x − c)3 + .  .  .

 f (2)(x) = 2a2 + 3!a3(x − c) + 4 ∙ 3a4(x − c)2 + .  .  .

 f (3)(x) = 3!a3 + 4!a4(x − c) + .  .  .

 ⋮
 f (n)(x) = n!an + (n + 1)!an+1(x − c) + .  .  .

Evaluating each of these derivatives at x = c yields

 f (0)(c) = 0!a0

 f (1)(c) = 1!a1

 f (2)(c) = 2!a2

 f (3)(c) = 3!a3

and, in general, f (n)(c) = n!an. By solving for an, you find that the coefficients of the  
power series representation of f (x) are

an =
f (n)(c)

n!
.  

Notice that the coefficients of the power series in Theorem 9.22 are precisely the 
 coefficients of the Taylor polynomials for f  at c as defined in Section 9.7. For this 
reason, the series is called the Taylor series for f  at c.

REMARK Be sure you 
understand Theorem 9.22. The 
theorem says that if a power 
series converges to f (x), then the 
series must be a Taylor series. The 
theorem does not say that every 
series formed with the Taylor 
coefficients an = f (n)(c)�n! will 
converge to f (x). 
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Definition of Taylor and Maclaurin Series

If a function f  has derivatives of all orders at x = c, then the series

∑
∞

n=0
 
f (n)(c)

n!
 (x − c)n = f (c) + f′(c)(x − c) + .  .  . +

f (n)(c)
n!

(x − c)n + .  .  .

is called the Taylor series for f  at c. Moreover, if c = 0, then the series is  
the Maclaurin series for f.

When you know the pattern for the coefficients of the Taylor polynomials for 
a  function, you can extend the pattern to form the corresponding Taylor series. For 
instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for ln x,
centered at 1, to be

P4(x) = (x − 1) − 1
2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4.

From this pattern, you can obtain the Taylor series for ln x centered at c = 1,

(x − 1) − 1
2
(x − 1)2 + .  .  . +

(−1)n+1

n
(x − 1)n + .  .  . .

 Forming a Power Series

Use the function

f (x) = sin x

to form the Maclaurin series

∑
∞

n=0
 
f (n)(0)

n!
 xn = f (0) + f′(0)x +

f ″(0)
 2!

 x2 +
f′″(0)

3!
 x3 +

f (4)(0)
4!

 x4 + .  .  .

and determine the interval of convergence.

Solution Taking successive derivatives of f  yields

 f (x) = sin x   f (0) = sin 0 = 0

 f′(x) = cos x   f′(0) = cos 0 = 1

 f ″(x) = −sin x   f ″(0) = −sin 0 = 0

 f ″′(x) = −cos x  f ″′(0) = −cos 0 = −1

f (4)(x) = sin x  f (4)(0) = sin 0 = 0

f (5)(x) = cos x  f (5)(0) = cos 0 = 1

and so on. The pattern repeats after the third derivative. So, the power series is as 
follows.

By the Ratio Test, you can conclude that this series converges for all x. 

COLIN MACLAURIN (1698–1746)

The development of power 
series to represent functions 
is credited to the combined 
work of many seventeenth- 
and eighteenth-century 
mathematicians. Gregory, 
Newton, John and James 
Bernoulli, Leibniz, Euler, 
Lagrange, Wallis, and Fourier 
all contributed to this work. 
However, the two names that 
are most commonly associated 
with power series are Brook 
Taylor and Colin Maclaurin.  
See LarsonCalculus.com  
to read more of this biography.

 ∑
∞

n=0
 
f (n)(0)

n!
 xn = f (0) + f′(0)x +

f ″(0)
2!

 x2 +
f ″′(0)

3!
 x3 +

f (4)(0)
4!

 x4 + .  .  .

 = 0 + (1)x +
0
2!

 x2 +
(−1)

3!
 x3 +

0
4!

 x4 +
1
5!

 x5 +
0
6!

 x6 +
(−1)

7!
 x7 + .  .  .

 = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  .

 = ∑
∞

n=0

(−1)nx2n+1

(2n + 1)!

Bettmann/Corbis
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670 Chapter 9 Infinite Series

Notice that in Example 1, you cannot conclude that the power series converges 
to sin x for all x. You can simply conclude that the power series converges to some 
 function, but you are not sure what function it is. This is a subtle, but important, point 
in dealing with Taylor or Maclaurin series. To persuade yourself that the series

f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  . +
f (n)(c)

n!
(x − c)n + .  .  .

might converge to a function other than f, remember that the derivatives are being 
evaluated at a single point. It can easily happen that another function will agree with 
the values of f (n)(x) when x = c and disagree at other x-values. For instance, the power 
series (centered at 0) for the function f  shown in Figure 9.25 is the same series as in 
Example 1. You know that the series converges for all x, and yet it obviously cannot 
converge to both f (x) and sin x for all x.

Let f  have derivatives of all orders in an open interval I centered at c. The Taylor 
series for f  may fail to converge for some x in I. Even when it is convergent, it may fail 
to have f (x) as its sum. Nevertheless, Theorem 9.19 tells us that for each n,

f (x) = f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  . +
f (n)(c)

n!
(x − c)n + Rn(x)

where

Rn(x) =
f (n+1)(z)
(n + 1)! (x − c)n+1.

Note that in this remainder formula, the particular value of z that makes the remainder 
formula true depends on the values of x and n. If Rn→0, then the next theorem tells us 
that the Taylor series for f  actually converges to f (x) for all x in I.

THEOREM 9.23 Convergence of Taylor Series

If lim
n→∞

 Rn = 0 for all x in the interval I, then the Taylor series for f  converges

and equals f (x),

f (x) = ∑
∞

n=0
 
f (n)(c)

n!
(x − c)n.

Proof For a Taylor series, the nth partial sum coincides with the nth Taylor 
polynomial. That is, Sn(x) = Pn(x). Moreover, because

Pn(x) = f (x) − Rn(x)

it follows that

 lim
n→∞

 Sn(x) = lim
n→∞

 Pn(x)

 = lim
n→∞

 [ f (x) − Rn(x)]

 = f (x) − lim
n→∞

 Rn(x).

So, for a given x, the Taylor series (the sequence of partial sums) converges to f (x) if 
and only if Rn(x)→0 as n→∞. 

Stated another way, Theorem 9.23 says that a power series formed with Taylor  
coefficients 

an =
f (n)(c)

n!

converges to the function from which it was derived at precisely those values for which 
the remainder approaches 0 as n→∞.

ππ
2

f (x) = sin x, ⎪ ⎪≤x

1, x >

−1, x < −
2

x

y

−

1

−1

2
π

2
π

π

π
2

Figure 9.25
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In Example 1, you derived the power series from the sine function and you also 
concluded that the series converges to some function on the entire real number line. In 
Example 2, you will see that the series actually converges to sin x. The key observation 
is that although the value of z is not known, it is possible to obtain an upper bound for

∣ f (n+1)(z)∣.

 A Convergent Maclaurin Series

Show that the Maclaurin series for

f (x) = sin x

converges to sin x for all x.

Solution Using the result in Example 1, you need to show that

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  . +

(−1)n x2n+1

(2n + 1)! + .  .  .

is true for all x. Because

f (n+1)(x) = ±sin x

or

f (n+1)(x) = ±cos x

you know that

∣ f (n+1)(z)∣ ≤ 1

for every real number z. Therefore, for any fixed x, you can apply Taylor’s Theorem 
(Theorem 9.19) to conclude that

0 ≤ ∣Rn(x)∣ = ∣f (n+1)(z)
(n + 1)!x

n+1∣ ≤ ∣x∣n+1

(n + 1)!.

From the discussion in Section 9.1 regarding the relative rates of convergence of 
 exponential and factorial sequences, it follows that for a fixed x,

lim
n→∞

 
∣x∣n+1

(n + 1)! = 0.

Finally, by the Squeeze Theorem, it follows that for all x, Rn(x)→0 as n→∞. So, by 
Theorem 9.23, the Maclaurin series for sin x converges to sin x for all x. 

Figure 9.26 visually illustrates the convergence of the Maclaurin series for sin x by 
comparing the graphs of the Maclaurin polynomials P1, P3, P5, and P7 with the graph 
of the sine function. Notice that as the degree of the polynomial increases, its graph 
more closely resembles that of the sine function.

x

y = sin x

1
2
3
4

−2
−3

−

−4

y

P7(x) = x −      +      −x3

3!
x5

5!
x7

7!

πππ 2
x

1
2
3
4

−2
−3
−4

y

P5(x) = x −      +  x3

3!
x5

5!

ππ 2

y = sin x

x

y = sin x

P3(x) = x − x
3

3!

−

1
2
3
4

−2
−3
−4

y

ππ 2
x

y = sin x

P1(x) = x

1
2
3
4

−2
−3
−4

πππ 2−

y

As n increases, the graph of Pn more closely resembles the sine function.
Figure 9.26
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The guidelines for finding a Taylor series for f  at c are summarized below.

GUIDELINES FOR FINDING A TAYLOR SERIES

1.  Differentiate f  with respect to x several times and evaluate each derivative 
at c.

f (c), f′(c), f ″(c), f ′″(c), .  .  . , f (n)(c), .  .  .

 Try to recognize a pattern in these numbers.

2.  Use the sequence developed in the first step to form the Taylor coefficients 
an = f (n)(c)�n! and determine the interval of convergence for the resulting 
power series

f (c) + f′(c)(x − c) + f ″(c)
2!

(x − c)2 + .  .  . +
f (n)(c)

n!
(x − c)n + .  .  . .

3.  Within this interval of convergence, determine whether the series converges 
to f (x).

The direct determination of Taylor or Maclaurin coefficients using successive 
 differentiation can be difficult, and the next example illustrates a shortcut for finding 
the coefficients indirectly—using the coefficients of a known Taylor or Maclaurin 
series.

 Maclaurin Series for a Composite Function

Find the Maclaurin series for

f (x) = sin x2.

Solution To find the coefficients for this Maclaurin series directly, you must 
 calculate successive derivatives of f (x) = sin x2. By calculating just the first two,

f′(x) = 2x cos x2

and

f ″(x) = −4x2 sin x2 + 2 cos x2

you can see that this task would be quite cumbersome. Fortunately, there is an 
 alternative. First, consider the Maclaurin series for sin x found in Example 1.

 g(x) = sin x

 = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  .

Now, because sin x2 = g(x2), you can substitute x2 for x in the series for sin x to obtain

 sin x2 = g(x2)

 = x2 −
x6

3!
+

x10

5!
−

x14

7!
+ .  .  . . 

Be sure to understand the point illustrated in Example 3. Because direct 
 computation of Taylor or Maclaurin coefficients can be tedious, the most practical way 
to find a Taylor or Maclaurin series is to develop power series for a basic list of elementary 
functions. From this list, you can determine power series for other  functions by the 
operations of addition, subtraction, multiplication, division, differentiation, integration, 
and composition with known power series.

REMARK When you 
have difficulty recognizing a 
pattern, remember that you can 
use Theorem 9.22 to find the 
Taylor series. Also, you can 
try using the coefficients of a 
known Taylor or Maclaurin 
series, as shown in Example 3.
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9.10 Taylor and Maclaurin Series 673

Binomial Series
Before presenting the basic list for elementary functions, you will develop one more 
series—for a function of the form f (x) = (1 + x)k. This produces the binomial series.

 Binomial Series

Find the Maclaurin series for f (x) = (1 + x)k and determine its radius of convergence. 
Assume that k is not a positive integer and k ≠ 0.

Solution By successive differentiation, you have

 f (x) = (1 + x)k   f (0) = 1

 f′(x) = k(1 + x)k−1   f′(0) = k

 f ″(x) = k(k − 1)(1 + x)k−2   f ″(0) = k(k − 1)
 f′″(x) = k(k − 1)(k − 2)(1 + x)k−3   f ″′(0) = k(k − 1)(k − 2)

 ⋮   ⋮
 f (n)(x) = k .  .  . (k − n + 1)(1 + x)k−n  f (n)(0) = k(k − 1) .  .  . (k − n + 1)

which produces the series

1 + kx +
k(k − 1)x2

2
+ .  .  . +

k(k − 1) .  .  . (k − n + 1)xn

n!
+ .  .  ..

By the Ratio Test, you can conclude that the radius of  convergence is R = 1. So, the 
series converges to some function in the interval (−1, 1). 

Note that Example 4 shows that the Taylor series for (1 + x)k converges to some 
function in the interval (−1, 1). However, the example does not show that the series 
actually converges to (1 + x)k. To do this, you could show that the remainder Rn(x)  
converges to 0, as illustrated in Example 2. You now have enough information to find 
a binomial series for a function, as shown in the next example.

 Finding a Binomial Series

Find the power series for

f (x) = 3√1 + x.

Solution Using the binomial series

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+ .  .  .

let k = 1
3 and write

(1 + x)1�3 = 1 +
x
3
−

2x2

322!
+

2 ∙ 5x3

333!
−

2 ∙ 5 ∙ 8x4

344!
+ .  .  . . 

TECHNOLOGY Use a graphing utility to confirm the result in Example 5. 
When you graph the functions

f (x) = (1 + x)1�3

and

P4(x) = 1 +
x
3
−

x2

9
+

5x3

81
−

10x4

243

in the same viewing window, you should obtain the result shown in Figure 9.27.

2−2

−1

2

P4

f(x) =     1 + x3

Figure 9.27
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Deriving Taylor Series from a Basic List
The list below provides the power series for several elementary functions with the 
corresponding intervals of convergence.

Note that the binomial series is valid for noninteger values of k. Also, when k is a  
positive integer, the binomial series reduces to a simple binomial expansion.

 Deriving a Power Series from a Basic List

Find the power series for

f (x) = cos √x.

Solution Using the power series

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  .

you can replace x by

√x

to obtain the series

cos√x = 1 −
x
2!

+
x2

4!
−

x3

6!
+

x4

8!
− .  .  . .

This series converges for all x in the domain of cos√x—that is, for x ≥ 0. 

POWER SERIES FOR ELEMENTARY FUNCTIONS

 Interval of
Function Convergence

1
x
= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 − .  .  . + (−1)n(x − 1)n + .  .  . 0 < x < 2

1
1 + x

= 1 − x + x2 − x3 + x4 − x5 + .  .  . + (−1)n xn + .  .  . −1 < x < 1

ln x = (x − 1) − (x − 1)2
2

+
(x − 1)3

3
−

(x − 1)4
4

+ .  .  . +
(−1)n−1(x − 1)n

n
+ .  .  . 0 < x ≤ 2

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ .  .  . +

xn

n!
+ .  .  . −∞ < x < ∞

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− .  .  . +

(−1)nx2n+1

(2n + 1)! + .  .  . −∞ < x < ∞

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  . +

(−1)n x2n

(2n)! + .  .  . −∞ < x < ∞

arctan x = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− .  .  . +

(−1)n x2n+1

2n + 1
+ .  .  . −1 ≤ x ≤ 1

arcsin x = x +
x3

2 ∙ 3
+

1 ∙ 3x5

2 ∙ 4 ∙ 5
+

1 ∙ 3 ∙ 5x7

2 ∙ 4 ∙ 6 ∙ 7
+ .  .  . +

(2n)!x2n+1

(2nn!)2(2n + 1) +
.  .  . −1 ≤ x ≤ 1

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+ .  .  . +

k(k − 1) .  .  . (k − n + 1)xn

n!
+ .  .  . −1 < x < 1∗

* The convergence at x = ±1 depends on the value of k.
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Power series can be multiplied and divided like polynomials. After finding the first 
few terms of the product (or quotient), you may be able to recognize a pattern.

 Multiplication of Power Series

Find the first three nonzero terms in the Maclaurin series ex arctan x.

Solution Using the Maclaurin series for ex and arctan x in the table, you have

ex arctan x = (1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ .  .  .)(x −

x3

3
+

x5

5
− .  .  .).

Multiply these expressions and collect like terms as you would in multiplying  
polynomials.

 1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 + .  .  .

 x  −
1
3

x3  +   
1
5

x5 − .  .  .

 x +  x2 +
1
2

x3 +  
1
6

x4 +
1
24

x5 + .  .  .

 −
1
3

x3 −  
1
3

x4 −  
1
6

x5 − .  .  .

 +  
1
5

x5 + .  .  .

 x +  x2 +
1
6

x3 −  
1
6

x4 +  
3
40

x5 + .  .  .

So, ex arctan x = x + x2 + 1
6 x3 + .  .  . .

 Division of Power Series

Find the first three nonzero terms in the Maclaurin series tan x.

Solution Using the Maclaurin series for sin x and cos x in the table, you have

tan x =
sin x
cos x

=
x −

x3

3!
+

x5

5!
− .  .  .

1 −
x2

2!
+

x4

4!
− .  .  .

.

Divide using long division.

 x +
1
3

x3 +  
2
15

x5 + .  .  .

1 −
1
2

x2 +
1
24

x4 − .  .  .) x −
1
6

x3 +
1

120
x5 − .  .  .

 x −
1
2

x3 +  
1
24

x5 − .  .  .

 
1
3

x3 −  
1
30

x5 + .  .  .

 
1
3

x3 −  
1
6

x5 + .  .  .

 
2
15

x5 + .  .  .

So, tan x = x + 1
3 x3 + 2

15 x5 + .  .  . . 
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 A Power Series for sin2 x

Find the power series for

f (x) = sin2 x.

Solution Consider rewriting sin2 x as

sin2 x =
1 − cos 2x

2
=

1
2
−

1
2

 cos 2x.

Now, use the series for cos x.

 cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  .

 cos 2x = 1 −
22

2!
x2 +

24

4!
x4 −

26

6!
x6 +

28

8!
x8 − .  .  .

 −
1
2

 cos 2x = −
1
2
+

2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  .

 
1
2
−

1
2

 cos 2x =
1
2
−

1
2
+

2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  .

So, the series for f (x) = sin2 x is

sin2 x =
2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  . .

This series converges for −∞ < x < ∞. 

As mentioned in the preceding section, power series can be used to obtain tables 
of values of transcendental functions. They are also useful for estimating the values of  
definite integrals for which antiderivatives cannot be found. The next example  
demonstrates this use.

 Power Series Approximation of a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Use a power series to approximate

∫1

0
 e−x2 dx

with an error of less than 0.01.

Solution Replacing x with −x2 in the series for ex produces the following.

 e−x2 = 1 − x2 +
x4

2!
−

x6

3!
+

x8

4!
− .  .  .

 ∫1

0
 e−x2

 dx = [x −
x3

3
+

x5

5 ∙ 2!
−

x7

7 ∙ 3!
+

x9

9 ∙ 4!
− .  .  .]

1

0

 = 1 −
1
3
+

1
10

−
1
42

+
1

216
− .  .  .

Summing the first four terms, you have

∫1

0
 e−x2 dx ≈ 0.74

which, by the Alternating Series Test, has an error of less than 1
216 ≈ 0.005. 
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9.10 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Convergence of a Taylor Series Explain how 

to determine whether a Taylor series for a function f
converges to f.

2.  Binomial Series The binomial series is used to 
represent a function of what form? What is the radius of 
convergence for the binomial series?

3.  Power Series How can you multiply and divide 
power series? 

4.  Finding a Taylor Series Explain how to use 

 the series g(x) = ex = ∑
∞

n=0
 
xn

n!
 to find the series for

 f (x) = x2e−3x. Do not find the series.

 Finding a Taylor Series In Exercises 5–16, 
use the definition of Taylor series to find the 
Taylor series, centered at c, for the function.

 5. f (x) = e2x, c = 0  6. f (x) = e−4x, c = 0

7. f (x) = cos x, c =
π
4

  8. f (x) = sin x, c =
π
4

9. f (x) = 1
x
, c = 1 10. f (x) = 1

1 − x
, c = 2

11. f (x) = ln x, c = 1 12. f (x) = ex, c = 1

13. f (x) = sin 3x, c = 0 14. f (x) = ln(x2 + 1), c = 0

15. f (x) = sec x, c = 0 (first three nonzero terms)

16. f (x) = tan x, c = 0 (first three nonzero terms)

 Proof In Exercises 17–20, prove that the 
Maclaurin series for the  function converges to the 
function for all x.

17. f (x) = cos x 18. f (x) = e−2x

19. f (x) = sinh x 20. f (x) = cosh x

 Using a Binomial Series In Exercises 21–26, 
use the binomial series to find the Maclaurin series 
for the function.

21. f (x) = 1

√1 − x
 22. f (x) = 1

(1 + x)4

23. f (x) = 1

√1 − x2
 24. f (x) = 1

(2 + x)3

25. f (x) = 4√1 + x 26. f (x) = √1 + x3

 Finding a Maclaurin Series In Exercises 
27–40, find the Maclaurin series for the function. 
Use the table of power series for elementary 
functions on page 674.

27. f (x) = ex2�2 28. g(x) = e−x�3

29. f (x) = ln(1 + x) 30. f (x) = ln(1 + x3)

31. f (x) = cos 4x 32. f (x) = sin πx

33. g(x) = arctan 5x 34. f (x) = arcsin πx

35. f (x) = cos x3�2 36. g(x) = 2 sin x3

37. f (x) = 1
2(ex − e−x) = sinh x

38. f (x) = ex + e−x = 2 cosh x

39. f (x) = cos2 x

40. f (x) = sinh−1 x = ln(x + √x2 + 1)

(Hint: Integrate the series for 
1

√x2 + 1
.)

Verifying a Formula In Exercises 41 and 42, use a power 
series and the fact that i2 = − 1 to verify the formula.

41. g(x) = 1
2i
(eix − e−ix) = sin x

42. g(x) = 1
2
(eix + e−ix) = cos x

 Finding a Maclaurin Series In Exercises 
43–46, find the Maclaurin series for the function.

43. f (x) = x sin x

44. h(x) = x cos x

45. g(x) = {sin x
x

,

1,

    x ≠ 0

    x = 0

46. f (x) = {arcsin x
x

,

1,

    x ≠ 0

    x = 0

 Finding Terms of a Maclaurin Series In 
Exercises 47–52, find the first four nonzero 
terms of the Maclaurin series for the function by 
multiplying or dividing the appropriate power 
series. Use the table of power series for  elementary 
functions on page 674. Use a graphing utility 
to graph the function and its corresponding 
polynomial approximation.

47. f (x) = ex sin x 48. g(x) = ex cos x

49. h(x) = (cos x) ln(1 + x) 50. f (x) = ex ln(1 + x)

51. g(x) = sin x
1 + x

52. f (x) = ex

1 + x

Finding a Maclaurin Series In Exercises 53 and 54, find 
a Maclaurin series for f (x).

53. f (x) = ∫x

0
 (e−t2 − 1) dt

54. f (x) = ∫x

0
 √1 + t3 dt
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Verifying a Sum In Exercises 55–58, verify the sum. Then 
use a graphing utility to approximate the sum with an error of 
less than 0.0001.

55. ∑
∞

n=1
 (−1)n+1 

1
n
= ln 2

56. ∑
∞

n=0
 (−1)n [ 1

(2n + 1)!] = sin 1

57. ∑
∞

n=0
 
2n

n!
= e2

58. ∑
∞

n=1
 (−1)n−1( 1

n!) =
e − 1

e

Finding a Limit In Exercises 59–62, use the series  
representation of the function f  to find lim

x→0
  f (x), if it exists.

59. f (x) = 1 − cos x
x

 60. f (x) = sin x
x

61. f (x) = ex − 1
x

62. f (x) = ln(x + 1)
x

 Approximating an Integral In Exercises 
63–70, use a power series to approximate the value 
of the definite integral with an error of less than 
0.0001. (In Exercises 65 and 67, assume that the 
integrand is defined as 1 when x = 0.)

63. ∫1

0
 e−x3 dx 64. ∫1�4

0
x ln(x + 1) dx

65. ∫1

0
 
sin x

x
 dx 66. ∫1

0
 cos x2 dx

67. ∫1�2

0
 
arctan x

x
 dx

68. ∫1�2

0
arctan x2 dx

69. ∫0.3

0.1
√1 + x3 dx

70. ∫0.2

0
√1 + x2 dx

Area In Exercises 71 and 72, use a power series to  
approximate the area of the region with an error of less than 
0.0001. Use a graphing utility to verify the result.

71. ∫π�2

0
 √x cos x dx 72. ∫1

0.5
cos√x dx

 

5π
8

x

y

1
4

1
2

3
4

3π
8

π
8

π
4

  

0.5 1 1.5

0.5

1.0

1.5

x

y

Probability In Exercises 73 and 74, approximate the 
probability with an error of less than 0.0001, where the  
probability is given by

P(a < x < b) = 1

√2π
 ∫b

a
 e−x2�2 dx.

a b

f(x) =
2π
1 e−x

2/2

x

y

73. P(0 < x < 1) 74. P(1 < x < 2)

EXPLORING CONCEPTS
75.  Comparing Methods Describe three ways to find 

the Maclaurin series for cos2 x. Show that each method 
produces the same first three terms.

76.  Maclaurin Series Explain how to use the power 
series for f (x) = arctan x to find the Maclaurin series for

 g(x) = 1
1 + x2.

   What is another way to find the Maclaurin series for g
using a power series for an elementary function?

77.  Finding a Function Which function has the 
Maclaurin series

 ∑
∞

n=0
 
(−1)n(x + 3)2n+1

22 (2n + 1)!  ?

 Explain your reasoning.

 78.  HOW DO YOU SEE IT? Identify the 
function represented by each power series and 
match the function with its graph. [The graphs 
are labeled (i) and (ii).]

(i) (ii)

−1−2−3 1 2 3

1

3

4

5

x

y  

−1 1
−1

−2

1

2

x

y

(a) ∑
∞

n=0
 
(−1)n x4n+2

(2n + 1)!

(b) ∑
∞

n=0
 
(−1)n xn

n!

78.  
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79.  Projectile Motion A projectile fired from the ground 
follows the trajectory given by

 y = (tan θ +
g

kv0 cos θ ) x +
g
k2 ln(1 −

kx
v0 cos θ)

  where v0 is the initial speed, θ is the angle of projection, g is 
the acceleration due to gravity, and k is the drag factor caused 
by air resistance. Using the power series representation

 ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ .  .  . , −1 < x < 1

 verify that the trajectory can be rewritten as

 y = (tan θ)x −
gx2

2v 2
0  cos2 θ −

kgx3

3v 3
0  cos3 θ −

k2 gx4

4v 4
0  cos4 θ − .  .  . .

81. Investigation Consider the function f  defined by

 f (x) = {e−1�x2,
0,

    x ≠ 0
    x = 0.

 (a) Sketch a graph of the function.

 (b)  Use the alternative form of the definition of the derivative 
(Section 2.1) and L’Hôpital’s Rule to show that f ′(0) = 0. 
[By continuing this process, it can be shown that f (n)(0) = 0 
for n > 1.]

 (c)  Using the result in part (b), find the Maclaurin series for f. 
Does the series converge to f ?

82. Investigation

 (a) Find the power series centered at 0 for the function

  f (x) = ln(x2 + 1)
x2 .

 (b)  Use a graphing utility to graph f  and the eighth-degree 
Taylor polynomial P8(x) for f.

 (c) Use a graphing utility to complete the table, where

  F(x) = ∫x

0
 
ln(t2 + 1)

t2
 dt and G(x) = ∫x

0
P8(t) dt.

  x 0.25 0.50 0.75 1.00 1.50 2.00

F(x)

G(x)

 (d)  Describe the relationship between the graphs of f  and P8 
and the results given in the table in part (c).

83. Proof Prove that lim
n→∞

 
xn

n!
= 0 for any real x.

84. Finding a Maclaurin Series Find the Maclaurin series for

 f (x) = ln 
1 + x
1 − x

  and determine its radius of convergence. Use the first four 
terms of the series to approximate ln 3.

Evaluating a Binomial Coefficient In Exercises 85–88, 
evaluate the binomial coefficient using the formula

(kn) =
k(k − 1)(k − 2)(k − 3) .  .  . (k − n + 1)

n!

where k is a real number, n is a positive integer, and (k0) = 1.

85. (63) 86. (0.25
2 )

87. (−0.8
5 ) 88. (−5

6 )
89.  Writing a Power Series Write the power series for 

(1 + x)k in terms of binomial coefficients.

90.  Proof Prove that the Taylor series for ex, centered at x = a, 
is given by

 ea[1 + (x − a) + (x − a)2
2!

+ .  .  .].
91.  Proof Prove that e is irrational. [Hint: Assume that e = p�q 

is rational ( p and q are integers) and consider

 e = 1 + 1 +
1
2!

+ .  .  . +
1
n!

+ .  .  . .]
92.  Using Fibonacci Numbers Show that the Maclaurin 

series for the function

 g(x) = x
1 − x − x2

 is

 ∑
∞

n=1
 Fnxn

  where Fn is the nth Fibonacci number with F1 = F2 = 1 and 
Fn = Fn−2 + Fn−1, for n ≥ 3.  (Hint: Write

 
x

1 − x − x2 = a0 + a1x + a2x2 + .  .  .

 and multiply each side of this equation by 1 − x − x2.)

PUTNAM EXAM CHALLENGE
93.  Assume that ∣ f (x)∣ ≤ 1 and ∣ f ″(x)∣ ≤ 1 for all x on an 

interval of length at least 2. Show that ∣ f ′(x)∣ ≤ 2 on the 
interval.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

Use the result of Exercise 
79 to determine  
the series for the path 
of a projectile launched 
from ground level at an 
angle of θ = 60°, with an  
initial speed of v0 = 64 
feet per second and a  
drag factor of k = 1

16.

80. Projectile Motion

Brian McEntire/iStock/Getty Images Plus/Getty Images
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Writing the Terms of a Sequence In Exercises 1–4, write 
the first five terms of the sequence with the given nth term.

 1. an = 6n − 2  2. an =
5n−1

n!

 3. an = (−1
4)

n

  4. an =
2n

n + 5

Matching In Exercises 5–8, match the sequence with the 
given nth term with its graph. [The graphs are labeled (a), (b), 
(c), and (d).]

(a) 

n
2

2

1

4

4

3

6

6

5

8 10

an  (b) 

n
2

2

4

4

6

8 10
−2

−4

an

(c) 

n
2

2

1

4

4

3

86 10
−1

an  (d) 

n
2

2

4

4

8

8

6

6

10

10

an

 5. an = 4 +
2
n

  6. an = 4 −
n
2

 7. an = 10(0.3)n−1  8. an = 6(−2
3)n−1

Finding the Limit of a Sequence In Exercises 9 and 10, use 
a graphing utility to graph the first 10 terms of the sequence with 
the given nth term. Use the graph to make an inference about the  
convergence or divergence of the sequence. Verify your inference 
analytically and, if the sequence converges, find its limit.

 9. an =
5n + 2

n
 10. an = cos 

nπ
3

Determining Convergence or Divergence In Exercises 
11–18, determine the convergence or divergence of the 
sequence with the given nth term. If the sequence converges, 
find its limit.

11. an =
1

√n
 12. an =

n
n2 + 1

13. an = (25)
n

+ 5 14. an =
2n3 − 1
3n + 4

15. an =
(4n)!

(4n − 1)! 16. an =
n

ln n

17. an =
e2n

ln n
 18. an =

sin √n

√n

Finding the nth Term of a Sequence In Exercises 
19–22, write an expression for the nth term of the sequence 
and then determine whether the sequence you have chosen 
converges or diverges. (There is more than one correct answer.)

19. 3, 8, 13, 18, 23, .  .  . 20. −5, −2, 3, 10, 19, .  .  .

21. 
1
2

, 
1
3

, 
1
7

, 
1
25

, 
1

121
, .  .  . 22. 

1
2

, 
2
5

, 
3
10

, 
4
17

, .  .  .

Monotonic and Bounded Sequences In Exercises 23 
and 24, determine whether the sequence with the given nth 
term is monotonic and whether it is bounded. Use a graphing 
utility to confirm your results.

23. an = 3 −
1
2n

 24. an = (43)
n

25.  Compound Interest A deposit of $8000 is made in an 
account that earns 5% interest compounded quarterly. The  
balance in the account after n quarters is

 An = 8000(1.0125)n, n = 1, 2, 3, .  .  . .

 (a) Compute the first eight terms of the sequence {An}.
 (b)  Find the balance in the account after 10 years by 

 computing the 40th term of the sequence.

26.  Depreciation A company buys a machine for $175,000. 
During the next 5 years, the machine will depreciate at a rate 
of 30% per year. (That is, at the end of each year, the depreciated 
value will be 70% of what it was at the beginning of the year.)

 (a)  Write an expression for the value of the machine after 
n years.

 (b)  Compute the depreciated values of the machine for the 
first 5 years.

Finding Partial Sums In Exercises 27 and 28, find the 
sequence of partial sums S1, S2, S3, S4,  and S5.

27. 3 +
3
2
+ 1 +

3
4
+

3
5
+ .  .  .

28. −7 + 1 −
1
7
+

1
49

−
1

343
+ .  .  .

Numerical, Graphical, and Analytic Analysis In 
Exercises 29 and 30, (a) use a graphing utility to find the 
indicated partial sum Sn and complete the table, and (b) use a 
graphing utility to graph the first 10 terms of the sequence of 
partial sums.

29. ∑
∞

n=1
 (32)

n−1

 30. ∑
∞

n=1
 

1
n(n + 1)

n 5 10 15 20 25

Sn
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Finding the Sum of a Convergent Series In Exercises 
31–34, find the sum of the convergent series.

31. ∑
∞

n=0
 (25)

n

 32. ∑
∞

n=0
 
3n+2

7n

33. ∑
∞

n=0
 [(0.4)n + (0.9)n]

34. ∑
∞

n=0
 [(34)

n

−
1

(n + 1)(n + 2)]
Using a Geometric Series In Exercises 35 and 36,  
(a) write the repeating decimal as a  geometric series and  
(b) write the sum of the series as the ratio of two integers.

35. 0.09 36. 0.64

Using a Geometric Series or the nth-Term Test In 
Exercises 37–40, use a geometric series or the nth-Term Test to 
determine the convergence or divergence of the series.

37. ∑
∞

n=0
 (1.67)n 38. ∑

∞

n=0
 9−n

39. ∑
∞

n=0
 
2n + 1
3n + 2

 40. ∑
∞

n=1
 
5n! + 6
n! + 1

41.  Marketing A manufacturer producing a new product 
estimates the annual sales to be 9600 units. Each year, 8% 
of the units that have been sold will become inoperative. So, 
9600 units will be in use after 1 year, [9600 + 0.92(9600)] 
units will be in use after 2 years, and so on. How many units 
will be in use after n years?

42.  Distance A ball is dropped from a height of 8 meters. Each 
time it drops h meters, it rebounds 0.7h meters. Find the total 
distance traveled by the ball.

Using the Integral Test or a p-Series In Exercises 
43–48, use the Integral Test or a p-series to determine the  
convergence or divergence of the series.

43. ∑
∞

n=1
 

2
6n + 1

 44. ∑
∞

n=1
 

1
4√n3

45. ∑
∞

n=1
 

1
n5�2 46. ∑

∞

n=1
 
1
5n

47. ∑
∞

n=1
 ( 1
n2 −

1
n) 48. ∑

∞

n=1
 
ln n
n4

Using the Direct Comparison Test or the Limit 
Comparison Test In Exercises 49–54, use the Direct 
Comparison Test or the Limit Comparison Test to determine 
the convergence or divergence of the series.

49. ∑
∞

n=2
 

1
3√n − 1

 50. ∑
∞

n=0
 

7n

8n + 5

51. ∑
∞

n=1
 

1

√n3 + 2n
 52. ∑

∞

n=1
 
n + 1

n(n + 2)

53. ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

2 ∙ 4 ∙ 6 .  .  . (2n)

54. ∑
∞

n=1
 

1
3n − 5

Using the Alternating Series Test In Exercises 55–60, 
use the Alternating Series Test, if applicable, to determine the 
convergence or divergence of the series.

55. ∑
∞

n=1
 
(−1)n
n5  56. ∑

∞

n=1
 
(−1)n(n + 1)

n2 + 1

57. ∑
∞

n=2
 
(−1)nn
n2 − 3

 58. ∑
∞

n=4
 
(−1)nn
n − 3

 

59. ∑
∞

n=1
 
(−1)n+1√n

4√n + 2
 60. ∑

∞

n=2
 
(−1)n ln n3

n

Finding the Number of Terms In Exercises 61 and 62, 
use Theorem 9.15 to determine the number of terms required 
to approximate the sum of the series with an error of less than 
0.0001.

61. ∑
∞

n=1
 
(−1)n
n4  62. ∑

∞

n=1
 
(−1)n+1

3n3 − 2

Using the Ratio Test or the Root Test In Exercises 
63–68, use the Ratio Test or the Root Test to determine the  
convergence or divergence of the series.

63. ∑
∞

n=1
 (3n − 1

2n + 5)
n

 64. ∑
∞

n=1
 ( 4n

7n − 1)
n

65. ∑
∞

n=1
 
2n

n3 66. ∑
∞

n=0
 

7n

(2n + 3)n

67. ∑
∞

n=1
 
n
en2 68. ∑

∞

n=1
 
n!
e2n

Numerical, Graphical, and Analytic Analysis In 
Exercises 69 and 70, (a) verify that the series converges,  
(b) use a graphing utility to find the indicated partial sum Sn 
and complete the table, (c) use a graphing utility to graph the 
first 10 terms of the sequence of partial sums, and (d) use the 
table to estimate the sum of the series.

69. ∑
∞

n=1
 n(35)

n

 70. ∑
∞

n=1
 
(−1)n−1n
n3 + 5

Review In Exercises 71–76, determine the convergence or 
divergence of the series using any appropriate test from this 
chapter. Identify the test used.

71. ∑
∞

n=1
 

4
n2π 72. ∑

∞

n=0
 
7n+1

8n

73. ∑
∞

n=1
 

5n3 + 6
7n3 + 2n

 74. ∑
∞

n=1
e−n�3

75. ∑
∞

n=1
 

10n

4 + 9n
 76. ∑

∞

n=1
 
(n!)n
3n

Finding a Maclaurin Polynomial In Exercises 77 and 78, 
find the nth Maclaurin polynomial for the function.

77. f (x) = e−2x, n = 3

78. f (x) = cos 3x, n = 4

n 5 10 15 20 25

Sn
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Finding a Taylor Polynomial  In Exercises 79 and 80, find 
the third Taylor polynomial for the function, centered at c.

79.  f (x) = 1
x3,  c = 1

80.  f (x) = tan x,  c = −
π
4

Finding a Degree  In Exercises 81 and 82, determine the 
degree of the Maclaurin polynomial required for the error in 
the approximation of the function at the indicated value of x to 
be less than 0.001.

81.  f (x) = cos x,  approximate f (0.75)
82.  f (x) = ex,  approximate f (−0.25)

Finding the Interval of Convergence  In Exercises 
83–88, find the interval of convergence of the power series. 
(Be sure to include a check for convergence at the endpoints 
of the interval.)

83.  ∑
∞

n=0
 ( x

10)
n

	 84.  ∑
∞

n=0
 (5x)n

85.  ∑
∞

n=0
 
(−1)n(x − 2)n

(n + 1)2 	 86.  ∑
∞

n=1
 
4n(x − 1)n

n

87.  ∑
∞

n=0
 n!(x − 2)n	 88.  ∑

∞

n=0
 
(x − 3)n

3n

Finding Intervals of Convergence  In Exercises 89 and 
90, find the intervals of convergence of (a) f (x), (b) f ′(x),  
(c) f ″(x), and (d) ∫ f (x) dx. (Be sure to include a check for 
convergence at the endpoints of the intervals.)

89.  f (x) = ∑
∞

n=0
 (x5)

n

90.  f (x) = ∑
∞

n=1
 
(−1)n+1(x − 4)n

n

Differential Equation  In Exercises 91 and 92, show that 
the function represented by the power series is a solution of the 
differential equation.

91.  y = ∑
∞

n=0
 (−1)n x2n

4n(n!)2,  x2y″ + xy′ + x2y = 0

92.  y = ∑
∞

n=0
 
(−3)n x2n

2nn!
,  y″ + 3xy′ + 3y = 0

Finding a Geometric Power Series  In Exercises 93 and 
94, find a geometric power series for the function, centered at 0.

93.  g(x) = 2
3 − x

	 94.  h(x) = 3
2 + x

Finding a Power Series  In Exercises 95 and 96, find a 
power series for the function, centered at c, and determine the 
interval of convergence.

95.  f (x) = 6
4 − x

,  c = 1

96.  f (x) = 6x
x2 + 4x − 5

,  c = 0

Finding the Sum of a Series  In Exercises 97–102, 
find the sum of the convergent series by using a well-known 
function. Identify the function and explain how you obtained 
the sum.

  97.  ∑
∞

n=1
 (−1)n+1 

1
4nn

	   98.  ∑
∞

n=1
 (−1)n+1 

1
5nn

  99.  ∑
∞

n=0
 

1
2n n!

	 100.  ∑
∞

n=0
 

2n

3n n!

101.  ∑
∞

n=0
 (−1)n 22n

32n (2n)!

102.  ∑
∞

n=0
 (−1)n 1

32n+1(2n + 1)!

Finding a Taylor Series  In Exercises 103–110, use the  
definition of Taylor series to find the Taylor series, centered  
at c, for the function.

103.  f (x) = sin x,  c =
3π
4

	 104.  f (x) = cos x,  c = −
π
4

105.  f (x) = 3x,  c = 0

106.  f (x) = csc x,  c =
π
2

  (first three nonzero terms)

107.  f (x) = 1
x
,  c = −1

108.  f (x) = √x,  c = 4

109.  g(x) = 5√1 + x,  c = 0

110.  h(x) = 1
(1 + x)3,  c = 0

111. � Forming Maclaurin Series  Determine the first four 
terms of the Maclaurin series for e2x

	   (a) � by using the definition of Maclaurin series. 

	   (b)  by replacing x by 2x in the series for ex.

	   (c) � by multiplying the series for ex by itself, because 
e2x = ex ∙ ex.

112. � Forming Maclaurin Series  Determine the first four 
terms of the Maclaurin series for sin 2x

	   (a) � by using the definition of Maclaurin series.

	   (b)  by replacing x by 2x in the series for sin 2x.

	   (c) � by multiplying 2 by the series for sin x by the series for 
cos x, because sin 2x = 2 sin x cos x.

Finding a Maclaurin Series  In Exercises 113–116, find 
the Maclaurin series for the function. Use the table of power 
series for elementary functions on page 674.

113.  f (x) = e6x	 114.  f (x) = ln(x − 1)
115.  f (x) = sin 5x	 116.  f (x) = cos 3x

Approximating an Integral  In Exercises 117 and 118, use 
a power series to approximate the value of the definite integral 
with an error of less than 0.01.

117.  ∫0.5

0
 cos x3 dx	 118.  ∫1

0
 e−x4

 dx
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 P.S. Problem Solving 683

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Cantor Set The Cantor set (Georg Cantor, 1845–1918) is 
a subset of the unit interval [0, 1]. To construct the Cantor set,

  first remove the middle third (1
3, 23) of the interval, leaving two 

line segments. For the second step, remove the middle third of 
each of the two remaining  segments, leaving four line segments. 
Continue this procedure indefinitely, as shown in the figure. 
The Cantor set consists of all numbers in the unit interval [0, 1]
that still remain.

0 1

0 1
3

12
3

0 11
9

2
9

1
3

2
3

7
9

8
9

(a)  Find the total length of all the line segments that are 
removed.

(b) Write down three numbers that are in the Cantor set.

(c)  Let Cn denote the total length of the remaining line  
segments after n steps. Find lim

n→∞
 Cn.

2. Using Sequences

(a)  Given that lim
n→∞

 a2n = L and lim
n→∞

 a2n+1 = L, show that

  {an} is convergent and lim
n→∞

 an = L.

(b) Let a1 = 1 and an+1 = 1 +
1

1 + an
. Write out the first 

   eight terms of {an}. Use part (a) to show that lim
n→∞

 an = √2.

This gives the continued fraction expansion

√2 = 1 +
1

2 +
1

2 + .  .  .

.

3. Using a Series It can be shown that 

 ∑
∞

n=1
 
1
n2 =

π2

6
 [see Section 9.3, page 612].

Use this fact to show that ∑
∞

n=1
 

1
(2n − 1)2 =

π2

8
.

4.  Finding a Limit Let T be an equilateral triangle with sides 
of length 1. Let an be the number of circles that can be packed 
tightly in n rows inside the triangle. For example, a1 = 1,
a2 = 3, and a3 = 6, as shown in the figure. Let An be the  
combined area of the an circles. Find lim

n→∞
 An.

5.  Using Center of Gravity Identical blocks of unit length 
are stacked on top of each other at the edge of a table. The  
center of gravity of the top block must lie over the block below 
it, the center of gravity of the top two blocks must lie over the 
block below them, and so on (see figure).

(a)  When there are three blocks, show that it is possible to stack 
them so that the left edge of the top block extends 11

12 unit 
beyond the edge of the table.

 (b)  Is it possible to stack the blocks so that the right edge of the 
top block extends beyond the edge of the table?

 (c)  How far beyond the table can the blocks be stacked?

6. Using Power Series

(a) Consider the power series

∑
∞

n=0
 anx

n = 1 + 2x + 3x2 + x3 + 2x4 + 3x5 + x6 + .  .  .

in which the coefficients an = 1, 2, 3, 1, 2, 3, 1, .  .  . are 
 periodic of period p = 3. Find the radius of convergence 
and the sum of this power series.

 (b) Consider a power series

  ∑
∞

n=0
 anx

n

in which the coefficients are periodic, (an+p = ap), and 
an > 0. Find the radius of convergence and the sum of this 
power series.

7. Finding Sums of Series

 (a) Find a power series for the function 

  f (x) = xex

   centered at 0. Use this representation to find the sum of the 
 infinite series

  ∑
∞

n=1
 

1
n!(n + 2).

 (b)  Differentiate the power series for f (x) = xex. Use the result 
to find the sum of the infinite series

  ∑
∞

n=0
 
n + 1
n!

.
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684 Chapter 9 Infinite Series

 8.  Using the Alternating Series Test The graph of the 
function 

 f (x) = {1,
sin x
x

,

    x = 0

    x > 0
 

   is shown below. Use the Alternating Series Test to show that

 the improper integral ∫∞
1

 f (x) dx converges.

x

−1

1

ππ 2 π3 π4

y

9.  Conditional and Absolute Convergence For what 
values of the positive constants a and b does the  following 
series converge absolutely? For what values does it converge 
conditionally?

 a −
b
2
+

a
3
−

b
4
+

a
5
−

b
6
+

a
7
−

b
8
+ .  .  .

10. Proof

(a)  Consider the following sequence of numbers defined 
 recursively.

 a1 = 3

 a2 = √3

 a3 = √3 + √3

 ⋮
an+1 = √3 + an

Write the decimal approximations for the first six terms of 
this sequence. Prove that the sequence converges and find 
its limit.

(b)  Consider the following sequence defined recursively by 
a1 = √a and an+1 = √a + an, where a > 2.

√a, √a + √a, √a + √a + √a, .  .  .

Prove that this sequence converges and find its limit.

11. Proof Let {an} be a sequence of positive numbers satisfying

 lim
n→∞

 (an)1�n = L <
1
r
, r > 0. Prove that the series ∑

∞

n=1
 anr

n

converges.

12. Using a Series Consider the infinite series ∑
∞

n=1
 

1
2n+(−1)n.

(a) Find the first five terms of the sequence of partial sums.

(b) Show that the Ratio Test is inconclusive for this series.

(c)  Use the Root Test to determine the convergence or 
divergence of this series.

13.  Deriving Identities Derive each identity using the  
appropriate geometric series.

 (a) 
1

0.99
= 1.01010101 .  .  .

(b) 
1

0.98
= 1.0204081632 .  .  .

14.  Population Consider an idealized population with the 
characteristic that each member of the population produces 
one offspring at the end of every time period. Each member 
has a life span of three time periods and the population begins 
with 10 newborn  members. The following table shows the 
population during the first five time periods.

 
Age Bracket

Time Period

1 2 3 4 5

0–1 10 10 20 40 70

1–2 10 10 20 40

2–3 10 10 20

Total 10 20 40 70 130

  The sequence for the total population has the property that

 Sn = Sn−1 + Sn−2 + Sn−3, n > 3.

Find the total population during each of the next five time 
periods.

15.  Spheres Imagine you are stacking an infinite number of 
spheres of decreasing radii on top of each other, as shown in 
the figure. The radii of the spheres are 1 meter, 1�√2 meter, 
1�√3 meter, and so on. The spheres are made of a material 
that weighs 1 newton per cubic meter.

 (a) How high is this infinite stack of spheres?

 (b)  What is the total surface area of all the spheres in the 
stack?

 (c) Show that the weight of the stack is finite.

1 m

2
1 m

3
1 m

. .
 .

16. Determining Convergence or Divergence

Determine the convergence or divergence of the series

∑
∞

n=1
 (sin 

1
2n

− sin 
1

2n + 1).
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10.1 Conics and Calculus

 Understand the definition of a conic section.
 Analyze and write equations of parabolas using properties of parabolas.
 Analyze and write equations of ellipses using properties of ellipses.
 Analyze and write equations of hyperbolas using properties of hyperbolas.

Conic Sections
Each conic section (or simply conic) can be described as the intersection of a plane and 
a double-napped cone. Notice in Figure 10.1 that for the four basic conics, the intersecting 
plane does not pass through the vertex of the cone. When the plane  passes through the 
vertex, the resulting figure is a degenerate conic, as shown in Figure 10.2.

            

 Circle Parabola Ellipse Hyperbola
 Conic sections
 Figure 10.1

   

 Point Line Two intersecting lines
 Degenerate conics
 Figure 10.2

There are several ways to study conics. You could begin as the Greeks did, by 
defining the conics in terms of the intersections of planes and cones, or you could 
define them algebraically in terms of the general second-degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.    General second-degree equation

However, a third approach, in which each of the conics is defined as a locus (collection) 
of points satisfying a certain geometric property, works best. For example, a  circle can 
be defined as the collection of all points (x, y) that are equidistant from a fixed point 
(h, k). This locus definition easily produces the standard equation of a circle

 (x − h)2 + ( y − k)2 = r2.  Standard equation of a circle

For information about rotating second-degree equations in two variables, see Appendix D.

 FOR FURTHER INFORMATION
To learn more about the  
mathematical activities of Hypatia, 
see the article “Hypatia and 
Her Mathematics” by Michael 
A. B. Deakin in The American 
Mathematical Monthly. To view 
this article, go to MathArticles.com.

HYPATIA (370–415 A.D.)

The Greeks discovered conic  
sections sometime between 600 
and 300 B.C. By the beginning of 
the Alexandrian period, enough 
was known about conics for 
Apollonius (262–190 B.C.) to 
produce an eight-volume work 
on the subject. Later, toward 
the end of the Alexandrian 
 period, Hypatia wrote a 
textbook entitled On the Conics 
of Apollonius. Her death marked 
the end of major mathematical 
discoveries in Europe for 
several hundred years.

The early Greeks were 
largely concerned with the 
geometric properties of  conics. 
It was not until 1900 years 
later, in the early  seventeenth 
century, that the  broader 
applicability of conics became 
apparent. Conics then played 
a prominent role in the 
development of calculus.  
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.1 Conics and Calculus 687

Parabolas
A parabola is the set of all points (x, y) that are equidistant from a fixed line, the 
directrix, and a fixed point, the focus, not on the line. The midpoint between the focus 
and the directrix is the vertex, and the line passing through the focus and the vertex is 
the axis of the parabola. Note in Figure 10.3 that a parabola is symmetric with respect 
to its axis.

THEOREM 10.1 Standard Equation of a Parabola

The standard form of the equation of a parabola with vertex (h, k) and 
directrix y = k − p is

(x − h)2 = 4p(y − k). Vertical axis

For directrix x = h − p, the equation is

(y − k)2 = 4p(x − h). Horizontal axis

The focus lies on the axis p units (directed distance) from the vertex. The  
coordinates of the focus are as follows.

(h, k + p) Vertical axis

(h + p, k) Horizontal axis

 Finding the Focus of a Parabola

Find the focus of the parabola 

y =
1
2
− x −

1
2

x2.

Solution To find the focus, convert to standard form by completing the square.

 y =
1
2
− x −

1
2

x2  Write original equation.

 2y = 1 − 2x − x2  Multiply each side by 2.

 2y = 1 − (x2 + 2x)  Group terms.

 2y = 2 − (x2 + 2x + 1) Add and subtract 1 on right side.

 x2 + 2x + 1 = −2y + 2

 (x + 1)2 = −2(y − 1)  Write in standard form.

Comparing this equation with

(x − h)2 = 4p( y − k)

you can conclude that

h = −1, k = 1, and p = −
1
2

.

Because p is negative, the parabola opens downward, as shown in Figure 10.4. So, the 
focus of the parabola is p units from the vertex, or

(h, k + p) = (−1, 
1
2). Focus 

A line segment that passes through the focus of a parabola and has endpoints on the 
parabola is called a focal chord. The specific focal chord perpendicular to the axis of 
the parabola is the latus rectum. The next example shows how to determine the length 
of the latus rectum and the length of the corresponding intercepted arc.

Parabola

Directrix

Vertex

Focus

d1

d1
d2

d2

p

Axis

(x, y)

Figure 10.3

x

Focus

−2 −1

−1

1

−1, )) 1
2

1
2

1
2

1
2

y =    − x −   x2

p = −

y

Vertex

Parabola with a vertical axis, p < 0
Figure 10.4
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 Focal Chord Length and Arc Length

See LarsonCalculus.com for an interactive version of this type of example.

Find the length of the latus rectum of the parabola

x2 = 4py.

Then find the length of the parabolic arc intercepted by the latus rectum.

Solution Because the latus rectum passes through the focus (0, p) and is perpendicular 
to the y-axis, the coordinates of its endpoints are 

(−x, p) and (x, p).

Substituting p for y in the equation of the parabola produces

x2 = 4p(p)  x = ±2p.

So, the endpoints of the latus rectum are (−2p, p) and (2p, p), and you can conclude 
that its length is 4p, as shown in Figure 10.5. In contrast, the length of the  intercepted 
arc is

 s = ∫2p

−2p

 √1 + (y′)2 dx Use arc length formula.

 = 2∫2p

0
 √1 + ( x

2p)
2

 dx y =
x2

4p
  y′ =

x
2p

 =
1
p∫

2p

0
 √4p2 + x2 dx Simplify.

 =
1
2p[x√4p2 + x2 + 4p2 ln∣x + √4p2 + x2∣]

2p

0
 Theorem 8.2

 =
1
2p

[2p√8p2 + 4p2 ln(2p + √8p2) − 4p2 ln(2p)]
 = 2p[√2 + ln(1 + √2)]
 ≈ 4.59p. 

One widely used property of a parabola is its reflective property. In physics, a 
surface is called reflective when the tangent line at any point on the surface makes equal 
angles with an incoming ray and the resulting outgoing ray. The angle corresponding to 
the incoming ray is the angle of incidence, and the angle corresponding to the outgoing 
ray is the angle of reflection. One example of a reflective surface is a flat mirror.

Another type of reflective surface is that formed by revolving a parabola about its 
axis. The resulting surface has the property that all incoming rays parallel to the axis 
are directed through the focus of the parabola. This is the principle behind the design 
of the parabolic mirrors used in reflecting telescopes. Conversely, all light rays emanating 
from the focus of a parabolic reflector used in a flashlight are parallel, as shown in 
Figure 10.6.

THEOREM 10.2 Reflective Property of a Parabola

Let P be a point on a parabola. The tangent line to the parabola at point P 
makes equal angles with the following two lines.

1. The line passing through P and the focus

2. The line passing through P parallel to the axis of the parabola

x

Latus rectum

(0, p)

x2 = 4py

(−2p, p) (2  ,   )p  p

y

Length of latus rectum: 4p
Figure 10.5

Light source
at focus

Axis

Parabolic reflector: light is reflected in 
parallel rays.
Figure 10.6
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Ellipses
More than a thousand years after the close of the Alexandrian period of Greek 
mathematics, Western civilization finally began a Renaissance of mathematical 
and scientific discovery. One of the principal figures in this rebirth was the Polish 
astronomer Nicolaus Copernicus (1473–1543). In his work On the Revolutions of the 
Heavenly Spheres, Copernicus claimed that all of the planets, including Earth, revolved 
about the sun in circular orbits. Although some of Copernicus’s claims were invalid, 
the  controversy set off by his heliocentric theory motivated astronomers to search 
for a mathematical model to explain the observed movements of the sun and planets.  
The first to find an accurate model was the German astronomer Johannes Kepler 
(1571–1630). Kepler discovered that the planets move about the sun in elliptical orbits, 
with the sun not as the center but as a focal point of the orbit.

The use of ellipses to explain the movements of the planets is only one of many 
practical and aesthetic uses. As with parabolas, you will begin your study of this second 
type of conic by defining it as a locus of points. Now, however, two focal points are 
used rather than one.

An ellipse is the set of all points (x, y) the sum of whose distances from two 
distinct fixed points called foci is constant. (See Figure 10.7.) The line through the foci 
intersects the ellipse at two points, called the vertices. The chord joining the vertices is 
the major axis, and its midpoint is the center of the ellipse. The chord  perpendicular to 
the major axis at the center is the minor axis of the ellipse. (See Figure 10.8.)

Focus Focus

d1

d1 + d2 is constant.

d2

(x, y)   

CenterFocus Focus

Minor axis

Major axis
Vertex Vertex(h, k)

 Figure 10.7 Figure 10.8

THEOREM 10.3 Standard Equation of an Ellipse

The standard form of the equation of an ellipse with center (h, k) and major 
and minor axes of lengths 2a and 2b, respectively, where a > b, is

(x − h)2
a2 +

(y − k)2
b2 = 1 Major axis is horizontal.

or

(x − h)2
b2 +

(y − k)2
a2 = 1. Major axis is vertical.

The foci lie on the major axis, c units from the center, with

c2 = a2 − b2.

You can visualize the definition of an ellipse by imagining two thumbtacks placed 
at the foci, as shown in Figure 10.9.

 FOR FURTHER INFORMATION To learn about how an ellipse may be “exploded” 
into a parabola, see the article “Exploding the Ellipse” by Arnold Good in Mathematics 
Teacher. To view this article, go to MathArticles.com. 

If the ends of a fixed length of string 
are fastened to the thumbtacks and the 
string is drawn taut with a pencil, then 
the path traced by the pencil will be an 
ellipse.
Figure 10.9

NICOLAUS COPERNICUS  
(1473–1543)

Copernicus began to study  
planetary motion when he was 
asked to revise the calendar. 
At that time, the exact length 
of the year could not be 
accurately predicted using 
the theory that Earth was the 
center of the universe.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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 Analyzing an Ellipse

Find the center, vertices, and foci of the ellipse 

4x2 + y2 − 8x + 4y − 8 = 0. General second-degree equation

Solution Complete the square to write the original equation in standard form.

 4x2 + y2 − 8x + 4y − 8 = 0 Write original equation.

 4x2 − 8x + y2 + 4y = 8

 4(x2 − 2x + 1) + (y2 + 4y + 4) = 8 + 4 + 4

 4(x − 1)2 + (y + 2)2 = 16

 
(x − 1)2

4
+

(y + 2)2
16

= 1 Write in standard form.

So, the major axis is vertical, where h = 1, k = −2, a = 4, b = 2, and 

c = √16 − 4 = 2√3.

So, you obtain the following.

Center: (1, −2) (h, k)

Vertices: (1, −6) and (1, 2) (h, k ± a)

Foci: (1, −2 − 2√3) and (1, −2 + 2√3) (h, k ± c)

The graph of the ellipse is shown in Figure 10.10. 

In Example 3, the constant term in the general second-degree equation is F = −8. 
For a constant term greater than or equal to 8, you would obtain one of these degenerate 
cases.

1. F = 8, single point, (1, −2): (x − 1)2
4

+
(y + 2)2

16
= 0

2. F > 8, no solution points: 
(x − 1)2

4
+

(y + 2)2
16

< 0

 The Orbit of the Moon

The moon orbits Earth in an elliptical path with the center of Earth at one focus, 
as shown in Figure 10.11. The major and minor axes of the orbit have lengths of  
768,800 kilometers and 767,641 kilometers, respectively. Find the greatest and least 
distances (the apogee and perigee) from Earth’s center to the moon’s center.

Solution Begin by solving for a and b.

 2a = 768,800 Length of major axis

 a = 384,400 Solve for a.

 2b = 767,641 Length of minor axis

 b = 383,820.5 Solve for b.

Now, using these values, you can solve for c as follows.

c = √a2 − b2 ≈ 21,099

The greatest distance between the center of Earth and the center of the moon is

a + c ≈ 405,499 kilometers 

and the least distance is

a − c ≈ 363,301 kilometers. 

Vertex

Vertex

Center

Focus

Focus

x

(x − 1)2

4
= 1

(y + 2)2

16
+

y

−2−4

−6

2

2

4

Ellipse with a vertical major axis.
Figure 10.10

Perigee Apogee

Earth

Moon

Not drawn to scale

Figure 10.11
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Theorem 10.2 presented a reflective property of parabolas. Ellipses have a similar 
reflective property. You are asked to prove the next theorem in Exercise 84.

THEOREM 10.4 Reflective Property of an Ellipse

Let P be a point on an ellipse. The tangent line to the ellipse at point P makes 
equal angles with the lines through P and the foci.

One of the reasons that astronomers had difficulty detecting that the orbits of the 
planets are ellipses is that the foci of the planetary orbits are relatively close to the 
center of the sun, making the orbits nearly circular. To measure the ovalness of an 
ellipse, you can use the concept of eccentricity.

Definition of Eccentricity of an Ellipse

The eccentricity e of an ellipse is given by the ratio

e =
c
a

.

To see how this ratio is used to describe the shape of an ellipse, note that because 
the foci of an ellipse are located along the major axis between the vertices and the 
center, it follows that

0 < c < a.

For an ellipse that is nearly circular, the foci are close to the center and the ratio c�a is 
close to 0, and for an elongated ellipse, the foci are close to the vertices and the ratio 
c�a is close to 1, as shown in Figure 10.12. Note that 

0 < e < 1

for every ellipse.
The orbit of the moon has an eccentricity of e ≈ 0.0549, and the eccentricities of 

the eight planetary orbits are listed below.

Mercury: e ≈ 0.2056 Jupiter: e ≈ 0.0489

Venus: e ≈ 0.0067 Saturn: e ≈ 0.0565

Earth: e ≈ 0.0167 Uranus: e ≈ 0.0457

Mars: e ≈ 0.0935 Neptune: e ≈ 0.0113

You can use integration to show that the area of an ellipse is A = πab. For 
instance, the area of the ellipse

x2

a2 +
y2

b2 = 1

is

 A = 4∫a

0
 
b
a
√a2 − x2 dx

 =
4b
a ∫

π�2

0
 a2 cos2 θ dθ. Trigonometric substitution x = a sin θ

However, it is not so simple to find the circumference of an ellipse. The next example 
shows how to use eccentricity to set up an “elliptic integral” for the circumference of 
an ellipse.

 FOR FURTHER INFORMATION
For more information on some uses 
of the reflective properties of  
conics, see the article “Parabolic 
Mirrors, Elliptic and Hyperbolic 
Lenses” by Mohsen Maesumi 
in The American Mathematical 
Monthly. Also see the article “The 
Geometry of Microwave Antennas” 
by William R. Parzynski in 
Mathematics Teacher.

a

c

Foci

(a) 
c
a

 is small.

a

c

Foci

(b) 
c
a

 is close to 1.

Eccentricity is the ratio 
c
a

.

Figure 10.12
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 Finding the Circumference of an Ellipse

See LarsonCalculus.com for an interactive version of this type of example.

Show that the circumference of the ellipse (x2�a2) + (y2�b2) = 1 is

4a∫π�2

0
 √1 − e2 sin2 θ dθ. e =

c
a

Solution Because the ellipse is symmetric with respect to both the x-axis and the  
y-axis, you know that its circumference C is four times the arc length of 

y =
b
a
√a2 − x2

in the first quadrant. The function y is differentiable for all x in the interval [0, a] except 
at x = a. So, the circumference is given by the improper integral

C = lim
d→a−

 4∫d

0
 √1 + (y′)2 dx = 4∫a

0
 √1 + (y′)2 dx = 4∫a

0
 √1 +

b2x2

a2(a2 − x2) dx.

Using the trigonometric substitution x = a sin θ, you obtain

 C = 4∫π�2

0
 √1 +

b2 sin2 θ
a2 cos2 θ (a cos θ) dθ

 = 4∫π�2

0
 √a2 cos2 θ + b2 sin2 θ dθ

 = 4∫π�2

0
 √a2(1 − sin2 θ) + b2 sin2 θ dθ

 = 4∫π�2

0
 √a2 − (a2 − b2) sin2 θ dθ.

Because e2 = c2�a2 = (a2 − b2)�a2, you can rewrite this integral as

C = 4a∫π�2

0
 √1 − e2 sin2 θ dθ. 

A great deal of time has been devoted to the study of elliptic integrals. Such 
 integrals generally do not have elementary antiderivatives. To find the circumference 
of an ellipse, you must usually resort to an approximation technique.

 Approximating the Value of an Elliptic Integral

Use the elliptic integral in Example 5 to approximate the circumference of the ellipse 

x2

25
+

y2

16
= 1.

Solution Because e2 = c2�a2 = (a2 − b2)�a2 = 9�25, you have

C = (4)(5)∫π�2

0
 √1 −

9 sin2 θ
25

 dθ.

Applying Simpson’s Rule with n = 4 produces

 C ≈ 20[π�2
3(4)][1 + 4(0.9733) + 2(0.9055) + 4(0.8323) + 0.8]

 ≈ 28.36.

So, the ellipse has a circumference of about 28.36 units, as shown in Figure 10.13.
 

x

y

2 4 6−2

−2

2

6

−4−6

−6

x2

25
 = 1+

y2

16

C ≈ 28.36 units

Figure 10.13

AREA AND CIRCUMFERENCE  
OF AN ELLIPSE

In his work with elliptic orbits 
in the early 1600s, Johannes 
Kepler successfully developed 
a formula for the area of an 
ellipse, A = πab. He was 
less successful, however, in 
developing a formula for the 
circumference of an ellipse; 
the best he could do was to 
give the approximate formula 
C = π(a + b).
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Hyperbolas
The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum 
of the distances between the foci and a point on the ellipse is fixed, whereas for a 
hyperbola, the absolute value of the difference between these distances is fixed.

A hyperbola is the set of all points (x, y) for which the absolute value of the 
 difference between the distances from two distinct fixed points called foci is constant. 
(See Figure 10.14.) The line through the two foci intersects a hyperbola at two points 
called the vertices. The line segment connecting the vertices is the transverse axis, and 
the midpoint of the transverse axis is the center of the hyperbola. One  distinguishing 
feature of a hyperbola is that its graph has two separate branches.

THEOREM 10.5 Standard Equation of a Hyperbola

The standard form of the equation of a hyperbola with center at (h, k) is

(x − h)2
a2 −

(y − k)2
b2 = 1 Transverse axis is horizontal.

or

(y − k)2
a2 −

(x − h)2
b2 = 1. Transverse axis is vertical.

The vertices are a units from the center, and the foci are c units from the 
center, where c2 = a2 + b2.

Note that the constants a, b, and c do not have the same relationship for hyperbolas 
as they do for ellipses. For hyperbolas, c2 = a2 + b2, but for ellipses, c2 = a2 − b2.

An important aid in sketching the graph of a hyperbola is the determination of 
its asymptotes, as shown in Figure 10.15. Each hyperbola has two asymptotes that 
intersect at the center of the hyperbola. The asymptotes pass through the vertices of a 
rectangle of dimensions 2a by 2b, with its center at (h, k). The line segment of length 
2b joining

(h, k + b)

and

(h, k − b)

is referred to as the conjugate axis of the hyperbola.

THEOREM 10.6 Asymptotes of a Hyperbola

For a horizontal transverse axis, the equations of the asymptotes are

y = k +
b
a
(x − h) and y = k −

b
a
(x − h).

For a vertical transverse axis, the equations of the asymptotes are

y = k +
a
b
(x − h) and y = k −

a
b
(x − h).

In Figure 10.15, you can see that the asymptotes coincide with the diagonals of 
the rectangle with dimensions 2a and 2b, centered at (h, k). This provides you with a 
quick means of sketching the asymptotes, which in turn aids in sketching the hyperbola.

⎪d2 − d1⎪ = 2a
⎪d2 − d1⎪ is constant.

Focus Focus

d2

(x, y)

d1

Vertex

VertexCenter

Transverse axis

a

c

Figure 10.14

Asymptote

(h, k + b)

(h, k − b)

(h + a, k)(h − a, k) (  , )h  k a
b

Conjugate axis Asymptote

Figure 10.15

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



694 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

 Using Asymptotes to Sketch a Hyperbola

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of the hyperbola

4x2 − y2 = 16.

Solution Begin by rewriting the equation in standard form.

x2

4
−

y2

16
= 1

The transverse axis is horizontal and the vertices occur at (−2, 0) and (2, 0). The ends 
of the conjugate axis occur at (0, −4) and (0, 4). Using these four points, you can 
sketch the rectangle shown in Figure 10.16(a). By drawing the asymptotes through the 
corners of this rectangle, you can complete the sketch as shown in Figure 10.16(b). 

x

6

4 6

−6

−6 −4

(0, 4)

(2, 0)

(0, −4)

(−2, 0)

y   

x

6

4 6

−6

−6 −4

x2 y2

4 16
− = 1

y

4

−4

 (a)  (b) 

 Figure 10.16 

Definition of Eccentricity of a Hyperbola

The eccentricity e of a hyperbola is given by the ratio

e =
c
a

.

As with an ellipse, the eccentricity of a hyperbola is e = c�a. Because c > a 
for hyperbolas, it follows that e > 1 for hyperbolas. If the eccentricity is large, then 
the branches of the hyperbola are nearly flat. If the eccentricity is close to 1, then the 
branches of the hyperbola are more pointed, as shown in Figure 10.17.

x

VertexVertex

Eccentricity
is large.

FocusFocus

e =
c
a

c

a

y   

x
VertexVertex

Eccentricity
is close to 1.

FocusFocus

c

a

y

e =
c
a

 Figure 10.17

TECHNOLOGY You can 
use a graphing utility to verify 
the graph obtained in Example 7 
by solving the original equation 
for y and graphing the following 
equations.

 y1 = √4x2 − 16

 y2 = −√4x2 − 16

 FOR FURTHER INFORMATION
To read about using a string that 
traces both elliptic and hyperbolic 
arcs having the same foci, see the 
article “Ellipse to Hyperbola:  
‘With This String I Thee Wed’” by 
Tom M. Apostol and Mamikon A. 
Mnatsakanian in Mathematics 
Magazine. To view this article,  
go to MathArticles.com.
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The application in Example 8 was developed during World War II. It shows how 
the properties of hyperbolas can be used in radar and other detection systems.

 A Hyperbolic Detection System

Two microphones, 1 mile apart, record an explosion. Microphone A receives the sound 
2 seconds before microphone B. Where was the explosion?

Solution Assuming that sound travels at 1100 feet per second, you know that the 
explosion took place 2200 feet farther from B than from A, as shown in Figure 10.18. 
The locus of all points that are 2200 feet closer to A than to B is one branch of the 
hyperbola 

x2

a2 −
y2

b2 = 1

where

c =
1 mile

2
=

5280 ft
2

= 2640 feet

and

a =
2200 ft

2
= 1100 feet.

Because c2 = a2 + b2, it follows that

 b2 = c2 − a2

 = (2640)2 − (1100)2

 = 5,759,600

and you can conclude that the explosion occurred somewhere on the right branch of 
the hyperbola

x2

1,210,000
−

y2

5,759,600
= 1. 

In Example 8, you were able to determine only the hyperbola on which the 
 explosion occurred, but not the exact location of the explosion. If, however, you 
had received the sound at a third position C, then two other hyperbolas would be 
 determined. The exact location of the explosion would be the point at which these three 
hyperbolas intersect.

Another interesting application of conics involves the orbits of comets in our solar 
system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits, 295 have 
parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a focus of 
each orbit, and each orbit has a vertex at the point at which the comet is closest to the 
sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have not been 
identified—such comets pass through our solar system only once. Only comets with 
elliptical orbits, such as Halley’s comet, remain in our solar system.

The type of orbit for a comet can be determined as follows.

1. Ellipse: v < √2GM�p

2. Parabola: v = √2GM�p

3. Hyperbola: v > √2GM�p

In each of the above, p is the distance between one vertex and one focus of the comet’s 
orbit (in meters), v is the velocity of the comet at the vertex (in meters per second), 
M ≈ 1.989 × 1030 kilograms is the mass of the sun, and G ≈ 6.67 × 10−11 cubic meter 
per kilogram-second squared is the gravitational constant.

−2000
−1000

−2000

2000

2000

3000

3000

4000

d2
d1

AB
x

y

2c = 5280
d2 − d1 = 2a = 2200
Figure 10.18

CAROLINE HERSCHEL  
(1750–1848)

The first woman to be credited 
with detecting a new comet 
was the English astronomer 
Caroline Herschel. During 
her life, Caroline Herschel 
discovered a total of eight  
new comets.
See LarsonCalculus.com to read 
more of this biography.

Caroline Herschel (1750-1848), 1829, Tielemans, Martin Francois (1784-1864)/Private Collection/The Bridgeman Art Library 
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10.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Conic Sections State the definitions of parabola, 

ellipse, and hyperbola in your own words.

2.  Reflective Property Use a sketch to illustrate the 
reflective property of an ellipse.

3.  Eccentricity Consider an ellipse with eccentricity e.

 (a) What are the possible values of e?

 (b)  What happens to the graph of the ellipse as e increases?

4.  Hyperbola Explain how to sketch a hyperbola with a 
vertical transverse axis.

Matching In Exercises 5–10, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) 

x

2

2 4 6

4

−4

−2
−2

y  (b) 

x

2

2 4

4

−4

y

(c) 

2

2 4

4

6

−4

−4−6 −2
x

y  (d) 

x

2

2 4 6

4

−4

−2

y

(e) 

x

y

−4 −2−8 2 4

−8
−6
−4

4

2

 (f ) 

x

y

−1−3 1 3

−2

1

2

 5. y2 = 4x  6. (x + 4)2 = −2(y − 2)

 7. 
y2

16
−

x2

1
= 1  8. 

(x − 2)2
16

+
(y + 1)2

4
= 1

 9. 
x2

4
+

y2

9
= 1 10. 

(x − 2)2
9

−
y2

4
= 1

 Sketching a Parabola In Exercises 11–16, find 
the vertex, focus, and directrix of the parabola, and 
sketch its graph.

11. (x + 5) + (y − 3)2 = 0 12. (x − 6)2 − 2(y + 7) = 0

13. y2 − 4y − 4x = 0 14. y2 + 6y + 8x + 25 = 0

15. x2 + 4x + 4y − 4 = 0 16. x2 − 2x − 4y − 7 = 0

 Finding the Standard Equation of a 
Parabola In Exercises 17–24, find the standard 
form of the equation of the parabola with the given 
characteristics.

17. Vertex: (5, 4) 18. Vertex: (−3, −1)
 Focus: (3, 4)  Focus: (−3, 1)
19. Vertex: (0, 5) 20. Focus: (2, 2)
 Directrix: y = −3  Directrix: x = −2

21. Vertex: (1, −1) 22. Vertex: (2, 4)
 Points on the parabola:  Points on the parabola:

 (−1, −4), (3, −4)  (0, 0), (4, 0)
23.  Axis is parallel to y-axis; graph passes through (0, 3), (3, 4), 

and (4, 11).
24.  Directrix: y = −2; endpoints of latus rectum are (0, 2) and 

(8, 2).

 Sketching an Ellipse In Exercises 25–30, find 
the center, foci, vertices, and eccentricity of the 
ellipse, and sketch its graph.

25. 16x2 + y2 = 16 26. 3x2 + 7y2 = 63

27. 
(x − 3)2

16
+

(y − 1)2
25

= 1 28. (x + 4)2 + (y + 6)2
1�4

= 1

29. 9x2 + 4y2 + 36x − 24y − 36 = 0

30. x2 + 10y2 − 6x + 20y + 18 = 0

 Finding the Standard Equation of an 
Ellipse In Exercises 31–36, find the standard 
form of the equation of the ellipse with the given 
characteristics.

31. Center: (0, 0) 32. Vertices: (0, 3), (8, 3)
 Focus: (5, 0)  Eccentricity: 3

4

 Vertex: (6, 0)
33. Vertices: (3, 1), (3, 9) 34. Foci: (0, ±9)
 Minor axis length: 6  Major axis length: 22

35. Center: (0, 0) 36. Center: (1, 2)
 Major axis: horizontal  Major axis: vertical

 Points on the ellipse:  Points on the ellipse:
 (3, 1), (4, 0)  (1, 6), (3, 2)

 Sketching a Hyperbola In Exercises 37–40, 
find the center, foci, vertices, and eccentricity 
of the hyperbola, and sketch its graph using 
asymptotes as an aid.

37. 
x2

25
−

y2

16
= 1 38. 

(y + 3)2
225

−
(x − 5)2

64
= 1

39. 9x2 − y2 − 36x − 6y + 18 = 0

40. y2 − 16x2 + 64x − 208 = 0
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 Finding the Standard Equation of a 
Hyperbola In Exercises 41–48, find the 
standard form of the equation of the hyperbola 
with the given characteristics.

41. Vertices: (±1, 0) 42. Vertices: (0, ±4)
 Asymptotes: y = ±5x  Asymptotes: y = ±2x

43. Vertices: (2, ±3) 44. Vertices: (2, ±3)
 Point on graph: (0, 5)  Foci: (2, ±5)
45. Center: (0, 0) 46. Center: (0, 0)
 Vertex: (0, 2)  Vertex: (6, 0)
 Focus: (0, 4)  Focus: (10, 0)
47. Vertices: (0, 2), (6, 2) 48. Focus: (20, 0)
 Asymptotes: y = 2

3x  Asymptotes: y = ±3
4x

   y = 4 − 2
3x

Finding Equations of Tangent Lines and Normal 
Lines In Exercises 49 and 50, find equations for (a) the 
tangent lines and (b) the normal lines to the hyperbola for the 
given value of x. (The normal line at a point is perpendicular 
to the tangent line at the point.)

49. 
x2

9
− y2 = 1, x = 6 50. 

y2

4
−

x2

2
= 1, x = 4

Classifying the Graph of an Equation In Exercises 
51–56, classify the graph of the equation as a circle, a parabola, 
an ellipse, or a hyperbola.

51. 25x2 − 10x − 200y − 119 = 0

52. 4x2 − y2 − 4x − 3 = 0

53. 3(x − 1)2 = 6 + 2(y + 1)2 54. 9(x + 3)2 = 36 − 4(y − 2)2

55. 9x2 + 9y2 − 36x + 6y + 34 = 0

56. y2 − 4y = x + 5

EXPLORING CONCEPTS
57.  Using an Equation Consider the equation 

9x2 + 4y2 − 36x − 24y − 36 = 0.

 (a)  Classify the graph of the equation as a circle, a 
parabola, an ellipse, or a hyperbola.

 (b)  Change the 4y2-term in the equation to −4y2. 
Classify the graph of the new equation.

 (c)  Change the 9x2-term in the original equation to 4x2. 
Classify the graph of the new equation.

 (d)  Describe one way you could change the original  
equation so that its graph is a parabola.

58.  Investigation Sketch the graphs of x2 = 4py for 
p = 1

4, 12, 1, 32, and 2 on the same coordinate axes. Discuss 
the change in the graphs as p increases.

59.  Ellipse Let C be the circumference of the 
ellipse (x2�a2) + (y2�b2) = 1, b < a. Explain 
why 2πb < C < 2πa. Use a graph to support your 
explanation.

 60.  HOW DO YOU SEE IT? Describe in  
words how a plane could intersect with the 
double-napped cone to form each conic section 
(see figure).

 

(a) Circle (b) Ellipse

(c) Parabola  (d) Hyperbola

60.  

61.  Solar Collector A solar collector for heating water is 
constructed with a sheet of stainless steel that is formed into 
the shape of a parabola (see figure). The water will flow 
through a pipe that is located at the focus of the parabola. At 
what distance from the vertex is the pipe?

1 m

6 m   

3 cm

16 m

Not drawn to scale

 Figure for 61 Figure for 62

62.  Beam Deflection A simply supported beam that is 
16 meters long has a load concentrated at the center (see  
figure). The deflection of the beam at its center is 3 centimeters. 
Assume that the shape of the deflected beam is parabolic.

 (a)  Find an equation of the parabola. (Assume that the origin 
is at the center of the beam.)

 (b)  How far from the center of the beam is the deflection  
1 centimeter?

63. Proof

 (a)  Prove that any two distinct tangent lines to a parabola 
intersect.

 (b)  Demonstrate the result of part (a) by finding the point 
of intersection of the tangent lines to the parabola 
x2 − 4x − 4y = 0 at the points (0, 0) and (6, 3).

64. Proof

 (a)  Prove that if any two tangent lines to a parabola intersect 
at right angles, then their point of intersection must lie on 
the directrix.

 (b)  Demonstrate the result of part (a) by showing that the 
 tangent lines to the parabola x2 − 4x − 4y + 8 = 0 at the

   points (−2, 5) and (3, 54) intersect at right angles and that 
their point of intersection lies on the directrix.
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65.  Bridge Design A cable of a suspension bridge is suspended 
(in the shape of a parabola) between two towers that are  
120 meters apart and 20 meters above the roadway (see 
figure). The cable touches the roadway midway between the 
towers. Find an equation for the parabolic shape of the cable.

Parabolic
supporting cable

(60, 20)

y

x

66.  Arc Length Find the length of the parabolic cable in 
Exercise 65.

68.  Surface Area A satellite signal receiving dish is formed 
by revolving the parabola given by

 x2 = 20y

  about the y-axis. The radius of the dish is r feet. Verify that the 
surface area of the dish is given by

 2π∫r

0
 x√1 + ( x

10)
2

 dx =
π
15

[(100 + r2)3�2 − 1000].

69.  Orbit of Earth Earth moves in an elliptical orbit with the 
sun at one of the foci. The length of half of the major axis is 
149,598,000 kilometers, and the eccentricity is 0.0167. Find 
the minimum distance ( perihelion) and the maximum distance 
(aphelion) of Earth from the sun.

70.  Satellite Orbit The apogee (the point in orbit farthest 
from Earth) and the perigee (the point in orbit closest to Earth) 
of an elliptical orbit of an Earth satellite are given by A and P, 
respectively. Show that the eccentricity of the orbit is

 e =
A − P
A + P

.

71.  Explorer 1 On January 31, 1958, the United States 
launched the research satellite Explorer 1. Its low and 
high points above the surface of Earth were 220 miles and  
1563 miles. Find the eccentricity of its elliptical orbit. (Use 
4000 miles as the radius of Earth.)

72.  Explorer 55 On November 20, 1975, the United States 
launched the research satellite Explorer 55. Its low and 
high points above the  surface of Earth were 96 miles and  
1865 miles. Find the eccentricity of its elliptical orbit. (Use 
4000 miles as the radius of Earth.)

74.  Particle Motion Consider a particle traveling clockwise 
on the elliptical path

 
x2

100
+

y2

25
= 1.

  The particle leaves the orbit at the point (−8, 3) and travels 
in a straight line tangent to the ellipse. At what point will the 
 particle cross the y-axis?

Area, Volume, and Surface Area In Exercises 75 and 76, 
find (a) the area of the region bounded by the ellipse, (b) the 
volume and surface area of the solid generated by revolving 
the region about its major axis (prolate spheroid), and (c) the 
volume and surface area of the solid generated by revolving the 
region about its minor axis (oblate spheroid).

75. 
x2

4
+

y2

1
= 1 76. 

x2

16
+

y2

9
= 1

77.  Arc Length Use the integration capabilities of a graphing 
utility to approximate to two-decimal-place accuracy the 
elliptical integral representing the circumference of the ellipse

 
x2

25
+

y2

49
= 1.

78. Conjecture

 (a) Show that the equation of an ellipse can be written as

  
(x − h)2

a2 +
(y − k)2

a2(1 − e2) = 1.

 (b) Use a graphing utility to graph the ellipse

  
(x − 2)2

4
+

(y − 3)2
4(1 − e2) = 1

  for e = 0.95, e = 0.75, e = 0.5, e = 0.25,  and e = 0.

 (c)  Use the results of part (b) to make a conjecture about the 
change in the shape of the ellipse as e approaches 0.

A church window is bounded above by a parabola and  
below by the arc of a circle (see figure). Find the  
area of the window.

8 ft

8 ft

4 ft

Circle
radius

67. Architecture

Probably the most famous of all comets, Halley’s comet,  
has an elliptical orbit with the sun at one focus.  
Its maximum distance from the sun is  
approximately 35.29 AU 
(1 astronomical unit  
is approximately 
92.956 × 106 miles),  
and its minimum  
distance is approximately 
0.59 AU. Find the  
eccentricity of the orbit.

73. Halley’s Comet

Palette7/Shutterstock.com; NASA
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79.  Geometry The area of the ellipse in the figure is twice the 
area of the circle. What is the length of the major axis?

x

(0, 10)

(0, −10)

(a, 0)
(−a, 0)

y   

x

x2 y2

a2 b2+ = 1
Tangent
line

P = (x0, y0)

(−c, 0) (c, 0)

β
α

y

 Figure for 79 Figure for 80

80.  Proof Prove Theorem 10.4 by showing that the tangent 
line to an ellipse at a point P makes equal angles with lines 
through P and the foci (see figure). [Hint: (1) Find the slope of 
the tangent line at P, (2) find the slopes of the lines through P 
and each focus, and (3) use the formula for the tangent of the 
angle θ between two lines with slopes m1 and m2,

 tan θ = ∣ m1 − m2

1 + m1m2∣.]
81.  Finding an Equation of a Hyperbola Find an equation 

of the hyperbola such that for any point on the hyperbola, the 
difference between its distances from the points (2, 2) and 
(10, 2) is 6.

82.  Hyperbola Consider a hyperbola centered at the origin 
with a horizontal transverse axis. Use the definition of a 
hyperbola to derive its standard form

 
x2

a2 −
y2

b2 = 1.

83.  Navigation LORAN (long distance radio navigation) for 
aircraft and ships uses synchronized pulses transmitted by 
widely separated transmitting stations. These pulses travel at 
the speed of light (186,000 miles per second). The difference 
in the times of arrival of these pulses at an aircraft or ship is 
constant on a hyperbola having the transmitting stations as 
foci. Assume that two stations, 300 miles apart, are positioned 
on a rectangular coordinate system at (−150, 0) and (150, 0) 
and that a ship is traveling on a path with coordinates (x, 75) 
(see figure). Find the x-coordinate of the position of the 
ship when the time difference between the pulses from the 
transmitting stations is 1000 microseconds (0.001 second).

x
75

75

150

150

−75
−150

−150

y   

x
−10 −4

−4
−6
−8
−10

2

4

4

6
8

8

10

10

Mirror
y

 Figure for 83 Figure for 84

84.  Hyperbolic Mirror A hyperbolic mirror (used in some 
telescopes) has the property that a light ray directed at the 
focus will be reflected to the other focus. The mirror in the 
figure has the equation

 
x2

36
−

y2

64
= 1.

  At which point on the mirror will light from the point (0, 10) be 
reflected to the other focus?

85. Tangent Line Show that the equation of the tangent line

 to 
x2

a2 −
y2

b2 = 1 at the point (x0, y0) is (x0

a2)x − (y0

b2)y = 1.

86. Proof Prove that the graph of the equation

 Ax2 + Cy2 + Dx + Ey + F = 0

 is one of the following (except in degenerate cases).

  Conic Condition

 (a) Circle A = C

 (b) Parabola A = 0 or C = 0 (but not both)

 (c) Ellipse AC > 0

 (d) Hyperbola AC < 0

True or False? In Exercises 87–92, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

87. It is possible for a parabola to intersect its directrix.

88. The point on a parabola closest to its focus is its vertex.

89.  The eccentricity of a hyperbola with a horizontal transverse 
axis is e = √1 + m2, where m and −m the slopes of the 
asymptotes.

90.  If D ≠ 0 or E ≠ 0, then the graph of

 y2 − x2 + Dx + Ey = 0

 is a hyperbola.

91.  If the asymptotes of the hyperbola (x2�a2) − (y2�b2) = 1 
intersect at right angles, then a = b.

92.  Every tangent line to a hyperbola intersects the hyperbola only 
at the point of tangency.

PUTNAM EXAM CHALLENGE
93.  For a point P on an ellipse, let d be the distance from the 

center of the ellipse to the line tangent to the ellipse at 
P. Prove that (PF1)(PF2)d 2 is constant as P varies on the 
ellipse, where PF1 and PF2 are the distances from P to 
the foci F1 and F2 of the ellipse.

94. Find the minimum value of 

 (u − v)2 + (√2 − u2 −
9
v
)2

 for 0 < u < √2 and v > 0.
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



700 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

10.2 Plane Curves and Parametric Equations

 Sketch the graph of a curve given by a set of parametric equations.
 Eliminate the parameter in a set of parametric equations.
 Find a set of parametric equations to represent a curve.
  Understand two classic calculus problems, the tautochrone and  

brachistochrone problems.

Plane Curves and Parametric Equations
Until now, you have been representing a graph by a single equation involving two 
variables. In this section, you will study situations in which three variables are used to 
represent a curve in the plane.

Consider the path followed by an object  

x
63 7236 45 54

24    2, 24    2 − 16

18 27

9

18

y

9

y = −16t2 + 24    2 t

t = 0

t = 1

Parametric equations:
x = 24    2 t

(0, 0)

Rectangular equation:

y = −      + xx2

72

))

Curvilinear motion: two variables for 
position, one variable for time
Figure 10.19

 
that is propelled into the air at an angle of 45°.  
For an initial velocity of 48 feet per second,  
the object travels the parabolic path given by 
the rectangular equation

y = −
x2

72
+ x

as shown in Figure 10.19. This equation,  
however, does not tell the whole story.  
Although it does tell you where the object  
has been, it does not tell you when the object  
was at a given point (x, y). To determine  
this time, you can introduce a third variable t, 
called a parameter. By writing both x and y  
as functions of t, you obtain the  parametric  
equations

x = 24√2t Parametric equation for x

and

y = −16t2 + 24√2t. Parametric equation for y

From this set of equations, you can determine that at time t = 0, the object is at the 
point (0, 0). Similarly, at time t = 1, the object is at the point 

(24√2, 24√2 − 16)
and so on. (You will learn a method for determining this particular set of parametric 
equations—the equations of motion—later, in Section 12.3.)

For this particular motion problem, x and y are continuous functions of t, and the 
resulting path is called a plane curve.

Definition of a Plane Curve

If f  and g are continuous functions of t on an interval I, then the equations

x = f (t) and y = g(t)

are parametric equations and t is the parameter. The set of points (x, y) 
obtained as t varies over the interval I is the graph of the parametric equations. 
Taken together, the parametric equations and the graph are a plane curve, 
denoted by C.

REMARK At times, it 
is important to distinguish 
between a graph (the set of 
points) and a curve (the points 
together with their defining 
parametric equations). When 
it is important, the distinction 
will be explicit. When it is not 
important, C will be used to 
represent either the graph or 
the curve.
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When sketching a curve represented by a set of parametric equations, you can plot 
points in the xy-plane. Each set of coordinates (x, y) is determined from a value chosen 
for the parameter t. By plotting the resulting points in order of increasing values of t, 
the curve is traced out in a specific direction. This is called the orientation of the curve.

 Sketching a Curve

Sketch the curve described by the parametric equations

x = f (t) = t2 − 4

and

y = g(t) = t
2

where −2 ≤ t ≤ 3.

Solution For values of t on the given interval, 

4 6

4

2

−2

−4

x

t = 3t = 2

t = −2t = −1

t = 0

t = 1

Parametric equations:
t
2

x = t2 − 4 and y = , −2 ≤ t ≤ 3

y

Figure 10.20

 
the parametric equations yield the points (x, y) 
shown in the table.

 
t −2 −1 0 1 2 3

x 0 −3 −4 −3 0 5

y −1 −1
2 0 1

2 1 3
2

By plotting these points in order of increasing 
values of t and using the continuity of f  and g, 
you obtain the curve C shown in Figure 10.20.  
Note that the arrows on the curve indicate 
its orientation as t increases from −2 to 3. 

According to the Vertical Line Test, the graph shown in Figure 10.20 does not 
define y as a function of x. This points out one benefit of parametric equations––they 
can be used to represent graphs that are more general than graphs of functions.

It often happens that two different sets of parametric equations have the same 
graph. For instance, the set of parametric equations

x = 4t2 − 4 and y = t, −1 ≤ t ≤ 3
2

has the same graph as the set given in Example 1. (See Figure 10.21.) However, 
comparing the values of t in Figures 10.20 and 10.21, you can see that the second 
graph is traced out more rapidly (considering t as time) than the first graph. So, in 
applications, different  parametric representations can be used to represent various 
speeds at which objects travel along a given path.

TECHNOLOGY Most graphing utilities have a parametric graphing mode. If 
you have access to such a utility, use it to confirm the graphs shown in Figures 10.20 
and 10.21. Does the curve given by the parametric equations

x = 4t2 − 8t and y = 1 − t, −
1
2

≤ t ≤ 2

represent the same graph as that shown in Figures 10.20 and 10.21? What do you 
notice about the orientation of this curve?

4 6

4

2

−2

−4

x

t = 3
2

3
2

1
2

1
2

t = −1

t = 1 t = 

t = −

Parametric equations:

t = 0

x = 4t2 − 4 and y = t, −1 ≤ t ≤

y

Figure 10.21
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Eliminating the Parameter
Finding a rectangular equation that represents the graph of a set of parametric  equations 
is called eliminating the parameter. For instance, you can eliminate the parameter 
from the set of parametric equations in Example 1 as follows.

Parametric 
equations

  
Solve for t in 
one equation.

  
Substitute into 
second equation.

 
Rectangular 
equation

x = t2 − 4 t = 2y x = (2y)2 − 4 x = 4y2 − 4

y = t�2

Once you have eliminated the parameter, you can recognize that the equation  
x = 4y2 − 4 represents a parabola with a horizontal axis and vertex at (−4, 0), as 
shown in Figure 10.20.

The range of x and y implied by the parametric equations may be altered by the 
change to rectangular form. In such instances, the domain of the rectangular equation 
must be adjusted so that its graph matches the graph of the parametric equations. Such 
a situation is demonstrated in the next example.

 Adjusting the Domain

Sketch the curve represented by the equations

x =
1

√t + 1
 and y =

t
t + 1

, t > −1

by eliminating the parameter and adjusting the domain of the resulting rectangular 
equation.

Solution Begin by solving one of the parametric equations for t. For instance, you 
can solve the first equation for t as follows.

 x =
1

√t + 1
 Parametric equation for x

 x2 =
1

t + 1
 Square each side.

 t + 1 =
1
x2

 t =
1
x2 − 1

 t =
1 − x2

x2  Solve for t.

Now, substituting into the parametric equation for y produces

 y =
t

t + 1
 Parametric equation for y

 y =
(1 − x2)�x2

[(1 − x2)�x2] + 1
 Substitute (1 − x2)�x2 for t.

 y = 1 − x2. Simplify.

The rectangular equation, y = 1 − x2, is defined for all values of x, but from the 
parametric equation for x, you can see that the curve is defined only when t > −1. This 
implies that you should restrict the domain of x to positive values, as shown in  
Figure 10.22. 

x
1 2

1

−1

−1

−2

−2

−3

Rectangular equation:

y = 1 − x2, x > 0

y

Figure 10.22

x
1 2

1

−1

−1

−2

−2

−3

t = 3

t = 0

t = −0.75

Parametric equations:

x =            , y =         , t > −1
t + 1 t + 1
1 t

y
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It is not necessary for the parameter in a set of parametric equations to represent 
time. The next example uses an angle as the parameter.

 Using Trigonometry to Eliminate a Parameter

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the curve represented by

x = 3 cos θ and y = 4 sin θ, 0 ≤ θ ≤ 2π

by eliminating the parameter and finding the corresponding rectangular equation.

Solution Begin by solving for cos θ and sin θ in the given equations.

cos θ =
x
3

 Solve for cos θ.

and

sin θ =
y
4

 Solve for sin θ.

Next, make use of the identity 

sin2 θ + cos2 θ = 1

to form an equation involving only x and y.

 cos2 θ + sin2 θ = 1 Trigonometric identity

 (x3)
2

+ (y4)
2

= 1 Substitute.

 
x2

9
+

y2

16
= 1 Rectangular equation

From this rectangular equation, you can see that the graph is an ellipse centered at 
(0, 0), with vertices at (0, 4) and (0, −4) and minor axis of length 2b = 6, as shown in 
Figure 10.23. Note that the ellipse is traced out counterclockwise as θ varies from  
0 to 2π. 

Using the technique shown in Example 3, you can conclude that the graph of the 
parametric equations

x = h + a cos θ and y = k + b sin θ, 0 ≤ θ ≤ 2π

is the ellipse (traced counterclockwise) given by

(x − h)2
a2 +

(y − k)2
b2 = 1.

The graph of the parametric equations

x = h + a sin θ and y = k + b cos θ, 0 ≤ θ ≤ 2π

is also the ellipse (traced clockwise) given by

(x − h)2
a2 +

(y − k)2
b2 = 1.

In Examples 2 and 3, it is important to realize that eliminating the parameter is 
primarily an aid to curve sketching. When the parametric equations represent the path 
of a moving object, the graph alone is not sufficient to describe the motion of the object. 
You still need the parametric equations to tell you the position, direction, and speed at 
a given time.

TECHNOLOGY Use a 
graphing utility in parametric 
mode to graph several ellipses.

x
1 2

2

3

4

1

−1
−1

−2

−2

−3

−4

θ = 0θ = π

θ = π
2

θ = π
2

3

Parametric equations:
x = 3 cos   , y = 4 sin

Rectangular equation:

θ θ

x2 y2

9 16
+       = 1

y

Figure 10.23
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Finding Parametric Equations
The first three examples in this section illustrate techniques for sketching the graph 
represented by a set of parametric equations. You will now investigate the reverse 
problem. How can you determine a set of parametric equations for a given graph or a 
given physical description? From the discussion following Example 1, you know that 
such a representation is not unique. This is demonstrated further in the next example, 
which finds two different parametric representations for a given graph.

 Finding Parametric Equations for a Given Graph

Find a set of parametric equations that represents the graph of y = 1 − x2, using each 
of the following parameters.

a. t = x  b. The slope m =
dy
dx

 at the point (x, y)

Solution

a. Letting x = t produces the parametric equations

x = t and y = 1 − x2 = 1 − t2.

b. To write x and y in terms of the parameter m, you can proceed as follows.

 m =
dy
dx

 m = −2x Differentiate y = 1 − x2.

 x = −
m
2

 Solve for x.

  This produces a parametric equation for x. To obtain a parametric equation for y, 
substitute −m�2 for x in the original equation.

 y = 1 − x2 Write original rectangular equation.

 y = 1 − (−m
2 )

2

 Substitute −m�2 for x.

 y = 1 −
m2

4
 Simplify.

 So, the parametric equations are

x = −
m
2

 and y = 1 −
m2

4
.

  In Figure 10.24, note that the resulting curve has a right-to-left orientation as 
determined by the increasing values of slope m. For part (a), the curve would have 
the opposite orientation. 

TECHNOLOGY To be efficient at using a graphing utility, it is important that 
you develop skill in representing a graph by a set of parametric equations. The 
reason for this is that many graphing utilities have only three graphing modes–– 
(1) functions, (2) parametric equations, and (3) polar equations. Most graphing 
utilities are not programmed to graph a general equation. For instance, suppose you 
want to graph the hyperbola x2 − y2 = 1. To graph the hyperbola in function mode, 
you need two equations

y = √x2 − 1 and y = −√x2 − 1.

In parametric mode, you can represent the graph by x = sec t and y = tan t.

 FOR FURTHER INFORMATION
To read about other methods for 
finding parametric equations,  
see the article “Finding Rational 
Parametric Curves of Relative 
Degree One or Two” by Dave 
Boyles in The College Mathematics 
Journal. To view this article,  
go to MathArticles.com.

1

−3

−2

−2

1

−1

−1 2
x

m = −4

m = −2

4
m2

y = 1 − 

m = 4

m = 2

m = 0

x = −

Rectangular equation: y = 1 − x2

Parametric equations:

2
m ,

y

Figure 10.24
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 Parametric Equations for a Cycloid

Determine the curve traced by a point P on the circumference of a circle of radius a 
rolling along a straight line in a plane. Such a curve is called a cycloid.

Solution Let the parameter θ be the measure of the circle’s rotation, and let the 
point P = (x, y) begin at the origin. When θ = 0, P is at the origin. When θ = π, P is 
at a maximum point (πa, 2a). When θ = 2π, P is back on the x-axis at (2πa, 0). From 
Figure 10.25, you can see that ∠APC = 180° − θ. So,

 sin θ = sin(180° − θ) = sin(∠APC) = AC
a

=
BD
a

 cos θ = −cos(180° − θ) = −cos(∠APC) = AP
−a

which implies that AP = −a cos θ and BD = a sin θ.
Because the circle rolls along the x-axis, you know that OD = PD�= aθ. 

Furthermore, because BA = DC = a, you have 

 x = OD − BD = aθ − a sin θ
 y = BA + AP = a − a cos θ.

So, the parametric equations are

x = a(θ − sin θ) and y = a(1 − cos θ).

2a

a

π π3 aπaO
x

P = (x, y)

θ
A

B

C

D

Cycloid:
x = a(   − sin   )
y = a(1 − cos   )

θ θ
θy

(2  a, 0)

π(3  a, 2a)π(  a, 2a)

π(4  a, 0)

 Figure 10.25 

TECHNOLOGY Some graphing utilities allow you to simulate the motion of an 
object that is moving in the plane or in space. If you have access to such a utility, use 
it to trace out the path of the cycloid shown in Figure 10.25.

The cycloid in Figure 10.25 has sharp corners called cusps at the values x = 2nπa. 
Notice that the derivatives x′(θ) and y′(θ) are both zero at the points for which θ = 2nπ.

x(θ) = a(θ − sin θ) y(θ) = a(1 − cos θ)
x′(θ) = a − a cos θ y′(θ) = a sin θ
x′(2nπ) = 0 y′(2nπ) = 0

Between these points, the cycloid is called smooth.

Definition of a Smooth Curve

A curve C represented by x = f (t) and y = g(t) on an interval I is called 
smooth when f′ and g′ are continuous on I and not simultaneously 0, except 
possibly at the endpoints of I. The curve C is called piecewise smooth when it 
is smooth on each subinterval of some partition of I.

 FOR FURTHER INFORMATION
For more information on cycloids, 
see the article “The Geometry of 
Rolling Curves” by John Bloom 
and Lee Whitt in The American 
Mathematical Monthly. To view 
this article, go to MathArticles.com.

CYCLOIDS

Galileo first called attention to 
the cycloid, once recommending 
that it be used for the arches of 
bridges. Pascal once spent  
8 days attempting to solve many 
of the problems of cycloids, such 
as finding the area under one 
arch and finding the volume of 
the solid of revolution formed 
by revolving the curve about a 
line. The cycloid has so many 
interesting properties and has 
caused so many quarrels among 
mathematicians that it has been 
called “the Helen of geometry” 
and “the apple of discord.”
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The Tautochrone and Brachistochrone Problems
The curve described in Example 5 is related to one of the most famous pairs of problems 
in the history of calculus. The first problem (called the tautochrone problem) began 
with Galileo’s discovery that the time required to complete a full swing of a pendulum 
is approximately the same whether it makes a large  movement at high speed or a small 
movement at lower speed (see Figure 10.26). Late in his life, Galileo realized that he 
could use this principle to construct a clock. However, he was not able to conquer 
the mechanics of actual construction. Christian Huygens (1629–1695) was the first to 
design and construct a working model. In his work with pendulums, Huygens realized 
that a pendulum does not take exactly the same time to complete swings of varying 
lengths. (This does not affect a pendulum clock, because the length of the circular arc is 
kept constant by giving the pendulum a slight boost each time it passes its lowest point.) 
But, in studying the problem, Huygens discovered that a ball rolling back and forth on 
an inverted cycloid does complete each cycle in exactly the same time.

The second problem, which was posed by John Bernoulli in 1696, is called the 
 brachistochrone problem—in Greek, brachys means short and chronos means time. 
The problem was to determine the path down which a particle (such as a ball) will 
slide from point A to point B in the shortest time. Several mathematicians took up 
the challenge, and the following year the problem was solved by Newton, Leibniz, 
L’Hôpital, John Bernoulli, and James Bernoulli. As it turns out, the solution is not a 
straight line from A to B, but an inverted cycloid passing through the points A and B, 
as shown in Figure 10.27.

A

B

 An inverted cycloid is the path down which
 a ball will roll in the shortest time.
 Figure 10.27

The amazing part of the solution to the brachistochrone problem is that a particle 
starting at rest at any point C of the cycloid between A and B will take exactly the same 
time to reach B, as shown in Figure 10.28.

A

B

C

 A ball starting at point C takes the same time 
 to reach point B as one that starts at point A.
 Figure 10.28

 FOR FURTHER INFORMATION To see a proof of the famous brachistochrone  
problem, see the article “A New Minimization Proof for the Brachistochrone” by 
Gary Lawlor in The American Mathematical Monthly. To view this article, go to 
MathArticles.com. 

A B

C

The time required to complete a full 
swing of the pendulum when starting 
from point C is only approximately  
the same as the time required when 
starting from point A.
Figure 10.26

JAMES BERNOULLI (1654–1705)

James Bernoulli, also called 
Jacques, was the older brother 
of John. He was one of several 
accomplished mathematicians 
of the Swiss Bernoulli 
family. James’s mathematical 
accomplishments have given 
him a prominent place in the 
early development of calculus.
See LarsonCalculus.com to read 
more of this biography.

INTERFOTO/Alamy Stock Photo

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.2 Plane Curves and Parametric Equations 707

10.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Parametric Equations What information does a 

set of parametric equations provide that is lacking in a 
rectangular equation for describing the motion of an object?

2.  Plane Curve Explain the process of sketching a plane 
curve given by parametric equations. What is meant by 
the orientation of the curve?

3.  Think About It How can two sets of parametric 
equations represent the same graph but different curves?

4.  Adjusting a Domain Consider the parametric 
equations

 x = √t − 2 and y = 1
2t + 1, t ≥ 2.

What is implied about the domain of the resulting 
rectangular equation?

 Using Parametric Equations In Exercises 
5–22, sketch the curve represented by the 
parametric equations (indicate the orientation  
of the curve), and write the corresponding 
rectangular equation by eliminating the parameter.

 5. x = 2t − 3, y = 3t + 1  6. x = 5 − 4t, y = 2 + 5t

7. x = t + 1, y = t2  8. x = 2t2, y = t4 + 1

9. x = t3, y =
t2

2
 10. x = t2 + t, y = t2 − t

11. x = √t, y = t − 5 12. x = 4√t, y = 8 − t

13. x = t − 3, y =
t

t − 3
 14. x = 1 +

1
t
, y = t − 1

15. x = 2t, y = ∣t − 2∣ 16. x = ∣t − 1∣, y = t + 2

17. x = et, y = e3t + 1 18. x = e−t, y = e2t − 1

19. x = 8 cos θ, y = 8 sin θ

20. x = 3 cos θ, y = 7 sin θ

21. x = sec θ, y = cos θ, 0 ≤ θ < π�2, π�2 < θ ≤ π

22. x = tan2 θ, y = sec2 θ

 Using Parametric Equations In Exercises 
23–34, use a graphing utility to graph the 
curve represented by the parametric equations 
(indicate the orientation of the curve). Eliminate 
the parameter and write the  corresponding 
rectangular equation.

23. x = 6 sin 2θ 24. x = cos θ

y = 4 cos 2θ  y = 2 sin 2θ

25. x = 4 + 2 cos θ 26. x = −2 + 3 cos θ

y = −1 + sin θ  y = −5 + 3 sin θ

27. x = −3 + 4 cos θ 28. x = sec θ

y = 2 + 5 sin θ  y = tan θ

29. x = 4 sec θ 30. x = cos3 θ

y = 3 tan θ  y = sin3 θ

31. x = t3, y = 3 ln t 32. x = ln 2t, y = t2

33. x = e−t, y = e3t 34. x = e2t, y = et

Comparing Plane Curves In Exercises 35–38, determine 
any differences between the curves of the parametric equations. 
Are the graphs the same? Are the orientations the same? Are 
the curves smooth? Explain.

35. (a) x = t, y = t2 (b) x = −t, y = t2

36. (a) x = t + 1, y = t3 (b) x = −t + 1, y = (−t)3

37. (a) x = t (b) x = cos θ

  y = 2t + 1  y = 2 cos θ + 1

(c) x = e−t (d) x = et

  y = 2e−t + 1  y = 2et + 1

38. (a) x = 2 cos θ (b) x = √4t2 − 1�∣t∣
y = 2 sin θ  y = 1�t

(c) x = √t (d) x = −√4 − e2t

y = √4 − t  y = et

Eliminating a Parameter In Exercises 39–42, eliminate 
the parameter and obtain the standard form of the rectangular 
equation.

39. Line through (x1, y1) and (x2, y2):
x = x1 + t(x2 − x1), y = y1 + t(y2 − y1)

40. Circle: x = h + r cos θ, y = k + r sin θ

41. Ellipse: x = h + a cos θ, y = k + b sin θ

42. Hyperbola: x = h + a sec θ, y = k + b tan θ

Writing a Set of Parametric Equations In Exercises 
43–50, use the results of Exercises 39–42 to find a set of 
parametric equations for the line or conic.

43. Line: passes through (0, 0) and (4, −7)
44. Line: passes through (−3, 1) and (1, 9)
45. Circle: center: (1, 1); radius: 2

46. Circle: center: (−1
2, −4); radius: 1

2

47. Ellipse: vertices: (−3, 0), (7, 0); foci: (−1, 0), (5, 0)
48. Ellipse: vertices: (−1, 8), (−1, −12); foci: (−1, 4), (−1, −8)
49. Hyperbola: vertices: (0, ±1); foci: (0, ±√5)
50. Hyperbola: vertices: (−2, 1), (0, 1); foci: (−3, 1), (1, 1)

 Finding Parametric Equations In Exercises 
51–54, find two different sets of parametric 
equations for the rectangular equation.

51. y = 6x − 5 52. y = 4�(x − 1)
53. y = x3 54. y = x2
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 Finding Parametric Equations In Exercises 
55–58, find a set of parametric equations for 
the rectangular equation that satisfies the given 
condition.

55. y = 2x − 5, t = 0 at the point (3, 1)
56. y = 4x + 1, t = −1 at the point (−2, −7)
57. y = x2, t = 4 at the point (4, 16)
58. y = 4 − x2, t = 1 at the point (1, 3)

Graphing a Plane Curve In Exercises 59–66, use a graphing 
utility to graph the curve represented by the parametric 
equations. Indicate the orientation of the curve. Identify any 
points at which the curve is not smooth.

59. Cycloid: x = 2(θ − sin θ), y = 2(1 − cos θ)
60. Cycloid: x = θ + sin θ, y = 1 − cos θ

61. Prolate cycloid: x = θ − 3
2 sin θ, y = 1 − 3

2 cos θ

62. Prolate cycloid: x = 2θ − 4 sin θ, y = 2 − 4 cos θ

63. Hypocycloid: x = 3 cos3 θ, y = 3 sin3 θ

64. Curtate cycloid: x = 2θ − sin θ, y = 2 − cos θ

65. Witch of Agnesi: x = 2 cot θ, y = 2 sin2 θ

66. Folium of Descartes: x = 3t�(1 + t3), y = 3t2�(1 + t3)

EXPLORING CONCEPTS
67.  Orientation Describe the orientation of the 

parametric equations x = t2 and y = t4 for −1 ≤ t ≤ 1.

68.  Conjecture Make a conjecture about the change 
in the graph of parametric equations when the sign of 
the parameter is changed. Explain your reasoning using 
examples to support your conjecture.

69.  Think About It The following sets of parametric 
equations have the same graph. Does this contradict your 
conjecture from Exercise 68? Explain.

 x = cos θ, y = sin2 θ, 0 < θ < π

 x = cos(−θ), y = sin2(−θ), 0 < θ < π

 70.  HOW DO YOU SEE IT? Which set of 
parametric equations is shown in the graph 
below? Explain your reasoning.

 (a) x = t (b) x = t2

 y = t2 y = t

 

x

y

1 2

1

2

3

4

5

3−1−2−3

70.  

Matching In Exercises 71–74, match the set of parametric 
equations with its graph. [The graphs are labeled (a), (b), (c), 
and (d).] Explain your reasoning.

(a) 

x
1

2

2−1−2

−2

y  (b) 

x

y

−2

−4

−1−2−3 1 2 3

1
2

4

(c) 

x
1

1

2

2

3

3−1−2

−3

−3

y  (d) 

x
−2

−2
−3
−4

2

2

3

3

4

y

71. Lissajous curve: x = 4 cos θ, y = 2 sin 2θ

72. Evolute of ellipse: x = cos3 θ, y = 2 sin3 θ

73. Involute of circle: x = cos θ + θ sin θ, y = sin θ − θ cos θ

74. Serpentine curve: x = cot θ,  y = 4 sin θ cos θ

75.  Curtate Cycloid A wheel of radius a rolls along a line 
without slipping. The curve traced by a point P that is b 
units from the center (b < a) is called a curtate cycloid (see 
figure). Use the angle θ to find a set of parametric equations 
for this curve.

2a

(0, a − b)

b

a

P

θ

(  a, a + b)π

x

y  

1

1

3

3

4

4
x

θ
(x, y)

y

 Figure for 75 Figure for 76

76.  Epicycloid A circle of radius 1 rolls around the outside 
of a circle of radius 2 without slipping. The curve traced by 
a point on the circumference of the smaller circle is called 
an epicycloid (see figure). Use the angle θ to find a set of 
parametric equations for this curve.

True or False? In Exercises 77–79, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

77.  The graph of the parametric equations x = t2 and y = t2 is the 
line y = x.

78.  If y is a function of t and x is a function of t, then y is a function 
of x.

79.  The curve represented by the parametric equations x = t and 
y = cos t can be written as an equation of the form y = f (x).
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80.  Translation of a Plane Curve Consider the parametric 
equations x = 8 cos t and y = 8 sin t.

(a)  Describe the curve represented by the parametric equations.

(b)  How does the curve represented by the parametric equations

x = 8 cos t + 3 and y = 8 sin t + 6

compare to the curve described in part (a)?

(c)  How does the original curve change when cosine and sine 
are interchanged?

Projectile Motion In Exercises 81 and 82, consider a 
projectile launched at a height h feet above the ground and 
at an angle θ with the horizontal. When the initial velocity is 
v0 feet per second, the path of the projectile is modeled by the 
parametric equations

x = (v0 cos θ)t

and

y = h + (v0 sin θ)t − 16t2.

82.  A rectangular equation for the path of a projectile is 
y = 5 + x − 0.005x2.

(a)  Eliminate the parameter t from the position function for 
the motion of a projectile to show that the rectangular 
equation is

  y = −
16 sec2 θ

v0
2 x2 + (tan θ)x + h.

(b)  Use the result of part (a) to find h, v0, and θ. Find the 
parametric equations of the path.

 (c)  Use a graphing utility to graph the rectangular equation 
for the path of the projectile. Confirm your answer in part 
(b) by sketching the curve represented by the parametric 
equations.

 (d)  Use a graphing utility to approximate the maximum height 
of the projectile and its range.

The center field fence in a ballpark is 10 feet high and  
400 feet from home plate. 
The ball is hit 3 feet 
above the ground. It 
leaves the bat at an  
angle of θ degrees with 
the horizontal at a speed 
of 100 miles per hour.

(a)  Write a set of 
parametric equations 
for the path of the ball.

(b)  Use a graphing utility to graph the path of the ball when 
θ = 15°. Is the hit a home run?

(c)  Use a graphing utility to graph the path of the ball when 
θ = 23°. Is the hit a home run?

(d)  Find the minimum angle at which the ball must leave the 
bat in order for the hit to be a home run.

81. Baseball

In Greek, the word cycloid means wheel, the word hypocycloid 
means under the wheel, and the word epicycloid means upon the 
wheel. Match the hypocycloid or epicycloid with its graph. [The 
graphs are labeled (a), (b), (c), (d), (e), and (f).]

Hypocycloid, H(A, B)
The path traced by a fixed point on a circle of radius B as it rolls 
around the inside of a circle of radius A

x = (A − B) cos t + B cos(A − B
B )t

y = (A − B) sin t − B sin(A − B
B )t

Epicycloid, E(A, B)
The path traced by a fixed point on a circle of radius B as it rolls 
around the outside of a circle of radius A

x = (A + B) cos t − B cos(A + B
B )t

y = (A + B) sin t − B sin(A + B
B )t

 I. H(8, 3) II. E(8, 3) III. H(8, 7)
IV. E(24, 3) V. H(24, 7) VI. E(24, 7)
(a) 

x

y  (b) 

x

y

(c) 

x

y  (d) 

x

y

(e) 

x

y  (f ) 

x

y

Exercises based on “Mathematical Discovery via Computer 
Graphics: Hypocycloids and Epicycloids” by Florence S. Gordon 
and Sheldon P. Gordon, College Mathematics Journal, November 
1984, p. 441. Used by permission of the authors.

Cycloids

Rob Friedman/E+/Getty Images
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10.3 Parametric Equations and Calculus

 Find the slope of a tangent line to a curve given by a set of parametric equations.
 Find the arc length of a curve given by a set of parametric equations.
 Find the area of a surface of revolution (parametric form).

Slope and Tangent Lines
Now that you can represent a graph in the plane by a set of parametric equations, it 
is natural to ask how to use calculus to study plane curves. Consider the projectile 
represented by the parametric equations

x = 24√2t and y = −16t2 + 24√2t

as shown in Figure 10.29. From the discussion at the beginning of Section 10.2, you 
know that these equations enable you to locate the position of the projectile at a given 
time. You also know that the object is initially projected at an angle of 45°, or a slope 
of m = tan 45° = 1. But how can you find the slope at some other time t? The next 
theorem answers this question by giving a formula for the slope of the tangent line as 
a function of t.

THEOREM 10.7 Parametric Form of the Derivative

If a smooth curve C is given by the equations

x = f (t) and y = g(t)

then the slope of C at (x, y) is

dy
dx

=
dy�dt
dx�dt

, 
dx
dt

≠ 0.

Proof In Figure 10.30, consider ∆t > 0 and let

∆y = g(t + ∆t) − g(t) and ∆x = f (t + ∆t) − f (t).

Because ∆x→0 as ∆t→0, you can write

 
dy
dx

= lim
∆x→0

 
∆y
∆x

 = lim
∆t→0

 
g(t + ∆t) − g(t)
f (t + ∆t) − f (t) .

Dividing both the numerator and denominator by ∆t, you can use the differentiability 
of f  and g to conclude that

 
dy
dx

= lim
∆t→0

 
[g(t + ∆t) − g(t)]�∆t
[ f (t + ∆t) − f (t)]�∆t

 =
 lim
∆t→0

 
g(t + ∆t) − g(t)

∆t
 

lim
∆t→0

 
f (t + ∆t) − f (t)

∆t

 =
g′(t)
f′(t)

 =
dy�dt
dx�dt

. 

30

20

30

10

10

20
x

θ

x = 24   2t
y = −16t2 + 24   2t

y

45°

At time t, the angle of elevation of the 
projectile is θ.
Figure 10.29

x

Δy

Δx

( f(t), g(t))

( f(t + Δt), g(t + Δt))

y

The slope of the secant line  
through the points ( f (t), g(t)) and 
( f (t + ∆t), g(t + ∆t)) is ∆y�∆x.
Figure 10.30
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 Differentiation and Parametric Form

Find dy�dx for the curve given by x = sin t and y = cos t.

Solution

 
dy
dx

=
dy�dt
dx�dt

 =
−sin t
 cos t

 = −tan t 

Because dy�dx is a function of t, you can use Theorem 10.7 repeatedly to find 
higher-order derivatives. For instance,

 
d2y
dx2 =

d
dx[

dy
dx] =

d
dt[

dy
dx]

dx�dt
 Second derivative

 
d3y
dx3 =

d
dx[

d2y
dx2] =

d
dt[

d2y
dx2]

dx�dt
. Third derivative

 Finding Slope and Concavity

For the curve given by

x = √t and y =
1
4
(t2 − 4), t ≥ 0

find the slope and concavity at the point (2, 3).

Solution Because

dy
dx

=
dy�dt
dx�dt

=
(1�2)t

(1�2)t−1�2 = t3�2 Parametric form of first derivative

you can find the second derivative to be

d2y
dx2 =

d
dt[

dy
dx]

dx�dt
=

d
dt
[t3�2]

dx�dt
=

(3�2)t1�2

(1�2)t−1�2 = 3t. 
Parametric form of second 
derivative

At (x, y) = (2, 3), it follows that t = 4, and the slope is

dy
dx

= (4)3�2 = 8.

Moreover, when t = 4, the second derivative is

d2y
dx2 = 3(4) = 12 > 0

and you can conclude that the graph is concave upward at (2, 3), as shown in  
Figure 10.31. 

Because the parametric equations x = f (t) and y = g(t) need not define y as a 
function of x, it is possible for a plane curve to loop around and cross itself. At such 
points, the curve may have more than one tangent line, as shown in the next example.

x =     t

y = 1
4

(t2 − 4)

x
1

1

2

2

3

−1

−1

(2, 3)
t = 4
m = 8

y

The graph is concave upward at (2, 3) 
when t = 4.
Figure 10.31

Exploration
The curve traced out in 
Example 1 is a circle. Use 
the formula

dy
dx

= −tan t

to find the slopes at the 
points (1, 0) and (0, 1).
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 A Curve with Two Tangent Lines at a Point

See LarsonCalculus.com for an interactive version of this type of example.

The prolate cycloid given by

x = 2t − π sin t and y = 2 − π cos t

crosses itself at the point (0, 2), as shown in Figure 10.32. Find the equations of both 
tangent lines at this point.

Solution Because x = 0 and y = 2 when t = ±π�2, and

dy
dx

=
dy�dt
dx�dt

=
π sin t

2 − π cos t

you have dy�dx = −π�2 when t = −π�2 and dy�dx = π�2 when t = π�2. So, the 
two tangent lines at (0, 2) are

y − 2 = −
π
2
x Tangent line when t = −

π
2

and

y − 2 =
π
2
x. Tangent line when  t =

π
2
 

If dy�dt = 0 and dx�dt ≠ 0 when t = t0, then the curve represented by x = f (t) 
and y = g(t) has a horizontal tangent at ( f (t0), g(t0)). For instance, in Example 3, the 
given curve has a horizontal tangent at the point (0, 2 − π) (when t = 0). Similarly, 
if dx�dt = 0 and dy�dt ≠ 0 when t = t0, then the curve represented by x = f (t) and 
y = g(t) has a vertical tangent at ( f (t0), g(t0)). If dy�dt and dx�dt are simultaneously 0, 
then no conclusion can be drawn about tangent lines.

Arc Length
You have seen how parametric equations can be used to describe the path of a particle 
moving in the plane. You will now develop a formula for determining the distance 
traveled by the particle along its path.

Recall from Section 7.4 that the formula for the arc length of a curve C given by 
y = h(x) over the interval [x0, x1] is

 s = ∫x1

x0

 √1 + [h′(x)]2 dx

 = ∫x1

x0

 √1 + (dydx)
2

 dx.

If C is represented by the parametric equations x = f (t) and y = g(t), a ≤ t ≤ b, and 
if dx�dt = f′(t) > 0, then

 s = ∫x1

x0

 √1 + (dydx)
2

 dx

 = ∫x1

x0

 √1 + (dy�dtdx�dt)
2

 dx

 = ∫b
a

 √(dx�dt)2 + (dy�dt)2
(dx�dt)2  

dx
dt

 dt

 = ∫b
a

 √(dxdt)
2

+ (dydt)
2

 dt

 = ∫b
a

 √[ f′(t)]2 + [g′(t)]2 dt.

y

x = 2t −    sin t
π
π

π

π

x
π

−2

2

4

6

π−

(0, 2)

Tangent line (t =   /2)

Tangent line (t = −   /2)

y = 2 −    cos t

This prolate cycloid has two tangent 
lines at the point (0, 2).
Figure 10.32
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THEOREM 10.8 Arc Length in Parametric Form

If a smooth curve C is given by x = f (t) and y = g(t) such that C does not  
intersect itself on the interval a ≤ t ≤ b (except possibly at the endpoints),  
then the arc length of C over the interval is given by

s = ∫b
a

 √(dxdt)
2

+ (dydt)
2

 dt = ∫b
a

 √[ f′(t)]2 + [g′(t)]2 dt.

In the preceding section, you saw that if a circle rolls along a line, then a point 
on its circumference will trace a path called a cycloid. If the circle rolls around the 
circumference of another circle, then the path of the point is an epicycloid. The next 
example shows how to find the arc length of an epicycloid.

 Finding Arc Length

A circle of radius 1 rolls around the circumference of a larger circle of radius 4, as 
shown in Figure 10.33. The epicycloid traced by a point on the circumference of the 
smaller circle is given by

x = 5 cos t − cos 5t and y = 5 sin t − sin 5t.

Find the distance traveled by the point in one complete trip about the larger circle.

Solution Before applying Theorem 10.8, note in Figure 10.33 that the curve has 
sharp points when t = 0 and t = π�2. Between these two points, dx�dt and dy�dt are 
not simultaneously 0. So, the portion of the curve generated from t = 0 to t = π�2 is 
smooth. To find the total distance traveled by the point, you can find the arc length of 
that portion lying in the first quadrant and multiply by 4.

 s = 4∫π�2

0
 √(dxdt)

2

+ (dydt)
2

 dt Parametric form for arc length

 = 4∫π�2

0
 √(−5 sin t + 5 sin 5t)2 + (5 cos t − 5 cos 5t)2 dt

 = 20∫π�2

0
 √2 − 2 sin t sin 5t − 2 cos t cos 5t dt

 = 20∫π�2

0
 √2 − 2 cos 4t dt Difference formula for cosine

 = 20∫π�2

0
 √4 sin2 2t dt Double-angle formula

 = 40∫π�2

0
 sin 2t dt

 = −20[cos 2t]
π�2

0

 = 40

For the epicycloid shown in Figure 10.33, an arc length of 40 seems about right because 
the circumference of a circle of radius 6 is 

2πr = 12π ≈ 37.7. 

REMARK When applying the arc length formula to a curve, be sure that the curve 
is traced out only once on the interval of integration. For instance, the circle given by 
x = cos t and y = sin t is traced out once on the interval 0 ≤ t ≤ 2π  but is traced out 
twice on the interval 0 ≤ t ≤ 4π.

2

2

−2
−2−6

−6

x

nit

ea
se

s

cr

x = 5 cos t − cos 5t
y = 5 sin t − sin 5t

y

An epicycloid is traced by a point on 
the smaller circle as it rolls around the 
larger circle.
Figure 10.33

ARCH OF A CYCLOID

The arc length of an arch of a 
cycloid was first calculated in 
1658 by British architect and 
mathematician Christopher 
Wren, famous for rebuilding 
many buildings and churches 
in London, including St. Paul’s 
Cathedral.
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Area of a Surface of Revolution
You can use the formula for the area of a surface of revolution in rectangular form to 
develop a formula for surface area in parametric form.

THEOREM 10.9 Area of a Surface of Revolution

If a smooth curve C given by x = f (t) and y = g(t) does not cross itself on an 
interval a ≤ t ≤ b, then the area S of the surface of revolution formed by  
revolving C about the coordinate axes is given by the following.

1. S = 2π∫b
a

 g(t)√(dxdt)
2

+ (dydt)
2

 dt Revolution about the x-axis: g(t) ≥ 0

2. S = 2π∫b
a

 f (t)√(dxdt)
2

+ (dydt)
2

 dt Revolution about the y-axis: f (t) ≥ 0

These formulas may be easier to remember if you think of the differential of arc 
length as

ds =√(dxdt)
2

+ (dydt)
2

 dt. Differential of arc length

Then the formulas in Theorem 10.9 can be written as follows.

1. S = 2π∫b
a

 g(t) ds   2. S = 2π∫b
a

 f (t) ds

 Finding the Area of a Surface of Revolution

Let C be the arc of the circle x2 + y2 = 9 from (3, 0) to 

(32, 
3√3

2 )
as shown in Figure 10.34. Find the area of the surface formed by revolving C about 
the x-axis.

Solution You can represent C parametrically by the equations

x = 3 cos t and y = 3 sin t, 0 ≤ t ≤ π�3.

(Note that you can determine the interval for t by observing that t = 0 when x = 3 and 
t = π�3 when x = 3�2.) On this interval, C is smooth and y is nonnegative, and you 
can apply Theorem 10.9 to obtain a surface area of

 S = 2π∫π�3

0
 (3 sin t)√(−3 sin t)2 + (3 cos t)2 dt Apply formula for area of 

a surface of revolution.

 = 6π∫π�3

0
 sin t√9(sin2 t + cos2 t) dt

 = 6π∫π�3

0
 3 sin t dt Trigonometric identity

 = −18π[cos t]
π�3

0

 = −18π(12 − 1)
 = 9π. 

x

−3

−2

−1

−1

1

2

3

41

C

(3, 0)

3
2

3
2

 , )) 3
y

The surface of revolution has a surface 
area of 9π.
Figure 10.34
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10.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Parametric Form of the Derivative What does 

the parametric form of the derivative represent?

2.  Tangent Lines Under what circumstances can a 
graph that represents a set of parametric equations have 
more than one tangent line at a given point?

3.  Tangent Lines Consider a curve represented by the 
parametric equations x = f (t) and y = g(t). When does the 
graph have horizontal tangent lines? Vertical tangent lines?

4.  Arc Length Why does the arc length formula require 
that the curve not intersect itself on an interval, except 
possibly at the endpoints?

 Finding a Derivative In Exercises 5–8, find 
dy�dx.

 5. x = t2, y = 7 − 6t  6. x = 3√t, y = 4 − t

 7. x = sin2 θ, y = cos2 θ 8. x = 2eθ, y = e−θ�2

 Finding Slope and Concavity In Exercises 
9–18, find dy�dx and d2y�dx2, and find the slope 
and concavity (if possible) at the given value of the 
parameter.

 Parametric Equations Parameter

 9. x = 4t, y = 3t − 2 t = 3

10. x = √t, y = 3t − 1 t = 1

11. x = t + 1, y = t2 + 3t t = −2

12. x = t2 + 5t + 4, y = 4t t = 0

13. x = 4 cos θ, y = 4 sin θ θ =
π
4

14. x = cos θ, y = 3 sin θ θ = 0

15. x = 2 + sec θ, y = 1 + 2 tan θ θ = −
π
3

16. x = √t, y = √t − 1 t = 5

17. x = cos3 θ, y = sin3 θ θ =
π
4

18. x = θ − sin θ, y = 1 − cos θ θ = π

 Finding Equations of Tangent Lines In 
Exercises 19–22, find an equation of the tangent 
line to the curve at each given point.

19. x = 2 cot θ, y = 2 sin2 θ, (− 2

√3
, 

3
2), (0, 2), (2√3, 

1
2)

20. x = 2 − 3 cos θ, y = 3 + 2 sin θ,

 (−1, 3), (2, 5), (4 + 3√3
2

, 2)
21. x = t2 − 4, y = t2 − 2t, (0, 0), (−3, −1), (−3, 3)

22. x = t4 + 2, y = t3 + t, (2, 0), (3, −2), (18, 10)

Finding an Equation of a Tangent Line In Exercises 
23–26, (a) use a graphing utility to graph the curve represented 
by the parametric equations, (b) use a graphing utility to find 
dx�dt, dy�dt, and dy�dx at the given value of the parameter,  
(c) find an equation of the tangent line to the curve at the given 
value of the parameter, and (d) use a graphing  utility to graph 
the curve and the tangent line from part (c).

 Parametric Equations Parameter

23. x = 6t,  y = 1 − 4t2 t = −
1
2

24. x = t − 2, y =
1
t
+ 3 t = 1

25. x = t2 − t + 2, y = t3 − 3t t = −1

26. x = 3t − t2, y = 2t3�2 t =
1
4

 Finding Equations of Tangent Lines In 
Exercises 27–30, find the equations of the tangent 
lines at the point where the curve crosses itself.

27. x = 2 sin 2t, y = 3 sin t 

28. x = 2 − π cos t, y = 2t − π sin t

29. x = t2 − t, y = t3 − 3t − 1

30. x = t3 − 6t, y = t2

Horizontal and Vertical Tangency In Exercises 31 and 
32, find all points (if any) of horizontal and vertical tangency 
to the curve on the given interval.

31. x = cos θ + θ sin θ 32. x = 2θ

 y = sin θ − θ cos θ y = 2(1 − cos θ)
 −2π ≤ θ ≤ 2π  0 ≤ θ ≤ 2π

 

x

y

−2−6−8 4 6 8

−4

−8

2
4

8

  y

x
−2 2 4 6 8 10 12 14
−2

2

4

6

 Horizontal and Vertical Tangency In 
Exercises 33–42, find all points (if any) of horizontal 
and vertical tangency to the curve. Use a graphing 
utility to confirm your results.

33. x = 9 − t, y = −t2 34. x = t + 1, y = t2 + 3t

35. x = t + 4, y = t3 − 12t + 6

36. x = t2 − t + 2, y = t3 − 3t

37. x = 7 cos θ, y = 7 sin θ 38. x = cos θ, y = 2 sin 2θ
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39. x = 5 + 3 cos θ, y = −2 + sin θ

40. x = sec θ, y = tan θ

41. x = 4 cos2 θ, y = 2 sin θ 42. x = cos2 θ, y = cos θ

 Determining Concavity In Exercises 43–48, 
determine the open t-intervals on which the curve 
is concave downward or concave upward.

43. x = 3t 2, y = t3 − t  44. x = 2 + t2, y = t2 + t3

45. x = 2t + ln t, y = 2t − ln t

46. x = t2, y = ln t

47. x = sin t, y = cos t, 0 < t < π

48. x = 4 cos t, y = 2 sin t, 0 < t < 2π

 Arc Length In Exercises 49–54, find the arc 
length of the curve on the given interval.

 Parametric Equations Interval

49. x = 3t + 5, y = 7 − 2t −1 ≤ t ≤ 3

50. x = 6t2, y = 2t3 1 ≤ t ≤ 4

51. x = e−t cos t, y = e−t sin t 0 ≤ t ≤ π
2

52. x = arcsin t, y = ln√1 − t2 0 ≤ t ≤ 1
2

53. x = √t, y = 3t − 1 0 ≤ t ≤ 1

54. x = t, y =
t5

10
+

1
6t3

 1 ≤ t ≤ 2

Arc Length In Exercises 55–58, find the arc length of the 
curve on the interval [0, 2π].

55. Hypocycloid perimeter: x = a cos3 θ, y = a sin3 θ

56. Involute of a circle: x = cos θ + θ sin θ

y = sin θ − θ cos θ

57. Cycloid arch: x = a(θ − sin θ), y = a(1 − cos θ)
58. Nephroid perimeter: x = a(3 cos t − cos 3t)

y = a(3 sin t − sin 3t)

59. Path of a Projectile The path of a projectile is modeled 
by the parametric equations

 x = (90 cos 30°)t and y = (90 sin 30°)t − 16t2

where x and y are measured in feet.

 (a) Use a graphing utility to graph the path of the projectile.

 (b)  Use a graphing utility to approximate the range of the 
projectile.

 (c)  Use the integration capabilities of a graphing utility to 
approximate the arc length of the path. Compare this result 
with the range of the projectile.

60.  Path of a Projectile When the projectile in Exercise 59 
is launched at an angle θ with the horizontal, its parametric 
equations are x = (90 cos θ)t and y = (90 sin θ)t − 16t2.
Find the angle that maximizes the range of the projectile. Use a 
graphing utility to find the angle that maximizes the arc length 
of the trajectory.

61.  Folium of Descartes Consider the parametric equations

 x =
4t

1 + t3
 and y =

4t2

1 + t3
.

(a)  Use a graphing utility to graph the curve represented by 
the parametric equations.

(b)  Use a graphing utility to find the points of horizontal 
 tangency to the curve.

(c)  Use the integration capabilities of a graphing utility to 
approximate the arc length of the closed loop. (Hint: Use 
symmetry and integrate over the interval 0 ≤ t ≤ 1.)

62.  Witch of Agnesi Consider the parametric equations

 x = 4 cot θ and y = 4 sin2 θ, −
π
2

≤ θ ≤ π
2

.

(a)  Use a graphing utility to graph the curve represented by 
the parametric equations.

(b)  Use a graphing utility to find the points of horizontal 
 tangency to the curve.

(c)  Use the integration capabilities of a graphing utility 
to approximate the arc length over the interval 
π�4 ≤ θ ≤ π�2.

 Surface Area In Exercises 63–68, find the area 
of the surface generated by revolving the curve 
about each given axis.

63. x = 2t, y = 3t, 0 ≤ t ≤ 3

(a) x-axis

 (b) y-axis

64. x = t, y = 4 − 2t, 0 ≤ t ≤ 2

(a) x-axis

 (b) y-axis

65. x = 5 cos θ, y = 5 sin θ, 0 ≤ θ ≤ π
2

, y-axis

66. x = 1
3t

3, y = t + 1, 1 ≤ t ≤ 2, y-axis

67. x = a cos3 θ, y = a sin3 θ, 0 ≤ θ ≤ π, x-axis

68. x = a cos θ, y = b sin θ, 0 ≤ θ ≤ 2π

(a) x-axis

 (b) y-axis

Surface Area In Exercises 69–72, write an integral that 
represents the area of the surface generated by revolving the 
curve about the x-axis. Use a graphing utility to approximate 
the integral.

 Parametric Equations Interval

69. x = t3, y = t + 2 0 ≤ t ≤ 2

70. x = t2, y = √t 1 ≤ t ≤ 3

71. x = cos2 θ, y = cos θ 0 ≤ θ ≤ π
2

72. x = θ + sin θ, y = θ + cos θ 0 ≤ θ ≤ π
2
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EXPLORING CONCEPTS
73.  Writing

 (a)  Use a graphing utility to graph each set of parametric 
equations.

  x = t − sin t, y = 1 − cos t, 0 ≤ t ≤ 2π

  x = 2t − sin(2t), y = 1 − cos(2t), 0 ≤ t ≤ π

 (b)  Compare the graphs of the two sets of parametric 
equations in part (a). When the curve represents the 
motion of a particle and t is time, what can you infer 
about the average speeds of the particle on the paths 
represented by the two sets of parametric equations?

 (c)  Without graphing the curve, determine the time 
required for a particle to traverse the same path as in 
parts (a) and (b) when the path is modeled by

  x = 1
2t − sin(1

2t) and y = 1 − cos(1
2t).

74. Writing

 (a)  Each set of parametric equations represents the motion 
of a particle. Use a graphing utility to graph each set.

   First Particle: x = 3 cos t, y = 4 sin t, 0 ≤ t ≤ 2π

  Second Particle:  x = 4 sin t, y = 3 cos t, 
0 ≤ t ≤ 2π

 (b) Determine the number of points of intersection.

 (c)  Will the particles ever be at the same place at the 
same time? If so, identify the point(s).

75.  Sketching a Graph Find a set of parametric 
equations x = f (t) and y = g(t) such that dx�dt < 0 and 
dy�dt < 0 for all real numbers t. Then sketch a graph of 
the curve.

 76.  HOW DO YOU SEE IT? Using the graph 
of f, (a) determine whether dy�dt is positive  
or negative given that dx�dt is negative and  
(b) determine whether dx�dt is positive or 
negative given that dy�dt is positive. Explain 
your reasoning.

(i) 

x
1 2 3 4

4

2

1 f

y  (ii) 

x
−3 −2 −1 1 2 3

6
5
4
3
2

f

y

76.  

77.  Integration by Substitution Use integration by 
substitution to show that if y is a continuous function of x on 
the interval a ≤ x ≤ b, where x = f (t) and y = g(t), then

 ∫b
a

 y dx = ∫t2
t1

 g(t) f ′(t) dt

  where f (t1) = a, f (t2) = b, and both g and f ′ are continuous 
on [t1, t2].

78.  Surface Area A portion of a sphere of radius r is removed 
by cutting out a circular cone with its vertex at the center of 
the sphere. The vertex of the cone forms an angle of 2θ. Find 
the surface area removed from the sphere.

Area In Exercises 79 and 80, find the area of the region. (Use 
the result of Exercise 77.)

79. x = 2 sin2 θ 80. x = 2 cot θ

 y = 2 sin2 θ tan θ  y = 2 sin2 θ

 0 ≤ θ <
π
2

  0 < θ < π

 

x

1

1 2

2

−1
−1

−2

−2

y   

x
−1

−1
−2

−2

21

1

y

Areas of Simple Closed Curves In Exercises 81–86, 
use a  computer algebra system and the result of Exercise 77 
to match the closed curve with its area. (These exercises were 
based on “The Surveyor’s Area Formula” by Bart Braden, 
College Mathematics Journal, September 1986, pp. 335–337, by 
permission of the author.)

(a) 8
3 ab (b) 3

8πa2

(c) 2πa2 (d) πab

(e) 2πab (f ) 6πa2

81. Ellipse: (0 ≤ t ≤ 2π) 82. Astroid: (0 ≤ t ≤ 2π)
 x = b cos t  x = a cos3 t

 y = a sin t  y = a sin3 t

 

x

a

b

y   

x

a

a

y

83. Cardioid: (0 ≤ t ≤ 2π) 84. Deltoid: (0 ≤ t ≤ 2π)
 x = 2a cos t − a cos 2t  x = 2a cos t + a cos 2t

 y = 2a sin t − a sin 2t  y = 2a sin t − a sin 2t

 

x
a

y   

x

a

y
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85. Hourglass: (0 ≤ t ≤ 2π) 86. Teardrop: (0 ≤ t ≤ 2π)
x = a sin 2t  x = 2a cos t − a sin 2t

y = b sin t  y = b sin t

x

b

a

y   

x

b

aa

y

Centroid In Exercises 87 and 88, find the centroid of the 
region bounded by the graph of the parametric equations and 
the coordinate axes. (Use the result of Exercise 77.)

87. x = √t, y = 4 − t

88. x = √4 − t, y = √t

Volume In Exercises 89 and 90, find the volume of the 
solid formed by revolving the region bounded by the graph of 
the parametric equations about the x-axis. (Use the result of 
Exercise 77.)

89. x = 6 cos θ, y = 6 sin θ

90. x = cos θ, y = 3 sin θ, a > 0

91. Cycloid Use the parametric equations

 x = a(θ − sin θ) and y = a(1 − cos θ), a > 0

 to answer the following.

 (a) Find dy�dx and d2y�dx2.

 (b)  Find the equation of the tangent line at the point where 
θ = π�6.

 (c) Find all points of horizontal tangency.

 (d)  Determine where the curve is concave upward or concave 
downward.

 (e) Find the length of one arc of the curve.

92. Using Parametric Equations Use the parametric equations

 x = t2√3 and y = 3t −
1
3
t3

 to answer the following.

 (a)  Use a graphing utility to graph the curve on the interval 
−3 ≤ t ≤ 3.

 (b) Find dy�dx and d2y�dx2.

 (c) Find the equation of the tangent line at the point (√3, 83).
 (d) Find the length of the curve on the interval −3 ≤ t ≤ 3.

 (e)  Find the area of the surface generated by revolving the 
curve about the x-axis.

93.  Involute of a Circle The involute of a circle is described 
by the endpoint P of a string that is held taut as it is unwound 
from a spool that does not turn (see figure). Show that a 
parametric representation of the involute is

 x = r(cos θ + θ sin θ) and y = r(sin θ − θ cos θ).

xr

r

P

θ

y

spool

  

1

Figure for 93 Figure for 94

94.  Involute of a Circle The figure shows a piece of string 
tied to a circle with a radius of one unit. The string is just long 
enough to reach the opposite side of the circle. Find the area 
that is covered when the string is unwound counterclockwise.

 95. Using Parametric Equations

 (a) Use a graphing utility to graph the curve given by

x =
1 − t2

1 + t2
 and y =

2t
1 + t2

, −20 ≤ t ≤ 20.

(b) Describe the graph and confirm your result analytically.

(c)  Discuss the speed at which the curve is traced as t
in creases from −20 to 20.

 96.  Tractrix A person moves from the origin along the positive  
y-axis pulling a weight at the end of a 12-meter rope. 
Initially, the weight is located at the point (12, 0).
(a)  In Exercise 61 of Section 8.4, it was shown that the path 

of the weight is modeled by the rectangular equation

y = −12 ln 
12 − √144 − x2

x
− √144 − x2

where 0 < x ≤ 12. Use a graphing utility to graph the 
rectangular equation.

  (b) Use a graphing utility to graph the parametric equations

   y = 12 sech 
t

12
 and y = t − 12 tanh 

t
12

where t ≥ 0. How does this graph compare with the 
graph in part (a)? Which graph (if either) do you think is 
a better representation of the path?

  (c)  Use the parametric equations for the tractrix to verify that 
the distance from the y-intercept of the tangent line to the 
point of tangency is independent of the location of the 
point of tangency.

True or False? In Exercises 97–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 97. If x = f (t) and y = g(t), then 
d2y
dx2 =

g″(t)
f ″(t).

98.  The curve given by x = t3 and y = t2 has a horizontal 
tangent at the origin because dy�dt = 0 when t = 0.

99.  The curve given by x = x1 + t(x2 − x1) and 
y = y1 + t(y2 − y1), y1 ≠ y2, has at least one horizontal 
asymptote.

100.  The curve given by x = h + a cos θ and y = k + b sin θ
has two horizontal asymptotes and two vertical asymptotes.
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10.4 Polar Coordinates and Polar Graphs

 Understand the polar coordinate system.
 Rewrite rectangular coordinates and equations in polar form and vice versa.
 Sketch the graph of an equation given in polar form.
 Find the slope of a tangent line to a polar graph.
 Identify several types of special polar graphs.

Polar Coordinates
So far, you have been representing graphs as collections of points (x, y) on the 
rectangular coordinate system. The corresponding equations for these graphs have been 
in either rectangular or parametric form. In this section, you will study a coordinate 
 system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point O, called the pole 
(or origin), and construct from O an initial ray called the polar axis, as shown in  
Figure 10.35. Then each point P in the plane can be assigned polar coordinates (r, θ), 
as follows.

 r = directed distance from O to P

 θ = directed angle, counterclockwise from polar axis to segment OP

Figure 10.36 shows three points on the polar coordinate system. Notice that in this 
system, it is convenient to locate points with respect to a grid of concentric circles 
intersected by radial lines through the pole.

0π

2
π3

=
3

2, ))

1 2 3

π
2

π

3
π

θ  

2 3
0π

2
π3

= −
6

π
2

πθ

3, − )) 6
π

 

2 3
0π

2
π3

= 
6

11

π
2

π

6
11π

θ

3,  ))
 (a) (b) (c)

 Figure 10.36

With rectangular coordinates, each point (x, y) has a unique representation. This is 
not true with polar coordinates. For instance, the coordinates

(r, θ) and (r, 2π + θ)

represent the same point [see parts (b) and (c) in Figure 10.36]. Also, because r is a 
directed distance, the coordinates 

(r, θ) and (−r, θ + π)

represent the same point. In general, the point (r, θ) can be written as

(r, θ) = (r, θ + 2nπ)

or

(r, θ) = (−r, θ + (2n + 1)π)

where n is any integer. Moreover, the pole is represented by (0, θ), where θ is any angle.

O

= directed angle
Polar
axis

P = (r,   )

r =
 dire

cte
d dista

nce

θ

θ

Polar coordinates
Figure 10.35

POLAR COORDINATES

The mathematician credited with 
first using polar coordinates was 
James Bernoulli, who introduced 
them in 1691. However, there is 
some evidence that it may have 
been Isaac Newton who first 
used them.
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Coordinate Conversion
To establish the relationship between polar and rectangular coordinates, let the 
polar axis coincide with the positive x-axis and the pole with the origin, as shown in  
Figure 10.37. Because (x, y) lies on a circle of radius r, it follows that

r2 = x2 + y2.

Moreover, for r > 0, the definitions of the trigonometric functions imply that

tan θ =
y
x
, cos θ =

x
r
, and sin θ =

y
r
.

You can show that the same relationships hold for r < 0.

THEOREM 10.10 Coordinate Conversion

The polar coordinates (r, θ) of a point are related to the rectangular coordinates 
(x, y) of the point as follows.

Polar-to-Rectangular Rectangular-to-Polar

x = r cos θ tan θ =
y
x

y = r sin θ r2 = x2 + y2

 Polar-to-Rectangular Conversion

a. For the point (r, θ) = (2, π),

x = r cos θ = 2 cos π = −2 and y = r sin θ = 2 sin π = 0.

 So, the rectangular coordinates are (x, y) = (−2, 0).
b. For the point (r, θ) = (√3, π�6),

x = √3 cos 
π
6
=

3
2

 and y = √3 sin 
π
6
=
√3
2

.

 So, the rectangular coordinates are (x, y) = (3�2, √3�2).
See Figure 10.38.

 Rectangular-to-Polar Conversion

a. For the second-quadrant point (x, y) = (−1, 1),

tan θ =
y
x
= −1  θ =

3π
4

.

  Because θ was chosen to be in the same quadrant as (x, y), use a positive value of r.

r = √x2 + y2 = √(−1)2 + (1)2 = √2

 This implies that one set of polar coordinates is (r, θ) = (√2, 3π�4).
b.  Because the point (x, y) = (0, 2) lies on the positive y-axis, choose θ = π�2 and 

r = 2, and one set of polar coordinates is (r, θ) = (2, π�2).

See Figure 10.39. 

Note that you can also use Theorem 10.10 to convert a polar equation to a rectangular 
equation (and vice versa), as shown in Example 3.

y
r

x

x

θPole

Polar axis
(x-axis)(Origin)

(x, y)
(r,   )θy

Relating polar and rectangular  
coordinates
Figure 10.37

x
1

1

2

2

−1

−1

−2
(x, y) = (−2, 0)

(r,   ) = (2,   )πθ

(r,   ) =θ , 

(x, y) = , 3
2

3
2

3

y

6
π

))
) )

To convert from polar to rectangular 
coordinates, let x = r cos θ and 
y = r sin θ.
Figure 10.38

1

2

(x, y) = (−1, 1)

(x, y) = (0, 2)

(r,   ) =θ 2, 

(r,   ) =θ ,

x
1 2−1−2

2

y

2
π ))

)) 4
3π

To convert from rectangular to polar 
coordinates, let tan θ = y�x and 
r = √x2 + y2.
Figure 10.39
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Polar Graphs
One way to sketch the graph of a polar equation is to convert to rectangular coordinates 
and then sketch the graph of the rectangular equation.

 Graphing Polar Equations

Describe the graph of each polar equation. Confirm each description by converting to 
a rectangular equation.

a. r = 2  b. θ =
π
3

  c. r = sec θ

Solution

a.  The graph of the polar equation r = 2 consists of all points that are two units from 
the pole. So, this graph is a circle centered at the origin with a radius of 2. [See 
Figure 10.40(a).] You can confirm this by using the relationship r2 = x2 + y2 to 
obtain the rectangular equation

x2 + y2 = 22. Rectangular equation

b.  The graph of the polar equation θ = π�3 consists of all points on the line that makes 
an angle of π�3 with the positive x-axis. [See Figure 10.40(b).] You can confirm this 
by using the relationship tan θ = y�x to obtain the rectangular  equation

y = √3x. Rectangular equation

c.  The graph of the polar equation r = sec θ is not evident by simple inspection, so 
you can begin by converting to rectangular form using the relationship r cos θ = x.

 r = sec θ Polar equation

 r cos θ = 1

 x = 1 Rectangular equation

  From the rectangular equation, you can see that the graph is a vertical line. [See 
Figure 10.40(c).] 

TECHNOLOGY Sketching the graphs of complicated polar equations by hand 
can be tedious. With technology, however, the task is not difficult. Use a graphing 
utility in polar mode to graph the equations in the  exercise set. If your graphing 
utility does not have a polar mode but does have a parametric mode, you can graph 
r = f (θ) by writing the equation as

 x = f (θ) cos θ
 y = f (θ) sin θ.

For instance, the graph of r = 1
2θ shown in  

9

−6

−9

6

Spiral of Archimedes
Figure 10.41

 
Figure 10.41 was produced with a  graphing  
utility in parametric mode. This equation  
was graphed using the  parametric equations

 x =
1
2
θ cos θ

 y =
1
2
θ sin θ

with the values of θ varying from −4π  to 4π.  
This curve is of the form r = aθ and is called  
a spiral of Archimedes.

1 2 3
0π

2
π3

π
2

(a) Circle: r = 2

1 2 3
0π

2
π3

π
2

(b) Radial line: θ =
π
3

1 2 3
0π

2
π3

π
2

(c) Vertical line: r = sec θ
Figure 10.40
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 Sketching a Polar Graph

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of r = 2 cos 3θ.

Solution Begin by writing the polar equation in parametric form.

x = 2 cos 3θ cos θ and y = 2 cos 3θ sin θ

After some experimentation, you will find that the entire curve, which is called a rose 
curve, can be sketched by letting θ vary from 0 to π, as shown in Figure 10.42. If you 
try duplicating this graph with a graphing utility, you will find that by letting θ vary 
from 0 to 2π, you will actually trace the entire curve twice.

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 0 ≤ θ ≤ π
6

 0 ≤ θ ≤ π
3

 0 ≤ θ ≤ π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 0 ≤ θ ≤ 2π
3

 0 ≤ θ ≤ 5π
6

 0 ≤ θ ≤ π

 Figure 10.42 

Use a graphing utility to experiment with other rose curves. Note that rose curves 
are of the form

r = a cos nθ or r = a sin nθ.

For instance, Figure 10.43 shows the graphs of two other rose curves.

3

−2

−3

2r = 2 sin 5θ    r = 0.5 cos 2θ

Generated by Mathematica

π
2

−0.4 −0.2 0.2 0.4
0

0.2

0.4

 Rose curves
 Figure 10.43

REMARK One way to 
sketch the graph of r = 2 cos 3θ 
by hand is to make a table of  
values.

θ 0
π
6

π
3

π
2

2π
3

r 2 0 −2 0 2

By extending the table and  
plotting the points, you will 
obtain the curve shown in 
Example 4.
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Slope and Tangent Lines
To find the slope of a tangent line to a polar graph, consider a differentiable function 
given by r = f (θ). To find the slope in polar form, use the parametric equations

x = r cos θ = f (θ) cos θ and y = r sin θ = f (θ) sin θ.

Using the parametric form of dy�dx given in Theorem 10.7, you have

dy
dx

=
dy�dθ
dx�dθ =

f (θ) cos θ + f′(θ) sin θ
−f (θ) sin θ + f′(θ) cos θ

which establishes the next theorem.

THEOREM 10.11 Slope in Polar Form

If f  is a differentiable function of θ, then the slope of the tangent line to the  
graph of r = f (θ) at the point (r, θ) is

dy
dx

=
dy�dθ
dx�dθ =

f (θ) cos θ + f′(θ) sin θ
−f (θ) sin θ + f′(θ) cos θ

provided that dx�dθ ≠ 0 at (r, θ). (See Figure 10.44.)

From Theorem 10.11, you can make the following observations.

1. Solutions of 
dy
dθ = 0 yield horizontal tangents, provided that 

dx
dθ ≠ 0.

2. Solutions of 
dx
dθ = 0 yield vertical tangents, provided that 

dy
dθ ≠ 0.

If dy�dθ and dx�dθ are simultaneously 0, then no conclusion can be drawn about 
tangent lines.

 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangent lines of r = sin θ, where 0 ≤ θ < π.

Solution Begin by writing the equation in parametric form.

x = r cos θ = sin θ cos θ

and

y = r sin θ = sin θ sin θ = sin2 θ

Next, differentiate x and y with respect to θ and set each derivative equal to 0.

dx
dθ = cos2 θ − sin2 θ = cos 2θ = 0  θ =

π
4

, 
3π
4

dy
dθ = 2 sin θ cos θ = sin 2θ = 0  θ = 0, 

π
2

So, the graph has vertical tangent lines at 

(√2
2

, 
π
4) and (√2

2
, 

3π
4 )

and it has horizontal tangent lines at

(0, 0) and (1, 
π
2)

as shown in Figure 10.45. 

θ

0

(r,   )

Tangent line
θr = f(  )

π

2
π3

π
2

Tangent line to polar curve
Figure 10.44

0π
(0, 0) 1

2

, 2
2 4

π )), 2
2 4

3π))

2
π3

1, ))
π
2

2
π

Horizontal and vertical tangent lines of 
r = sin θ
Figure 10.45
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 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangent lines to the graph of r = 2(1 − cos θ), where 
0 ≤ θ < 2π.

Solution Let y = r sin θ and then differentiate with respect to θ.

 y = r sin θ Parametric equation for y

 = 2(1 − cos θ) sin θ Substitute for r.

 
dy
dθ = 2[(1 − cos θ)(cos θ) + (sin θ)(sin θ)] Derivative of y with respect to θ

 = 2(cos θ − cos2 θ + sin2 θ) Multiply.

 = 2(cos θ − cos2 θ + 1 − cos2 θ) Pythagorean identity

 = −2(2 cos2 θ − cos θ − 1) Combine like terms; factor out −1

 = −2(2 cos θ + 1)(cos θ − 1) Factor.

Setting dy�dθ equal to 0, you can see that cos θ = −1
2 and cos θ = 1. So, dy�dθ = 0 

when θ = 2π�3, 4π�3, and 0. Similarly, using x = r cos θ, you have

 x = r cos θ Parametric equation for x

 = 2(1 − cos θ) cos θ Substitute for r.

 = 2 cos θ − 2 cos2 θ Multiply.

 
dx
dθ = −2 sin θ + 4 cos θ sin θ Derivative of x with respect to θ

 = (2 sin θ)(2 cos θ − 1). Factor.

Setting dx�dθ equal to 0, you can see that sin θ = 0 and cos θ = 1
2. So, you can 

conclude that dx�dθ = 0 when θ = 0, π, π�3, and 5π�3. From these results and from 
the graph shown in Figure 10.46, you can conclude that the graph has horizontal 
tangents at (3, 2π�3) and (3, 4π�3) and has vertical tangents at (1, π�3), (1, 5π�3), and 
(4, π). This graph is called a cardioid. Note that both derivatives (dy�dθ and dx�dθ) 
are 0 when θ = 0. Using this  information alone, you do not know whether the graph 
has a horizontal or vertical  tangent line at the pole. From Figure 10.46, however, you 
can see that the graph has a cusp at the pole. 

Theorem 10.11 has an important consequence. If the graph of r = f (θ) passes 
through the pole when θ = α and f′(α) ≠ 0, then the formula for dy�dx simplifies as 
follows.

dy
dx

=
f′(α) sin α + f (α) cos α
f′(α) cos α − f (α) sin α =

f′(α) sin α + 0
f′(α) cos α − 0

=
sin α
cos α = tan α

So, the line θ = α is tangent to the graph at the pole, (0, α).

THEOREM 10.12 Tangent Lines at the Pole

If f (α) = 0 and f′(α) ≠ 0, then the line θ = α is tangent at the pole to the 
graph of r = f (θ).

Theorem 10.12 is useful because it states that the zeros of r = f (θ) can be used 
to find the tangent lines at the pole. Note that because a polar curve can cross the 
pole more than once, it can have more than one tangent line at the pole. For example, 
the rose curve f (θ) = 2 cos 3θ has three tangent lines at the pole, as shown in 
Figure 10.47. For this curve, f (θ) = 2 cos 3θ is 0 when θ is π�6, π�2, and 5π�6. 
Moreover, the derivative f′(θ) = −6 sin 3θ is not 0 for these values of θ.

2

f(  ) = 2 cos 3θθ

0π

2
π3

π
2

This rose curve has three tangent lines 
(θ = π�6, θ = π�2, and θ = 5π�6) at 
the pole.
Figure 10.47

π(4,   )
0π

2
π3

π
2

3, )) 3
2π

3, )) 3
4π

1, )) 3
5π

1, )) 3
π

Horizontal and vertical tangent lines of 
r = 2(1 − cos θ)
Figure 10.46
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Special Polar Graphs
Several important types of graphs have equations that are simpler in polar form than in 
rectangular form. For example, the polar equation of a circle having a radius of a and 
centered at the origin is simply r = a. Later in the text, you will come to appreciate 
this benefit. For now, several other types of graphs that have simpler equations in polar 
form are shown below. (Conics are considered in Section 10.6.)

TECHNOLOGY The rose curves described above are of the form r = a cos nθ
or r = a sin nθ, where n is a positive integer that is greater than or equal to 2. Use 
a graphing utility to graph

r = a cos nθ or r = a sin nθ

for some noninteger values of n. Are these graphs also rose curves? For example, try 
sketching the graph of 

r = cos 
2
3
θ, 0 ≤ θ ≤ 6π.

 FOR FURTHER INFORMATION For more information on rose curves and related 
curves, see the article “A Rose is a Rose .  .  .” by Peter M. Maurer in The American 
Mathematical Monthly. The computer-generated graph at the left is the result of an 
algorithm that Maurer calls “The Rose.” To view this article, go to MathArticles.com.Generated by Maple
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10.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Polar Coordinates Consider the polar coordinates 

(r, θ). What does r represent? What does θ represent?

2.  Plotting Points Plot the points below on the same set 
of coordinate axes.

 (r, θ) = (2, 
π
2) and (x, y) = (2, 

π
2)

3.  Comparing Coordinate Systems Describe the 
differences between the rectangular coordinate system 
and the polar coordinate system.

4.  Parametric Form of a Polar Equation Explain 
how to write a polar equation in parametric form.

 Polar-to-Rectangular Conversion In 
Exercises 5–14, the polar coordinates of a point are 
given. Plot the point and find the corresponding 
rectangular coordinates for the point.

 5. (8, 
π
2)  6. (−2, 

5π
3 )

 7. (−4, −
3π
4 )  8. (0, −

7π
6 )

 9. (7, 
5π
4 ) 10. (−2, 

11π
6 )

11. (√2, 2.36) 12. (−3, −1.57)
13. (−8, 0.75) 14. (1.25, −5)

 Rectangular-to-Polar Conversion In 
Exercises 15–24, the rectangular coordinates of a 
point are given. Plot the point and find two sets 
of polar coordinates for the point for 0 ≤ θ < 2π.

15. (1, 0) 16. (0, −9)
17. (−3, 4) 18. (6, −2)
19. (−5, −5√3) 20. (3, −√3)
21. (√7, −√7) 22. (−2√2, −2√2)
23. (4, 5) 24. (1, 8)

 Rectangular-to-Polar Conversion In 
Exercises 25–34, convert the rectangular equation 
to polar form and sketch its graph.

25. x2 + y2 = 9 26. x2 − y2 = 9

27. x2 + y2 = a2 28. x2 + y2 − 2ax = 0

29. y = 8 30. x = 12

31. 3x − y + 2 = 0 32. xy = 4

33. y2 = 9x

34. (x2 + y2)2 − 9(x2 − y2) = 0

 Polar-to-Rectangular Conversion In 
Exercises 35–44, convert the polar equation to 
rectangular form and sketch its graph.

35. r = 4 36. r = −1

37. r = 3 sin θ 38. r = 5 cos θ

39. r = θ 40. θ =
5π
6

41. r = 3 sec θ 42. r = −6 csc θ

43. r = sec θ tan θ 44. r = cot θ csc θ

Graphing a Polar Equation In Exercises 45–54, use a 
graphing utility to graph the polar equation. Find an interval 
for θ over which the graph is traced only once.

45. r = 2 − 5 cos θ 46. r = 3(1 − 4 cos θ)
47. r = −1 + sin θ 48. r = 4 + 3 cos θ

49. r =
2

1 + cos θ  50. r =
1

4 − 3 sin θ

51. r = 5 cos 
3θ
2

 52. r = 3 sin 
5θ
2

53. r2 = 4 sin 2θ 54. r2 =
1
θ

55. Verifying a Polar Equation Convert the equation

 r = 2(h cos θ + k sin θ)

  to rectangular form and verify that it is the equation of a circle. 
Find the radius and the rectangular coordinates of the center of 
the circle.

 56.  HOW DO YOU SEE IT? Identify each 
special polar graph and write its equation.

(a)

0
21

π
2

(b)

0

π
2

1 2 3

(c)

0
4

π
2

(d)

0

π
2

2

56.  
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57.  Sketching a Graph Sketch the graph of r = 4 sin θ over 
each interval.

 (a) 0 ≤ θ ≤ π
2

   (b) 
π
2

≤ θ ≤ π    (c) −
π
2

≤ θ ≤ π
2

58. Distance Formula

 (a)  Verify that the Distance Formula for the distance between 
the two points (r1, θ1) and (r2, θ2) in polar coordinates is 

  d = √r1
2 + r2

2 − 2r1r2 cos(θ1 − θ2).

 (b)  Describe the positions of the points relative to each other 
for θ1 = θ2. Simplify the Distance Formula for this case. 
Is the simplification what you expected? Explain.

 (c)  Simplify the Distance Formula for θ1 − θ2 = 90°. Is the 
simplification what you expected? Explain.

 (d)  Choose two points on the polar coordinate system and 
find the distance between them. Then choose different 
polar representations of the same two points and apply the 
Distance Formula again. Discuss the result.

Distance Formula In Exercises 59–62, use the result of 
Exercise 58 to find the distance between the two points in polar 
coordinates.

59. (1, 
5π
6 ), (4, 

π
3) 60. (8, 

7π
4 ), (5, π)

61. (2, 0.5), (7, 1.2) 62. (4, 2.5), (12, 1)

 Finding Slopes of Tangent Lines In 
Exercises 63 and 64, find dy�dx and the slopes of 
the tangent lines shown on the graph of the polar 
equation.

63. r = 2(1 − sin θ)  64. r = 2 + 3 sin θ

 

(2, 0)

1 2 3
0

π
2

4,  )) 2
3π

3,  )) 6
7π

  

(2,   )π
0

2 3

π
2

3.5,  )) 6
π

−1,  )) 2
3π

Finding Slopes of Tangent Lines Using Technology  
In Exercises 65–68, use a graphing utility to (a) graph the polar 
equation, (b) draw the tangent line at the given value of θ, and 
(c) find dy�dx at the given value of θ. (Hint: Let the increment 
between the values of θ equal π�24.)

65. r = 3(1 − cos θ), θ =
π
2

 66. r = 3 − 2 cos θ, θ = 0

67. r = 3 sin θ, θ =
π
3

 68. r = 4, θ =
π
4

 Horizontal and Vertical Tangency In 
Exercises 69 and 70, find the points of horizontal 
and vertical tangency to the polar curve.

69. r = 1 − sin θ 70. r = a sin θ

Horizontal Tangency In Exercises 71 and 72, find the 
points of horizontal tangency to the polar curve.

71. r = 2 csc θ + 3 72. r = a sin θ cos2 θ

 Tangent Lines at the Pole In Exercises 
73–80, sketch a graph of the polar equation and 
find the tangent line(s) at the pole (if any).

73. r = 5 sin θ 74. r = 5 cos θ

75. r = 4(1 − sin θ) 76. r = 2(1 − cos θ)
77. r = 4 cos 3θ 78. r = −sin 5θ

79. r = 3 sin 2θ 80. r = 3 cos 2θ

Sketching a Polar Graph In Exercises 81–92, sketch a 
graph of the polar equation.

81. r = 8 82. r = 1

83. r = 4(1 + cos θ) 84. r = 1 + sin θ

85. r = 3 − 2 cos θ 86. r = 5 − 4 sin θ

87. r = −7 csc θ 88. r =
6

2 sin θ − 3 cos θ

89. r = 3θ 90. r =
1
θ

91. r2 = 4 cos 2θ 92. r2 = 4 sin θ

Asymptote In Exercises 93–96, use a graphing utility 
to graph the equation and show that the given line is an 
asymptote of the graph.

 Name of Graph Polar Equation Asymptote

93. Conchoid r = 2 − sec θ x = −1

94. Conchoid r = 2 + csc θ y = 1

95. Hyperbolic spiral r = 2�θ y = 2

96. Strophoid r = 2 cos 2θ sec θ x = −2

EXPLORING CONCEPTS
Transformations of Polar Graphs In Exercises 97 
and 98, use the graph of r = f (θ) to sketch a graph of the 
transformation.

97. r = f (−θ) 98. r = −f (θ)
 

1 2

π
2 r = f(   )θ

0

 

1

π
2

0

r = f(   )θ

99.  Symmetry of Polar Graphs Describe how to test 
whether a polar graph is symmetric about (a) the x-axis 
and (b) the y-axis.
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100.  Think About It Use a graphing utility to graph the polar 
equation r = 6[1 + cos(θ − ϕ)] for (a) ϕ = 0, (b) ϕ = π�4, 
and (c) ϕ = π�2. Use the graphs to describe the effect of the 
angle ϕ. Write the equation as a function of sin θ for part (c).

101.  Rotated Curve Verify that if the curve whose polar 
equation is r = f (θ) is rotated about the pole through an angle 
ϕ, then an equation for the rotated curve is r = f (θ − ϕ).

102.  Rotated Curve The polar form of an equation of a curve 
is r = f (sin θ). Show that the form becomes

  (a)  r = f (−cos θ) if the curve is rotated counterclockwise 
π�2 radians about the pole.

  (b)  r = f (−sin θ) if the curve is rotated counterclockwise π  
radians about the pole.

  (c)  r = f (cos θ) if the curve is rotated counterclockwise 
3π�2 radians about the pole.

Rotated Curve In Exercises 103–105, use the results of 
Exercises 101 and 102.

103.  Write an equation for the limaçon r = 2 − sin θ after it has 
been rotated counterclockwise by an angle of (a) θ = π�4, 
(b) θ = π�2, (c) θ = π, and (d) θ = 3π�2. Use a graphing 
utility to graph each rotated limaçon.

104.  Write an equation for the rose curve r = 2 sin 2θ after it has 
been rotated counterclockwise by an angle of (a) θ = π�6, 
(b) θ = π�2, (c) θ = 2π�3, and (d) θ = π. Use a graphing 
utility to graph each rotated rose curve.

105. Sketch the graph of each equation.

  (a) r = 1 − sin θ   (b) r = 1 − sin(θ −
π
4)

106.  Proof Prove that the tangent of the angle ψ (0 ≤ ψ ≤ π�2) 
between the radial line and the tangent line at the point (r, θ) 
on the graph of r = f (θ) (see figure) is given by

  tan ψ = ∣ r
dr�dθ∣.

0
A

θ

P = (r,   )θ

Tangent line

Radial line

θ= (  )r f

Polar axis

O

ψ

Polar curve:

π
2

Finding an Angle In Exercises 107–112, use the result of 
Exercise 106 to find the angle ψ between the radial and tangent 
lines to the graph for the indicated value of θ. Use a graphing 
utility to graph the polar equation, the radial line, and the 
tangent line for the  indicated value of θ. Identify the angle ψ.

  Polar Equation Value of θ

107. r = 2(1 − cos θ) θ = π

108. r = 3(1 − cos θ) θ =
3π
4

  Polar Equation Value of θ

109. r = 2 cos 3θ θ =
π
4

110. r = 4 sin 2θ θ =
π
6

111. r =
6

1 − cos θ  θ =
2π
3

112. r = 5 θ =
π
6

True or False? In Exercises 113–116, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

113.  If (r1, θ1) and (r2, θ2) represent the same point on the polar 
coordinate system, then ∣r1∣ = ∣r2∣.

114.  If (r, θ1) and (r, θ2) represent the same point on the polar 
 coordinate system, then θ1 = θ2 + 2nπ  for some integer n.

115.  If x > 0, then the point (x, y) on the rectangular coordinate 
system can be represented by (r, θ) on the polar coordinate 
system, where r = √x2 + y2 and θ = arctan( y�x).

116.  The polar equations r = sin 2θ, r = −sin 2θ, and 
r = sin(−2θ) all have the same graph.

A Cassini oval is defined as the set of all points the product of 
whose distances from two fixed points is constant. These curves 
are named after the astronomer Giovanni Domenico Cassini 
(1625–1712). He suspected that these curves could model planetary 
motion. However, as you saw in Section 10.1, Kepler used ellipses 
to describe planetary motion. You will learn more about Kepler’s 
Laws of planetary motion in Section 10.6.

Let (−c, 0) and (c, 0) be two fixed points in the plane. A point (x, y) 
lies on a Cassini oval when the distance between (x, y) and (−c, 0) 
times the distance between (x, y) and (c, 0) is b2, where b is a constant.

π
2

0
6

 Four different types of Cassini ovals

(a)  Show that (x2 + y2)2 − 2c2(x2 − y2) + c4 = b4

(b) Convert the equation in part (a) to polar coordinates.

(c) Show that if b = c, then the Cassini oval is a lemniscate.

(d)  Use a graphing utility to graph the Cassini oval for c = 1 and 
b = 2.

Cassini Oval
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10.5 Area and Arc Length in Polar Coordinates

 Find the area of a region bounded by a polar graph.
 Find the points of intersection of two polar graphs.
 Find the arc length of a polar graph.
 Find the area of a surface of revolution (polar form).

Area of a Polar Region
The development of a formula for the area of a polar region 

r

θ

The area of a sector of a 
circle is A = 1

2θr2.
Figure 10.48

 
parallels that for the area of a region on the rectangular  
coordinate system but uses sectors of a circle instead of 
rectangles as the basic elements of area. In Figure 10.48,  
note that the area of a  circular sector of radius r is 12θr2,  
provided θ is measured in radians.

Consider the function r = f (θ), where f  is continuous  
and nonnegative on the interval α ≤ θ ≤ β. The region 
bounded by the graph of f  and the radial lines θ = α and 
θ = β is shown in Figure 10.49(a). To find the area of this  
region, partition the interval [α, β] into n equal subintervals

α = θ0 < θ1 < θ2 < .  .  . < θn−1 < θn = β.

Then approximate the area of the region by the sum of the areas of the n sectors, as 
shown in Figure 10.49(b).

 Radius of ith sector = f (θ i)

 Central angle of ith sector =
β − α

n
= ∆θ

 A ≈ ∑
n

i=1
 (12)∆θ [ f (θ i)]2

Taking the limit as n→∞ produces

 A = lim
n→∞

 
1
2

 ∑
n

i=1
 [ f (θ i)]2∆θ

 =
1
2∫

β

α
 [ f (θ)]2 dθ

which leads to the next theorem.

THEOREM 10.13 Area in Polar Coordinates

If f  is continuous and nonnegative on the interval [α, β], 0 < β − α ≤ 2π, 
then the area of the region bounded by the graph of r = f (θ) between the  
radial lines θ = α and θ = β is

 A =
1
2∫

β

α
 [ f (θ)]2 dθ

 =
1
2∫

β

α
 r2 dθ. 0 < β − α ≤ 2π

You can use the formula in Theorem 10.13 to find the area of a region bounded 
by the graph of a continuous nonpositive function. The formula is not necessarily valid, 
however, when f  takes on both positive and negative values in the interval [α, β].

r = f(  )
β

α

θ

0

π
2

(a)

β θ

θ

θ

α

n − 1

1

2

0

π
2

r = f(  )θ

(b)

Figure 10.49
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 Finding the Area of a Polar Region

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of one petal of the rose curve r = 3 cos 3θ.

Solution In Figure 10.50, you can see that the petal on the right is traced as θ
increases from −π�6 to π�6. So, the area is

 A =
1
2∫βα  r2 dθ =

1
2∫

π�6

−π�6
 (3 cos 3θ)2 dθ Use formula for area in 

polar coordinates.

 =
9
2∫

π�6

−π�6
 
1 + cos 6θ

2
 dθ Power-reducing 

formula

 =
9
4[θ +

sin 6θ
6 ]

π�6

−π�6

 =
9
4 (

π
6
+

π
6)

 =
3π
4

. 

To find the area of the region lying inside all three petals of the rose curve in 
Example 1, you could not simply integrate between 0 and 2π. By doing this, you would 
obtain 9π�2, which is twice the area of the three petals. The duplication occurs because 
the rose curve is traced twice as θ increases from 0 to 2π.

 Finding the Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the limaçon 
r = 1 − 2 sin θ.

Solution In Figure 10.51, note that the inner loop is traced as θ increases from π�6
to 5π�6. So, the area inside the inner loop is

 A1 =
1
2∫

5π�6

π�6
 (1 − 2 sin θ)2 dθ Use formula for area in 

polar coordinates.

 =
1
2∫

5π�6

π�6
 (1 − 4 sin θ + 4 sin2 θ) dθ

 =
1
2∫

5π�6

π�6
 [1 − 4 sin θ + 4(1 − cos 2θ

2 )] dθ Power-reducing 
formula

 =
1
2∫

5π�6

π�6
 (3 − 4 sin θ − 2 cos 2θ) dθ Simplify.

 =
1
2[3θ + 4 cos θ − sin 2θ]

5π�6

π�6

 =
1
2
(2π − 3√3)

 = π −
3√3

2
.

In a similar way, you can integrate from 5π�6 to 13π�6 to find that the area of the 
region lying inside the outer loop is A2 = 2π + (3√3�2). The area of the region lying 
between the two loops is the difference of A2 and A1.

A = A2 − A1 = (2π +
3√3

2 ) − (π −
3√3

2 ) = π + 3√3 ≈ 8.34 

3
0

π
2r = 3 cos 3θ

The area of one petal of the rose 
curve that lies between the radial lines 
θ = −π�6 and θ = π�6 is 3π�4.
Figure 10.50

32
0

=
6
πθ=

6
5πθ

π
2

θr = 1 − 2 sin

The area between the inner and outer 
loops is approximately 8.34.
Figure 10.51
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Points of Intersection of Polar Graphs
Because a point may be represented in different ways in polar coordinates, care must 
be taken in determining the points of intersection of two polar graphs. For example, 
consider the points of intersection of the graphs of

r = 1 − 2 cos θ and r = 1

as shown in Figure 10.52. As with rectangular equations, you can attempt to find the 
points of intersection by solving the two equations simultaneously, as shown.

 r = 1 − 2 cos θ First equation

 1 = 1 − 2 cos θ Substitute r = 1 from second equation into first equation.

 cos θ = 0 Simplify.

 θ =
π
2

, 
3π
2

 Solve for θ.

The corresponding points of intersection are (1, π�2) and (1, 3π�2). From Figure 10.52, 
however, you can see that there is a third point of intersection that did not show up 
when the two polar equations were solved simultaneously. (This is one reason why 
you should sketch a graph when finding the area of a polar region.) The reason the 
third point was not found is that it does not occur with the same coordinates in the 
two graphs. On the graph of r = 1, the point occurs with coordinates (1, π), but on the 
graph of

r = 1 − 2 cos θ

the point occurs with coordinates (−1, 0).
In addition to solving equations simultaneously and sketching a graph, note that 

because the pole can be represented by (0, θ), where θ is any angle, you should check 
separately for the pole when finding points of intersection.

You can compare the problem of finding points of intersection of two polar graphs 
with that of finding collision points of two satellites in intersecting orbits about Earth, 
as shown in Figure 10.53. The satellites will not collide as long as they reach the points 
of intersection at different times (θ-values). Collisions will occur only at the points of 
intersection that are “simultaneous points”—those that are reached at the same time  
(θ-value).

  The paths of satellites can cross without  
causing a collision.

 Figure 10.53

 FOR FURTHER INFORMATION For more information on using technology 
to find points of intersection, see the article “Finding Points of Intersection of  
Polar-Coordinate Graphs” by Warren W. Esty in Mathematics Teacher. To view this 
article, go to MathArticles.com.

1

Limaçon: r = 1 − 2 cos θ

Circle:
r = 1

0

π
2

Three points of intersection: (1, π�2), 
(−1, 0), and (1, 3π�2)
Figure 10.52
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 Finding the Area of a Region Between Two Curves

Find the area of the region common to the two regions bounded by the curves

r = −6 cos θ Circle

and

r = 2 − 2 cos θ. Cardioid

Solution Because both curves are symmetric with respect to the x-axis, you can 
work with the upper half-plane, as shown in Figure 10.54. The blue shaded region lies 
between the circle and the radial line

θ =
2π
3

.

Because the circle has coordinates (0, π�2) at the pole, you can integrate between π�2 
and 2π�3 to obtain the area of this region. The region that is shaded red is bounded by 
the cardioid and the radial lines θ = 2π�3 and θ = π. So, you can find the area of this 
second region by integrating between 2π�3 and π. The sum of these two integrals gives 
the area of the common region lying above the radial line θ = π.

 Region between circle Region between cardioid and

 and radial line θ = 2π�3 radial lines θ = 2π�3 and θ = π

 
A
2
=

1
2∫

2π�3

π�2
 (−6 cos θ)2 dθ +

1
2∫

π

2π�3
 (2 − 2 cos θ)2 dθ

 = 18∫2π�3

π�2
 cos2 θ dθ +

1
2∫

π

2π�3
 (4 − 8 cos θ + 4 cos2 θ) dθ

 = 9∫2π�3

π�2
 (1 + cos 2θ) dθ + ∫π

2π�3
 (3 − 4 cos θ + cos 2θ) dθ

 = 9[θ +
sin 2θ

2 ]
2π�3

π�2
+ [3θ − 4 sin θ +

sin 2θ
2 ]

π

2π�3

 = 9(2π3 −
√3
4

−
π
2) + (3π − 2π + 2√3 +

√3
4 )

 =
5π
2

Finally, multiplying by 2, you can conclude that the total area is

5π ≈ 15.7. Area of region inside circle and cardioid

To check the reasonableness of this result, note that the area of the circular region is

πr2 = 9π. Area of circle

So, it seems reasonable that the area of the region lying inside the circle and the 
cardioid is 5π. 

To see the benefit of polar coordinates for finding the area in Example 3, consi der 
the integral below, which gives the comparable area in rectangular coordinates.

A
2
= ∫−3�2

−4
 √2√1 − 2x − x2 − 2x + 2 dx + ∫0

−3�2
 √−x2 − 6x dx

Use the integration capabilities of a graphing utility to show that you obtain the same 
area as that found in Example 3.

Circle:
r = −6 cos θ

Cardioid:
r = 2 − 2 cos θ

C
ar

di
oi

d

Circle

0

π
2

3
4π

3
2π

Figure 10.54
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Arc Length in Polar Form
The formula for the length of a polar arc can be obtained from the arc length formula 
for a curve described by parametric equations. (See Exercise 84.)

THEOREM 10.14 Arc Length of a Polar Curve

Let f  be a function whose derivative is continuous on an interval α ≤ θ ≤ β.  
The length of the graph of r = f (θ) from θ = α to θ = β is

s = ∫β
α

 √[ f (θ)]2 + [ f′(θ)]2 dθ = ∫β
α

 √r2 + (dr
dθ)

2

 dθ.

 Finding the Length of a Polar Curve

Find the length of the arc from θ = 0 to θ = 2π  for the cardioid

r = f (θ) = 2 − 2 cos θ

as shown in Figure 10.55.

Solution Because f′(θ) = 2 sin θ, you can find the arc length as follows.

 s = ∫β
α

 √[ f (θ)]2 + [ f′(θ)]2 dθ Formula for arc length of a polar curve

 = ∫2π

0
 √(2 − 2 cos θ)2 + (2 sin θ)2 dθ

 = 2√2 ∫2π

0
 √1 − cos θ dθ Simplify.

 = 2√2 ∫2π

0
 √2 sin2 

θ
2

 dθ Trigonometric identity

 = 4∫2π

0
 sin 

θ
2

 dθ sin 
θ
2

≥ 0 for 0 ≤ θ ≤ 2π

 = 8[−cos 
θ
2]

2π

0

 = 8(1 + 1)
 = 16

Using Figure 10.55, you can determine the reasonableness of this answer by 
comparing it with the circumference of a circle. For example, a circle of radius 52 has a 
circumference of

5π ≈ 15.7.

Note that in the fifth step of the solution, it is legitimate to write

√2 sin2 
θ
2
= √2 sin 

θ
2

rather than 

√2 sin2 
θ
2
= √2 ∣sin 

θ
2∣

because sin(θ�2) ≥ 0 for 0 ≤ θ ≤ 2π. 

REMARK When applying 
the arc length formula to a polar 
curve, be sure that the curve is 
traced out only once on the  
interval of integration. For 
instance, the rose curve 
r = cos 3θ is traced out once  
on the interval 0 ≤ θ ≤ π   
but is traced out twice on the 
interval 0 ≤ θ ≤ 2π.

r = 2 − 2 cos

1

θ

0

π
2

Figure 10.55
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Area of a Surface of Revolution
The polar coordinate versions of the formulas for the area of a surface of revolution can 
be obtained from the parametric versions given in Theorem 10.9, using the equations 
x = r cos θ and y = r sin θ.

THEOREM 10.15 Area of a Surface of Revolution

Let f  be a function whose derivative is continuous on an interval α ≤ θ ≤ β.  
The area of the surface formed by revolving the graph of r = f (θ) from θ = α  
to θ = β about the indicated line is as follows.

1. S = 2π∫β
α

 f (θ) sin θ√[ f (θ)]2 + [ f′(θ)]2 dθ About the polar axis

2. S = 2π∫β
α

 f (θ) cos θ√[ f (θ)]2 + [ f′(θ)]2 dθ About the line θ =
π
2

 Finding the Area of a Surface of Revolution

Find the area of the surface formed by revolving the circle r = f (θ) = cos θ about the 
line θ = π�2, as shown in Figure 10.56.

r = cos θ

1
0

π
2

  

0

Pinched
torus

π
2

 (a) (b)

 Figure 10.56

Solution Use the second formula in Theorem 10.15 with f′(θ) = −sin θ. Because 
the circle is traced once as θ increases from 0 to π, you have

 S = 2π∫β
α

 f (θ) cos θ√[ f (θ)]2 + [ f′(θ)]2 dθ 
Formula for area of a surface 
of revolution

 = 2π∫π
0

 (cos θ)(cos θ)√cos2 θ + sin2 θ dθ

 = 2π∫π
0

 cos2 θ dθ Trigonometric identity

 = π∫π
0

 (1 + cos 2θ) dθ Trigonometric identity

 = π [θ +
sin 2θ

2 ]
π

0

 = π2. 

REMARK When using 
Theorem 10.15, check to see 
that the graph of r = f (θ) is 
traced only once on the interval 
α ≤ θ ≤ β. For example, the 
circle r = cos θ is traced only 
once on the interval 0 ≤ θ ≤ π.
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10.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Area of a Polar Region What should you check 

before applying Theorem 10.13 to find the area of the 
region bounded by the graph of r = f (θ)?

2.  Points of Intersection Explain why finding points 
of intersection of polar graphs may require further analysis 
beyond solving two equations simultaneously.

 Area of a Polar Region In Exercises 3–6, write 
an integral that represents the area of the shaded 
region of the figure. Do not evaluate the integral.

 3. r = 4 sin θ  4. r = cos 2θ

0
1 2 3

π
2

  

1
0

π
2

 5. r = 3 − 2 sin θ  6. r = 1 − cos 2θ

 

0

π
2

1 2 3 4

  

1 2
0

π
2

 Finding the Area of a Polar Region In 
Exercises 7–18, find the area of the region.

 7. Interior of r = 6 sin θ

8. Interior of r = 3 cos θ

9. One petal of r = 2 cos 3θ

10. Two petals of r = 4 sin 3θ

11. Two petals of r = sin 8θ

12. Three petals of r = cos 5θ

13. Interior of r = 6 + 5 sin θ (below the polar axis)

14. Interior of r = 9 − sin θ (above the polar axis)

15. Interior of r = 4 + sin θ

16. Interior of r = 1 − cos θ

17. Interior of r2 = 4 cos 2θ

18. Interior of r2 = 6 sin 2θ

 Finding the Area of a Polar Region In 
Exercises 19–26, use a graphing utility to graph the 
polar equation. Find the area of the given region 
analytically.

19. Inner loop of r = 1 + 2 cos θ

20. Inner loop of r = 2 − 4 cos θ

21. Inner loop of r = 1 + 2 sin θ

22. Inner loop of r = 4 − 6 sin θ

23. Between the loops of r = 1 + 2 cos θ

24. Between the loops of r = 2(1 + 2 sin θ)
25. Between the loops of r = 3 − 6 sin θ

26. Between the loops of r = 1
2 + cos θ

 Finding Points of Intersection In Exercises 
27–34, find the points of intersection of the graphs 
of the equations.

27. r = 1 + cos θ 28. r = 3(1 + sin θ)
r = 1 − cos θ  r = 3(1 − sin θ)

1
0

π
2

  

3 5
0

π
2

29. r = 1 + cos θ 30. r = 2 − 3 cos θ

 r = 1 − sin θ  r = cos θ
 

1
0

π
2

  

1
0

π
2

31. r = 4 − 5 sin θ 32. r = 3 + sin θ

 r = 3 sin θ  r = 2 csc θ

33. r =
θ
2

 34. θ =
π
4

 r = 2  r = 2

Writing In Exercises 35 and 36, use a graphing utility to 
graph the polar equations and approximate the points of 
intersection of the graphs. Watch the graphs as they are traced 
in the viewing window. Explain why the pole is not a point of 
intersection obtained by solving the equations simultaneously.

35. r = cos θ 36. r = 4 sin θ

 r = 2 − 3 sin θ  r = 2(1 + sin θ)
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 Finding the Area of a Polar Region Between 
Two Curves In Exercises 37–44, use a graphing 
utility to graph the polar equations. Find the area 
of the given region analytically.

37. Common interior of r = 4 sin 2θ and r = 2

38. Common interior of r = 2(1 + cos θ) and r = 2(1 − cos θ)
39. Common interior of r = 3 − 2 sin θ and r = −3 + 2 sin θ

40. Common interior of r = 5 − 3 sin θ and r = 5 − 3 cos θ

41. Common interior of r = 4 sin θ and r = 2

42. Common interior of r = 2 cos θ and r = 2 sin θ

43. Inside r = 2 cos θ and outside r = 1

44. Inside r = 3 sin θ and outside r = 1 + sin θ

Finding the Area of a Polar Region Between Two 
Curves In Exercises 45–48, find the area of the region.

45. Inside r = a(1 + cos θ) and outside r = a cos θ

46. Inside r = 2a cos θ and outside r = a

47. Common interior of r = a(1 + cos θ) and r = a sin θ

48. Common interior of r = a cos θ and r = a sin θ, where a > 0

50.  Area The area inside one or more of the three interlocking 
circles r = 2a cos θ, r = 2a sin θ, and r = a is divided into 
seven regions. Find the area of each region.

51.  Conjecture Find the area of the region enclosed by 

 r = a cos(nθ)

  for n = 1, 2, 3, .  .  . . Use the results to make a conjecture 
about the area enclosed by the function when n is even and 
when n is odd.

52. Area Sketch the strophoid

 r = sec θ − 2 cos θ, −
π
2

< θ <
π
2

.

  Convert this equation to rectangular coordinates. Find the area 
enclosed by the loop.

 Finding the Arc Length of a Polar Curve In 
Exercises 53–58, find the length of the curve over 
the given interval.

53. r = 8, [0, 
π
6] 54. r = a, [0, 2π]

55. r = 4 sin θ, [0, π] 56. r = 2a cos θ, [−π
4

, 
π
4]

57. r = 1 + sin θ, [0, 2π]  58. r = 8(1 + cos θ), [0, 
π
3]

Finding the Arc Length of a Polar Curve In Exercises 
59– 64, use a graphing utility to graph the polar equation 
over the given interval. Use the integration  capabilities of the 
graphing utility to approximate the length of the curve.

59. r = 2θ, [0, 
π
2] 60. r = sec θ, [0, 

π
3]

61. r =
1
θ , [π, 2π] 62. r = eθ, [0, π]

63. r = sin(3 cos θ), [0, π] 64. r = 2 sin(2 cos θ), [0, π]

 Finding the Area of a Surface of 
Revolution In Exercises 65–68, find the area of 
the surface formed by revolving the polar equation 
over the given interval about the given line.

 Polar Equation Interval Axis of Revolution

65. r = 6 cos θ 0 ≤ θ ≤ π
2

 Polar axis

66. r = a cos θ 0 ≤ θ ≤ π
2

 θ =
π
2

67. r = eaθ 0 ≤ θ ≤ π
2

 θ =
π
2

68. r = a(1 + cos θ) 0 ≤ θ ≤ π  Polar axis

Finding the Area of a Surface of Revolution In 
Exercises 69 and 70, use the integration capabilities of a graphing 
utility to approximate the area of the surface formed by 
revolving the polar equation over the given interval about the 
polar axis.

69. r = 4 cos 2θ, [0, 
π
4] 70. r = θ, [0, π]

EXPLORING CONCEPTS
Using Different Methods In Exercises 71 and 72,  
(a) sketch the graph of the polar equation, (b) determine 
the interval that traces the graph only once, (c) find 
the area of the region bounded by the graph using a 
geometric formula, and (d) find the area of the region 
bounded by the graph using integration.

71. r = 10 cos θ 72. r = 5 sin θ

73.  Think About It Let f (θ) > 0 for all θ and let 
g(θ) < 0 for all θ. Find polar equations r = f (θ) and 
r = g(θ) such that their graphs intersect.

The radiation from a  
transmitting antenna is 
not uniform in all  
directions. The intensity 
from a particular  
antenna is modeled by 
r = a cos2 θ.

(a)  Convert the polar  
equation to 
rectangular form.

(b)  Use a graphing utility to graph the model for a = 4 and 
a = 6.

(c)  Find the area of the geographical region between the two 
curves in part (b).

49. Antenna Radiation

hin255/Shutterstock.com

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.5 Area and Arc Length in Polar Coordinates 737

 74.  HOW DO YOU SEE IT? Which graph, 
traced out only once, has a larger arc length? 
Explain your reasoning.

(a)

0

π
2

2

 (b)

0

π
2

2

74.  

75.  Surface Area of a Torus Find the surface area of the 
torus generated by revolving the circle given by r = 2 about 
the line r = 5 sec θ.

76.  Surface Area of a Torus Find the surface area of the 
torus generated by revolving the circle given by r = a about 
the line r = b sec θ, where 0 < a < b.

77. Approximating Area Consider the circle

 r = 8 cos θ.

 (a) Find the area of the circle.

 (b)  Complete the table for the areas A of the sectors of the 
circle between θ = 0 and the values of θ in the table.

  
θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A

 (c)  Use the table in part (b) to approximate the values of θ for 
which the sector of the circle composes 1

4, 1
2, and 3

4 of the 
total area of the circle.

 (d)  Use a graphing utility to approximate, to two decimal 
places, the angles θ for which the sector of the circle 
composes 14, 12, and 34 of the total area of the circle.

 (e)  Do the results of part (d) depend on the radius of the 
circle? Explain.

78. Approximating Area Consider the circle

 r = 3 sin θ.

 (a) Find the area of the circle.

 (b)  Complete the table for the areas A of the sectors of the 
circle between θ = 0 and the values of θ in the table.

  
θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A

 (c)  Use the table in part (b) to approximate the values of θ for 
which the sector of the circle composes 1

8, 1
4, and 1

2 of the 
total area of the circle.

 (d)  Use a graphing utility to approximate, to two decimal 
places, the angles θ for which the sector of the circle 
 composes 18, 14, and 12 of the total area of the circle.

79.  Spiral of Archimedes The curve represented by the 
equation r = aθ, where a is a constant, is called the spiral of 
Archimedes.

 (a)  Use a graphing utility to graph r = θ, where θ ≥ 0. What 
happens to the graph of r = aθ as a increases? What 
happens if θ ≤ 0?

 (b)  Determine the points on the spiral r = aθ (a > 0, θ ≥ 0), 
where the curve crosses the polar axis.

 (c)  Find the length of r = θ over the interval 0 ≤ θ ≤ 2π.

 (d)  Find the area under the curve r = θ for 0 ≤ θ ≤ 2π.

80.  Logarithmic Spiral The curve represented by the 
equation r = aebθ, where a and b are constants, is called a 
logarithmic spiral. The figure shows the graph of r = eθ�6, 
−2π ≤ θ ≤ 2π. Find the area of the shaded region.

1 2 3
0

π
2

81.   Area The larger circle in the figure is the graph of r = 1. 
Find the polar equation of the smaller circle such that the shaded 
regions are equal.

 

0

π
2

82. Area Find the area of the circle given by

 r = sin θ + cos θ.

  Check your result by converting the polar equation to 
rectangular form, then using the formula for the area of a circle.

83.  Folium of Descartes A curve called the folium of 
Descartes can be represented by the parametric equations

 x =
3t

1 + t3 and y =
3t2

1 + t3.

 (a) Convert the parametric equations to polar form.

 (b) Sketch the graph of the polar equation from part (a).

 (c)  Use a graphing utility to approximate the area enclosed by 
the loop of the curve.

84.  Arc Length in Polar Form Use the formula for the arc 
length of a curve in parametric form to derive the formula for 
the arc length of a polar curve.
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10.6 Polar Equations of Conics and Kepler’s Laws

 Analyze and write polar equations of conics.
 Understand and use Kepler’s Laws of planetary motion.

Polar Equations of Conics
In this chapter, you have seen that the rectangular equations of ellipses and hyperbolas 
take simple forms when the origin lies at their centers. As it happens, there are many 
important applications of conics in which it is more convenient to use one of the foci 
as the reference point (the origin) for the coordinate system. Here are two examples.

1. The sun lies at a focus of Earth’s orbit.

2. The light source of a parabolic reflector lies at its focus.

In this section, you will see that the polar equations of conics take simpler forms when 
one of the foci lies at the pole.

The next theorem uses the concept of eccentricity, as defined in Section 10.1, to 
classify the three basic types of conics.

THEOREM 10.16 Classification of Conics by Eccentricity

Let F be a fixed point ( focus) and let D be a fixed line (directrix) in the plane. 
Let P be another point in the plane and let e (eccentricity) be the ratio of the 
distance between P and F to the distance between P and D. The collection of 
all points P with a given eccentricity is a conic.

1. The conic is an ellipse for 0 < e < 1.

2. The conic is a parabola for e = 1.

3. The conic is a hyperbola for e > 1.

A proof of this theorem is given in Appendix A.

In Figure 10.57, note that for each type of conic, the pole corresponds to the fixed 
point (focus) given in the definition.

Directrix

0

PQ

F = (0, 0)

π
2    

P
Q

F = (0, 0)

Directrix

0

π
2    Directrix

0

P

P ′

Q

Q ′
F = (0, 0)

π
2

 Ellipse: 0 < e < 1 Parabola: e = 1 Hyperbola: e > 1

 
PF
PQ

< 1 PF = PQ 
PF
PQ

=
P′F
P′Q′

> 1

 Figure 10.57

The benefit of locating a focus of a conic at the pole is that the equation of the conic 
becomes simpler, as seen in the proof of the next theorem.

Exploration
Graphing Conics Set a 
graphing utility to polar 
mode and enter polar 
equations of the form

r =
a

1 ± b cos θ

or

r =
a

1 ± b sin θ .

As long as a ≠ 0, the graph 
should be a conic. What 
values of a and b produce 
parabolas? What values 
produce ellipses? What 
values produce hyperbolas?
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THEOREM 10.17 Polar Equations of Conics

The graph of a polar equation of the form

r =
ed

1 ± e cos θ  or r =
ed

1 ± e sin θ

is a conic, where e > 0 is the eccentricity and ∣d∣ is the distance 
between the focus at the pole and its corresponding directrix.

Proof This is a proof for r = ed�(1 + e cos θ) with d > 0. In Figure 10.58, consider a 
vertical directrix d units to the right of the focus F = (0, 0). If P = (r, θ) is a point on 
the graph of r = ed�(1 + e cos θ), then the distance between P and the  directrix can 
be shown to be

PQ = ∣d − x∣ = ∣d − r cos θ∣ = ∣r(1 + e cos θ)
e

− r cos θ∣ = ∣re∣.
Because the distance between P and the pole is simply PF = ∣r∣, the ratio of PF to PQ is 

PF
PQ

= ∣r∣
∣r�e∣ = ∣e∣ = e

and, by Theorem 10.16, the graph of the  equation must be a conic. The proofs of the 
other cases are similar.  

The four types of equations indicated in Theorem 10.17 can be classified as 
follows, where d > 0.

a. Horizontal directrix above the pole: r =
ed

1 + e sin θ

b. Horizontal directrix below the pole: r =
ed

1 − e sin θ

c. Vertical directrix to the right of the pole: r =
ed

1 + e cos θ

d. Vertical directrix to the left of the pole: r =
ed

1 − e cos θ

Figure 10.59 illustrates these four possibilities for a parabola. Note that for convenience, 
the equation for the directrix is shown in rectangular form.

Directrix
x = −d

r = ed
1 − e cos θ

0

π
2

(d)

Directrix
x = d

r = ed
1 + e cos θ

0

π
2

(c)

Directrix y = −d 

r = ed
1 − e sin θ

0

π
2

(b)

0

r = ed
1 + e sin θ

Directrix y = d

π
2

(a)
The four types of polar equations for a parabola
Figure 10.59

0

Q
θ

F = (0, 0)

Directrix

θ

r

P = (r,   )

d

Figure 10.58
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 Determining a Conic from Its Equation

Sketch the graph of the conic r =
15

3 − 2 cos θ .

Solution To determine the type of conic, rewrite the equation as

 r =
15

3 − 2 cos θ  Write original equation.

 =
5

1 − (2�3) cos θ . 
Divide numerator and 
denominator by 3.

So, the graph is an ellipse with e = 2
3. You can sketch the upper half of the ellipse by 

plotting points from θ = 0 to θ = π, as shown in Figure 10.60. Then, using  symmetry 
with respect to the polar axis, you can sketch the lower half. 

For the ellipse in Figure 10.60, the major axis is horizontal and the vertices lie at 
(15, 0) and (3, π). So, the length of the major axis is 2a = 18. To find the length of 
the minor axis, you can use the equations e = c�a and b2 = a2 − c2 to conclude that

 b2 = a2 − c2 = a2 − (ea)2 = a2(1 − e2).  Ellipse

Because e = 2
3, you have

b2 = 92[1 − (2
3)2] = 45

which implies that b = √45 = 3√5. So, the length of the minor axis is 2b = 6√5.  
A similar analysis for hyperbolas yields

b2 = c2 − a2 = (ea)2 − a2 = a2(e2 − 1).    Hyperbola

 Sketching a Conic from Its Polar Equation

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of the polar equation r =
32

3 + 5 sin θ .

Solution Dividing the numerator and denominator by 3 produces

r =
32�3

1 + (5�3) sin θ .

Because e = 5
3 > 1, the graph is a hyperbola. Because d = 32

5 , the directrix is the line
y = 32

5 . The transverse axis of the hyperbola lies on the line θ = π�2, and the vertices 
occur at

(r, θ) = (4, 
π
2) and (r, θ) = (−16, 

3π
2 ).

Because the length of the transverse axis is 12, you can see that a = 6. To find b, write

b2 = a2(e2 − 1) = 62[(53)
2

− 1] = 64.

Therefore, b = 8. Finally, you can use a and b to determine the asymptotes of the 
hyperbola and obtain the sketch shown in Figure 10.61. 

(3,   )π (15, 0)

D
ir

ec
tr

ix
x 

=
 −

15 2

5 10

15r =
3 − 2 cosθ

0

π
2

The graph of the conic is an ellipse 
with e = 2

3.
Figure 10.60

4 8

a = 6
b = 832

5
y =

Directrix

0

π
2

4, )) 2
π

−16,  )) 2
3π

r = 32
3 + 5 sin θ

The graph of the conic is a hyperbola 
with e = 5

3.
Figure 10.61
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Kepler’s Laws
Kepler’s Laws, named after the German astronomer Johannes Kepler, can be used to 
describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.

3.  The square of the period is proportional to the cube of the mean distance between 
the planet and the sun.*

Although Kepler derived these laws empirically, they were later validated by 
Newton. In fact, Newton was able to show that each law can be deduced from a set of  
universal laws of motion and gravitation that govern the movement of all heavenly 
bodies, including comets and satellites. This is shown in the next example,  
involving the comet named after the English mathematician and physicist Edmund 
Halley (1656–1742).

 Halley’s Comet

Halley’s comet has an elliptical orbit with the sun at one focus and has an 
eccentricity of e ≈ 0.967. The length of the major axis of the orbit is approximately  
35.88 astronomical units (AU). (An astronomical unit is defined as the mean distance 
between Earth and the sun, which is 93 million miles.) Find a polar equation for the 
orbit. How close does Halley’s comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form

r =
ed

1 + e sin θ .

Because the vertices of the ellipse occur when θ = π�2 and θ = 3π�2, you can 
 determine the length of the major axis to be the sum of the r-values of the vertices, as 
shown in Figure 10.62. That is,

 2a =
0.967d

1 + 0.967
+

0.967d
1 − 0.967

 35.88 ≈ 29.79d. 2a ≈ 35.88

So, d ≈ 1.204 and

ed ≈ (0.967)(1.204) ≈ 1.164.

Using this value in the equation  produces

r =
1.164

1 + 0.967 sin θ

where r is measured in astronomical units. To find the closest point to the sun (the 
focus), you can write 

c = ea ≈ (0.967)(17.94) ≈ 17.35.

Because c is the distance between the focus and the center, the closest point is

 a − c ≈ 17.94 − 17.35

 = 0.59 AU

 ≈ 55,000,000 miles. 

* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit, then the proportionality 
constant is 1. For example, because Mars has a mean distance to the sun of D ≈ 1.524 AU, its period P is D3 = P2. 
So, the period for Mars is P ≈ 1.88 years.

0π
Earth

Sun

Halley's
comet

2
π3

π
2

Not drawn to scale

Figure 10.62

JOHANNES KEPLER (1571–1630)

Kepler formulated his three 
laws from the extensive 
data recorded by Danish 
astronomer Tycho Brahe and 
from direct observation of the 
orbit of Mars.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC — All rights reserved. 
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Kepler’s Second Law states that as a planet moves about the sun, a ray from the 
sun to the planet sweeps out equal areas in equal times. This law can also be applied to 
comets or asteroids with elliptical orbits. For example, Figure 10.63 shows the orbit of 
the asteroid Apollo about the sun. Applying Kepler’s Second Law to this asteroid, you 
know that the closer it is to the sun, the greater its velocity, because a short ray must be 
moving quickly to sweep out as much area as a long ray.

Sun

  

Sun

  

Sun

 A ray from the sun to the asteroid Apollo sweeps out equal areas in equal times.
 Figure 10.63

 The Asteroid Apollo

The asteroid Apollo has a period of about 661 Earth days, and its orbit is approximated 
by the ellipse

r =
1

1 + (5�9) cos θ =
9

9 + 5 cos θ

where r is measured in astronomical units. How long does it take Apollo to move from 
the position θ = −π�2 to θ = π�2, as shown in Figure 10.64?

Solution Begin by finding the area swept out as θ increases from −π�2 to π�2.

 A =
1
2∫

β

α
 r2 dθ Formula for area of a polar graph

 =
1
2∫

π�2

−π�2
 ( 9

9 + 5 cos θ)
2

 dθ

Using the substitution u = tan(θ�2), as discussed in Section 8.7, you obtain

A =
81
112[

−5 sin θ
9 + 5 cos θ +

18

√56
 arctan 

√56 tan(θ�2)
14 ]

π�2

−π�2
≈ 0.90429.

Because the major axis of the ellipse has length 2a = 81�28 and the eccentricity is 
e = 5�9, you can determine that

b = a√1 − e2 =
9

√56
.

So, the area of the ellipse is

Area of ellipse = πab = π(81
56)(

9

√56) ≈ 5.46507.

Because the time required to complete the orbit is 661 days, you can apply Kepler’s 
Second Law to conclude that the time t required to move from the position θ = −π�2 
to θ = π�2 is

t
661

=
area of elliptical segment

area of ellipse
≈

0.90429
5.46507

which implies that t ≈ 109 days. 

1

Sun

Earth

Apollo

0

π
2

=
2
πθ

= −
2
πθ

Figure 10.64
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10.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Classification of Conics Identify each conic using 

eccentricity.

 (a) r =
4

1 + 3 sin θ  (b) r =
7

1 − cos θ

 (c) r =
8

6 + 5 cos θ  (d) r =
3

2 − 3 sin θ

2.  Comparing Conics Without graphing, how are the 
graphs of the following conics different? Explain.

 r =
1

1 + sin θ  and r =
1

1 − sin θ

Graphing a Conic In Exercises 3 and 4, use a graphing 
utility to graph the polar equation when (a) e = 1, (b) e = 0.5, 
and (c) e = 1.5. Identify the conic.

3. r =
2e

1 + e cos θ  4. r =
2e

1 − e sin θ

Writing In Exercises 5 and 6, consider the polar equation

 r =
4

1 + e sin θ.

5.  Use a graphing utility to graph the equation for e = 0.1,
e = 0.25, e = 0.5, e = 0.75, and e = 0.9. Identify the conic 
and discuss the change in its shape as e→ 1− and e→ 0+.

6.  Use a graphing utility to graph the equation for e = 1.1,
e = 1.5, and e = 2. Identify the conic and discuss the change in 
its shape as e→ 1+ and e→∞.

Matching In Exercises 7–12, match the polar equation with 
its correct graph. [The graphs are labeled (a), (b), (c), (d), (e), 
and (f ).]

(a) 

0
3

π

2
π3

π
2

 (b) 

0π
4 6

2
π3

π
2

(c) 

0π
2 4 6

2
π3

π
2

 (d) 

0π
1 3 4

2
π3

π
2

(e) 

0π
1 3

2
π3

π
2

 (f ) 

0π
1 2

2
π3

π
2

 7. r =
6

1 − cos θ   8. r =
2

2 − cos θ

 9. r =
3

1 − 2 sin θ  10. r =
2

1 + sin θ

11. r =
6

2 − sin θ  12. r =
2

2 + 3 cos θ

 Identifying and Sketching a Conic In 
Exercises 13–22, find the eccentricity and the 
distance from the pole to the directrix of the conic. 
Then identify the conic and sketch its graph. Use a 
graphing utility to confirm your results.

13. r =
1

1 − cos θ  14. r =
5

5 − 3 cos θ

15. r =
7

4 + 8 sin θ  16. r =
4

1 + cos θ

17. r =
6

−2 + 3 cos θ  18. r =
10

5 + 4 sin θ

19. r =
6

2 + cos θ  20. r =
−6

3 + 7 sin θ

21. r =
300

−12 + 6 sin θ  22. r =
24

25 + 25 cos θ

Identifying a Conic In Exercises 23– 26, use a graphing 
utility to graph the polar equation. Identify the graph and find 
its eccentricity.

23. r =
3

−4 + 2 sin θ  24. r =
−15

2 + 8 sin θ

25. r =
−10

1 − cos θ  26. r =
6

6 + 7 cos θ

Comparing Graphs In Exercises 27–30, use a graphing 
utility to graph the conic. Describe how the graph differs from 
the graph in the indicated exercise.

27. r =
4

1 + cos(θ − π�3) (See Exercise 16.)

28. r =
10

5 + 4 sin(θ − π�4) (See Exercise 18.)

29. r =
6

2 + cos(θ + π�6) (See Exercise 19.)

30. r =
−6

3 + 7 sin(θ + 2π�3) (See Exercise 20.)
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31.  Rotated Ellipse Write the equation for the ellipse rotated 
π�6 radian clockwise from the ellipse

 r =
8

8 + 5 cos θ .

32.  Rotated Parabola Write the equation for the parabola 
rotated π�4 radian counterclockwise from the parabola

 r =
9

1 + sin θ .

Finding a Polar Equation In Exercises 33–38, find a polar 
equation for the conic with its focus at the pole and the given 
eccentricity and directrix. (For convenience, the equation for  
the directrix is given in rectangular form.)

 Conic Eccentricity Directrix

33. Parabola e = 1 x = −3

34. Parabola e = 1 y = 4

35. Ellipse e = 1
4 y = 1

36. Ellipse e = 5
6 y = −2

37. Hyperbola e = 4
3 x = 2

38. Hyperbola e = 3
2 x = −1

Finding a Polar Equation In Exercises 39– 44, find a polar 
equation for the conic with its focus at the pole and the given 
vertex or vertices.

 Conic Vertex or Vertices

39. Parabola (1, −
π
2)

40. Parabola (5, π)
41. Ellipse (2, 0), (8, π)

42. Ellipse (2, 
π
2), (4, 

3π
2 )

43. Hyperbola (1, 
3π
2 ), (9, 

3π
2 )

44. Hyperbola (2, 0), (10, 0)

EXPLORING CONCEPTS
45.  Eccentricity Consider two ellipses, where the foci 

of the first ellipse are farther apart than the foci of the 
second ellipse. Is the eccentricity of the first ellipse 
always greater than the eccentricity of the second 
ellipse? Explain.

46.  Distance Describe what happens to the distance 
between the directrix and the center of an ellipse when 
the foci remain fixed and e approaches 0.

47.  Finding a Polar Equation Find a polar equation for the 
ellipse with the following characteristics.

 Focus: (0, 0)
 Eccentricity: e = 1

2

 Directrix: r = 4 sec θ

 48.  HOW DO YOU SEE IT? Identify the conic 
in the graph and give the possible values for the 
eccentricity.

(a)

0

π
2

1 2

 (b)

0

π
2

432

(c)

0

π
2

764321

(d)

0

π
2

431

48.  

49. Ellipse Show that the polar equation for 
x2

a2 +
y2

b2 = 1 is 

 r2 =
b2

1 − e2 cos2 θ . Ellipse

50. Hyperbola Show that the polar equation for 
x2

a2 −
y2

b2 = 1 is

 r2 =
−b2

1 − e2 cos2 θ . Hyperbola

Finding a Polar Equation In Exercises 51–54, use the 
results of Exercises 49 and 50 to write the polar form of the 
equation of the conic.

51. Ellipse: focus at (4, 0); vertices at (5, 0), (5, π)
52. Hyperbola: focus at (5, 0); vertices at (4, 0), (4, π)

53. 
x2

9
−

y2

16
= 1

54. 
x2

4
+ y2 = 1

Area of a Region In Exercises 55–58, use the integration 
capabilities of a graphing utility to approximate the area of the 
region bounded by the graph of the polar equation.

55. r =
3

2 − cos θ

56. r =
9

4 + cos θ

57. r =
2

7 − 6 sin θ

58. r =
3

6 + 5 sin θ
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59.  Explorer 18 On November 27, 1963, the United States 
launched Explorer 18. Its low and high points above the surface 
of Earth were approximately 119 miles and 123,000 miles (see 
figure). The center of Earth is a focus of the orbit. Find the 
polar equation for the orbit and find the distance between the 
surface of Earth and the satellite when θ = 60°. (Assume that 
the radius of Earth is 4000 miles.)

0

a

60°r

Earth

Explorer 18

Not drawn to scale

90°

60.  Planetary Motion The planets travel in elliptical orbits 
with the sun as a focus, as shown in the figure.

0

a

r

Sun

Planet

θ

Not drawn to scale

π
2

 (a) Show that the polar equation of the orbit is given by

  r =
(1 − e2)a

1 − e cos θ

  where e is the eccentricity.

 (b)  Show that the minimum distance ( perihelion) from the 
sun to the planet is r = a(1 − e) and the maximum 
 distance (aphelion) is r = a(1 + e).

Planetary Motion In Exercises 61–64, use Exercise 60 to 
find the polar equation of the elliptical orbit of the planet and 
the perihelion and aphelion distances.

61. Earth

 a = 1.496 × 108 kilometers

 e = 0.0167

62. Saturn

 a = 1.434 × 109 kilometers

 e = 0.0565

63. Neptune

 a = 4.495 × 109 kilometers

 e = 0.0113

64. Mercury

 a = 5.791 × 107 kilometers

 e = 0.2056

66.  Comet Hale-Bopp The comet Hale-Bopp has an elliptical 
orbit with the sun at one focus and has an eccentricity of 
e ≈ 0.995. The length of the major axis of the orbit is 
approximately 500 astronomical units. (a) Find the length of 
its minor axis. (b) Find a polar equation for the orbit. (c) Find 
the perihelion and aphelion distances.

Eccentricity In Exercises 67 and 68, let r0 represent the 
distance from a focus to the nearest vertex, and let r1 represent 
the distance from the focus to the farthest vertex.

67. Show that the eccentricity of an ellipse can be written as

 e =
r1 − r0

r1 + r0
. 

 Then show that 
r1

r0
=

1 + e
1 − e

.

68. Show that the eccentricity of a hyperbola can be written as

 e =
r1 + r0

r1 − r0
.

 Then show that 
r1

r0
=

e + 1
e − 1

.

 In Exercise 63, the polar 
equation for the elliptical 
orbit of Neptune was 
found. Use the equation 
and a computer algebra 
system to perform each  
of the following.

(a)  Approximate the  
area swept out by a  
ray from the sun to the  
planet as θ increases from 0 to π�9. Use this result to  
determine the number of years required for the planet to 
move through this arc when the period of one revolution 
around the sun is 165 years.

(b)  By trial and error, approximate the angle α such that the 
area swept out by a ray from the sun to the planet as θ 
increases from π  to α equals the area found in part (a) 
(see figure). Does the ray sweep through a larger or  
smaller angle than in part (a) to generate the same area? 
Why is this the case?

−α π

0

π
2

=
9
πθ

(c)  Approximate the distances the planet traveled in parts  
(a) and (b). Use these distances to approximate the  
average number of kilometers per year the planet 
traveled in the two cases.

65. Planetary Motion

NASA
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Matching In Exercises 1–6, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f ).]

(a) 

−2 2 4
−2

−4

2

4

x

y  (b) 

x

−4

−4−8−12

4

y

(c) 

x
−2−4

−4

2

2

4

4

y  (d) 

x
−2−4

−4

2 4

4

y

(e) 

x
−2−4

−4

2 4

4

y  (f ) 

−2 2 4
−2

2

4

6

x

y

 1. 4x2 + y2 = 4 2. 4x2 − y2 = 4

 3. y2 = −4x 4. y2 − 4x2 = 4

 5. x2 + 4y2 = 4 6. x2 = 4y

Identifying a Conic In Exercises 7–14, identify the conic, 
analyze the equation (center, radius, vertices, foci, eccentricity, 
directrix, and asymptotes, if possible), and sketch its graph. 
Use a graphing utility to confirm your results.

 7. x2 + y2 − 2x − 8y − 8 = 0

 8. y2 − 12y − 8x + 20 = 0

 9. 3x2 − 2y2 + 24x + 12y + 24 = 0

10. 5x2 + y2 − 20x + 19 = 0

11. 16x2 + 16y2 − 16x + 24y − 3 = 0

12. −4x2 + 3y2 − 16x − 18y + 10 = 0

13. x2 + 10x − 12y + 13 = 0

14. 9x2 + 25y2 + 18x − 100y − 116 = 0

Finding the Standard Equation of a Parabola In 
Exercises 15 and 16, find the standard form of the equation of 
the parabola with the given characteristics.

15. Vertex: (7, 0) 16. Vertex: (2, 6)
 Directrix: x = 5  Focus: (2, 4)

Finding the Standard Equation of an Ellipse In 
Exercises 17–20, find the standard form of the equation of the 
ellipse with the given characteristics.

17. Center: (0, 1) 18. Center: (0, 0)
Focus: (4, 1) Major axis: vertical

 Vertex: (6, 1)  Points on the ellipse: 
(1, 2), (2, 0)

19. Vertices: (3, 1), (3, 7)  20. Foci: (0, ±7)
Eccentricity: 2

3 Major axis length: 20

Finding the Standard Equation of a Hyperbola In 
Exercises 21–24, find the standard form of the equation of the 
hyperbola with the given characteristics.

21. Vertices: (0, ±8)  22. Vertices: (±2, 0)
Asymptotes: y = ±2x Asymptotes: y = ±32x

23. Vertices: (±7, −1)  24. Center: (0, 0)
 Foci: (±9, −1) Vertex: (0, 3)
   Focus: (0, 6)

25.  Satellite Antenna A cross section of a large 
parabolic antenna is modeled by the graph of y = x2�200, 
−100 ≤ x ≤ 100. The receiving and transmitting equipment 
is positioned at the focus. 

 (a) Find the coordinates of the focus. 

 (b) Find the surface area of the antenna.

26. Using an Ellipse Consider the ellipse 
x2

25
+

y2

9
= 1.

 (a)  Find the area of the region bounded by the ellipse.

 (b)  Find the volume of the solid generated by revolving the 
region about its major axis.

Using Parametric Equations In Exercises 27–34, sketch 
the curve represented by the parametric equations (indicate 
the orientation of the curve), and write the corresponding 
rectangular equation by eliminating the parameter.

27. x = 1 + 8t, y = 3 − 4t  28. x = t − 2, y = t2 − 1

29. x = √t + 1, y = t − 3 30. x = et − 1, y = e3t

31. x = 6 cos θ, y = 6 sin θ

32. x = 2 + 5 cos t, y = 3 + 2 sin t

33. x = 2 + sec θ, y = 3 + tan θ

34. x = 5 sin3 θ, y = 5 cos3 θ

Finding Parametric Equations In Exercises 35 and 
36, find two different sets of parametric equations for the 
rectangular equation.

35. y = 4x + 3 36. y = x2 − 2
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37.  Rotary Engine The rotary engine was developed by Felix 
Wankel in the 1950s. It features a rotor that is a modified 
equilateral triangle. The rotor moves in a chamber that, in two 
dimensions, is an epitrochoid. Use a graphing utility to graph 
the chamber modeled by the parametric equations

 x = cos 3θ + 5 cos θ

and

y = sin 3θ + 5 sin θ.

38.  Serpentine Curve Consider the parametric equations 
x = 2 cot θ and y = 4 sin θ cos θ, 0 < θ < π.

(a)  Use a graphing utility to graph the curve.

(b)  Eliminate the parameter to show that the rectangular 
equation of the serpentine curve is (4 + x2)y = 8x.

Finding Slope and Concavity In Exercises 39– 46, find 
dy�dx and d2y�dx2, and find the slope and concavity (if 
possible) at the given value of the parameter.

 Parametric Equations Parameter

39. x = 1 + 6t, y = 4 − 5t t = 3

40. x = t − 6, y = t2 t = 5

41. x =
1
t
, y = t2 t = −2

42. x =
1

√t
+ 1, y = 3 − 2t t = 4

43. x = et, y = e−t t = 1

44. x = 5 + cos θ, y = 3 + 4 sin θ θ =
π
6

45. x = 10 cos θ, y = 10 sin θ θ =
π
4

46. x = cos4 θ, y = sin4 θ θ = −
π
3

Finding an Equation of a Tangent Line In Exercises 47 
and 48, (a) use a graphing utility to graph the curve represented 
by the parametric equations, (b) use a graphing utility to find 
dx�dθ, dy�dθ, and dy�dx at the given value of the parameter, 
(c) find an equation of the tangent line to the curve at the given 
value of the parameter, and (d) use a graphing utility to graph 
the curve and the tangent line from part (c).

 Parametric Equations Parameter

47. x = cot θ, y = sin 2θ θ =
π
6

48. x =
1
4

 tan θ, y = 6 sin θ θ =
π
3

Horizontal and Vertical Tangency In Exercises 49–52, 
find all points (if any) of horizontal and vertical tangency to the 
curve. Use a graphing utility to confirm your results.

49. x = 5 − t, y = 2t2

50. x = t + 2, y = t3 − 2t

51. x = 2 + 2 sin θ, y = 1 + cos θ

52. x = 2 − 2 cos θ, y = 2 sin 2θ

Arc Length In Exercises 53 and 54, find the arc length of 
the curve on the given interval.

 Parametric Equations Interval

53. x = t2 + 1, y = 4t3 + 3 0 ≤ t ≤ 2

54. x = 7 cos θ, y = 7 sin θ 0 ≤ θ ≤ π

Surface Area In Exercises 55 and 56, find the area of the 
surface generated by revolving the curve about (a) the x-axis 
and (b) the y-axis.

55. x = 4t, y = 3t + 1, 0 ≤ t ≤ 1

56. x = 2 cos θ, y = 2 sin θ, 0 ≤ θ ≤ π
2

Area In Exercises 57 and 58, find the area of the region.

57. x = 3 sin θ 58. x = 2 cos θ

 y = 2 cos θ  y = sin θ

 −
π
2

≤ θ ≤ π
2

  0 ≤ θ ≤ π

 

−1−2−3 1 2 3
−1

−2

1

3

4

x

y   

−1−2−3 1 2 3
−1

−2

−3

2

3

x

y

Polar-to-Rectangular Conversion In Exercises 59–62, 
the polar coordinates of a point are given. Plot the point and 
find the corresponding rectangular coordinates for the point.

59. (5, 
3π
2 ) 60. (−6, 

5π
6 )

61. (√7, 3.25) 62. (−2, −2.45)

Rectangular-to-Polar Conversion In Exercises 63–66, 
the rectangular coordinates of a point are given. Plot the 
point and find two sets of polar coordinates for the point for 
0 ≤ θ < 2π.

63. (4, −4) 64. (0, −7)
65. (−1, 3) 66. (−√3, −√3)

Rectangular-to-Polar Conversion In Exercises 67–72, 
convert the rectangular equation to polar form and sketch its 
graph.

67. x2 + y2 = 25 68. x2 − y2 = 4

69. y = 9 70. x = 6

71. −x + 4y − 3 = 0 72. x2 = 4y
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Polar-to-Rectangular Conversion In Exercises 73–78, 
convert the polar equation to rectangular form and sketch its 
graph.

 73. r = 6 cos θ  74. r = 10

 75. r = −4 sec θ  76. r = 3 csc θ

 77. θ =
3π
4

  78. r = −2 sec θ tan θ

Graphing a Polar Equation In Exercises 79–82, use a 
graphing utility to graph the polar equation. Find an interval 
for θ over which the graph is traced only once.

 79. r =
3π
2

 sin 3θ  80. r = 2 sin θ cos2 θ

 81. r = 4 cos 2θ sec θ  82. r = 4(sec θ − cos θ)

Horizontal and Vertical Tangency In Exercises 83 and 
84, find the points of horizontal and vertical tangency (if any) 
to the polar curve.

 83. r = 1 − cos θ  84. r = 3 tan θ

Tangent Lines at the Pole In Exercises 85 and 86, sketch a 
graph of the polar equation and find the tangent lines at the pole.

 85. r = 4 sin 3θ  86. r = 3 cos 4θ

Sketching a Polar Graph In Exercises 87–96, sketch a 
graph of the polar equation.

 87. r = 6  88. θ =
π
10

 89. r = −sec θ  90. r = 5 csc θ

 91. r = 4 − 3 cos θ  92. r = 3 + 2 sin θ

 93. r = 4θ  94. r = −3 cos 2θ

 95. r2 = 4 sin 2θ  96. r2 = 9 cos 2θ

Finding the Area of a Polar Region In Exercises 97–100, 
find the area of the region.

 97. One petal of r = 3 cos 5θ

 98. One petal of r = 2 sin 6θ

 99. Interior of r = 2 + cos θ

100. Interior of r = 5(1 − sin θ)

Finding Points of Intersection In Exercises 101 and 102, 
find the points of intersection of the graphs of the equations.

101. r = 1 − cos θ 102. r = 1 + sin θ

  r = 1 + sin θ   r = 3 sin θ

Finding the Area of a Polar Region In Exercises  
103–108, use a graphing utility to graph the polar equation. 
Find the area of the given region analytically.

103. Inner loop of r = 3 − 6 cos θ

104. Inner loop of r = 4 + 8 sin θ

105. Between the loops of r = 3 − 6 cos θ

106. Between the loops of r = 4 + 8 sin θ

107. Common interior of r = 5 − 2 sin θ and r = −5 + 2 sin θ

108. Common interior of r = 4 cos θ and r = 2

Finding the Arc Length of a Polar Curve In Exercises 
109 and 110, find the length of the curve over the given interval.

  Polar Equation Interval

109. r = 5 cos θ [π2, π]
110. r = 3(1 − cos θ) [0, π]

Finding the Area of a Surface of Revolution In 
Exercises 111 and 112, find the area of the surface formed by 
revolving the polar equation over the given interval about the 
given line.

 Polar Equation Interval Axis of Revolution

111. r = 2 sin θ 0 ≤ θ ≤ π  Polar axis

112. r = 2 sin θ 0 ≤ θ ≤ π
2

 θ =
π
2

Identifying and Sketching a Conic In Exercises  
113–118, find the eccentricity and the distance from the pole to 
the directrix of the conic. Then identify the conic and sketch its 
graph. Use a graphing utility to confirm your results.

113. r =
6

1 − sin θ  114. r =
2

1 + cos θ

115. r =
6

3 + 2 cos θ  116. r =
4

5 − 3 sin θ

117. r =
4

2 − 3 sin θ  118. r =
8

2 − 5 cos θ

Finding a Polar Equation In Exercises 119–122, find a 
polar equation for the conic with its focus at the pole and the 
given eccentricity and directrix. (For convenience, the equation 
for the directrix is given in rectangular form.)

 Conic Eccentricity Directrix

119. Parabola e = 1 x = 5

120. Ellipse e =
3
4

 y = −2

121. Hyperbola e = 3 y = 3

122. Hyperbola e =
5
2

 x = −1

Finding a Polar Equation In Exercises 123–126, find a 
polar equation for the conic with its focus at the pole and the 
given vertex or vertices.

 Conic Vertex or Vertices

123. Parabola (2, 
π
2)

124. Parabola (3, π)
125. Ellipse (5, 0), (1, π)
126. Hyperbola (1, 0), (7, 0)
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Using a Parabola Consider the parabola

 x2 = 4y

 and the focal chord

 y = 3
4x + 1.

 (a)  Sketch the graph of the parabola and the focal chord.

 (b)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect at right angles.

 (c)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect on the directrix of the parabola.

2.  Using a Parabola Consider the parabola x2 = 4py and one 
of its focal chords.

 (a)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect at right angles.

 (b)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect on the directrix of the parabola.

3.  Proof Prove Theorem 10.2, Reflective Property of a Parabola, 
as shown in the figure.

x

P

F

y

4.  Flight Paths An air traffic controller spots two planes at the 
same altitude flying toward each other (see figure). Their flight 
paths are 20° and 315°. One plane is 150 miles from point P 
with a speed of 375 miles per hour. The other is 190 miles from 
point P with a speed of 450 miles per hour.

y

x
P

45°

20°

190 mi
150 mi

 (a)  Find parametric equations for the path of each plane where 
t is the time in hours, with t = 0 corresponding to the time 
at which the air traffic controller spots the planes.

 (b)  Use the result of part (a) to write the distance between the 
planes as a function of t.

 (c)  Use a graphing utility to graph the function in part (b). 
When will the distance between the planes be minimum? If 
the planes must keep a separation of at least 3 miles, is the 
requirement met?

5.  Strophoid The curve given by the parametric equations 

 x(t) = 1 − t2

1 + t2 and y(t) = t(1 − t2)
1 + t2

 is called a strophoid.

 (a) Find a rectangular equation of the strophoid.

 (b) Find a polar equation of the strophoid.

 (c) Sketch a graph of the strophoid.

 (d) Find the equations of the two tangent lines at the origin.

 (e)  Find the points on the graph at which the tangent lines are 
horizontal.

6.  Finding a Rectangular Equation Find a rectangular 
equation of the portion of the cycloid given by the parametric 
equations x = a(θ − sin θ) and y = a(1 − cos θ), 0 ≤ θ ≤ π, 
as shown in the figure.

x
a

2a

πO

y

7. Cornu Spiral Consider the cornu spiral given by

 x(t) = ∫t

0
 cos 

πu2

2
 du and y(t) = ∫t

0
 sin 

πu2

2
 du.

 (a)  Use a graphing utility to graph the spiral over the interval 
−π ≤ t ≤ π.

 (b)  Show that the cornu spiral is symmetric with respect to the 
origin.

 (c)  Find the length of the cornu spiral from t = 0 to t = a. 
What is the length of the spiral from t = −π  to t = π?

8.  Using an Ellipse Consider the region bounded by the ellipse

 
x2

a2 +
y2

b2 = 1

 with eccentricity e = c�a.

 (a)  Show that the solid (oblate spheroid) generated by revolving 
the region about the minor axis of the ellipse has a volume 
of V = 4π2b�3 and a surface area of

  S = 2πa2 + π(b
2

e ) ln(
1 + e
1 − e).

 (b)  Show that the solid (prolate spheroid) generated by 
revolving the region about the major axis of the ellipse has 
a volume of V = 4πab2�3 and a surface area of

  S = 2πb2 + 2π(ab
e ) arcsin e.
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 9.  Area Let a and b be positive constants. Find the area of the 
region in the first quadrant bounded by the graph of the polar 
equation 

 r =
ab

(a sin θ + b cos θ), 0 ≤ θ ≤ π
2

.

10.  Arc Length Consider the logarithmic spiral

 r = eaθ

  where a is a constant greater than 0 (see figure). Find the arc 
length from the point (1, 0) to the pole. Notice that the graph 
of the curve makes infinitely many rotations to reach the pole.

π
2

0
(1, 0)

r = eaθ

  

x

−1

1

−1 1

(−1, 0) (1, 0)

y

 Figure for 10 Figure for 11

11.  Finding a Polar Equation Determine the polar equation 
of the set of all points (r, θ), the product of whose distances 
from the points (1, 0) and (−1, 0) is equal to 1, as shown in 
the figure.

12.  Arc Length A particle is moving along the path described 
by the parametric equations

 x =
1
t
 and y =

sin t
t

  for 1 ≤ t < ∞, as shown in the figure. Find the length of this 
path.

x
1

1

−1

y

13.  Finding a Polar Equation Four dogs are located at the 
corners of a square with sides of length d. The dogs all move 
counterclockwise at the same speed directly toward the next 
dog, as shown in the figure. Find the polar equation of a dog’s 
path as it spirals toward the center of the square.

d

d d

d

14. Using a Hyperbola Consider the hyperbola 

 
x2

a2 −
y2

b2 = 1

  with foci F1 and F2, as shown in the figure. Let T be the 
tangent line at a point M on the hyperbola. Show that incoming 
rays of light aimed at one focus are reflected by a hyperbolic 
mirror toward the other focus.

x
F1 F2

M

T ab

y   

xa

x = 2a

cO

PA

B

θ

y

 Figure for 14 Figure for 15

15.  Cissoid of Diocles Consider a circle of radius a tangent 
to the y-axis and the line x = 2a, as shown in the figure. Let A 
be the point where the segment OB intersects the circle, where 
point B lies on the line x = 2a. The cissoid of Diocles consists 
of all points P such that OP = AB.

 (a) Find a polar equation of the cissoid.

 (b)  Find a set of parametric equations for the cissoid that does 
not contain trigonometric functions.

 (c) Find a rectangular equation of the cissoid.

16.  Butterfly Curve Use a graphing utility to graph the curve 
shown in the figure below. The curve is given by

 r = ecos θ − 2 cos 4θ + sin5 
θ
12

.

 Over what interval must θ vary to produce the curve?

17.  Graphing Polar Equations Use a graphing utility to 
graph the polar equation r = cos 5θ + n cos θ for 0 ≤ θ < π  
and for the integers n = −5 to n = 5. What values of n 
produce the “heart” portion of the curve? What values of n 
produce the “bell” portion? (This curve, created by Michael 
W. Chamberlin, appeared in The College Mathematics 
Journal.)

 FOR FURTHER INFORMATION For more information on 
this curve, see the article “A Study in Step Size” by Temple H. Fay 
in Mathematics Magazine. To view this article, go to  
MathArticles.com.
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A2

A Proofs of Selected Theorems

The text version of Appendix A, Proofs of Selected Theorems, is available 
at CengageBrain.com. Also, to enhance your study of calculus, each proof 
is available in video format at LarsonCalculus.com. At this website, you 
can watch videos of Bruce Edwards explaining each proof in the text and in 
Appendix A. To access a video, visit the website at LarsonCalculus.com or 
scan the code near the proof or the proof’s reference.

 2.2 Basic Differentiation Rules and Rates of Change 111

The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a 
binomial.

(x + ∆x)2 = x2 + 2x∆x + (∆x)2

(x + ∆x)3 = x3 + 3x2∆x + 3x(∆x)2 + (∆x)3

(x + ∆x)4 = x4 + 4x3∆x + 6x2(∆x)2 + 4x(∆x)3 + (∆x)4

(x + ∆x)5 = x5 + 5x4∆x + 10x3(∆x)2 + 10x2(∆x)3 + 5x(∆x)4 + (∆x)5

The general binomial expansion for a positive integer n is

(x + ∆x)n = xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n.

 
 (∆x)2 is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

THEOREM 2.3 The Power Rule

If n is a rational number, then the function f(x) = xn is differentiable and

d
dx

 [xn] = nxn−1.

For f  to be differentiable at x = 0, n must be a number such that 
xn−1 is defined on an interval containing 0.

Proof If n is a positive integer greater than 1, then the binomial expansion produces

 
d
dx

 [xn] = lim
∆x→0

 
(x + ∆x)n − xn

∆x

 = lim
∆x→0

 
xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n − xn

∆x

 = lim
∆x→0

 [nxn−1 +
n(n − 1)xn−2

2
 (∆x) + .  .  . + (∆x)n−1]

 = nxn−1 + 0 + .  .  . + 0

 = nxn−1.

This proves the case for which n is a positive integer greater than 1. It is left to you to prove 
the case for n = 1. Example 7 in Section 2.3 proves the case for which n is a negative 
integer. In Exercise 73 in Section 2.5, you are asked to prove the case for which n is 
rational. (In Section 5.5, the Power Rule will be extended to cover irrational values of n.) 
 

When using the Power Rule, the case for which n = 1 is best thought of as a 
 separate differentiation rule. That is,

d
dx

 [x] = 1.    Power Rule when n = 1

This rule is consistent with the fact that the slope of the line y = x is 1, as shown in 
Figure 2.15.

REMARK From Example 7  
in Section 2.1, you know that 
the function f (x) = x1�3 is 
defined at x = 0 but is not  
differentiable at x = 0. This  
is because x−2�3 is not defined 
on an interval containing 0.

The slope of the line y = x is 1.
Figure 2.15

x

y = x

y

1

1

2

3

4

2 3 4

Sample Video: Bruce Edwards’s Proof of the 
Power Rule at LarsonCalculus.com

 is a positive integer greater than 1, then the binomial expansion produces
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A3

B Integration Tables

Forms Involving un

1. ∫ un du =
un+1

n + 1
+ C, n ≠ −1  2. ∫ 

1
u

 du = ln∣u∣ + C

Forms Involving a + bu

3. ∫ 
u

a + bu
 du =

1
b2 (bu − a ln∣a + bu∣) + C  4. ∫ 

u
(a + bu)2 du =

1
b2 ( a

a + bu
+ ln∣a + bu∣) + C

5. ∫ 
u

(a + bu)n du =
1
b2[ −1

(n − 2)(a + bu)n−2 +
a

(n − 1)(a + bu)n−1] + C, n ≠ 1, 2

6. ∫ 
u2

a + bu
 du =

1
b3[−bu

2
(2a − bu) + a2 ln∣a + bu∣] + C

7. ∫ 
u2

(a + bu)2 du =
1
b3 (bu −

a2

a + bu
− 2a ln∣a + bu∣) + C

8. ∫ 
u2

(a + bu)3 du =
1
b3[ 2a

a + bu
−

a2

2(a + bu)2 + ln∣a + bu∣] + C

 9. ∫ 
u2

(a + bu)n du =
1
b3[ −1

(n − 3)(a + bu)n−3 +
2a

(n − 2)(a + bu)n−2 −
a2

(n − 1)(a + bu)n−1] + C, n ≠ 1, 2, 3

10. ∫ 
1

u(a + bu) du =
1
a

 ln∣ u
a + bu∣ + C 11. ∫ 

1
u(a + bu)2 du =

1
a (

1
a + bu

+
1
a

 ln∣ u
a + bu∣) + C

12. ∫ 
1

u2(a + bu) du = −
1
a (

1
u
+

b
a

 ln∣ u
a + bu∣) + C 13. ∫ 

1
u2(a + bu)2 du = −

1
a2[ a + 2bu

u(a + bu) +
2b
a

 ln∣ u
a + bu∣] + C

Forms Involving a + bu + cu2, b2 ≠ 4ac

14. ∫ 
1

a + bu + cu2
 du = { 2

√4ac − b2
 arctan 

2cu + b

√4ac − b2
+ C,

1

√b2 − 4ac
 ln∣2cu + b − √b2 − 4ac

2cu + b + √b2 − 4ac∣ + C,

     b2 < 4ac

     b2 > 4ac

15. ∫ 
u

a + bu + cu2 du =
1
2c (ln∣a + bu + cu2∣ − b∫ 

1
a + bu + cu2 du)

Forms Involving √a + bu

16. ∫ un√a + bu du =
2

b(2n + 3) [un(a + bu)3
2 − na∫ un−1√a + bu du]

17. ∫ 
1

u√a + bu
 du = { 1

√a
 ln∣√a + bu − √a

√a + bu + √a∣ + C,

2

√−a
 arctan √a + bu

−a + C,

     a > 0

     a < 0

18. ∫ 
1

un√a + bu
 du =

−1
a(n − 1)[

√a + bu
un−1 +

(2n − 3)b
2 ∫ 

1

un−1√a + bu
 du], n ≠ 1
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A4	 Appendix B  Integration Tables

19.  ∫ 
√a + bu

u
 du = 2√a + bu + a∫ 

1

u√a + bu
 du

20.  ∫ 
√a + bu

un  du =
−1

a(n − 1) [
(a + bu)3
2

un−1 +
(2n − 5)b

2 ∫ 
√a + bu

un−1  du],  n ≠ 1

21.  ∫ 
u

√a + bu
 du =

−2(2a − bu)
3b2 √a + bu + C

22.  ∫ 
un

√a + bu
 du =

2
(2n + 1)b (un√a + bu − na∫ 

un−1

√a + bu
 du)

Forms Involving a2 ± u2,  a > 0

23.  ∫ 
1

a2 + u2 du =
1
a

 arctan 
u
a
+ C

24.  ∫ 
1

u2 − a2 du = −∫ 
1

a2 − u2 du =
1
2a

 ln∣u − a
u + a∣ + C

25.  ∫ 
1

(a2 ± u2)n du =
1

2a2(n − 1) [
u

(a2 ± u2)n−1 + (2n − 3)∫ 
1

(a2 ± u2)n−1 du],  n ≠ 1

Forms Involving √u2 ± a2,  a > 0

26.  ∫ √u2 ± a2 du =
1
2
(u√u2 ± a2 ± a2 ln∣u + √u2 ± a2∣) + C

27.  ∫ u2√u2 ± a2 du =
1
8
[u(2u2 ± a2)√u2 ± a2 − a4 ln∣u + √u2 ± a2∣] + C

28.  ∫ 
√u2 + a2

u
 du = √u2 + a2 − a ln∣a + √u2 + a2

u ∣ + C

29.  ∫ 
√u2 − a2

u
 du = √u2 − a2 − a arcsec 

∣u∣
a

+ C

30.  ∫ 
√u2 ± a2

u2  du =
−√u2 ± a2

u
+ ln∣u + √u2 ± a2∣ + C

31.  ∫ 
1

√u2 ± a2
 du = ln∣u + √u2 ± a2∣ + C

32.  ∫ 
1

u√u2 + a2
 du =

−1
a

 ln∣a + √u2 + a2

u ∣ + C	 33.  ∫ 
1

u√u2 − a2
 du =

1
a

 arcsec 
∣u∣
a

+ C

34.  ∫ 
u2

√u2 ± a2
 du =

1
2 (u√u2 ± a2 ∓ a2 ln∣u + √u2 ± a2∣) + C

35.  ∫ 
1

u2√u2 ± a2
 du = ∓

√u2 ± a2

a2u
+ C	 36.  ∫ 

1
(u2 ± a2)3
2 du =

±u

a2√u2 ± a2
+ C

Forms Involving √a2 − u2,  a > 0

37.  ∫ √a2 − u2 du =
1
2 (u√a2 − u2 + a2 arcsin 

u
a) + C

38.  ∫ u2√a2 − u2 du =
1
8[u(2u2 − a2)√a2 − u2 + a4 arcsin 

u
a] + C
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	 Appendix B  Integration Tables� A5

39.  ∫ 
√a2 − u2

u
 du = √a2 − u2 − a ln∣a + √a2 − u2

u ∣ + C	 40.  ∫ 
√a2 − u2

u2  du =
−√a2 − u2

u
− arcsin 

u
a
+ C

41.  ∫ 
1

√a2 − u2
 du = arcsin 

u
a
+ C	 42.  ∫ 

1

u√a2 − u2
 du =

−1
a

 ln∣a + √a2 − u2

u ∣ + C

43.  ∫ 
u2

 √a2 − u2
 du =

1
2 (−u√a2 − u2 + a2 arcsin 

u
a) + C	 44.  ∫ 

1

u2√a2 − u2
 du =

−√a2 − u2

a2u
+ C

45.  ∫ 
1

(a2 − u2)3
2 du =
u

a2√a2 − u2
+ C

Forms Involving sin u or cos u

46.  ∫ sin u du = −cos u + C	 47.  ∫ cos u du = sin u + C

48.  ∫ sin2 u du =
1
2
(u − sin u cos u) + C	 49.  ∫ cos2 u du =

1
2
(u + sin u cos u) + C

50.  ∫ sinn u du = −
sinn−1 u cos u

n
+

n − 1
n ∫ sinn−2 u du	 51.  ∫ cosn u du =

cosn−1 u sin u
n

+
n − 1

n ∫ cosn−2 u du

52.  ∫ u sin u du = sin u − u cos u + C	 53.  ∫ u cos u du = cos u + u sin u + C

54.  ∫ un sin u du = −un cos u + n∫un−1 cos u du	 55.  ∫ un cos u du = un sin u − n∫un−1 sin u du

56.  ∫ 
1

1 ± sin u
 du = tan u ∓ sec u + C	 57.  ∫ 

1
1 ± cos u

 du = −cot u ± csc u + C

58.  ∫ 
1

sin u cos u
 du = ln∣tan u∣ + C

Forms Involving tan u, cot u, sec u, or csc u

59.  ∫ tan u du = −ln∣cos u∣ + C	 60.  ∫ cot u du = ln∣sin u∣ + C

61.  ∫ sec u du = ln∣sec u + tan u∣ + C

62.  ∫ csc u du = ln∣csc u − cot u∣ + C  or  ∫ csc u du = −ln∣csc u + cot u∣ + C

63.  ∫ tan2 u du = −u + tan u + C	 64.  ∫ cot2 u du = −u − cot u + C

65.  ∫ sec2 u du = tan u + C	 66.  ∫ csc2 u du = −cot u + C

67.  ∫ tann u du =
tann−1 u
n − 1

− ∫ tann−2 u du,  n ≠ 1	 68.  ∫ cotn u du = −
cotn−1 u
n − 1

− ∫ cotn−2 u du,  n ≠ 1

69.  ∫ secn u du =
secn−2 u tan u

n − 1
+

n − 2
n − 1∫ secn−2 u du,  n ≠ 1

70.  ∫ cscn u du = −
cscn−2 u cot u

n − 1
+

n − 2
n − 1∫ cscn−2 u du,  n ≠ 1
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A6	 Appendix B  Integration Tables

  71.  ∫ 
1

1 ± tan u
 du =

1
2
(u ± ln∣cos u ± sin u∣) + C	 72.  ∫ 

1
1 ± cot u

 du =
1
2
(u ∓ ln∣sin u ± cos u∣) + C

  73.  ∫ 
1

1 ± sec u
 du = u + cot u ∓ csc u + C	 74.  ∫ 

1
1 ± csc u

 du = u − tan u ± sec u + C

Forms Involving Inverse Trigonometric Functions

  75.  ∫ arcsin u du = u arcsin u + √1 − u2 + C	 76.  ∫ arccos u du = u arccos u − √1 − u2 + C

  77.  ∫ arctan u du = u arctan u − ln√1 + u2 + C	 78.  ∫ arccot u du = u arccot u + ln√1 + u2 + C

  79.  ∫ arcsec u du = u arcsec u − ln∣u + √u2 − 1∣ + C	 80.  ∫ arccsc u du = u arccsc u + ln∣u + √u2 − 1∣ + C

Forms Involving eu

  81.  ∫ eu du = eu + C	 82.  ∫ ueu du = (u − 1)eu + C

  83.  ∫ uneu du = uneu − n∫ un−1eu du	 84.  ∫ 
1

1 + eu du = u − ln(1 + eu) + C

  85.  ∫ eau sin bu du =
eau

a2 + b2 (a sin bu − b cos bu) + C	 86.  ∫ eau cos bu du =
eau

a2 + b2 (a cos bu + b sin bu) + C

Forms Involving ln u

  87.  ∫ ln u du = u(−1 + ln u) + C	 88.  ∫ u ln u du =
u2

4
(−1 + 2 ln u) + C

  89.  ∫ un ln u du =
un+1

(n + 1)2 [−1 + (n + 1) ln u] + C,  n ≠ −1

  90.  ∫ (ln u)2 du = u[2 − 2 ln u + (ln u)2] + C	 91.  ∫ (ln u)n du = u(ln u)n − n∫ (ln u)n−1 du

Forms Involving Hyperbolic Functions

  92.  ∫ cosh u du = sinh u + C	 93.  ∫ sinh u du = cosh u + C

  94.  ∫ sech2 u du = tanh u + C	 95.  ∫ csch2 u du = −coth u + C

  96.  ∫ sech u tanh u du = −sech u + C	 97.  ∫ csch u coth u du = −csch u + C

Forms Involving Inverse Hyperbolic Functions (in logarithmic form)

  98.  ∫ 
du

√u2 ± a2
= ln(u + √u2 ± a2) + C	 99.  ∫ 

du
a2 − u2 =

1
2a

 ln∣a + u
a − u∣ + C

100.  ∫ 
du

u√a2 ± u2
= −

1
a

 ln 
a + √a2 ± u2

∣u∣ + C
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Answers to Odd-Numbered Exercises A7

Answers to Odd-Numbered Exercises

Chapter P
Section P.1 (page 8)

1.  To find the x-intercepts of the graph of an equation, let y be 
zero and solve the equation for x. To find the y-intercepts of 
the graph of an equation, let x be zero and solve the equation 
for y.

3. b  4. d  5. a  6. c
7. 

−2−4 2 4

−2

4

6

y

x

(−2, 1)

(−4, 0)

(0, 2)
(2, 3)

(4, 4)

  9. 

x

2

−4

−2

−6

6

−4−6 4 6

(−3, −5) (3, −5)

(−2, 0)

(0, 4)

(2, 0)

y

11. y

x

(−4, 3)
(−3, 2)

(−2, 1)

(−1, 0)

(0, 1)

(1, 2)

(2, 3)

−1−2−3−4−5 1 2 3−1

−2

1

2

3

4

5

6

 13. y

x

(0, −6)
(1, −5)

(4, −4)

(9, −3)
(16, −2)

−4 4 8 12 16

−2

−4

−6

−8

2

15. y

x

(3, 1)

(1, 3)

(−3, −1)

(−1, −3)

−1−2−3 1 2 3
−1

−2

1

2

3

2, 
3
2( (

−2, −  3
2( (

 17. 

−6 6

−3

5

(−4.00, 3)
(2, 1.73)

  (a) y ≈ 1.73   (b) x = −4

19. (0, −5), (5
2, 0)  21. (0, −2), (−2, 0), (1, 0)

23. (0, 0), (4, 0), (−4, 0)  25. (0, 2), (4, 0)  27. (0, 0)
29. Symmetric with respect to the y-axis
31. Symmetric with respect to the x-axis
33. Symmetric with respect to the origin  35. No symmetry
37. Symmetric with respect to the origin
39. Symmetric with respect to the y-axis
41. 

(0, 2)2

1

x
32−1

−1

, 0
2
3

y

( (

 43. y

x
(3, 0)

(0, 9)

(−3, 0)

−2−4−6 2 4 6
−2

2

4

6

10

Symmetry: none  Symmetry: y-axis

45. y

x

(0, 2)

−2−3 1 2 3
−1

1

3

4

5

3(−     2, 0)

 47. y

x
−1−2−3−4 1 2

−3

−4

2

3

(−5, 0) (0, 0)

Symmetry: none  Symmetry: none
49. 

x
1

−2

−3

−4

2

3

4

−2 −1−3−4 2 3 4

(0, 0)

y  51. y

x
−2 2 4 6 8

2

4

6

8

Symmetry: origin  Symmetry: origin
53. 

x
2

2

−4

−2

−6

−8

4

6

8

−4 −2−8 4 6 8

(−6, 0)

(0, 6)

(6, 0)

y  55. y

x

(−9, 0)

−8−10 2 4 6

−4

−6

−8

4

6

8

(             )0, −     3

(          )0,     3

Symmetry: y-axis  Symmetry: x-axis
57. (3, 5)  59. (−4, −1), (1, 14)  61. (−1, −2), (2, 1)
63. (−1, −5), (0, −1), (2, 1)  65. (−2, 2), (−3, √3)
67. (a) y = 0.58t + 9.2
 (b) 

0
8 15

20     The model is a good fit  
for the data.

 (c) $23.1 trillion
69. 4480 units
71.  Answers will vary. Sample answer: 

y = (2x + 3)(x − 4)(2x − 5)
73.  Yes. Assume that the graph has x-axis and origin symmetry. 

If (x, y) is on the graph, so is (x, −y) by x-axis  
symmetry. Because (x, −y) is on the graph, then so is 
(−x, −(−y)) = (−x, y) by origin symmetry. Therefore, the 
graph is symmetric with respect to the y-axis. The argument 
is similar for y-axis and origin symmetry.

75. False. (4, −5) is not a point on the graph of x = y2 − 29.
77. True

Section P.2 (page 16)

 1. Slope; y-intercept  3. m = 2  5. m = −1
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A8 Answers to Odd-Numbered Exercises

7. 

x
1 2 3 5 6 7−1

(3, −4)

(5, 2)

−2

−3

−4

−5

1

2

3

y   9. y

x

(4, 6)

(4, 1)

−1−2 1 2 3 5 6

1

2

3

4

5

6

7

m = 3  m is undefined.
11. 

x

−1

−2

−3

2

3

−2−3 21 3

y

(          )3
4

1
6

,−(          )1
2

2
3

,−

 13. y

x

m = −2

(3, 4)

m = 1

3
2

m = −

m is unde�ned.

−4−6 2 4 8 10−2

2

4

6

8

m = 2
15. Answers will vary. Sample answers: (0, 2), (1, 2), (5, 2)
17. Answers will vary. Sample answers: (0, 10), (2, 4), (3, 1)
19. 3x − 4y + 12 = 0 21. x = 1

x
1−1−2−3−4

1

2

4

5

(0, 3)

y   y

x

(1, 2)

−1−2−3 2 3
−1

−2

−3

1

2

3

23. 3x − y − 11 = 0
y

x

(3, −2)

−1
−1

−2 1 2 3 4 5 6

−2

−3

−4

−5

1

2

3

25. 12 ft
27. (a) y

t
9 10 11 12 13 14 15

300

305

310

315

320

Year (9 ↔ 2009)

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
)

From 2009 to 2010
(b) 2.38 million people per year   (c) 345.1 million people

29. m = 4, (0, −3)  31. m = −5, (0, 20)
33. m is undefined, no y-intercept
35. 

x
−1−2−3 1 2 3 4 5

−2

−4

−5

−6

1

2

y  37. 

x
−2 −1 1 2

−1

3

1

y

39. 

x
1

2

1

3

4

−2

−2

−3

−4

−3−4 2 3 4

y  41. y

x
−2−3−4 1 2 3 4−1

−2

−3

−4

1

2

3

4

43. 2x − y − 5 = 0 45. 8x + 3y − 40 = 0
y

x
−1−2 1 3 4 5 6−2

−4

−8

−10

2 (4, 3)

(0, −5)

4

6

  

1
2
3
4
5

−2

6
7
8
9

x
−1 4 6 7 8 91 2 3

(5, 0)

(2, 8)

y

47. x − 6 = 0 49. y − 1 = 0
y

x
−2 2 4 8

2

−2

4

6

8

(6, 3)

(6, 8)

  y

x

(3, 1) (5, 1)

−1 1 2 3 4 5 6
−1

−2

−3

2

3

4

51. y = (1 − b
3 )x + b  53. 3x + 2y − 6 = 0

55. x + 2y − 5 = 0  57. (a) x + 7 = 0   (b) y + 2 = 0
59. (a) x + y + 1 = 0   (b) x − y + 5 = 0
61. (a) 40x − 24y − 9 = 0   (b) 24x + 40y − 53 = 0
63. V = 250t + 350  65. Not collinear, because m1 ≠ m2

67.  The adjacent line segments are perpendicular and each line
 segment has a length of √8 = 2√2 units.
69. 12y + 5x − 169 = 0

71. (a) (0, 
−a2 + b2 + c2

2c )   (b) (b3, 
c
3)

73. 5F − 9C − 160 = 0; 72°F ≈ 22.2°C
75. (a) x = (1530 − p)�15
 (b) 

0
0

1600

50

  45 units
 (c) 49 units

77. Proof  79. 
5√2

2
  81–83. Proofs  85. True

Section P.3 (page 27)

 1.  A relation between two sets X and Y is a set of ordered pairs 
of the form (x, y), where x is a member of X and y is a  
member of Y.

  A function from X to Y is a relation between X and Y that 
has the property that any two ordered pairs with the same  
x-value also have the same y-value.

 3. Vertical shifts, horizontal shifts, reflections
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Answers to Odd-Numbered Exercises A9

5. (a) −2   (b) 13   (c) 3b − 2   (d) 3x − 5
7. (a) 2√2   (b) √13   (c) 2√2

(d) √x2 + 2bx2 + b2x2 + 4
9. (a) 5   (b) 0   (c) 1   (d) 4 + 2t − t2

11. 3x2 + 3x∆x + (∆x)2, ∆x ≠ 0
13. Domain: (−∞, ∞); Range: [0, ∞)
15. Domain: (−∞, ∞); Range: (−∞, ∞)
17. Domain: [0, ∞); Range: [0, ∞)
19. Domain: [−4, 4]; Range: [0, 4]
21. Domain: (−∞, 0) ∪ (0, ∞); Range: (−∞, 0) ∪ (0, ∞)
23. Domain: [0, 1]
25. Domain: (−∞, −3) ∪ (−3, ∞)
27. (a) −1   (b) 2   (c) 6   (d) 2t2 + 4

Domain: (−∞, ∞); Range: (−∞, 1) ∪ [2, ∞)
29. (a) 4   (b) 0   (c) −2   (d) −b2

Domain: (−∞, ∞); Range: (−∞, 0] ∪ [1, ∞)
31. 

−2−4 2 4

2

4

6

8

x

y  33. y

x
−1−2−3 1 2 3

−1

1

Domain: (−∞, ∞)  Domain: (−∞, ∞)
Range: (−∞, ∞)  Range: (0, 12 ]

35. y

x
3 6 9 12

1

2

3

 37. 

−1−2−3−4 1 2 3 4

−2

−3

1

2

4

5

x

y

Domain: [6, ∞)  Domain: [−3, 3]
Range: [0, ∞)  Range: [0, 3]

39. y is not a function of x.  41. y is a function of x.
43. y is not a function of x.  45. y is not a function of x.
47. Horizontal shift to the right two units

y = √x − 2
49.  Horizontal shift to the right two units and vertical shift down 

one unit
y = (x − 2)2 − 1

51. d  52. b  53. c  54. a  55. e  56. g
57. (a) 

x

−6

−2

−4

4

−4−6 −2 2 4

y  (b) 

x

−6

−2

−4

4

2

−2 2 4 6 8

y

(c) 

x

−2

4

6

2

−4 −2 2 4 6

y   (d) 
x

−2

−8

−6

−4

−4 −2 2 4 6

y

(e) 
x

−2

−8

−10

−6

−4

−4 −2 4 6

y   (f ) 

x

−6

4

2

−4 −2 2 4 6

y

(g) y

x

−4

−2
−4 −2 2 4 6

2

  (h) y

x

−4

−2
−4−6 2 4

4

6

59. (a) −x − 1   (b) 5x − 9

(c) −6x2 + 23x − 20   (d) 
2x − 5
4 − 3x

61. (a) 0   (b) 0   (c) −1   (d) √15
(e) √x2 − 1   (f) x − 1 (x ≥ 0)

63. ( f ∘ g)(x) = x; Domain: [0, ∞)
(g ∘ f )(x) = ∣x∣; Domain: (−∞, ∞)
No, their domains are different.

65. ( f ∘ g)(x) = 3
x2 − 1

; Domain: (−∞, −1) ∪ (−1, 1) ∪ (1, ∞)

(g ∘ f )(x) = 9
x2 − 1; Domain: (−∞, 0) ∪ (0, ∞)

No
67. (a) 4   (b) −2

(c) Undefined. The graph of g does not exist at x = −5.
 (d) 3   (e) 2
 (f) Undefined. The graph of f  does not exist at x = −4.
69. Answers will vary. 
 Sample answer: f (x) = √x; g(x) = x − 2; h(x) = 2x
71. (a) (3

2, 4)   (b) (3
2, −4)

73. f  is even. g is neither even nor odd. h is odd.
75. Even; zeros: x = −2, 0, 2  77. Neither; zeros: x = 0
79. f (x) = −5x − 6, −2 ≤ x ≤ 0  81. y = −√−x
83. Answers will vary.  85. Answers will vary. 
 Sample answer:  Sample answer:
 y

x

Time (in hours)

Sp
ee

d 
(i

n 
m

ile
s 

pe
r 

ho
ur

)

  y

t
4 8 12 16 20 24 28

3

6

9

12

15

Time (in minutes)

D
is

ta
nc

e 
fr

om
 h

om
e

(i
n 

m
ile

s)
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A10 Answers to Odd-Numbered Exercises

87. c = 25
89.  No. A graph of a function that is intersected by a horizontal 

line more than once would mean that there is more than one 
x-value corresponding to the same y-value.

 91. No. Consider y = x3 + x + 2.
f (−x) ≠ −f (x)
This is an odd-degree function that is not odd.

93. (a) T(4) = 16°C, T(15) ≈ 23°C
(b) The changes in temperature occur 1 hour later.
(c) The temperatures are 1° lower.

 95. (a) 

0
0 100

60    (b) H( x
1.6) = 0.00001132x3

97–99. Proofs  101. L =√x2 + ( 2x
x − 3)

2

103. False. For example, if f (x) = x2, then f (−1) = f (1).
105. True
107. False. f (x) = 0 is symmetric with respect to the x-axis.
109. Putnam Problem A1, 1988

Section P.4 (page 38)

1.  In general, if θ is any angle, then the angle θ + n(360°), n 
is a nonzero integer, is coterminal with θ.

3. sin θ =
7
25

cos θ =
24
25

tan θ =
7
24

5. (a) 396°, −324°   (b) 240°, −480°

7. (a) 
19π

9
, −

17π
9

   (b) 
10π

3
, −

2π
3

9. (a) 
π
6

; 0.524   (b) 
5π
6

; 2.618

  (c) 
7π
4

; 5.498   (d) 
2π
3

; 2.094

 11. (a) 270°   (b) 210°   (c) −105°   (d) −135.62°

13. 
r 8 ft 15 in. 85 cm 24 in. 12,963

π  mi

s 12 ft 24 in. 63.75π cm 96 in. 8642 mi

θ 1.5 1.6 3π
4

4 2π
3

 15. (a) sin θ = 4
5 csc θ = 5

4 (b) sin θ = − 5
13 csc θ = −13

5

  cos θ = 3
5  sec θ = 5

3  cos θ = −12
13  sec θ = −13

12

  tan θ = 4
3 cot θ = 3

4  tan θ = 5
12 cot θ = 12

5

17. 

2
1

θ

3

 19. 

5

4

3

θ

 cos θ =
√3
2

  sin θ =
3
5

 tan θ =
√3
3

  tan θ =
3
4

 csc θ = 2  csc θ =
5
3

 sec θ =
2√3

3
  sec θ =

5
4

 cot θ = √3  cot θ =
4
3

21. (a) sin 60° =
√3
2

 (b) sin 120° =
√3
2

  cos 60° =
1
2

  cos 120° = −
1
2

  tan 60° = √3  tan 120° = −√3

 (c) sin 
π
4
=
√2
2

 (d) sin 
5π
4

= −
√2
2

  cos 
π
4
=
√2
2

  cos 
5π
4

= −
√2
2

  tan 
π
4
= 1  tan 

5π
4

= 1

23. (a) sin 225° = −
√2
2

 (b) sin(−225°) = √2
2

  cos 225° = −
√2
2

  cos(−225°) = −
√2
2

  tan 225° = 1  tan(−225°) = −1

 (c) sin 
5π
3

= −
√3
2

 (d) sin 
11π

6
= −

1
2

  cos 
5π
3

=
1
2

  cos 
11π

6
=
√3
2

  tan 
5π
3

= −√3  tan 
11π

6
= −
√3
3

25. (a) 0.1736   (b) 5.7588  27. (a) 0.3640   (b) 0.3640
29. (a) Quadrant III   (b) Quadrant IV

31. (a) θ =
π
4

, 
7π
4

   (b) θ =
3π
4

, 
5π
4

33. (a) θ =
π
4

, 
5π
4

   (b) θ =
5π
6

, 
11π

6

35. θ =
π
4

, 
3π
4

, 
5π
4

, 
7π
4

  37. θ = 0, 
π
4

, π, 
5π
4

, 2π

39. θ =
π
3

, 
5π
3

  41. θ = 0, 
π
2

, π, 2π   43. 5099 ft

45. Period: π  47. Period: 1
2

 Amplitude: 2  Amplitude: 3

49. Period: 
π
2

  51. Period: 
2π
5
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Answers to Odd-Numbered Exercises A11

53. (a) 

−2.5

−

c = 2

c = 1

c = −2

c = −1
π π

2.5    (b) 

−1

−

c = ±2 c = ±1

π π

1

Change in amplitude   Change in period
(c) 

−1.5

−

c = −2

c = −1 c = 1

c = 2

2
π

2
π

1.5

Horizontal translation
55. 

x
3

1

−1

ππ

y  57. 

x
3
2

3

1

−1

y

59. 
3

x
3

1

2

−1
ππ

y  61. 

x

2
3

2

1

π ππ

y

63. 

x

1

−1

2
π

2
π

y

−

 65. 

x
3
22

2

π
2
π ππ

y

−

67. a = 3, b =
1
2

, c =
π
2

69.  No. You can use 1 + tan2 θ = sec2 θ, but you are unable to 
determine the sign.

71.  The range of the cosine function is −1 ≤ y ≤ 1. The range 
of the secant function is y ≤ −1 or y ≥ 1.

73. 

2

1

2

−2

−
x

f(x) = sin x

πππ

y  

2

−1

2

−2

y

x
πππ−2 −π

g(x) = ⎪sin x⎪

 

2

−1

2

−2

x
ππ

h(x) = sin(⎪x⎪)

y

  The graph of ∣ f (x)∣ will reflect any parts of the graph of f (x)
  below the x-axis about the x-axis. The graph of f (∣x∣) will 

reflect the part of the graph of f (x) right of the y-axis about 
the y-axis.

75. 100

0
0 12

 January, November, December
77.  False. 4π radians (not 4 radians) corresponds to two complete 

revolutions from the initial side to the terminal side of an angle.
79.  False. The amplitude of the function y = 1

2 sin 2x is one-half 
the amplitude of the function y = sin x.

Review Exercises for Chapter P (page 41)

 1. (8
5, 0), (0, −8)  3. (3, 0), (0, 34)  5. Not symmetric

 7. Symmetric with respect to the x-axis, the y-axis, and the origin
 9. y

x

(0, 3)

(6, 0)

−2 2 4 6

−2

−4

2

4

6

 11. y

x
−4−6−8 2 4 6 8−3

−12

3

6

9

12

(3, 0)

(0, 0)

(−3, 0)

 Symmetry: none  Symmetry: origin
13. y

x
−1 1 2 3 4 5

−1

1

2

3

5

(4, 0)

(0, 4)

 

 Symmetry: none
15. (−2, 3)  17. (−2, 3), (3, 8)
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A12 Answers to Odd-Numbered Exercises

19. 

x
1 2 3 4 5

1

2

3

4

5

y

(       )5
2

5,

(       )3
2

, 1

 21. 7x − 4y − 41 = 0
  y

x
−2−4−6−8 2 4 6 8

−4

−6

−8

−10

2

(3, −5)

0, − 41
4( (

 m = 3
7

23. 2x + 3y + 6 = 0
 

(−3, 0)

−4 −3 −1 1 2 3

−3

−4

1

2

3

x

y

25. Slope: 3
 y-intercept: (0, 5)
27. y

x
−1−3 −2−4 1 2 3 4

1

3

4

2

5

7

 29. y

x
−1−3 −2−4 1 2 3 4

1

−2
−3

3

4

2

31. x − 4y = 0 33. (a) 7x − 16y + 101 = 0
 y

x
−1−4 1 2 3 4

1

−2
−3

−4

3

4

2

  (b) 5x − 3y + 30 = 0
  (c) 4x − 3y + 27 = 0
  (d) x + 3 = 0

35. V = 12,500 − 850t; $9950
37. (a) 4   (b) 29   (c) −11   (d) 5t + 9
39. 8x + 4∆x, ∆x ≠ 0
41. Domain: (−∞, ∞); Range: [3, ∞)
43. Domain: (−∞, ∞); Range: (−∞, 0]
45. y

x
−1 1 2 3 4

−3

−4

1

2

3

4

 Domain: (−∞, 12) ∪ (1
2, ∞)

 Range: (−∞, 0) ∪ (0, ∞)
47. Not a function  49. Function

51. f (x) = x3 − 3x2

−6 6

−6

(0, 0)

6

(2, −4)

(a) g(x) = −x3 + 3x2 + 1
(b) g(x) = (x − 2)3 − 3(x − 2)2 + 1

53. f (g(x)) = −3x + 1; Domain: (−∞, ∞)
g( f (x)) = −3x − 1; Domain: (−∞, ∞)
No

55. Even; zeros: x = −1, 0, 1

57. 
17π

9
≈ 5.934  59. −

8π
3

≈ −8.378

61. 30°  63. −120°

65. sin(−45°) = −
√2
2

 67. sin 
13π

6
=

1
2

cos(−45°) = √2
2

  cos 
13π

6
=
√3
2

tan(−45°) = −1  tan 
13π

6
=
√3
3

69. sin 405° =
√2
2

 cos 405° =
√2
2

 tan 405° = 1

71. 0.6494  73. 3.2361  75. −0.3420  77. 
2π
3

, 
4π
3

79. 
7π
6

, 
3π
2

, 
11π

6
  81. 

π
3

, π, 
5π
3

83. y

x

−4
−6
−8
−10

10

−2π π π 2π

 85. y

x

1

2

3

4π2πππ−

87. y

x

−1
−

−2

1

2

2
3π

2
π

2
π π

 89. y

x

1

1
2

2

3

4

− 1
2

P.S. Problem Solving (page 43)

 1. (a) Center: (3, 4); Radius: 5
 (b) y = −3

4x   (c) y = 3
4x −

9
2   (d) (3, −9

4)
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Answers to Odd-Numbered Exercises A13

3. 

x
1

2

1

3

4

−2 −1
−1

−3

−2

−4

−3−4 2 3 4

y

(a) 

x
1

2

1

3

4

−2 −1
−1

−3

−4

−3−4 2 3 4

y
   (b) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

(c) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y   (d) 

x
1

2

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

(e) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y   (f ) 

x
1

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

5. (a) A(x) = x(100 − x
2 ); Domain: (0, 100)

(b) 

110
0

0

1600     Dimensions 50 m ×  25 m  
yield maximum area of  
1250 m2.

(c) 50 m × 25 m; Area = 1250 m2

7. T(x) =
2√4 + x2 + √(3 − x)2 + 1

4
9. (a) 5, less   (b) 3, greater   (c) 4.1, less

(d) 4 + h   (e) 4; Answers will vary.
11. (a) Domain: (−∞, 1) ∪ (1, ∞); Range: (−∞, 0) ∪ (0, ∞)

(b) f ( f (x)) = x − 1
x

Domain: (−∞, 0) ∪ (0, 1) ∪ (1, ∞)
(c) f ( f ( f (x))) = x

Domain: (−∞, 0) ∪ (0, 1) ∪ (1, ∞)
(d) y

x
21−2

−2

1

2

    The graph is not a line 
because there are holes at 
x = 0 and x = 1.

13. (a) x ≈ 1.2426, −7.2426 15. Proof
 (b) (x + 3)2 + y2 = 18  

(−     2 , 0) (    2 , 0)

(0, 0)

x

y

−2

−2

−1

1

2

2

−2−4−8 2 4
−2

−6

2

6

8

x

y

Chapter 1
Section 1.1  (page 51)

1.  Calculus is the mathematics of change. Precalculus  
mathematics is more static.
Answers will vary. Sample answer:
Precalculus Calculus
Area of a rectangle Area under a curve
Work  done by a  Work done by a 

constant force  variable force
Center of a rectangle Centroid of a region

3. Precalculus: 300 ft
5. Calculus: Slope of the tangent line at x = 2 is 0.16.

 7. (a) 

x

y

1 2 3 4 5

2

P(4, 2)

(b) x = 1: m = 1
3

x = 3: m =
1

√3 + 2
≈ 0.2679

x = 5: m =
1

√5 + 2
≈ 0.2361

(c)  14; You can improve your approximation of the slope at 
x = 4 by considering x-values very close to 4.

 9. Area ≈ 10.417; Area ≈ 9.145; Use more rectangles.
11. (a) About 5.66   (b) About 6.11
 (c) Increase the number of line segments.

Section 1.2  (page 59)

1.  As the graph of the function approaches 8 on the horizontal 
axis, the graph approaches 25 on the vertical axis.

 3. 

−1 1 2 3 4
−1

1

2

3

4

5

6

x

y

2.25
2
1.75

5.5

5
4.5

f(x) = 2x + 1
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A14 Answers to Odd-Numbered Exercises

5. 
x 3.9 3.99 3.999 4

f (x) 0.3448 0.3344 0.3334 ?

x 4.001 4.01 4.1

f (x) 0.3332 0.3322 0.3226

 lim
x→4

 
x − 4

x2 − 5x + 4
≈ 0.3333 (Actual limit is 

1
3

.)
7. 

x −0.1 −0.01 −0.001 0

f (x) 0.5132 0.5013 0.5001 ?

x 0.001 0.01 0.1

f (x) 0.4999 0.4988 0.4881

 lim
x→0

 
√x + 1 − 1

x
≈ 0.5000 (Actual limit is 

1
2

.)
 9. 

x −0.1 −0.01 −0.001 0

f (x) 0.9983 0.99998 1.0000 ?

x 0.001 0.01 0.1

f (x) 1.0000 0.99998 0.9983

 lim
x→0

 
sin x
x

≈ 1.0000 (Actual limit is 1.)

11. 
x 0.9 0.99 0.999 1

f (x) 0.2564 0.2506 0.2501 ?

x 1.001 1.01 1.1

f (x) 0.2499 0.2494 0.2439

 lim
x→1

 
x − 2

x2 + x − 6
≈ 0.2500 (Actual limit is 

1
4

.)
13. 

x 0.9 0.99 0.999 1

f (x) 0.7340 0.6733 0.6673 ?

x 1.001 1.01 1.1

f (x) 0.6660 0.6600 0.6015

 lim
x→1

 
x4 − 1
x6 − 1

≈ 0.6666 (Actual limit is 
2
3

.)
15. 

x −6.1 −6.01 −6.001 −6

f (x) −0.1248 −0.1250 −0.1250 ?

x −5.999 −5.99 −5.9

f (x) −0.1250 −0.1250 −0.1252

 lim
x→−6

 
√10 − x − 4

x + 6
≈ −0.1250 (Actual limit is −

1
8

.)

17. 
x −0.1 −0.01 −0.001 0

f (x) 1.9867 1.9999 2.0000 ?

x 0.001 0.01 0.1

f (x) 2.0000 1.9999 1.9867

 lim
x→0

 
sin 2x
x

≈ 2.0000 (Actual limit is 2.)

19. 
x −0.1 −0.01 −0.001 0

f (x) −2000 −2 × 106 −2 × 109 ?

x 0.001 0.01 0.1

f (x) 2 × 109 2 × 106 2000

  As x approaches 0 from the left, the function decreases without 
bound. As x approaches 0 from the right, the function increases 
without bound.

21. 1  23. 2
25.  Limit does not exist. The function approaches 1 from the right 

side of 2, but it approaches −1 from the left side of 2.
27.  Limit does not exist. The function oscillates between 1 and −1 

as x approaches 0.
29. (a) 2
 (b)  Limit does not exist. The function approaches 1 from the 

right side of 1, but it approaches 3.5 from the left side of 1.
 (c) Value does not exist. The function is undefined at x = 4.
 (d) 2
31. 

−1−2 1 2 3 4 5−1

−2

1

2

3

4

5

6

y

x

f

 33. 
y

x
−1−2 1 2 3 4 5
−1

1

2

4

5

6

f

 lim
x→c

 f (x) exists for all points

  on the graph except where  
c = 4.

35. δ = 0.4  37. δ = 1
11 ≈ 0.091

39. L = 8
 Answers will vary. Sample answers: 
 (a) δ ≈ 0.0033   (b) δ ≈ 0.00167
41. L = 1 43. L = 12
  Answers will vary.   Answers will vary. 

Sample answers:  Sample answers:
 (a) δ = 0.002  (a) δ = 0.00125
 (b) δ = 0.001  (b) δ = 0.000625
45. 6  47. −3  49. 3  51. 0  53. 10
55. 2  57. 4
59. 

−6 6

−0.1667

0.5    lim
x→4

 f (x) = 1
6

      Domain: [−5, 4) ∪ (4, ∞)
       The graph has a hole at x = 4.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Answers to Odd-Numbered Exercises A15

61. (a) $17.89; the cost of a 10-minute, 45-second phone call
(b) 

0
8

6

16     The limit does not exist because 
the limits from the right and left 
are not equal.

63.  Choosing a smaller positive value of δ will still satisfy the 
inequality ∣ f (x) − L∣ < ε.

65.  No. The fact that f (2) = 4 has no bearing on the existence of 
the limit of f (x) as x approaches 2.

67. (a) r =
3
π ≈ 0.9549 cm

(b) 
5.5
2π ≤ r ≤ 6.5

2π , or approximately 0.8754 < r < 1.0345

(c) lim
r→3�π

 2πr = 6; ε = 0.5; δ ≈ 0.0796

69. 
x −0.001 −0.0001 −0.00001

f (x) 2.7196 2.7184 2.7183

x 0.00001 0.0001 0.001

f (x) 2.7183 2.7181 2.7169

 lim
x→0

 f (x) ≈ 2.7183

 

x
2 3 4 5

2

3

7

1−1−2−3

1

−1

(0, 2.7183)

y

71. 

1.998 2.002
0

(1.999, 0.001)

(2.001, 0.001)

0.002   73.  False. The existence or 
nonexistence of f (x) at 
x = c has no bearing on 
the existence of the limit 
of f (x) as x→ c.

 δ = 0.001, (1.999, 2.001)
75. False. See Exercise 23.
77.  Yes. As x approaches 0.25 from either side, √x becomes  

arbitrarily close to 0.5.

79. lim
x→0

 
sin nx
x

= n  81–83. Proofs

85. Putnam Problem B1, 1986

Section 1.3  (page 71)

 1. Substitute c for x and simplify.
 3.  If a function f  is squeezed between two functions h and g, 

h(x) ≤ f (x) ≤ g(x), and h and g have the same limit L as 
x→ c, then lim

x→c
 f (x) exists and equals L.

 5. 8  7. −1  9. 0  11. 7  13. √11  15. 125
17. 3

5  19. 1
5  21. 7  23. (a) 4   (b) 64   (c) 64

25. (a) 3   (b) 2   (c) 2  27. 1  29. 1
2  31. 1

33. 1
2  35. −1  37. (a) 10   (b) 12

5    (c) 4
5   (d) 1

5

39. (a) 256   (b) 4   (c) 48   (d) 64

41. f (x) = x2 + 3x
x

 and g(x) = x + 3 agree except at x = 0.

lim
x→0

 f (x) = lim
x→0

 g(x) = 3

43. f (x) = x2 − 1
x + 1

 and g(x) = x − 1 agree except at x = −1.

lim
x→−1

 f (x) = lim
x→−1

 g(x) = −2

45. f (x) = x3 − 8
x − 2

 and g(x) = x2 + 2x + 4 agree except at x = 2.

lim
x→2

 f (x) = lim
x→2

 g(x) = 12

47. −1  49. 
1
8

  51. 
5
6

  53. 
1
6

  55. 
√5
10

57. −1
9  59. 2  61. 2x − 2  63. 1

5  65. 0
67. 0  69. 0  71. 0  73. 3

2

75. 

−3 3

−2

2    The graph has a hole at x = 0.

Answers will vary. Sample answer:

x −0.1 −0.01 −0.001 0.001 0.01 0.1

f (x) 0.358 0.354 0.354 0.354 0.353 0.349

 lim
x→0

 
√x + 2 − √2

x
≈ 0.354; Actual limit is 

1

2√2
=
√2
4

.

77. 

−5 1

−2

3    The graph has a hole at x = 0.

Answers will vary. Sample answer:

x −0.1 −0.01 −0.001

f (x) −0.263 −0.251 −0.250

x 0.001 0.01 0.1

f (x) −0.250 −0.249 −0.238

lim
x→0

 
[1�(2 + x)] − (1�2)

x
≈ −0.250; Actual limit is −

1
4

.

79. 

−1

π2π−2

4

 The graph has a hole at t = 0.

Answers will vary. Sample answer:

t −0.1 −0.01 0 0.01 0.1

f (t) 2.96 2.9996 ? 2.9996 2.96

 lim
t→0

 
sin 3t
t

≈ 3.0000; Actual limit is 3.
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81. 

−1

π2π−2

1

  The graph has a hole at x = 0.

Answers will vary. Sample answer:

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) −0.1 −0.01 −0.001 ? 0.001 0.01 0.1

  lim
x→0

 
sin x2

x
= 0; Actual limit is 0.

 83. 3  85. 2x − 4  87. x−1�2

89. −1�(x + 3)2  91. 4
 93. 

−6

π2π−2

6  95. 

−0.5

0.5−0.5

0.5

0   0
The graph has a hole at 
x = 0.

97. (a)  f  and g agree at all but one point if c is a real number 
such that f (x) = g(x) for all x ≠ c.

(b)  Sample answer: f (x) = x2 − 1
x − 1

 and g(x) = x + 1 agree

   at all points except x = 1.
99. 

−3

5−5

f
g h

3      The magnitudes of f (x) and g(x)
are approximately equal when x 
is close to 0. Therefore, their ratio 
is approximately 1.

101. −64 ft�sec (speed = 64 ft�sec)  103. −29.4 m�sec
105. Let f (x) = 1�x and g(x) = −1�x.

lim
x→0

 f (x) and lim
x→0

 g(x) do not exist. However,

    lim
x→0

 [ f (x) + g(x)] = lim
x→0

 [1x + (−1
x)] = lim

x→0
 0 = 0

and therefore does exist. 
107–111. Proofs

113. Let f (x) = { 4,
−4,

    x ≥ 0
x < 0

. 

lim
x→0

 ∣ f (x)∣ = lim
x→0

 4 = 4

lim
x→0

 f (x) does not exist because for x < 0, f (x) = −4 and

  for x ≥ 0, f (x) = 4.
115.  False. The limit does not exist because the function  

app roaches 1 from the right side of 0 and approaches −1
from the left side of 0.

117. True.
119.  False. The limit does not exist because f (x) approaches 3 

from the left side of 2 and approaches 0 from the right side 
of 2.

121. Proof

123. (a) All x ≠ 0, 
π
2
+ nπ

  (b) 

−2

π
2
3π

2
3−

2     The domain is not obvious. 
The hole at x = 0 is not 
apparent from the graph.

  (c) 1
2  (d) 1

2

Section 1.4  (page 83)

  1.  A function is continuous at a point c if there is no interruption 
of the graph at c.

  3.  The limit exists because the limit from the left and the limit 
from the right are equivalent.

  5. (a) 3   (b) 3   (c) 3; f (x) is continuous on (−∞, ∞).
  7. (a) 0   (b) 0   (c) 0; Discontinuity at x = 3
  9.  (a) −3   (b) 3   (c) Limit does not exist. 
  Discontinuity at x = 2
 11. 1

16  13. 1
10

 15.  Limit does not exist. The function decreases without bound 
as x approaches −3 from the left.

 17. −1  19. −
1
x2  21. 

5
2

  23. 2

 25.  Limit does not exist. The function decreases without bound 
as x approaches π  from the left and increases without bound 
as x approaches π  from the right.

 27. 8  29. 2
 31. Discontinuities at x = −2 and x = 2
 33. Discontinuities at every integer
 35. Continuous on [−7, 7]  37. Continuous on [−1, 4]
 39. Nonremovable discontinuity at x = 0
 41. Nonremovable discontinuities at x = −2 and x = 2
 43. Continuous for all real x
 45. Nonremovable discontinuity at x = 1
  Removable discontinuity at x = 0
 47. Removable discontinuity at x = −2
  Nonremovable discontinuity at x = 5
 49. Nonremovable discontinuity at x = −7
 51. Nonremovable discontinuity at x = 2
 53. Continuous for all real x
 55. Nonremovable discontinuities at integer multiples of 

π
2

 57. Nonremovable discontinuities at each integer
 59. a = 7  61. a = 2  63. a = −1, b = 1
 65. Continuous for all real x
 67. Nonremovable discontinuities at x = 1 and x = −1
 69. Continuous on the open intervals 
  .  .  . , (−3π, −π), (−π, π), (π, 3π), .  .  .
 71.  

−3 3

−1.5

0.5  73. 

−2

−2

8

10

  Nonremovable discontinuity Nonremovable discontinuity
 at each integer  at x = 4
 75. Continuous on (−∞, ∞)  77. Continuous on [0, ∞)
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79.  Continuous on the open intervals .  .  . , (−6, −2), (−2, 2),
(2, 6), .  .  . 

 81. Continuous on (−∞, ∞)
83.  Because f (x) is continuous on the interval [1, 2] and f (1) = 37

12
and f (2) = −8

3, by the Intermediate Value Theorem there 
exists a real number c in [1, 2] such that f (c) = 0.

85.  Because f (x) is continuous on the interval [0, π]  and 
f (0) = −3 and f (π) ≈ 8.87, by the Intermediate Value 
Theorem there exists a real number c in [0, π] such that 
f (c) = 0.

87.  Consider the intervals [1, 3] and [3, 5].
f (1) = 2 > 0 and f (3) = −2 < 0. So, there is at least one 
zero in the interval [1, 3].

   f (3) = −2 < 0 and f (5) = 2 > 0. So, there is at least one 
zero in the interval [3, 5].

 89. 0.68, 0.6823  91. 0.95, 0.9472  93. 0.56, 0.5636
 95. f (3) = 11; c = 3
97. f (0) ≈ 0.6458, f (5) ≈ 1.464; c = 2
99. f (1) = 0, f (3) = 24; c = 2

101.  Answers will vary. Sample answer:

f (x) = 1
(x − a)(x − b)

103.  If f  and g are continuous for all real x, then so is f + g

  (Theorem 1.11, part 2). However, 
f
g

 might not be continuous if

   g(x) = 0. For example, let f (x) = x and g(x) = x2 − 1.

   Then f  and g are continuous for all real x, but 
f
g

 is not  
continuous at x = ±1.

105. True
107.  False. f (x) = cos x has two zeros in [0, 2π]. However, f (0) 

and f (2π) have the same sign.

109.  False. A rational function can be written as 
P(x)
Q(x), where P 

   and Q are polynomials of degree m and n, respectively. It 
can have, at most, n discontinuities.

111. The functions differ by 1 for non-integer values of x.
113. 

1 2 3 4

10

20

30

40

t

C     There is a jump discontinuity 
every gigabyte.

115–117. Proofs  119. Answers will vary.

121. (a) 

1 2 3 4 5

435

430

440

445

450

t

F    (b)  No. The frequency is 
oscillating.

123. c =
−1 ± √5

2

125. Domain: [−c2, 0) ∪ (0, ∞); Let f (0) = 1
2c

.

127.  h(x) has a nonremovable discontinuity at every integer 
except 0.

  

3

−3

−3

15

129. Putnam Problem B2, 1988

Section 1.5  (page 92)

1.  A limit in which f (x) increases or decreases without bound 
as x approaches c is called an infinite limit. ∞ is not a  
number. Rather, the symbol lim

x→c
 f (x) = ∞ says how the 

limit fails to exist.

  3. lim
x→−2+

 2∣ x
x2 − 4∣ = ∞, lim

x→−2−
 2∣ x

x2 − 4∣ = ∞

5. lim
x→−2+

 tan 
πx
4

= −∞, lim
x→−2−

 tan 
πx
4

= ∞

7. lim
x→4+

 
1

x − 4
= ∞, lim

x→4−
 

1
x − 4

= −∞

9. lim
x→4+

 
1

(x − 4)2 = ∞, lim
x→4−

 
1

(x − 4)2 = ∞
11. 

x −2.999 −2.99 −2.9 −2.5

f (x) −167 −16.7 −1.69 −0.36

x −3.5 −3.1 −3.01 −3.001 −3

f (x) 0.31 1.64 16.6 167 ?

  lim
x→−3+

 f (x) = −∞; lim
x→−3−

 f (x) = ∞
13. 

x −3.5 −3.1 −3.01 −3.001 −3

f (x) 3.8 16 151 1501 ?

x −2.999 −2.99 −2.9 −2.5

f (x) −1499 −149 −14 −2.3

lim
x→−3+

 f (x) = −∞; lim
x→−3−

 f (x) = ∞
15. 

x −2.999 −2.99 −2.9 −2.5

f (x) 954.9 95.49 9.514 1.7321

x −3.5 −3.1 −3.01 −3.001 −3

f (x) −1.7321 −9.514 −95.49 −954.9 ?

 lim
x→−3−

 f (x) = −∞; lim
x→−3+

 f (x) = ∞
17. x = 0  19. x = ±2  21. No vertical asymptote
23. x = −2, x = 1  25. x = 0, x = 3
27. No vertical asymptote  29. x = n, n is an integer
31. t = nπ, n is a nonzero integer
33. Removable discontinuity at x = −1
35. Vertical asymptote at x = −1  37. ∞  39. −1

5
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41. −∞  43. −∞  45. ∞  47. 0  49. ∞
51. 

5

−3

−4

3    lim
x→1+

 f (x) = ∞

53. (a) ∞   (b) −∞   (c) 0

55. Answers will vary. Sample answer: f (x) = x − 3
x2 − 4x − 12

57. y

x
1 3−1−2

−1

−2

2

1

3

59. (a) 

x 0.01 0.001 0.0001

f (x) ≈ 0 ≈ 0 ≈ 0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.0411 0.0067 0.0017

  

1.5

−0.25

−1.5

0.5

   lim
x→0+

 
x − sin x

x
= 0

(b) 

x 0.01 0.001 0.0001

f (x) 0.0017 ≈ 0 ≈ 0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.0823 0.0333 0.0167

  

1.5

−0.25

−1.5

0.25

   lim
x→0+

 
x − sin x

x2 = 0

(c) 

x 0.01 0.001 0.0001

f (x) 0.1667 0.1667 0.1667

x 1 0.5 0.2 0.1

f (x) 0.1585 0.1646 0.1663 0.1666

  

1.5

−0.25

−1.5

0.25

lim
x→0+

 
x − sin x

x3 = 0.16 or 
1
6

(d) 

x 0.01 0.001 0.0001

f (x) 16.67 166.7 1667.0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.3292 0.8317 1.6658

  

1.5

−1.5

−1.5

1.5

lim
x→0+

 
x − sin x

x4 = ∞

For n > 3, lim
x→0+

 
x − sin x

xn
= ∞.

61. (a) 7
12 ft�sec   (b) 3

2 ft�sec

 (c) lim
x→25−

 
2x

√625 − x2
= ∞

63. (a) A = 50 tan θ − 50θ; Domain: (0, 
π
2)

 (b) 
θ 0.3 0.6 0.9 1.2 1.5

f (θ) 0.47 4.21 18.0 68.6 630.1

  

0
0

1.5

100

 (c) lim
θ→π�2

 A = ∞
65. True.  67. False; let f (x) = tan x

69. Let f (x) = 1
x2 and g(x) = 1

x4, and let c = 0. lim
x→0

 
1
x2 = ∞ and

 lim
x→0

 
1
x4 = ∞, but lim

x→0
 ( 1
x2 −

1
x4) = lim

x→0
 (x

2 − 1
x4 ) = −∞≠ 0.

71. Given lim
x→c

 f (x) = ∞, let g(x) = 1. Then lim
x→c

 
g(x)
f (x) = 0 by

 Theorem 1.15.
73–75. Proofs

Review Exercises for Chapter 1  (page 95)

 1. Calculus
 

9

−1

−9

11

 Estimate: 8.3
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3. 
x 2.9 2.99 2.999 3

f (x) −0.9091 −0.9901 −0.9990 ?

x 3.001 3.01 3.1

f (x) −1.0010 −1.0101 −1.1111

 lim
x→0

 
x − 3

x2 − 7x + 12
≈ −1.0000

 5. (a)  Limit does not exist. The function approaches 3 from the 
left side of 2, but it approaches 2 from the right side of 2.

 (b) 0
 7. 5; Proof  9. −3; Proof  11. 36  13. √6 ≈ 2.45
15. 16  17. 4

3  19. −1  21. 1
2  23. −1

25. 0  27. √3�2  29. −3  31. −5
33. 

−1
0

1

1

   The graph has a hole at x = 0.

 x −0.1 −0.01 −0.001 0

f (x) 0.3352 0.3335 0.3334 ?

x 0.001 0.01 0.1

f (x) 0.3333 0.3331 0.3315

 lim
x→0

 
√2x + 9 − 3

x
≈ 0.3333; Actual limit is 

1
3

.

35. 

−18 2

800

0

   The graph has a hole at x = −9.

 

x −8.999 −8.99 −8.9

f (x) 242.9730 242.7301 240.3100

x −9.1 −9.01 −9.001 −9

f (x) 245.7100 243.2701 243.0270 ?

 lim
x→−9

 
x3 + 729
x + 9

≈ 243.00; Actual limit is 243.

37. −39.2 m�sec  39. 1
6  41. 1

10  43. 0
45.  Limit does not exist. The function approaches 2 from the left 

side of 1, but it approaches 1 from the right side of 1.
47. 3  49. −4  51. Continuous on [−2, 2]
53. No discontinuities
55. Nonremovable discontinuity at x = 5
57. Nonremovable discontinuities at x = −1 and x = 1
 Removable discontinuity at x = 0
59. c = −1

2  61. Continuous for all real x
63. Continuous on [0, ∞)
65. Removable discontinuity at x = 1
 Continuous on (−∞, 1) ∪ (1, ∞)

67. Proof
69. f (−1) = −8, f (2) = 10
  Because f  is continuous on the closed interval [−1, 2] and 

−8 < 2 < 10, there is at least one number c in [−1, 2] such 
that f (c) = 2; c = 1

71. From the left: −∞
 From the right: ∞
73. x = 0  75. x = ±3
77. x = 2n + 1, where n is an integer  79. −∞  81. 1

3

83. −∞  85. 4
5  87. ∞

89. (a) $80,000.00   (b) $720,000.00   (c) ∞
P.S. Problem Solving  (page 97)

 1. (a) Perimeter △PAO = 1 + √(x2 − 1)2 + x2 + √x4 + x2

  Perimeter △PBO = 1 + √x4 + (x − 1)2 + √x4 + x2

 (b) 
x 4 2 1

Perimeter △PAO 33.0166 9.0777 3.4142

Perimeter △PBO 33.7712 9.5952 3.4142

r(x) 0.9777 0.9461 1.0000

x 0.1 0.01

Perimeter △PAO 2.0955 2.0100

Perimeter △PBO 2.0006 2.0000

r(x) 1.0475 1.0050

  1
 3. (a) Area (hexagon) = (3√3)�2 ≈ 2.5981
  Area (circle) = π ≈ 3.1416
  Area (circle) − Area (hexagon) ≈ 0.5435
 (b) An = (n�2) sin(2π�n)
 (c) 

n 6 12 24 48 96

An 2.5981 3.0000 3.1058 3.1326 3.1394

  3.1416 or π
 5. (a) m = −12

5    (b) y = 5
12x −

169
12

 (c) mx =
−√169 − x2 + 12

x − 5
 (d)  512; It is the same as the slope of the tangent line found in 

part (b).
 7. (a) Domain: [−27, 1) ∪ (1, ∞)
 (b) 

12

−0.1

−30

0.5    (c) 1
14   (d) 1

12

  The graph has a hole at x = 1.
 9. (a) g1, g4   (b) g1   (c) g1, g3, g4
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11. 

x
1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y    The graph jumps at every integer.

 (a) f (1) = 0, f (0) = 0, f (1
2) = −1, f (−2.7) = −1

(b) lim
x→1−

 f (x) = −1, lim
x→1+

 f (x) = −1, lim
x→1�2

 f (x) = −1

(c)  There is a discontinuity at each integer.
13. (a) 

x
b

2

a

1

y

(b) (i) lim
x→a+

 Pa, b(x) = 1

(ii) lim
x→a−

 Pa, b(x) = 0

(iii) lim
x→b+

 Pa, b(x) = 0

(iv) lim
x→b−

 Pa, b(x) = 1

(c) Continuous for all positive real numbers except a and b
(d) The area under the graph of U and above the x-axis is 1.

Chapter 2
Section 2.1  (page 107)

1.  Let (c, f (c)) represent an arbitrary point on the graph of f. 
Then the slope of the tangent line at (c, f (c)) is

 m = lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
.

 3.  The limit used to define the slope of a tangent line is also 
used to define differentiation. The key is to rewrite the  
difference quotient so that ∆x does not occur as a factor of 
the denominator.

 5. m1 = 0, m2 = 5�2

 7. (a)–(d) 

6

5

4

3

2

654321

1

y

x

f (4) − f (1) = 3

4 − 1 = 3

(4, 5)

(1, 2)

f (4) = 5

f (1) = 2

f (4) − f (1)
4 − 1

y = (x − 1) + f (1) = x + 1   9. m = −5

11. m = 8  13. m = 3  15. f ′(x) = 0  
17. f ′(x) = −5  19. h′(s) = 2

3  21. f ′(x) = 2x + 1

23. f ′(x) = 3x2 − 12  25. f ′(x) = −1
(x − 1)2  

27. f ′(x) = 1

2√x + 4

29. (a) Tangent line: 31. (a) Tangent line:
  y = −2x + 2   y = 12x − 16

(b) 

−3

−1

8

3

(−1, 4)

  (b) 

−5 5

−4

(2, 8)

10

33. (a) Tangent line:  35. (a) Tangent line:
  y = 1

2 x + 1
2   y = 3

4x − 2
(b) 

5

−1

−1

3

(1, 1)

  (b) 

−12

−10

6

12

(−4, −5)

37. y = −x + 1  39. y = 3x − 2; y = 3x + 2
41. y = −1

2x + 3
2

43. 

2

−2

−1

3

4

1 2−2 −1 3−3

f ′

y

x

   The slope of the graph of f  is 1 for 
all x-values.

45. 

−2−4−6 2 4 6
−2

−4

−6

−8

2

4

x

y

f ′    The slope of the graph of f  is  
negative for x < 4, positive for 
x > 4, and 0 at x = 4.

47. y

x
−1−2 1 2 3 4

−2

1

2

f ′

  The slope of the graph of f  is 
negative for x < 0 and positive 
for x > 0. The slope is undefined 
at x = 0.

49. Answers will vary. 
 Sample answer: y = −x
 

x

−1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y

51. No. Consider f (x) = √x and its derivative.
53. g(4) = 5; g′(4) = −5

3

55. f (x) = 5 − 3x 57. f (x) = −x2

 c = 1  c = 6
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59. f (x) = −3x + 2 61. y = 2x + 1, y = −2x + 9

−1−2−3 2 3
−1

−2

−3

x

y

f

1

2

63. (a) 

−1

−3 3

3

(−1, 1) (1, 1)

(0, 0)

   For this function, the slopes of 
the tangent lines are always  
distinct for different values of x.

(b) 

−3

−3 3

3

(−1, −1)

(1, 1)(0, 0)
   For this function, the slopes of 

the tangent lines are  
sometimes the same.

65. (a) 

−2

−6 6

6

f ′(0) = 0, f ′(1
2) = 1

2, f ′(1) = 1, f ′(2) = 2

(b) f ′(−1
2) = −1

2, f ′(−1) = −1, f ′(−2) = −2
(c) y

x
−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

f ′

(d) f ′(x) = x
67. f (2) = 4, f (2.1) = 3.99, f ′(2) ≈ −0.1  69. 4
71. g(x) is not differentiable at x = 0.
73. f (x) is not differentiable at x = 6.
75. h(x) is not differentiable at x = −7.
77. (−∞, −4) ∪ (−4, ∞)  79. (−1, ∞)
81. 

−1

−1 11

7  83. 

6

−3

−6

5

(−∞, 5) ∪ (5, ∞)  (−∞, 0) ∪ (0, ∞)
85.  The derivative from the left is −1 and the derivative from the 

right is 1, so f  is not differentiable at x = 1.
87.  The derivatives from both the right and the left are 0, so 

f ′(1) = 0.
89. f  is differentiable at x = 2.

91. (a) d =
3∣m + 1∣
√m2 + 1

(b) 5

−1

−4 4

  Not differentiable at m = −1

93. False. The slope is lim
∆x→0

 
f (2 + ∆x) − f (2)

∆x
.

95.  False. For example, f (x) = ∣x∣. The derivative from the left 
and the derivative from the right both exist but are not equal.

97. Proof

Section 2.2  (page 118)

 1. 0
 3.  The derivative of the sine function is the cosine function. The 

derivative of the cosine function is the negative of the sine 
function.

 5. (a) 1
2   (b) 3  7. 0  9. 7x6  11. −5�x6

13. 1�(9x8�9)  15. 1  17. −6t + 2  19. 2x + 12x2

21. 3t2 + 10t − 3  23. 
π
2

 cos θ  25. 2x +
1
2

 sin x

 Function Rewrite Differentiate Simplify

27. y =
2

7x4 y =
2
7

x−4 y′ = −
8
7

x−5 y′ = −
8

7x5

29. y =
6

(5x)3 y =
6

125
x−3 y′ = −

18
125

x−4 y′ = −
18

125x4

31. −2  33. 0  35. 8  37. 3  39. 
2x + 6

x3

41. 
2t + 12

t4   43. 
x3 − 8

x3   45. 
3t2 − 4t + 24

2t5�2

47. 3x2 + 1  49. 
1

2√x
−

2
x2�3

  51. 
3

√x
− 5 sin x

53. 18x + 5 sin x
55. (a) y = 2x − 2 57. (a) 3x + 2y − 7 = 0

(b) 

−3

−3 3

1

(1, 0)

 (b) 

7

−1

−2

5

(1, 2)

59. (−1, 2), (0, 3), (1, 2)  61. No horizontal tangents
63. (π, π)  65. k = −8  67. k = 3  
69. g′(x) = f ′(x)  71. g′(x) = −5f ′(x)
73. 

3

3

1

21−1−2−3

−2

x

f

f ′

y

   The rate of change of f  is constant, 
and therefore f ′ is a constant  
function.
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75. 

x

y

77. y = 2x − 1 y = 4x − 4

5

4

3

1

−1

2

2 3
x

(2, 3)

(1, 1)

y  
5

4

3

1

−1

−2

2

2 3
x

(1, 0)

(2, 4)

y

79. f ′(x) = 3 + cos x ≠ 0 for all x.  81. x − 4y + 4 = 0
83. (a) 

−2

−2 12

(4, 8)

20

  (3.9, 7.7019),
  S(x) = 2.981x − 3.924

(b) T(x) = 3(x − 4) + 8 = 3x − 4
The slope (and equation) of the secant line approaches that 
of the tangent line at (4, 8) as you choose points closer and 
closer to (4, 8).

(c) 

−2

−2 12
T

f

20

The approximation becomes less accurate.
(d)

∆x −3 −2 −1 −0.5 −0.1 0

f (4 + ∆x) 1 2.828 5.196 6.548 7.702 8

T(4 + ∆x) −1 2 5 6.5 7.7 8

∆x 0.1 0.5 1 2 3

f (4 + ∆x) 8.302 9.546 11.180 14.697 18.520

T(4 + ∆x) 8.3 9.5 11 14 17

85. False. Let f (x) = x and g(x) = x + 1.

87. False. 
dy
dx

= 0  89. False. f ′(x) = 0

91. Average rate: 3 93. Average rate: 1
2

Instantaneous rates:   Instantaneous rates:
f ′(1) = 3, f ′(2) = 3  f ′(1) = 1, f ′(2) = 1

4

95. (a) s(t) = −16t2 + 1362, v(t) = −32t   (b) −48 ft�sec
(c) s′(1) = −32 ft�sec, s′(2) = −64 ft�sec

(d) t =
√1362

4
≈ 9.226 sec   (e) −295.242 ft�sec

97. v(5) = 71 m�sec; v(10) = 22 m�sec

99. 

t

Time (in minutes)
2 4 6 8 10

10

20

30

40

50

60

V
el

oc
ity

 (
in

 m
i/h

)

v  101. V′(6) = 108 cm3�cm

103. (a) R(v) = 0.417v − 0.02
(b) B(v) = 0.0056v2 + 0.001v + 0.04
(c) T(v) = 0.0056v2 + 0.418v + 0.02
(d) 

120
0

0

T
B

R

80  (e) T′(v) = 0.0112v + 0.418
  T′(40) = 0.866
  T′(80) = 1.314
  T′(100) = 1.538

(f) Stopping distance increases at an increasing rate.
105. Proof  107. y = 2x2 − 3x + 1
109. 9x + y = 0, 9x + 4y + 27 = 0  111. a = 1

3, b = −4
3

113. f1(x) = ∣sin x∣ is differentiable for all x ≠ nπ, n an integer.
  f2(x) = sin∣x∣ is differentiable for all x ≠ 0.
115. Putnam Problem A2, 2010

Section 2.3  (page 129)

  1.  To find the derivative of the product of two differentiable 
functions f  and g, multiply the first function f  by the 
derivative of the second function g, and then add the second 
function g times the derivative of the first function f.

3. 
d
dx

 tan x = sec2 x

d
dx

 cot x = −csc2 x

  
d
dx

 sec x = sec x tan x

  
d
dx

 csc x = −csc x cot x

  5. −20x + 17  7. 
1 − 5t2

2√t
  9. x2(3 cos x − x sin x)

11. −
5

(x − 5)2  13. 
1 − 5x3

2√x(x3 + 1)2
  15. 

x cos x − 2 sin x
x3

 17.   f ′(x) = (x3 + 4x)(6x + 2) + (3x2 + 2x − 5)(3x2 + 4)
   = 15x4 + 8x3 + 21x2 + 16x − 20
  f ′(0) = −20

 19. f ′(x) = x2 − 6x + 4
(x − 3)2  21. f ′(x) = cos x − x sin x

  f ′(1) = −
1
4

  f ′(π4) =
√2
8

(4 − π)

 Function Rewrite Differentiate Simplify

 23. y =
x3 + 6x

3
 y =

1
3

x3 + 2x y′=
1
3
(3x2) + 2 y′ = x2 + 2

 25. y =
6

7x2 y =
6
7

x−2 y′ = −
12
7

x−3 y′ = −
12
7x3

 27. y =
4x3�2

x
 y = 4x1�2, y′ = 2x−1�2 y′ =

2

√x
,

x > 0  x > 0

29. 
3

(x + 1)2, x ≠ 1  31. 
x2 + 6x − 3
(x + 3)2   33. 

3x + 1
2x3�2
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35. −
2x2 − 2x + 3

x2(x − 3)2   37. 
4s2(3s2 + 13s + 15)

(s + 2)2
39. 10x4 − 8x3 − 21x2 − 10x − 30  41. t(t cos t + 2 sin t)

43. 
−(t sin t + cos t)

t2
  45. −1 + sec2 x, or tan2 x

47. 
1

4t3�4 − 6 csc t cot t  49. 
3
2

 sec x(tan x − sec x)

51. cos x cot2 x  53. x(x sec2 x + 2 tan x)

55. 4x cos x + (2 − x2) sin x  57. 
2x2 + 8x − 1

(x + 2)2

59. −4√3  61. 
1
π2

63. (a) y = −3x − 1 65. (a) y = 4x + 25
 (b) 

−6

−1 3

3

(1, −4)

  (b) 

−6

−8 1

8

(−5, 5)

67. (a) 4x − 2y − π + 2 = 0  69. 2y + x − 4 = 0
 (b) 

−4

4

−

π
4( (, 1

ππ

71. 25y − 12x + 16 = 0  73. (1, 1)  75. (0, 0), (2, 4)
77. Tangent lines: 2y + x = 7, 2y + x = −1
 

−2 2 4 6

−4

−6

6

(3, 2)
(−1, 0)

2y + x = −1

2y + x = 7
y

x

f (x) =  x + 1
x − 1

−2
−4−6

79. f (x) + 2 = g(x)  81. (a) p′(1) = 1   (b) q′(4) = −1
3

83. 
18t + 5

2√t
 cm2�sec

85. (a) −$38.13 thousand�100 components
 (b) −$10.37 thousand�100 components
 (c) −$3.80 thousand�100 components
 The cost decreases with increasing order size.
87. Proof
89. (a) h(t) = 101.7t + 1593
  p(t) = 2.1t + 287
 (b) 

2300
7 14

3000    

300
7 14

320

 (c) A =
101.7t + 1593

2.1t + 287
  

0
7 14

10    A represents the average  
health care expenditures per  
person (in thousands of  
dollars).

  (d) A′(t) = 25,842.6
4.41t2 + 1205.4t + 82,369

A′(t) represents the rate of change of the average health 
care expenditures per person for the given year t.

91. 2  93.
3

√x
  95. 

2
(x − 1)3  97. 2 cos x − x sin x

 99. csc3 x + csc x cot2 x  101. 6x +
6

25x8�5  103. sin x

105. 0  107. −10  
109.  n − 1 or lower; Answers will vary. Sample answer: 

f (x) = x3, f ′(x) = 3x2, f ″(x) = 6x, f ′″(x) = 6, f (4)(x) = 0
111. 

2

2

1

1−1−2
x

f

y

f ′

f ″

It appears that f  is cubic, so f ′ would be quadratic and f ″
would be linear.

113. 

−1−2−3 1 2 3 4 5

−3
−4
−5

1

2

3

4

x

y

f ′

f ″

115. Answers will vary. 
 Sample answer: f (x) = (x − 2)2

x

1

1

2

2

3

3 4

4

y

117. v(3) = 27 m�sec
a(3) = −6 m�sec2

The speed of the object is decreasing.
119. 

t 0 1 2 3 4

s(t) 0 57.75 99 123.75 132

v(t) 66 49.5 33 16.5 0

a(t) −16.5 −16.5 −16.5 −16.5 −16.5

The average velocity on [0, 1] is 57.75, on [1, 2] is 41.25, on 
[2, 3] is 24.75, and on [3, 4] is 8.25.

121. f (n)(x) = n(n − 1)(n − 2) .  .  . (2)(1) = n!
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123. (a)   f ″(x) = g(x)h″(x)  + 2g′(x)h′(x) + g″(x)h(x)
  f ″′(x) = g(x)h′″(x)  + 3g′(x)h″(x)

   + 3g″(x)h′(x) + g′″(x)h(x)
  f (4)(x) = g(x)h(4)(x) + 4g′(x)h′″(x) + 6g″(x)h″(x)

   + 4g′″(x)h′(x) + g(4)(x)h(x)

(b)   f (n)(x) = g(x)h(n)(x) + n!
1!(n − 1)! g′(x)h(n−1)(x)

 +
n!

2!(n − 2)! g″(x)h(n−2)(x) + .  .  .

    +
n!

(n − 2)!1!
g(n−1)(x)h′(x) + g(n)(x)h(x)

125. n = 1: f ′(x) = x cos x + sin x
n = 2: f ′(x) = x2 cos x + 2x sin x
n = 3: f ′(x) = x3 cos x + 3x2 sin x
n = 4: f ′(x) = x4 cos x + 4x3 sin x
General rule: f ′(x) = xn cos x + nx(n−1) sin x

127. y′ = −
1
x2, y″ =

2
x3,

 x3y″ + 2x2y′ = x3( 2
x3) + 2x2(−1

x2 )
 = 2 − 2
 = 0

129. y′ = 2 cos x, y″ = −2 sin x,
y″ + y = −2 sin x + 2 sin x + 3 = 3

131. False. 
dy
dx

= f (x)g′(x) + g(x)f ′(x)  133. True

135. True  137. Proof

Section 2.4  (page 140)

1.  To find the derivative of the composition of two  
differentiable functions, take the derivative of the outer 
function and keep the inner function the same. Then  
multiply by the derivative of the inner function.
y = f (g(x)) u = g(x) y = f (u)

3. y = (6x − 5)4 u = 6x − 5 y = u4

5. y =
1

3x + 5
 u = 3x + 5 y =

1
u

7. y = csc3 x u = csc x y = u3

9. 6(2x − 7)2  11. −
45

2(4 − 9x)1�6  13. −
10s

√5s2 + 3

15. 
4x

3√(6x2 + 1)2
  17. −

1
(x − 2)2  19. −

54s2

(s3 − 2)4

21. −
3

2√(3x + 5)3
  23. x(x − 2)6(9x − 4)

25. 
1 − 2x2

√1 − x2
  27. 

1

√(x2 + 1)3

29. 
−2(x + 5)(x2 + 10x − 2)

(x2 + 2)3   31. 
8(t + 1)3
(t + 3)5

33. 20x(x2 + 3)9 + 2(x2 + 3)5 + 20x2(x2 + 3)4 + 2x
35. −4 sin 4x  37. 15 sec2 3x  39. 2π2 x cos(πx)2

41. 2 cos 4x  43. 
−1 − cos2 x

sin3 x
  45. 8 sec2 x tan x

47. sin 2θ cos 2θ, or 
1
2

 sin 4θ

 49. 6π(πt − 1) sec(πt − 1)2 tan(πt − 1)2
51. (6x − sin x) cos(3x2 + cos x)  

53. −
3π cos√cot 3πx csc2(3πx)

2√cot 3πx
  

55. 
1 − 3x2 − 4x3�2

2√x(x2 + 1)2

−2

−1 5

y

y ′

2

   The zero of y′ corresponds to the 
point on the graph of the function 
where the tangent line is horizontal.

57. −
√x + 1

x
2x(x + 1)

−2

−5 4

y

y ′

4

  y′ has no zeros.

59. −
πx sin(πx) + cos(πx) + 1

x2

−3

−5 5

y

y ′

3

   The zeros of y′ correspond to  
the points on the graph of the  
function where the tangent lines 
are horizontal.

61. 3; 3 cycles in [0, 2π]  63. 5
3  

65. −3
5  67. −1  69. 0

71. (a) 8x − 5y − 7 = 0 73. (a) 24x + y + 23 = 0
(b) 

−2

−6 6

6

(4, 5)
 (b) 

−2

−2 1

14

(−1, 1)

75. (a) y = 8x − 8π  77. (a) 4x − y + (1 − π) = 0
(b) 

0

2

−2

2

(   , 0)π

π

 (b) 

−

−4

π π

4

π
4( (, 1

79. 3x + 4y − 25 = 0

9

−4

−9

8

(3, 4)

81. (π6, 
3√3

2 ), (
5π
6

, −
3√3

2 ), (
3π
2

, 0)  83. 2940(2 − 7x)2

85. 
242

(11x − 6)3   87. 2(cos x2 − 2x2 sin x2)

89. h″(x) = 18x + 6, 24  
91. f ″(x) = −4x2 cos x2 − 2 sin x2, 0
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93. 

3

3

2

1

2−2

−2

−3

x

f

y

f ′
   The zeros of f ′ correspond  

to the points where the graph 
of f  has horizontal tangents. 

 95. (a)  The rate of change of g is three times as fast as the rate 
of change of f.

(b)  The rate of change of g is 2x times as fast as the rate of 
change of f.

97. (a) g′(x) = f ′(x)  (b) h′(x) = 2 f ′(x)
(c) r′(x) = −3 f ′(−3x)  (d) s′(x) = f ′(x + 2)

x −2 −1 0 1 2 3

f ′(x) 4 2
3 −1

3
−1 −2 −4

g′(x) 4 2
3 −1

3
−1 −2 −4

h′(x) 8 4
3 −2

3
−2 −4 −8

r′(x) 12 1

s′(x) −1
3

−1 −2 −4

99. (a) 1
2

(b) s′(5) does not exist because g is not differentiable at 6.
101. (a) 1.461  (b) −1.016  103. 0.2 rad, 1.45 rad�sec
105. (a) 

0
0 13

90

T(t) = 27.3 sin(0.49t − 1.90) + 57.1
(b) 

0
0 13

90

The model is a good fit.
(c) T′(t) = 13.377 cos(0.49t − 1.90)

0

20

−20

13

(d)  The temperature changes most rapidly around spring 
(March–May) and fall (Oct.–Nov.)
The temperature changes most slowly around winter 
(Dec.–Feb.) and summer (Jun.–Aug.)
Yes. Explanations will vary.

107. (a) 0 bacteria per day (b) 177.8 bacteria per day
(c) 44.4 bacteria per day   (d) 10.8 bacteria per day
(e) 3.3 bacteria per day
(f)  The rate of change of the population is decreasing as time 

passes.

109. (a) f ′(x) = β cos βx
f ″(x) = −β2 sin βx
f ′″(x) = −β3 cos βx
f (4)(x) = β4 sin βx

(b) f ″(x) + β2f (x) = −β2 sin βx + β2(sin βx) = 0
(c) f (2k)(x) = (−1)k β2k sin βx

f (2k−1)(x) = (−1)k+1β2k−1 cos βx
111. (a) r′(1) = 0   (b) s′(4) = 5

8

113. (a) and (b) Proofs

115. g′(x) = 3( 3x − 5

∣3x − 5∣), x ≠
5
3

117. h′(x) = −∣x∣sin x +
x

∣x∣ cos x, x ≠ 0

119. (a) P1(x) = 2(x −
π
4) + 1

P2(x) = 2(x −
π
4)

2

+ 2(x −
π
4) + 1

(b) 

0 π
2

−1

5

f

P2

P1

   (c) P2

(d) The accuracy worsens as you move away from x =
π
4

.

121. True.  123. True  125. Putnam Problem A1, 1967

Section 2.5  (page 149)
1.  Answers will vary. Sample answer: In the explicit form of 

a function, the dependent variable y is explicitly written as 
a function of the independent variable x [ y = f (x)]. In an 
implicit equation, the dependent variable y is not necessarily 
written in the form y = f (x). An example of an implicit  
function is x2 + xy = 5. In explicit form, it would be

  y =
5 − x2

x
.

3.  You use implicit differentiation to find the derivative in cases 
where it is difficult to express y as a function of x explicitly.

  5. −
x
y
  7. −

x4

y4  9. 
y − 3x2

2y − x

11. 
1 − 3x2y3

3x3y2 − 1
  13. 

6xy − 3x2 − 2y2

4xy − 3x2   15. 
cos x

4 sin 2y

17. −
cot x csc x + tan y + 1

x sec2 y
  19. 

y cos xy
1 − x cos xy

21. (a) y1 = √64 − x2, y2 = −√64 − x2

(b) 
y1 =     64 − x2

−12 −4 4 12

12

4

−12 y2 = −    64 − x2

y

x

(c) y′ = ∓
x

√64 − x2
= −

x
y   (d) y′ = −

x
y
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23. (a) y1 =
√x2 + 16

4
, y2 =

−√x2 + 16
4

(b) 

y1 =        x2 + 161
4

y2 = −       x2 + 161
4

−6 6
−2

−4

−6

2

4

6

y

x

(c) y′ =
±x

4√x2 + 16
=

x
16y

   (d) y′ =
x

16y

25. −
y
x
; −

1
6

  27. 
98x

y(x2 + 49)2; Undefined

29. −
y(y + 2x)
x(x + 2y); −1  31. −sin2(x + y) or −

x2

x2 + 1
; 0

33. −1
2   35. 0  37. y = −x + 7  

39. y =
√3x

6
+

8√3
3

  41. y = −
2
11

x +
30
11

43. Answers will vary. Sample answers: 
xy = 2, yx2 + x = 2; x2 + y2 + y = 4, xy + y2 = 2

45. (a) y = −2x + 4   (b) Answers will vary.

47. cos2 y, −
π
2

< y <
π
2

, 
1

1 + x2  49. −
4
y3

51. 
6x2y + 2y − 20x

(x2 − 1)2   53. 
x sin x + 2 cos x + 14y

7x2

55. 2x + 3y − 30 = 0

−1

−1 14

9

(9, 4)

57. At (4, 3): 

−6

6

−9 9

(4, 3)
Tangent line: 4x + 3y − 25 = 0
Normal line: 3x − 4y = 0

At (−3, 4) 

−6

−9 9

(−3, 4)

6

Tangent line: 3x − 4y + 25 = 0
Normal line: 4x + 3y = 0

59.  x2 + y2 = r2 ⇒ y′ = −
x
y
⇒ y

x
= slope of normal line.

Then for (x0, y0) on the circle, x0 ≠ 0, an equation of the 

 normal line is y = (y0

x0
)x, which passes through the origin. If

 x0 = 0, the  normal line is vertical and passes through the origin.
61.  Horizontal tangents: (−4, 0), (−4, 10)

Vertical tangents: (0, 5), (−8, 5)

63. 

−6 6

−4

y2 = 4x4

(1, −2)

(1, 2)

2x2 + y2 = 6  65. 

−6 6

−4

(0, 0)

4

x = sin y

x + y = 0

 At (1, 2):  At (0, 0):
 Slope of ellipse: −1  Slope of line: −1
 Slope of parabola: 1  Slope of sine curve: 1
 At (1, −2):
 Slope of ellipse: 1
 Slope of parabola: −1

67. Derivatives: 
dy
dx

= −
y
x
, 

dy
dx

=
x
y

 

−2

−3 3
C = 1

K = −1

2   

−2

−3 3

C = 4

K = 2

2

69. 

A

B

18
00

1800

1994

1671

  Use starting point B.

71. (a) 

10−10

−10

10  (b) 

10−10

−10

y1
y3 y2

y4

10

  y1 =
1
3 [(√7 + 7)x + (8√7 + 23)]

  y2 = −1
3 [(−√7 + 7)x − (23 − 8√7)]

  y3 = −1
3 [(√7 − 7)x − (23 − 8√7)]

  y4 = −1
3 [(√7 + 7)x − (8√7 + 23)]

 (c) (8√7
7

, 5)
73. Proof  75. y = −

√3
2

x + 2√3, y =
√3
2

x − 2√3

77. (a) y = 2x − 6
 (b) 4

6

−4

−6

   (c) (28
17, −46

17)

Section 2.6  (page 157)

 1.  A related-rate equation is an equation that relates the rates of 
change of various quantities.

 3. (a) 3
4  (b) 20  5. (a) −5

8   (b) 3
2

 7. (a) −8 cm�sec   (b) 0 cm�sec  (c) 8 cm�sec
 9. (a) 12 ft�sec   (b) 6 ft�sec   (c) 3 ft�sec
11. 296π cm2�min
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13. (a) 972π in.3�min, 15,552π in.3�min

(b) If 
dr
dt

 is constant, 
dV
dt

 is proportional to r2.

15. (a) 72 cm3�sec   (b) 1800 cm3�sec

17. 
8

405π  ft�min  19. (a) 12.5%   (b) 
1

144
 m�min

21. (a) − 7
12 ft�sec, −3

2 ft�sec, −48
7  ft�sec

(b) 527
24  ft2�sec   (c) 1

12 rad�sec

23. Rate of vertical change: 
1
5

 m�sec

Rate of horizontal change: −
√3
15

 m�sec

25. (a) −750 mi�h   (b) 30 min

27. −
50

√85
≈ −5.42 ft�sec

29. (a) 25
3  ft�sec   (b) 10

3  ft�sec

31. (a) 12 sec   (b) 
1
2
√3 m   (c) 

√5π
120

 m�sec

33. Evaporation rate proportional to S ⇒ dV
dt

= k(4πr2)

V = (43)πr3 ⇒ dV
dt

= 4πr2 
dr
dt

. So k =
dr
dt

.

35. (a)  
dy
dt

= 3
dx
dt

 means that y changes three times as fast as x

changes.

(b)  y changes slowly when x ≈ 0 or x ≈ L. y changes more 
rapidly when x is near the middle of the interval.

37. 0.6 ohm/sec  39. About 84.9797 mi�h

41. 
2√21
525

≈ 0.017 rad�sec

43. (a) 
200π

3
 ft�sec   (b) 200π ft�sec

(c) About 427.43π ft�sec

45. (a) Proof   (b) 
√3s2

8
, 

s2

8
47. (a) r( f ) = 0.0096 f 3 − 0.559 f 2 + 10.54 f − 61.5

(b) 
dr
dt

= (0.0288 f 2 − 1.118 f + 10.54) df
dt

;

−0.039 million participants�yr
49. −0.1808 ft�sec2

Review Exercises for Chapter 2  (page 161)

1. 0  3. 3x2 − 2  5. 5
 7. f  is differentiable at all x ≠ 3.  9. 0  11. 3x2 − 22x

13. 
3

√x
+

1
3√x2

  15. −
4

3t3
  17. 4 − 5 cos θ

19. −3 sin θ −
cos θ

4
  21. −1  23. 2

25. (a) 50 vibrations�sec�lb   (b) 33.33 vibrations�sec�lb
27. (a) s(t) = −16t2 − 30t + 600
  v(t) = −32t − 30
 (b) −94 ft�sec
 (c) v′(1) = −62 ft�sec, v′(3) = −126 ft�sec
 (d) About 5.258 sec   (e) About −198.256 ft�sec
29. 4(5x3 − 15x2 − 11x − 8)  31. 9x cos x − cos x + 9 sin x

33. 
−(x2 + 1)
(x2 − 1)2   35. 

4x3 cos x + x 4 sin x
cos2 x 

37. 3x2 sec x tan x + 6x sec x  39. −x sin x
41. y = 4x + 10  43. y = −8x + 1  45. −48t

47. 225
4 √x  49. 6 sec2 θ tan θ  51. 8 cot x csc2 x

53. v(3) = 11 m�sec, a(3) = −6 m�sec2  55. 28(7x + 3)3

57. −
6x

(x2 + 5)4  59. −45 sin(9x + 1)

61. 1
2 (1 − cos 2x), or sin2 x  63. (36x + 1)(6x + 1)4

65. 
3x2(x + 10)
2(x + 5)5�2   67. −2  69. −11  71. 0

73. 384(8x + 5)  75. 2 csc2 x cot x
77. (a) −18.667°�h   (b) −7.284°�h
 (c) −3.240°�h  (d) −0.747°�h

79. −
x
y
  81. 

y(y2 − 3x2)
x(x2 − 3y2)  83. 

y sin x + sin y
cos x − x cos y

85. Tangent line: 3x + y − 10 = 0
Normal line: x − 3y = 0

−4

−6 6

4

(3, 1)

87. (a) 2√2 units�sec   (b) 4 units�sec   (c) 8 units�sec
89. 450π km�h

P.S. Problem Solving   (page 163)
 1. (a) r = 1

2; x2 + (y − 1
2)2 = 1

4

 (b) Center: (0, 54); x2 + (y − 5
4)2 = 1

 3. p(x) = 2x3 + 4x2 − 5
 5. (a) y = 4x − 4   (b) y = −1

4x + 9
2; (−9

4, 81
16)

 (c) Tangent line: y = 0   (d) Proof
  Normal line: x = 0

 7. (a) Graph { y1 =
1

a
√x2(a2 − x2)

y2 = −
1

a
√x2(a2 − x2)

 as separate equations.

 (b) Answers will vary. Sample answer:
  

3

−2

−3

2

a = 1
a = 2

a = 1
2

 

   The intercepts will always be (0, 0), (a, 0),  and (−a, 0), 
and the maximum and minimum y-values appear to be ±1

2a.

 (c) (a√2
2

, 
a
2), (

a√2
2

, −
a
2), (−

a√2
2

, 
a
2), (−

a√2
2

, −
a
2)
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9. (a)  When the man is 90 ft from the light, the tip of his shadow
is 112 1

2 ft from the light. The tip of the child’s shadow is 
   111 1

9 ft from the light, so the man’s shadow extends 1 7
18 ft 

beyond the child’s shadow.
 (b)  When the man is 60 ft from the light, the tip of his shadow 

is 75 ft from the light. The tip of the child’s shadow is 77 7
9 ft

  from the light, so the child’s shadow extends 2 7
9 ft beyond

  the man’s shadow.
 (c) d = 80 ft
 (d)  Let x be the distance of the man from the light, and let s

be the distance from the light to the tip of the shadow.

  If 0 < x < 80, then 
ds
dt

= −
50
9

.

If x > 80, then 
ds
dt

= −
25
4

.

There is a discontinuity at x = 80.
11. (a) v(t) = −27

5 t + 27 ft�sec   (b) 5 sec; 73.5 ft

  a(t) = −27
5  ft�sec2

(c)  The acceleration due to gravity on Earth is greater in  
magnitude than that on the moon.

13. Proof; The graph of L is a line passing through the origin (0, 0).
15. (a) j would be the rate of change of acceleration.
 (b)  j = 0. Acceleration is constant, so there is no change in 

acceleration.
 (c) a: position function, d: velocity function,
  b: acceleration function, c: jerk function

Chapter 3
Section 3.1  (page 171) 

1.  f (c) is the low point of the graph of f  on the interval I.
3.  A relative maximum is a peak of the graph. An absolute 

maximum is the greatest value on the interval I.
5.  Find all x-values for which f ′(x) = 0 and all x-values for 

which f ′(x) does not exist.
 7. f ′(0) = 0  9. f ′(2) = 0  11. f ′(−2) is undefined.
13. 2, absolute maximum (and relative maximum)
15.  1, absolute maximum (and relative maximum);  

2, absolute minimum (and relative minimum);  
3, absolute maximum (and relative maximum)

17. x =
3
4

  19. t =
8
3

  21. x =
π
3

, π, 
5π
3

23. Minimum: (2, 1) 25. Minimum: (−3, −13)
Maximum: (−1, 4)  Maximum: (0, 5)

27. Minimum: (−1, −5
2) 29. Minimum: (0, 0)

Maximum: (2, 2)  Maximum: (−1, 5)
31. Minimum: (1, −6) and (−2, −6)

Maximum: (0, 0)
33. Minimum: (−1, −1)

Maximum: (3, 3)
35. Minimum value is −2 for −2 ≤ x < −1.

Maximum: (2, 2)

37. Minimum: (3π2 , −1) 39. Minimum: (π, −3)
Maxima: (0, 3) and (2π, 3)

Maximum: (5π6 , 
1
2)

41. (a) Minimum: (0, −3)  43. (a) Minimum: (1, −1)
Maximum: (2, 1)   Maximum: (−1, 3)

(b) Minimum: (0, −3)  (b) Maximum: (3, 3)
 (c) Maximum: (2, 1)  (c) Minimum: (1, −1)

(d) No extrema  (d) Minimum: (1, −1)
45. 

0
0 4

8  47. 

0

2

−0.5

π

 Minimum: (4, 1)  Minimum: (0, 0)
    Maximum: (2.7149, 1.7856)
49. (a) 

−2

0 1

(0.4398, −1.0613)

(1, 4.7)

5  (b) Minimum:
  (0.4398, −1.0613)

51. Maximum: ∣ f ″( 3√−10 + √108)∣ = f ″(√3 − 1) ≈ 1.47

53. Maximum: ∣ f (4)(0)∣ = 56
81

55.  Answers will vary. Sample answer: Let f (x) = 1
x
. f  is 

  continuous on (0, 1) but does not have a maximum or  
minimum.

 y

x
1 2

1

2

57. (a) Yes. The value is defined.
 (b) No. The value is undefined.
59.  No. The function is not defined at x = −2.
61. Maximum: P(12) = 72; No. P is decreasing for I > 12.
63. θ = arcsec √3 ≈ 0.9553 rad
65.  False. The maximum would be 9 if the interval was closed.
67. True  69. Proof  71. Putnam Problem B3, 2004

Section 3.2  (page 178)

 1.  Rolle’s Theorem gives conditions that guarantee the existence 
of an extreme value in the interior of a closed interval.

 3. f (−1) = f (1) = 1; f  is not continuous on [−1, 1].
 5. f (0) = f (2) = 0; f  is not differentiable on (0, 2).
 7. (2, 0), (−1, 0); f ′(1

2) = 0  9. (0, 0), (−4, 0); f ′(−8
3) = 0

11. f ′(32) = 0  13. f ′(6 − √3
3 ) = 0; f ′(6 + √3

3 ) = 0

15. Not differentiable at x = 0 17. f ′(−2 + √5) = 0

19. f ′(π2) = 0; f ′(3π2 ) = 0  21. f ′(1) = 0

23. Not continuous on [0, π]
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25. 

−1

−1

1

1  27. 

−0.01

−1 0

0.02

Rolle’s Theorem does not  f ′(−6
π  arccos 

3
π) = 0  

 apply.

29. (a) f (1) = f (2) = 38
(b) Velocity = 0 for some t in (1, 2); t = 3

2 sec
31. 

x

y

a b

f(a, f (a))

(c1, f (c1))

(c2, f (c2))

(b, f (b))

Tangent line

Tangent line

Secant line

33. The function is not continuous on [0, 6].
35. The function is not continuous on [0, 6].
37. (a) Secant line: x + y − 3 = 0  (b) c = 1

2

(c) Tangent line: 4x + 4y − 21 = 0
(d) 

−1

−6 6

7

Tangent

Secant

f

39. f ′(√21
3 ) = 42  41. f ′(−√3

3 ) = 3

43. f  is not continuous at x = 1.

45. f  is not differentiable at x = −
1
2

.  47. f ′(π2) = 0

49. (a)–(c) 51. (a)–(c)
 

−1

−0.5 2

1

fTangent

Secant

  

1
1 9

Tangent

Secantf

3

(b) y = 2
3(x − 1)  (b) y = 1

4x + 3
4

(c) y = 1
3 (2x + 5 − 2√6)  (c) y = 1

4x + 1
53. (a) −14.7 m�sec   (b) 1.5 sec
55. No. Let f (x) = x2 on [−1, 2].
57.  No. f (x) is not continuous on [0, 1]. So it does not satisfy the 

hypothesis of Rolle’s Theorem.
59.  By the Mean Value Theorem, there is a time when the speed 

of the plane must equal the average speed of 454.5 miles�hour. 
The speed was 400 miles�hour when the plane was accelerating 
to 454.5 miles�hour and decelerating from 454.5 miles�hour.

61. Proof
63. (a) 

8

2

4

6

2−2−4

−2

4
x

(−5, 5) (5, 5)

f (x) = ⎪x⎪

y  (b) 

x
2 4

2

4

−5

( )1
5

−5, −

( )1
5

5, 

f (x) = 1
x

y

65–67. Proofs  69. f (x) = 5; f (x) = c and f (2) = 5.
71. f (x) = x2 − 1; f (x) = x2 + c and f (1) = 0, so c = −1.
73. False. f  is not continuous on [−1, 1].  75. True
77–85. Proofs

Section 3.3  (page 187)

 1.  A positive derivative of a function on an open interval 
implies that the function is increasing on the interval. A 
negative derivative implies that the function is decreasing.  
A zero derivative implies that the function is constant.

 3. (a) (0, 6)   (b) (6, 8)
 5. Increasing on (−∞, −1); Decreasing on (−1, ∞)
 7. Increasing on (−∞, −2) and (2, ∞); Decreasing on (−2, 2)
 9. Increasing on (−∞, −1); Decreasing on (−1, ∞)
11. Increasing on (1, ∞); Decreasing on (−∞, 1)
13. Increasing on (−2√2, 2√2 );
 Decreasing on (−4, −2√2) and (2√2, 4)
15. Increasing on (0, 

π
2) and (3π2 , 2π);

 Decreasing on (π2, 
3π
2 )

17. Increasing on (0, 
7π
6 ) and (11π

6
, 2π);

 Decreasing on (7π6 , 
11π

6 )
19. (a) Critical number: x = 4
 (b) Increasing on (4, ∞); Decreasing on (−∞, 4)
 (c) Relative minimum: (4, −16)
21. (a) Critical number: x = 1
 (b) Increasing on (−∞, 1); Decreasing on (1, ∞)
 (c) Relative maximum: (1, 5)
23. (a) Critical numbers: x = −1, 1
 (b) Increasing on (−1, 1); 
  Decreasing on (−∞, −1) and (1, ∞)
 (c) Relative maximum: (1, 17);
  Relative minimum: (−1, −11)
25. (a) Critical numbers: x = −5

3, 1
 (b) Increasing on (−∞, −5

3), (1, ∞);
  Decreasing on (−5

3, 1)
 (c) Relative maximum: (−5

3, 256
27 );

  Relative minimum: (1, 0)
27. (a) Critical numbers: x = ±1
 (b) Increasing on (−∞, −1) and (1, ∞);  
  Decreasing on (−1, 1)
 (c) Relative maximum: (−1, 45); Relative minimum: (1, −4

5)
29. (a) Critical number: x = 0
 (b) Increasing on (−∞, ∞)
 (c) No relative extrema
31. (a) Critical number: x = −2
 (b) Increasing on (−2, ∞); Decreasing on (−∞, −2)
 (c) Relative minimum: (−2, 0)
33. (a) Critical number: x = 5
 (b) Increasing on (−∞, 5); Decreasing on (5, ∞)
 (c) Relative maximum: (5, 5)
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35. (a) Critical numbers: x = ±
√2
2

; Discontinuity: x = 0

(b) Increasing on (−∞, −
√2
2 ) and (√2

2
, ∞);

Decreasing on (−√2
2

, 0) and (0, 
√2
2 )

(c) Relative maximum: (−√2
2

, −2√2);
Relative minimum: (√2

2
, 2√2)

37. (a) Critical number: x = 0; Discontinuities: x = ±3
(b) Increasing on (−∞, −3) and (−3, 0);

Decreasing on (0, 3) and (3, ∞)
(c) Relative maximum: (0, 0)

39. (a) Critical number: x = 0
(b) Increasing on (−∞, 0); Decreasing on (0, ∞)
(c) Relative maximum: (0, 4)

41. (a) Critical numbers: x =
π
3

, 
5π
3

; Increasing on (π3, 
5π
3 );

Decreasing on (0, 
π
3) and (5π3 , 2π)

(b) Relative maximum: (5π3 , 
5π
3

+ √3);
Relative minimum: (π3, 

π
3
− √3)

43. (a) Critical numbers: x =
π
4

, 
5π
4

;

Increasing on (0, 
π
4), (

5π
4

, 2π);
Decreasing on (π4, 

5π
4 )

(b) Relative maximum: (π4, √2);
Relative minimum: (5π4 , −√2)

45. (a) Critical numbers:

x =
π
4

, 
π
2

, 
3π
4

, π, 
5π
4

, 
3π
2

, 
7π
4

;

Increasing on (π4, 
π
2), (

3π
4

, π), (5π4 , 
3π
2 ), (

7π
4

, 2π);
Decreasing on (0, 

π
4), (

π
2

, 
3π
4 ), (π, 

5π
4 ), (

3π
2

, 
7π
4 )

(b) Relative maxima: (π2, 1), (π, 1), (3π2 , 1);
Relative minima: (π4, 0), (3π4 , 0), (5π4 , 0), (7π4 , 0)

47. (a) Critical numbers: 
π
2

,  
7π
6

, 
3π
2

, 
11π

6
;

Increasing on (0, 
π
2), (

7π
6

, 
3π
2 ), (

11π
6

, 2π);
Decreasing on (π2, 

7π
6 ), (

3π
2

, 
11π

6 )
(b) Relative maxima: (π2, 2), (3π2 , 0);

Relative minima: (7π6 , −
1
4), (

11π
6

, −
1
4)

49. (a) f ′(x) = 2(9 − 2x2)
√9 − x2

(b) 

x
21−1

f ′

2
4

8
10 f

−10
−8

y    (c)  Critical numbers:

  x = ±
3√2

2

(d) f ′ > 0 on (−3√2
2

, 
3√2

2 );
f ′ < 0 on (−3, −

3√2
2 ), (

3√2
2

, 3);
f  is increasing when f ′ is positive and decreasing when f ′
is negative.

51. (a) f ′(t) = t(t cos t + 2 sin t)
(b) 

t

f ′

f

−10

−20

10

20

30

40

2
2

y

π π

  (c)  Critical numbers: 
t = 2.2889, 5.0870

  (d)  f ′ > 0 on (0, 2.2889), 
(5.0870, 2π);

 f ′ < 0 on (2.2889, 5.0870);
 f  is increasing when f ′
is positive and decreasing 
when f ′ is negative.

53. (a) f ′(x) = −cos 
x
3

(b) 

−2

−4

2

4

y

x
2

f

f ′

π 4π

(c) Critical numbers: x =
3π
2

, 
9π
2

(d) f ′ > 0 on (3π2 , 
9π
2 ); f ′ < 0 on (0, 

3π
2 ), (

9π
2

, 6π);
f  is increasing when f ′ is positive and decreasing when 
f ′ is negative.

55.  f (x) is symmetric with  57. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y  
respect to the origin.

 Zeros: (0, 0), (±√3, 0)

x
21 3 4 5

3
4
5

−1−3−4

−2
−3
−4
−5

y

(−1, 2)

(1, −2)

g(x) is continuous on (−∞, ∞),
and f (x) has holes at x = 1
and x = −1.
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59. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y  61. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y

63. g′(0) < 0  65. g′(−6) < 0
67. Answers will vary. Sample answer:

543

1

1
−1

2

−3

x

y

69.  No. For example, the product of f (x) = x and g(x) = x 
is f (x) ∙ g(x) = x2, which is decreasing on (−∞, 0) and 
increasing on (0, ∞).

71. (5, f (5)) is a relative minimum.
73. (a) 

1

1

−1

−1
x

y

f

(b) Critical numbers: x ≈ −0.40 and x ≈ 0.48
(c) Relative maximum: (0.48, 1.25);

Relative minimum: (−0.40, 0.75)
75. (a) s′(t) = 9.8(sin θ)t; speed = ∣9.8(sin θ)t∣

(b) 

θ 0
π
4

π
3

π
2

2π
3

3π
4

π

s′(t) 0 4.9√2 t 4.9√3 t 9.8t 4.9√3 t 4.9√2 t 0

  The speed is maximum at θ =
π
2

.

77. (a)

t 0 0.5 1 1.5 2 2.5 3

C(t) 0 0.055 0.107 0.148 0.171 0.176 0.167

 t = 2.5 h
(b) 

0
0 3

0.25

t ≈ 2.38 h   (c) t ≈ 2.38 h

79. r =
2R
3

81. (a) v(t) = 6 − 2t   (b) [0, 3)   (c) (3, ∞)   (d) t = 3

83. (a) v(t) = 3t2 − 10t + 4

(b) [0, 
5 − √13

3 ) and (5 + √13
3

, ∞)
(c) (5 − √13

3
, 

5 + √13
3 )   (d) t =

5 ± √13
3

85. Answers will vary.
87. (a) Minimum degree: 3

(b)  a3(0)3 + a2(0)2 + a1(0) + a0 = 0
   a3(2)3 + a2(2)2 + a1(2) + a0 = 2
   3a3(0)2 + 2a2(0) + a1 = 0
   3a3(2)2 + 2a2(2) + a1 = 0
 (c) f (x) = −1

2x3 + 3
2x2

89. (a) Minimum degree: 4
 (b)  a4(0)4 + a3(0)3 + a2(0)2 + a1(0) + a0 = 0
   a4(2)4 + a3(2)3 + a2(2)2 + a1(2) + a0 = 4

a4(4)4 + a3(4)3 + a2(4)2 + a1(4) + a0 = 0
 4a4(0)3 + 3a3(0)2 + 2a2(0) + a1 = 0
 4a4(2)3 + 3a3(2)2 + 2a2(2) + a1 = 0
 4a4(4)3 + 3a3(4)2 + 2a2(4) + a1 = 0

(c) f (x) = 1
4x4 − 2x3 + 4x2

91. False. Let f (x) = sin x.  93. False. Let f (x) = x3.
95.  False. Let f (x) = x3. There is a critical number at x = 0, but 

not a relative extremum.
97–99. Proofs  101. Putnam Problem A3, 2003

Section 3.4  (page 196)

 1.  Find the second derivative of a function and form test intervals 
by using the values for which the second derivative is zero 
or does not exist and the values at which the function is not 
continuous. Determine the sign of the second derivative on 
these test intervals. If the second derivative is positive, then the 
graph is concave upward. If the second derivative is negative, 
then the graph is concave downward.

 3. f ′ > 0, f ″ < 0  5. Concave upward: (−∞, ∞)
 7. Concave upward: (−∞, 0), (3

2, ∞);
 Concave downward: (0, 32)
 9. Concave upward: (−∞, −2), (2, ∞);
 Concave downward: (−2, 2)
11. Concave upward: (−∞, −1

6); 
 Concave downward: (−1

6, ∞)
13. Concave upward: (−∞, −1), (1, ∞);
 Concave downward: (−1, 1)

15. Concave upward: (−π
2

, 0); Concave downward: (0, 
π
2)

17. Point of inflection: (3, 0); Concave downward: (−∞, 3);
 Concave upward: (3, ∞)
19. Points of inflection: None; Concave downward: (−∞, ∞)
21. Points of inflection: (2, −16), (4, 0);
 Concave upward: (−∞, 2), (4, ∞);
 Concave downward: (2, 4)
23. Points of inflection: None; Concave upward: (−3, ∞)
25. Points of inflection: None; Concave upward: (0, ∞)
27. Point of inflection: (2π, 0);
 Concave upward: (2π, 4π); Concave downward: (0, 2π)
29. Concave upward: (0, π), (2π, 3π);
 Concave downward: (π, 2π), (3π, 4π)
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31. Points of inflection: (π, 0), (1.823, 1.452), (4.46, −1.452);
Concave upward: (1.823, π), (4.46, 2π);
Concave downward: (0, 1.823), (π, 4.46)

33. Relative maximum: (3, 9)
35. Relative maximum: (0, 3); Relative minimum: (2, −1)
37. Relative minimum: (3, −25)
39. Relative minimum: (0, −3)
41. Relative maximum: (−2, −4); Relative minimum: (2, 4)
43. No relative extrema, because f  is nonincreasing.
45. (a) f ′(x) = 0.2x(x − 3)2(5x − 6);

f ″(x) = 0.4(x − 3)(10x2 − 24x + 9)
(b) Relative maximum: (0, 0);

Relative minimum: (1.2, −1.6796);
Points of inflection: (0.4652, −0.7048),
(1.9348, −0.9048), (3, 0)

(c) 

4

2

1

−1−2
x

f

y

f ′
f ″

 
    f  is increasing when f ′ is  

positive and decreasing when  
f ′ is negative. f  is concave 
upward when f ″ is positive and 
concave downward when f ″ is 
negative.

47. (a) f ′(x) = cos x − cos 3x + cos 5x;
f ″(x) = −sin x + 3 sin 3x − 5 sin 5x

(b) Relative maximum: (π2, 1.53333);
Points of inflection: (π6, 0.2667), (1.1731, 0.9637),

(1.9685, 0.9637), (5π6 , 0.2667)
(c) 

x

−2

−4

−6

−8

2

4

f

y

f ′

f ″

4
π π

2
π

  
     f  is increasing when f ′ is  

positive and decreasing when  
f ′ is negative. f  is concave 
upward when f ″ is positive  
and concave downward when  
f ″ is negative.

49. (a) 

x
4

4

3

3

2

1

1 2

y    (b) 

x
4

4

3

3

2

1

1 2

y

51. 

x
3

3

−1−2

−1

f ′f

f ″

y  53. 

(0, 0) (2, 0)
x

1 3−1

1

2

−2

y

55. 

x
64

4

2

2

y

(2, 0) (4, 0)

 57. Sample answer:
    

−8

−4 8 12
x

f

y

f ″

59. (a)  f (x) = (x − 2)n has a point of inflection at (2, 0) if n is 
odd and n ≥ 3.

  

−6

9−9

6

f(x) = x − 2

  

−6

9−9

6

f(x) = (x − 2)2

  

Point of
in�ection

−6

9−9

6

f(x) = (x − 2)3

  

−6

9−9

6

f(x) = (x − 2)4

 (b) Proof
61. f (x) = 1

2x3 − 6x2 + 45
2 x − 24

63. (a) f (x) = 1
32x3 + 3

16x2   (b)  Two miles from touchdown
65. x = 100 units
67. (a)
 

t 0.5 1 1.5 2 2.5 3

S 151.5 555.6 1097.6 1666.7 2193.0 2647.1

 1.5 < t < 2
 (b) 

0
0

3

3000    (c) About 1.633 yr

  t ≈ 1.5
69. P1(x) = 2√2   

−2

−4

P2

P1

f

π 2π

4

 P2(x) = 2√2 − √2(x −
π
4)

2

  The values of f, P1, and P2 and  
their first derivatives are equal

 when x =
π
4

. The approximations

 worsen as you move away from x =
π
4

.

71. P1(x) = 1 −
x
2

   

4

−3

−8

5

f

P2

P1

 P2(x) = 1 −
x
2
−

x2

8
  The values of f, P1, and P2 and 

their first derivatives are equal 
when x = 0. The approximations 
worsen as you move away from x = 0. 
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73. 

1−1

−1

( (, 0π
1

1   75. True

77. False. f  is concave upward at x = c if f ″(c) > 0.
79. Proof

Section 3.5  (page 206)

1. (a) As x increases without bound, f (x) approaches −5.
(b)  As x decreases without bound, f (x) approaches 3.

 3. 2; one from the left and one from the right
 5. f  6. c  7. d  8. a  9. b  10. e
11. (a) ∞   (b) 5   (c) 0  13. (a) 0   (b) 1   (c) ∞
15. (a) 0   (b) −2

3   (c) −∞  17. 4  19. 7
9  21. 0

23. −∞  25. −1  27. −2  29. 1
2  31. ∞

33. 0  35. 0
37. 

6

−4

−6

4

y = −1
y = 1

 39. 6

−6

−9 9

y = −3

y = 3

41. 1  43. 0  45. 1
6

47.

x 100 101 102 103 104 105 106

f (x) 1.000 0.513 0.501 0.500 0.500 0.500 0.500

 

8

−2

−1

2

  lim
x→∞

 [x − √x(x − 1) ] = 1
2

49.

x 100 101 102 103 104 105 106

f (x) 0.479 0.500 0.500 0.500 0.500 0.500 0.500

 

2

−1

−2

1

  The graph has a hole at x = 0.

  lim
x→∞

 x sin 
1
2x

=
1
2

51. 100%
53.  An infinite limit is a description of how a limit fails to exist. 

A limit at infinity deals with the end behavior of a function.
55. (a) 5   (b) −5

57. (a) 

5
0

30

120

(b) Yes. lim
t→∞

 S =
100
1

= 100

59. (a) lim
x→∞

 f (x) = 2

(b) x1 =√4 − 2ε
ε

, x2 = −√4 − 2ε
ε

(c) M =√4 − 2ε
ε

   (d) N = −√4 − 2ε
ε

61. (a) Answers will vary. M =
5√33

11

(b) Answers will vary. M =
29√177

59
63–65. Proofs

67. (a) d(m) = ∣3m + 3∣
√m2 + 1

(b) 

12

−2

−12

6   (c) lim
m→∞

 d(m) = 3;

 lim
m→−∞

 d(m) = 3;

  As m approaches ±∞, the 
distance approaches 3.

69. Proof

Section 3.6  (page 215)

 1.  Domain, range, intercepts, asymptotes, symmetry, end  
behavior, differentiability, relative extrema, points of  
inflection, concavity, increasing and decreasing, infinite 
limits at infinity

 3.  Rational function; Use long division to rewrite the rational 
function as the sum of a first-degree polynomial and another 
rational function.

 5. d  6. c  7. a  8. b
 9. 

x

y

y = −3

x = 2

−2

−4

4

, 0 7
3( (

0, − 7
2( (

 11. y

x
2 3 4 5

−2

−3

−4

2

3

4

1−1

(0, 0)

x = 1

y = −1

13. y

x
−1−4 3 4

−2

−3

−4

1

2

3

4

2

y = 0

x = 2x = −2

0, − 

(−1, 0) 

1
4( (

 15. 

x
4

1, 1
4

2−4

y

1

(0, 0)

y = 1

( ((−1, 1
4(

17. 

x
54

5
4

−4

y

6
7
8

3
2

1 2−1−2−3 3

y = 3

x = 0

, 0− 2
3( (

 19. 

x
−6−8 2 4 6 8

−4

−6

2

4

6

8(−2   4, 0)3

y x=

x = 0

(4, 6)

y
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21. y

x
−2−3 2 3 4

1

−1 1

x = −1 x = 1

y = 0
(0, 0)

 23. 

108

8

6

6

4

2

x

y

(2, −2)

(0, −3)

(6, 6)

y = x − 2

x = 4

25. 

x
3 4 5

12
8
4

16
20

−1−3−4−5

−12
−16
−20

y

21−2

(−   6, −6    3)

(   6, 6    3)

x = 2

x = −2

 27. 

x
−2 2 4

2

4 , 8 16
3 9

y

(0, 0) (4, 0)

3( (

29. 

x
5321

5

−2

y

27
8

, 0

(0, 0)

(1, 1)
(        )

 31. 
5

x

1

(0, 2)

(1, 0)

4

32−1−2−3

y

33. 

x
−2 1

1

2

(−1, −1)

(0, 0)

2
3

16
27

y

−   , −( (

4
3

−   , 0( (

 35. y

x
3 4 5 6 7−1

−2

−3

−4

1

2

3

4

x = 0

y = 0

37. y

x

4

8

12

16

3π 2ππ
2

π
2

(0, 0) (1.895, 0)

(  , 2  )

5
3

π

π

π

10
3
π () ,

2
3
π

+ 2   3

3
π () , − 2   3

 39. 

x

−1

−2

1

2

3

y

2
π π

2
π

(0, 0) (  , 0)

2

π (2   , 0)π

π 19
18) (,

2
3π 19

18) (, −

41. 

x

y

−4

4

8

12

16

4 2
ππ

4
π 2

π

() , 4   2
x =

x = 0

 43. 

x

6
4
2

8
10

−4
−2

−6
−8

y

3πππ
24

π−

2
πx = − 

2
3πx = − 

2
3πx =  

2
π

π

x =

(0, 0)

(  , 0)

π(−  , 0)

45. 

15

−10

−15

10   Minimum: (−1.10, −9.05);
  Maximum: (1.10, 9.05);
   Points of inflection:
  (−1.84, −7.86), (1.84, 7.86);
  Vertical asymptote: x = 0;
  Horizontal asymptote: y = 0

47. 

−4

−6 6

4

    Point of inflection: (0, 0);
    Horizontal asymptotes: y = ±2

49. 

0

−2

2

2π

  Relative minimum: (π, −
5
4);

  Points of inflection:

  (2π3 , −
3
8), (

4π
3

, −
3
8)

51. 

2

−1

−2

−2
x

f

y

f ′

f ″
   The zeros of f ′ correspond to 

the points where the graph of 
f  has horizontal tangents. The 
zero of f ″ corresponds to the 
point where the graph of f ′ has a  
horizontal tangent.

53. 

x
4

4

2

−4

−4

−2

−2

f

y  

x
4

4

2

−4

−4 −2

2

f ″

y

55. 

x
8

4

−2

−4

−4

2

y

f

 

x

4

−2

−4

2

4−8

y

f ″

57. (a) 

4

−0.5

0

1.5     The graph has holes at x = 0  
and at x = 4.

     Visually approximated critical  
numbers: 1

2, 1, 32, 2, 52, 3, 72

 (b) f ′(x) = −x cos2 πx
(x2 + 1)3�2 −

2π sin πx cos πx

√x2 + 1
;

  Approximate critical numbers: 1
2, 0.97, 32, 1.98, 52, 2.98, 72;

   The critical numbers where maxima occur appear to be 
integers in part (a), but by approximating them using f ′, 
you can see that they are not integers.

59. Answers will vary. Sample answer: Let

 f (x) = −6
0.1(x − 2)2 + 1

+ 6.

 

4

8

642−2
x

y
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61. f  is decreasing on (2, 8), and therefore f (3) > f (5).
63. (a) 

x
4

4

3

2

2 31

−4
−3

−4

f ′

f

y

 (b) lim
x→∞

 f (x) = 3, lim
x→∞

 f ′(x) = 0

 (c) Because lim
x→∞

 f (x) = 3, the graph approaches that of a

  horizontal line, lim
x→∞

 f ′(x) = 0.

65. 

9

−1

−6

9     The graph crosses the horizontal 
asymptote y = 4. 

   The graph of a function f  does 
not cross its vertical asymptote 
x = c because f (c) does not exist.

67. 

−1

−2π 2π

3      The graph has a hole at x = 0. 
      The graph crosses the horizontal 

asymptote y = 0.
      The graph of a function f  does 

not cross its vertical asymptote 
x = c because f (c) does not exist.

69. 

4

−1

−2

3

       The graph has a hole at x = 3. 
The rational function is not 
reduced to lowest terms.

71. 

6

−3

−3

3     The graph appears to approach 
the line y = −x + 1, which is the 
slant asymptote.

73. 

−4

−6 6

4     The graph appears to approach the 
line y = 2x, which is the slant 
asymptote.

75. 

8

−2

−4

f g=

8     The graph appears to approach 
the line y = x, which is the slant 
asymptote.

77. (a)–(h) Proofs

79. Answers will vary. Sample answer: y =
1

x − 3
81. Answers will vary. 

 Sample answer: y =
3x2 − 7x − 5

x − 3

83. False. Let f (x) = 2x

√x2 + 2
, f ′(x) > 0 for all real numbers.

85.  False. For example,

 y =
x3 − 1

x
does not have a slant asymptote.

87. (a) (−3, 1)   (b) (−7, −1)
(c) Relative maximum at x = −3, relative minimum at x = 1
(d) x = −1

89.  Answers will vary. Sample answer: The graph has a  
vertical asymptote at x = b. If a and b are both positive or both  
negative, then the graph of f  approaches ∞ as x approaches 
b, and the graph has a minimum at x = −b. If a and b have 
opposite signs, then the graph of f  approaches −∞ as x 
approaches b, and the graph has a maximum at x = −b.

91. y = 4x, y = −4x 
 

x

y

−2−4−6−8 2 4 6 8

2

8

10

12

93. (a)  When n is even, f  is symmetric about the y-axis. When n 
is odd, f  is symmetric about the origin.

 (b) n = 0, 1, 2, 3   (c) n = 4   (d) y = 2x
 (e) 

−1.5

−3 3

2.5

n = 2

n = 0

n = 1

  

−1.5

−3 3

2.5

n = 3

n = 4 n = 5

  
n 0 1 2 3 4 5

M 1 2 3 2 1 0

N 2 3 4 5 2 3

Section 3.7  (page 224)

 1.  A primary equation is a formula for the quantity to be  
optimized. A secondary equation can be solved for a variable 
and then substituted into the primary equation to obtain a 
function of just one variable. A feasible domain is the set of 
input values that makes sense in an optimization problem.
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3. (a) First 
Number, x

Second 
Number

Product, P

10 110 − 10 10(110 − 10) = 1000

20 110 − 20 20(110 − 20) = 1800

30 110 − 30 30(110 − 30) = 2400

40 110 − 40 40(110 − 40) = 2800

50 110 − 50 50(110 − 50) = 3000

60 110 − 60 60(110 − 60) = 3000

70 110 − 70 70(110 − 70) = 2800

80 110 − 80 80(110 − 80) = 2400

90 110 − 90 90(110 − 90) = 1800

100 110 − 100 100(110 − 100) = 1000

The maximum is attained near x = 50 and 60.
 (b) P = x(110 − x)   (c) 55 and 55
 (d) 

120
0

0

3500

(55, 3025)

5. 
S
2

 and 
S
2

  7. 21 and 7  9. 54 and 27

11. ℓ = w = 20 m  13. ℓ = w = 7 ft

15. (−√5
2

, 
5
2), (√5

2
, 

5
2)  17. 40 in. × 20 in.

19. 900 m × 450 m

21. Rectangular portion: 
16

π + 4
×

32
π + 4

 ft

23. (a) L =√x2 + 4 +
8

x − 1
+

4
(x − 1)2, x > 1

(b) 

10
0

0

(2.587, 4.162)

10

  Minimum when x ≈ 2.587

(c) (0, 0), (2, 0), (0, 4)

25. Width: 
5√2

2
; Length: 5√2

27. (a) 
y

y
2

x

(b)

Length, x Width, y Area, xy

10 (2�π)(100 − 10) (10)(2�π)(100 − 10) ≈ 573

20 (2�π)(100 − 20) (20)(2�π)(100 − 20) ≈ 1019

30 (2�π)(100 − 30) (30)(2�π)(100 − 30) ≈ 1337

40 (2�π)(100 − 40) (40)(2�π)(100 − 40) ≈ 1528

50 (2�π)(100 − 50) (50)(2�π)(100 − 50) ≈ 1592

60 (2�π)(100 − 60) (60)(2�π)(100 − 60) ≈ 1528

The maximum area of the rectangle is approximately 1592 m2.

(c) A =
2
π (100x − x2), 0 < x < 100

(d)  
dA
dx

=
2
π (100 − 2x)    (e) 

0 100
0

2000

(50, 1591.6)

 = 0 when x = 50;
The maximum value is  
approximately 1592  
when x = 50.

29. 18 in. × 18 in. × 36 in.
31.  No. The volume changes because the shape of the container 

changes when it is squeezed.

33. r = 3√21
2π ≈ 1.50 (h = 0, so the solid is a sphere.)

35. Side of square: 
10√3

9 + 4√3
; Side of triangle: 

30

9 + 4√3

37. w =
20√3

3
 in., h =

20√6
3

 in.

39. Oil well

Re�nery

4
3

2

2

4 −
3

2
3

  The path of the pipe should go underwater from the oil well to 
the coast following the hypotenuse of a right triangle with leg

 lengths of 2 miles and 
2

√3
 miles for a distance of 

4

√3
 miles.

  Then the pipe should go down the coast to the refinery for a

 distance of (4 −
2

√3) miles.

41. One mile from the nearest point on the coast
43. 

x

3

1

2

−1
−

y

4
π

4
π

2
π

  (a) Origin to y-intercept: 2;

   Origin to x-intercept: 
π
2

   (b)  d = √x2 + (2 − 2 sin x)2
   (c)  Minimum distance is 0.9795 

when x ≈ 0.7967.

45. About 1.153 radians or 66°  47. 5.3%
49. y = 64

141 x, S ≈ 6.1 mi  51. y = 3
10 x, S3 ≈ 4.50 mi

53. (0, 0)  55. Putnam Problem A1, 1986
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Section 3.8  (page 233)

1.  Answers will vary. Sample answer: 

x
2

1

−1

−2

−1

y

a
bc

x1
x2

x3

f (x)
If f  is a function continuous on 

 [a, b] and differentiable on (a, b), 
 where c ∈ [a, b] and f (c) = 0,  
 then Newton’s Method uses  
 tangent lines to approximate c.  
 First, estimate an initial x1 close  
 to c. (See graph.) Then determine 

x2 using x2 = x1 −
f (x1)
f ′(x1)

. Calculate a third estimate x3 using

  x3 = x2 −
f (x2)
f ′(x2)

. Continue this process until ∣xn − xn+1∣ is

  within the desired accuracy, and let xn+1 be the final  
approximation of c.

In the answers for Exercises 3 and 5, the values in the tables have 
been rounded for convenience. Because a calculator and a computer 
program calculate internally using more digits than they display, 
you may produce slightly different values from those shown in 
the tables.

3. 
n xn f (xn) f ′(xn)

f (xn)
f ′(xn)

xn −
f (xn)
f ′(xn)

1 2 −1 4 −0.25 2.25

2 2.25 0.0625 4.5 0.0139 2.2361

 5.
 

n xn f (xn) f ′(xn)
f (xn)
f ′(xn)

xn −
f (xn)
f ′(xn)

1 1.6 −0.0292 −0.9996 0.0292 1.5708

2 1.5708 0 −1 0 1.5708

 7. −1.587  9. 0.682  11. 1.250, 5.000
13. 0.900, 1.100, 1.900  15. 1.935  17. 0.569
19. 4.493
21. (a) 

−4 5

−2

4    (b) 1.347  (c) 2.532

 (d) 

5

3

1−2 4
x

y

f

y = −3x + 4

y = −1.313x + 3.156

    If the initial estimate x = x1 
is not sufficiently close to the 
desired zero of a function, then 
the x-intercept of the  
corresponding tangent line to 
the function may approximate 
a second zero of the function.

23. f ′(x1) = 0  25. 0.74
27. The values would be identical.  29. (1.939, 0.240)

31. x ≈ 1.563 mi
33. (a) Proof   (b) √5 ≈ 2.236, √7 ≈ 2.646  35. Proof

37. False; Let f (x) = x2 − 1
x − 1

.  39. True  41. 0.217

Section 3.9  (page 240)

 1. y = f (c) + f ′(c)(x − c)

 3. Propagated error = f (x + ∆x) − f (x), relative error = ∣dy
y ∣,

 percent error = ∣dy
y ∣ ∙ 100

 5. T(x) = 4x − 4
 

x 1.9 1.99 2 2.01 2.1

f (x) 3.610 3.960 4 4.040 4.410

T(x) 3.600 3.960 4 4.040 4.400

 7. T(x) = 80x − 128
 

x 1.9 1.99 2 2.01 2.1

f (x) 24.761 31.208 32 32.808 40.841

T(x) 24.000 31.200 32 32.800 40.000

 9. T(x) = (cos 2)(x − 2) + sin 2
 

x 1.9 1.99 2 2.01 2.1

f (x) 0.946 0.913 0.909 0.905 0.863

T(x) 0.951 0.913 0.909 0.905 0.868

11.  y − f (0) = f ′(0)(x − 0) 

6

−2

−6
(0, 2)y

f

6

  y − 2 = 1
4x

  y = 2 +
x
4

13. ∆y = 0.1655, dy = 0.15
15. ∆y = −0.039, dy = −0.040
17. ∆y ≈ −0.053018, dy = −0.053  19. 6x dx

21. (x sec2 x + tan x) dx  23. −
3

(2x − 1)2 dx

25. −
x

√9 − x2
 dx  27. (3 − sin 2x) dx

29. (a) 0.9   (b) 1.04  31. (a) 8.035   (b) 7.95

33. (a) ±
5
8

 in.2   (b) 0.625%

35. (a) ±20.25 in.3   (b) ±5.4 in.2   (c) 0.6%, 0.4%
37. 27.5 mi, about 7.3%  39. (a) 1

4%   (b) 216 sec = 3.6 min
41. 6407 ft

43. f (x) = √x, dy =
1

2√x
 dx

 f (99.4) ≈ √100 +
1

2√100
(−0.6) = 9.97

 Calculator: 9.97
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45. f (x) = 4√x, dy =
1

4x3�4
 dx

f (624) ≈ 4√625 +
1

4(625)3�4 (−1) = 4.998

Calculator: 4.998
47.  The value of dy becomes closer to the value of ∆y as ∆x

approaches 0. Graphs will vary.
49. True  51. True  53. True

Review Exercises for Chapter 3  (page 242)

1. Maximum: (0, 0)  3. Maximum: (4, 0)
Minimum: (−5

2, −25
4 )  Minimum: (0, −2)

5. Maximum: (3, 23)  7. Maximum: (2π, 17.57)
Minimum: (−3, −2

3)  Minimum: (2.73, 0.88)
9. f ′(1) = 0  11. Not continuous on [−2, 2]

13. f ′(2744
729 ) =

3
7

  15. f  is not differentiable at x = 5.

17. f ′(0) = 1
19.  No; The function has a discontinuity at x = 0, which is in the 

interval [−2, 1].
21. Increasing on (−3

2, ∞); Decreasing on (−∞, −3
2)

23. Increasing on (−∞, 1), (2, ∞); Decreasing on (1, 2)
25. Increasing on (1, ∞); Decreasing on (0, 1)
27. (a) Critical number: x = 3

(b) Increasing on (3, ∞); Decreasing on (−∞, 3)
(c) Relative minimum: (3, −4)

29.  (a) Critical number: t = 2
(b) Increasing on (2, ∞); Decreasing on (−∞, 2)
(c) Relative minimum: (2, −12)

31. (a) Critical number: x = −8; Discontinuity: x = 0
(b) Increasing on (−8, 0); 

  Decreasing on (−∞, −8) and (0, ∞)
(c) Relative minimum: (−8, − 1

16)
33. (a) Critical numbers: x =

3π
4

, 
7π
4

(b) Increasing on (3π4 , 
7π
4 );

Decreasing on (0, 
3π
4 ) and (7π4 , 2π)

(c) Relative minimum: (3π4 , −√2);
Relative maximum: (7π4 , √2)

35. (a) v(t) = 3 − 4t   (b) [0, 34)   (c) (3
4, ∞)   (d) t = 3

4

37. Point of inflection: (3, −54); Concave upward: (3, ∞);
 Concave downward: (−∞, 3)
39. Points of inflection: None; Concave upward: (−5, ∞)

41. Points of inflection: (π2, 
π
2), (

3π
2

, 
3π
2 );

 Concave upward: (π2, 
3π
2 );

 Concave downward: (0, 
π
2), (

3π
2

, 2π)
43. Relative minimum: (−9, 0)

45. Relative maxima: (√2
2

, 
1
2), (−

√2
2

, 
1
2);

 Relative minimum: (0, 0)

47. Relative maximum: (−3, −12); Relative minimum: (3, 12)
49. 

x
2 3 4 5

5

2

6

(0, 0)

(6, 0)

3

7

−1

4

1

y

7

(3, f (3))

(5, f (5))

  51.  Increasing and concave 
downward

53. (a) 
 D = 0.41489t4 − 17.1307t3 + 249.888t2 − 1499.45t + 3684.8

(b) 

500
5 15

725

(c) 2011; 2006   (d) 2008
55. 8  57. −1

8  59. −∞  61. 0  63. 6
65. 

−8 7

9

−1

y = 4

 67. 

−6 6

4

−4

y = −1

y = 1

69. 

x

(2, 4)

(4, 0)(0, 0)

5

4

2

3

5321

1

y  71. 

8
x

4 62

6

4

−2−6

2

−8

8

−8

y

(−4, 0) (4, 0)

(0, 0)

2, −8−2 ))

2, 82 ))

73. 

(−3, 0)

(−1, −1.59)

(0, 0)
x

21−1−2

1

2

3

4

−4−5

−3

y  75. y

x

x = 2

y = −3
−1−2 1 3 4 5 6

−2

−4

−5

−6

1

2

2

5
3
   , 0( (

5
2

   0, −( (

77. 

x
21

x = 0

5

10

−1

−5

−2
(−1, −6)

(1, 6)

y

79. 54, 36  81. x = 50 ft and y = 200
3  ft

83. (0, 0), (5, 0), (0, 10)  85. 14.05 ft  87. 
32πr3

81
89. −1.532, −0.347, 1.879  91. −2.182, −0.795
93. −0.755  95. ∆y = 5.044, dy = 4.8
97. dy = (1 − cos x + x sin x) dx  

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Answers to Odd-Numbered Exercises A39

 99. f (x) = √x, dy =
1

2√x

  f (63.9) ≈ √64 +
1

2√64
(−0.1) = 7.99375

  Calculator: 7.99375
101. (a) ±8.1π cm3   (b) ±1.8π cm2

  (c) About 0.83%, about 0.56%

P.S. Problem Solving  (page 245)

  1. Choices of a may vary.

  

x

5
4

y

6
7
8

3
2

−1
−2

2−2

a = −3

a = −2

a = −1

a = 1 a = 3 a = 2 a = 0   (a)  One relative minimum at 
(0, 1) for a ≥ 0

   (b)  One relative maximum at 
(0, 1) for a < 0

   (c)  Two relative minima for

   a < 0 when x = ±√−
a
2

   (d)  If a < 0, then there are three 
critical points. If a ≥ 0, then 
there is only one critical point.

  3. All c, where c is a real number  5. Proof
  7.  The bug should head toward the midpoint of the opposite 

side. Without calculus, imagine opening up the cube. The 
shortest distance is the line PQ, passing through the midpoint 
as shown.

  

Q

P
x

  9. a = 6, b = 1, c = 2  11. Proof

 13. Greatest slope: (−√3
3

, 
3
4), Least slope: (√3

3
, 

3
4)

 15. Proof  17. Proof; Point of inflection: (1, 0)
 19. (a) P(x) = x − x2

  (b) 5

3

−3

−3
(0, 0)

P(x)

f (x)

Chapter 4
Section 4.1  (page 255)

  1.  A function F is an antiderivative of f  on an interval I when 
F′(x) = f (x) for all x in I.

  3.  The particular solution results from knowing the value of 
y = F(x) for one value of x. Using the initial condition in the 
general solution, you can solve for C to obtain the particular 
solution.

  5. Proof  7. y = 3t3 + C  9. y = 2
5x

5�2 + C
  Original 
  Integral Rewrite Integrate Simplify

 11. ∫ 3√x dx ∫ x1�3 dx 
x4�3

4�3
+ C 

3
4
x4�3 + C

 13. ∫ 
1

x√x
 dx ∫ x−3�2 dx 

x−1�2

−1�2
+ C −

2

√x
+ C

15. 1
2x

2 + 7x + C  17. 1
6x

6 + x + C

19. 2
5x

5�2 + x2 + x + C  21. 3
5x

5�3 + C

23. −
1

4x4 + C  25. 
2
3
x3�2 + 12x1�2 + C

27. x3 + 1
2x

2 − 2x + C  29. 5 sin x − 4 cos x + C
31. −csc x − x2 + C  33. tan θ + cos θ + C
35. tan y + C  37. f (x) = 3x2 + 8
39. h(x) = x7 + 5x − 7  41. f (x) = x2 + x + 4
43. f (x) = −4√x + 3x

45. (a) Answers will vary.    (b) y =
x3

3
− x +

7
3

  Sample answer:
 

x
−4

−5

5

4

y  

−4 4

−5

( 1, 3)−

5

47. (a) 

3

−9

−3

9   (b) y = x2 − 6
  (c) 

15

−8

−15

12

49. Answers will vary. Sample answer:
 

y

x
−1−2−3 1 2 3

2

3

5

f(x) = 4x + 2

f ′

f(x) = 4x

51. f (x) = tan2 x ⇒ f ′(x) = 2 tan x ∙ sec2 x
 g(x) = sec2 x ⇒ g′(x) = 2 sec x ∙ sec x tan x = f ′(x)
 The derivatives are the same, so f  and g differ by a constant.

53. f (x) = x3

3
− 4x +

16
3

55. (a) h(t) = 3
4t

2 + 5t + 12   (b) 69 cm  57. 62.25 ft
59. (a) t ≈ 2.562 sec   (b) v(t) ≈ −65.970 ft�sec
61. v0 ≈ 62.3 m�sec  63. 320 m; −32 m�sec
65. (a) v(t) = 3t2 − 12t + 9, a(t) = 6t − 12
 (b) (0, 1), (3, 5)   (c) −3

67. a(t) = −
1

2t3�2, x(t) = 2√t + 2

69. (a) 1.18 m�sec2   (b) 190 m
71. (a) 300 ft   (b) 60 ft�sec ≈ 41 mi�h
73.  False. f  has an infinite number of antiderivatives, each differing 

by a constant.
75. True  77. True  79. Proof
81. Putnam Problem B2, 1991
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Section 4.2  (page 267)

1.  The index of summation is i, the upper bound of summation 
is 8, and the lower bound of summation is 3.

 3.  You can use the line  y = x  The sum of the areas of the
 bounded by x = a and x = b. circumscribed rectangles in
 The sum of the areas of the  the  figure below is the 
 inscribed rectangles in the   upper sum.
 figure below is the lower sum. 

x

y

a b

 

x

y

a b

  The rectangles in the first graph do not contain all of the area 
of the region, and the rectangles in the second graph cover 
more than the area of the region. The exact value of the area 
lies between these two sums.

 5. 75  7. 
158
85

  9. 8c  11. ∑
11

i=1
 
1
5i

13. ∑
6

j=1
 [7( j6) + 5]  15. 

2
n

 ∑
n

i=1
 [(2in )

3

− (2in )]  17. 84

19. 1200  21. 2470  23. 1876

25. 
n + 2
n

 27. 
2(n + 1)(n − 1)

n2

 n = 10: S = 1.2 n = 10: S = 1.98
 n = 100: S = 1.02 n = 100: S = 1.9998
 n = 1000: S = 1.002 n = 1000: S = 1.999998
 n = 10,000: S = 1.0002 n = 10,000: S = 1.99999998
29. 13 < (Area of region) < 15
31. 55 < (Area of region) < 74.5
33. 0.7908 < (Area of region) < 1.1835
35.  The area of the shaded region falls between 12.5 square units 

and 16.5 square units.
37. A ≈ S ≈ 0.768 39. A ≈ S ≈ 0.746
 A ≈ s ≈ 0.518  A ≈ s ≈ 0.646

41. s(n) = 24 −
24
n

, S(n) = 24 +
24
n

43. s(n) = 5(2n2 − 3n + 1)
6n2 , S(n) = 5(2n2 + 3n + 1)

6n2

45. (a) 

x
31

3

2

1

y    (b) ∆x =
2 − 0
n

=
2
n

 (c) s(n) = ∑
n

i=1
 f (xi−1) ∆x = ∑

n

i=1
 [(i − 1)( 2

n)](
2
n)

(d) S(n) = ∑
n

i=1
 f (xi) ∆x = ∑

n

i=1
 [i(2n)](

2
n)

 (e) 
n 5 10 50 100

s(n) 1.6 1.8 1.96 1.98

S(n) 2.4 2.2 2.04 2.02

 (f) lim
n→∞

 ∑
n

i=1
 [(i − 1)(2n)](

2
n) = 2

  lim
n→∞

 ∑
n

i=1
 [i(2n)](

2
n) = 2

47. A = 3 49. A = 7
3

 y

x
−1−2 1 2 3

1

2

3

4

5

  

x
2 3

3

1

1

y

51. A = 54 53. A = 34
 y

x
−1 1 2 3 4 5

−5

5

10

15

20

  y

x
−1−2 1 2 4 5
−6

6

12

18

24

30

55. A = 2
3 57. A = 8

 

x
1−1

2

1

y   y

x
2 4 6 8

−1

1

2

3

4

59. A = 125
3  61. A = 44

3

 y

x
−5 5 10 15 20 25

−2

−4

−6

2

4

6

  

x

6

y

8

10

2

−2

−4

−2−4

63. 69
8   65. 0.345  67. b

69.  An overestimate on one side of the midpoint compensates for 
an underestimate on the other side of the midpoint.

71. (a) 

x
1

2

2 3

4

4

6

8

y    (b) 

x
1

2

2 3

4

4

6

8

y

  s(4) = 46
3  S(4) = 326

15
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(c) 

x
1

2

2 3

4

4

6

8

y   (d) Proof

  M(4) = 6112
315

(e) 
n 4 8 20 100 200

s(n) 15.333 17.368 18.459 18.995 19.060

S(n) 21.733 20.568 19.739 19.251 19.188

M(n) 19.403 19.201 19.137 19.125 19.125

 (f)  Because f  is an increasing function, s(n) is always increasing 
and S(n) is always decreasing.

73. True
75.  Suppose there are n rows and n + 1 columns. The stars on the left 

total 1 + 2 + .  .  . + n, as do the stars on the right. There are 
n(n + 1) stars in total. So, 2[1 + 2 + .  .  . + n] = n(n + 1) 

 and 1 + 2 + .  .  . + n =
n(n + 1)

2
.

77. When n is odd, there are (n + 1
2 )

2

 seats. When n is even,

 there are 
n2 + 2n

4
 seats.

79. Putnam Problem B1, 1989

Section 4.3  (page 277)

1.  A Riemann sum represents the addition of all of the subregions 
for a function f  on an interval [a, b].

3. 2√3 ≈ 3.464  5. 32  7. 0  9. 10
3

11. ∫5

−1
 (3x + 10) dx  13. ∫4

0
 5 dx  15. ∫4

−4
 (4 − ∣x∣) dx

17. ∫5

−5
 (25 − x2) dx  19. ∫π�2

0
 cos x dx  21. ∫2

0
 y3 dy

23. 

x
5

5

3

2

42 31

1

Rectangle

y  25. 

x

Triangle

4

2

42

y

A = 12 A = 8
27. y

x
−1 1 2 3

−4

4

8

12

Trapezoid

 29. 

1 Triangle

1−1
x

y

 A = 14  A = 1

31. y

x
−2−4−6−8 2 4 6 8

−4

2

4

6

8

10

12

Semicircle

 A =
49π

2
33. −320  35. 80  37. −40  39. 508
41. (a) 13   (b) −10   (c) 0   (d) 30
43. (a) 8   (b) −12   (c) −4   (d) 30  45. −48, 88
47. (a) −π    (b) 4   (c) −(1 + 2π)   (d) 3 − 2π
 (e) 5 + 2π    (f ) 23 − 2π
49. (a) 14  (b) 4  (c) 8  (d) 0   51. 40  53. a
55. Answers will vary. Sample answer:
 y

x
a

f

 There is no region.
57. Geometric method:

  ∫3

−1
 (x+ 2) dx= Area of large triangle − Area of small triangle

  =
25
2

−
1
2
= 12

 Limit definition:

 ∫3

−1
(x + 2) dx = lim

n→∞ ∑
n

i=1
[(−1 +

4i
n
+ 2)(4n)] = 12

59. a = −2, b = 5
61. Answers will vary. Sample answer: a = π, b = 2π

 ∫2π

π
 sin x dx < 0

 

x

y

1

−1

2
π 3  

2
π

63. True  65. True  67. False. ∫2

0
 (−x) dx = −2

69. 272  71. Proof
73.  No. No matter how small the subintervals, the number of both 

rational and irrational numbers within each subinterval is  
infinite, and f (ci) = 0 or f (ci) = 1.

75. a = −1 and b = 1 maximize the integral.
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77. Answers will vary. Sample answer:
y

x
−1 1 2 3

−1

1

2

3

f(x) = x − 1

⎮f(x)⎮ = ⎮x − 1⎮

The integrals are equal when f  is always greater than or equal 
to 0 on [a, b].

79. 1
3

Section 4.4  (page 292)

1.  Find an antiderivative of the function and evaluate the  
difference of the antiderivative at the upper limit of integration 
and the lower limit of integration.

3. The average value of a function on an interval is the integral

of the function on [a, b] times 
1

b − a
.

5. 

−2

−5 5

5   7. 

−5

−5 5

5

Positive  Zero
9. −2  11. −28

3   13. 1
3  15. 1

2  17. 2
3

19. −4  21. − 1
18  23. −27

20  25. 25
2   27. 64

3

29. 2 − 7π   31. 
π
4

  33. 
2√3

3
  35. 0  37. 

1
6

39. 1  41. 
52
3

  43. 20  45. 
32
3

  47. 
3 3√2

2
≈ 1.8899

49. 2√3 ≈ 3.4641  51. ±arccos 
√π

2
≈ ±0.4817

53. Average value = 8
3 55. Average value = 10.2

x = ±
2√3

3
  x ≈ 1.3375

57. Average value =
2
π

x ≈ 0.690, x ≈ 2.451

59. (a) F(x) = 500 sec2 x 61. 
2
π ≈ 63.7%

(b) 
1500√3

π ≈ 827 N

63. F(x) = −
20
x

+ 20 65. F(x) = sin x

F(2) = 10  F(0) = 0

F(5) = 16  F(π4) =
√2
2

F(8) = 35
2

  F(π2) = 1

67. (a) g(0) = 0, g(2) ≈ 7, g(4) ≈ 9, g(6) ≈ 8, g(8) ≈ 5
(b) Increasing: (0, 4); Decreasing: (4, 8)

 (c) A maximum occurs at x = 4.
(d) 

2 4 6 8

2

4

6

8

10

x

y

69. 1
2x

2 + 2x  71. 3
4x

4�3 − 12  73. tan x − 1
75. x2 − 2x  77. √x4 + 1  79. √x csc x  81. 8
83. cos x√sin x  85. 3x2 sin x6

87. 

x

y

1

1 2 3 4

2

−2

−1

f g

  89. 8190 L

   An extremum of g occurs at x = 2.
91. About 540 ft  93. (a) 3

2 ft to the right   (b) 113
10  ft

 95. (a) 0 ft   (b) 63
2  ft  97. (a) 2 ft to the right   (b) 2 ft

 99.  The displacement and total distance traveled are equal when the 
particle is always moving in the same direction on an interval.

101.  The Fundamental Theorem of Calculus requires that f  be 
continuous on [a, b] and that F be an antiderivative for f  on 
the entire interval. On an interval containing c, the function

  f (x) = 1
x − c

 is not continuous at c.

103. 28 units
105. f (x) = x−2 has a nonremovable discontinuity at x = 0.

107. f (x) = sec2 x has a nonremovable discontinuity at x =
π
2

.

109. True

111. f ′(x) = 1
(1�x)2 + 1 (−

1
x2) + 1

x2 + 1
= 0

  Because f ′(x) = 0, f (x) is constant.
113. (a) 0   (b) 0   (c) xf (x) + ∫x0 f (t) dt   (d) 0
115. Putnam Problem B5, 2006

Section 4.5  (page 305)

  1. You can move constant multiples outside the integral sign.

  ∫ k f (x) dx = k∫ f (x) dx

  3. The integral of [g(x)]ng′(x) is 
[g(x)]n+1

n + 1
+ C, n ≠ −1.

  Recall the power rule for polynomials.

  ∫ f (g(x))g′(x) dx u = g(x) du = g′(x) dx

  5. ∫(5x2 + 1)2(10x) dx 5x2 + 1 10x dx

  7. ∫ tan2 x sec2 x dx tan x  sec2 x dx

  9. 1
5 (1 + 6x)5 + C  11. 2

3 (25 − x2)3�2 + C
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13. 1
12 (x4 + 3)3 + C  15. 1

30(2x3 − 1)5 + C

17. 1
3 (t2 + 2)3�2 + C  19. −15

8 (1 − x2)4�3 + C

21. 
7

4(1 − x2)2 + C  23. −
1

3(1 + x3) + C

25. −√1 − x2 + C  27. −
1
4 (1 +

1
t )

4

+ C

29. √2x + C  31. 2x2 − 4√16 − x2 + C

33. −
1

2(x2 + 2x − 3) + C

35. (a) Answers will vary.    (b) y = −1
3 (4 − x2)3�2 + 2

Sample answer: 

−2 2

−1

2

x

y

−2 2

−1

3

37. f (x) = (2x3 + 1)3 + 3  39. −cos πx + C

41. 
1
6

 sin 6x + C  43. −sin 
1
θ + C

45. 1
4 sin2 2x + C or −1

4 cos2 2x + C1 or −1
8 cos 4x + C2

47. 
1
2

 tan2 x + C or 
1
2

 sec2 x + C1   49. f (x) = 2 cos 
x
2
+ 4

51. f (x) = 1
12 (4x2 − 10)3 − 8

53. 2
5 (x + 6)5�2 − 4(x + 6)3�2 + C = 2

5 (x + 6)3�2(x − 4) + C

55. −[23(1 − x)3�2 − 4
5(1 − x)5�2 + 2

7(1 − x)7�2] + C =

− 2
105 (1 − x)3�2(15x2 + 12x + 8) + C

57. 1
8 [ 2

5 (2x − 1)5�2 + 4
3 (2x − 1)3�2 − 6(2x − 1)1�2] + C =

√2x − 1
15

(3x2 + 2x − 13) + C

59. −1
8 cos4 2x + C  61. 0  63. 12 − 8

9√2
65. 2  67. 1

2  69. 1209
28   71. 2(√3 − 1)  73. 272

15

75. 0  77. (a) 144   (b) 72   (c) −144   (d) 432

79. 2∫3

0
 (4x2 − 6) dx = 36

81. (a) ∫ x
2√x3 + 1 dx; Use substitution with u = x3 + 1.

 (b) ∫cot3(2x) csc2(2x) dx; Use substitution with u = cot 2x.

83. $340,000
85. (a) 102.532 thousand units   (b) 102.352 thousand units

(c) 74.5 thousand units
87. (a) 

0 9.4

−4

f

g

4

(b)  g is nonnegative, because the graph of f  is positive at the 
beginning and generally has more positive sections than 
negative ones.

 (c)  The points on g that correspond to the extrema of f  are 
points of inflection of g.

(d)  No, some zeros of f, such as x =
π
2

, do not correspond

   to extrema of g. The graph of g continues to increase

   after x =
π
2

, because f  remains above the x-axis.

  (e) 

0 9.4

−4

4     The graph of h is that of g 
shifted 2 units downward.

 89. (a) and (b) Proofs
 91. (a) P0.50, 0.75 ≈ 35.3%   (b) b ≈ 58.6%
93. True  95. True  97. True  99–101. Proofs

103. Putnam Problem A1, 1958

Review Exercises for Chapter 4  (page 309)

1. 
x4

4
+ 4x + C  3. 

4
3
x3 +

1
2
x2 + 3x + C

5. 
x2

2
−

4
x2 + C  7. 9 cos x − 2 cot x + C

9. y = 1 − 3x2  11. f (x) = 4x3 − 5x − 3
13. (a) 3 sec; 144 ft   (b) 3

2 sec   (c) 108 ft

 15. 60  17. ∑
10

i=1
 

i
5(i + 2)  19. 192  21. 420

 23. 3310  25. 9.038 < (Area of region) < 13.038

27. s(n) = 11 −
2
n

, S(n) = 11 +
2
n

29. A = 15 31. A = 12
y

x
−1 1 2 3 4 5

−2

2

4

6

8

  

x
4

1

3

−4

y

4

−2

2

6

1 2−1−3 3

33. 43  35. 48
37. 

x
9

y

6

9

12

3

−3
3−3 6

Triangle

A = 25
2

39. (a) 17   (b) 7   (c) 9   (d) 84

41. 12  43. 
422
5

  45. 
√2 + 2

2
  47. 1  49. 30

 51. 1
4  53. √13

3

55. Average value = 2
5

x = 25
4

57. x2√1 + x3  59. − 1
30 (1 − 3x2)5 + C= 1

30 (3x2 − 1)5 + C
61. 1

4 sin4 x + C  63. −2√1 − sin θ + C
65. 2

5(8 − x)5�2 − 16
3 (8 − x)3�2 + C
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67. 
455
2

  69. 2  71. 
28π
15

  73. 
468
7

  75. 0

P.S. Problem Solving  (page 311)

 1. (a) L(1) = 0   (b) L′(x) − =
1
x
, L′(1) = 1

 (c) x ≈ 2.718   (d) Proof

 3. (a) lim
n→∞

 [32
n5  ∑

n

i=1
 i 4 −

64
n4  ∑

n

i=1
 i3 +

32
n3  ∑

n

i=1
 i2]

 (b) 
16n4 − 16

15n4    (c) 
16
15

 5. (a) 

x

y

1

1 3

2

−2

−1

 (b) 

2 3 5 6 7 2 21 2 3
−0.25

0.25

0.50

0.75

1.00

x

y

 (c) Relative maxima at x = √2, √6
  Relative minima at x = 2, 2√2
 (d) Points of inflection at x = 1, √3, √5, √7
 7. (a) 

x

y

1

42 5 6 7 8 9

2
3
4
5

−2
−3
−4
−5

−1

f
(0, 0)

(6, 2)
(8, 3)

(2, −2)

 (b)
 x 0 1 2 3 4 5 6 7 8

F(x) 0 −1
2

−2 −7
2 −4 −7

2 −2 1
4

3

 (c) x = 4, 8   (d) x = 2

 9. Proof  11. 
2
3

  13. Proof; 1 ≤ ∫1

0
 √1 + x4 dx ≤ √2

15. (a) 

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

v

t

 (b) (0, 0.4) and (0.7, 1.0)   (c) 150 mi�h2

 (d) Total distance traveled in miles; 37 mi
 (e) Answers will vary. Sample answer: 100 mi�h2

17. (a)–(c) Proofs

19. (a) S =
5mb2

8
, s =

3mb2

8

 (b) S(n) = mb2(n + 1)
2n

, s(n) = mb2(n − 1)
2n

 (c) Area = 1
2(b)(mb) =

1
2(base)(height)

21. f (x) = {−x + 1,
2x − 5,
1,

0 ≤ x < 2
2 ≤ x < 3
3 ≤ x ≤ 4

 

1 2

1

2

3 4
x

y

Chapter 5
Section 5.1  (page 321)

 1.  For x > 1, ln x = ∫x
1

 
1
t
 dt > 0. For 0 < x < 1, 

 ln x = ∫x
1

 
1
t
 dt = −∫1

x

 
1
t
 dt.

 3. The number e is the base for the natural logarithm:

 ln e = ∫e
1

 
1
t
 dt = 1.

 5. (a) 3.8067   (b) ln 45 = ∫45

1
 
1
t
 dt ≈ 3.8067

 7. (a) −0.2231  (b) ln 0.8 = ∫0.8

1
 
1
t
 dt ≈ −0.2231

 9. b   10. d   11. a   12. c
13. 

x
5421 3

3

2

1

−2

−3

−1

y  15. 

2

1

x
321

−1

y

 Domain: x > 0  Domain: x > 0
17. y

x
1 2 4 5 6 7−1

−2

−3

−4

1

2

3

4

3

 Domain: x > 3
19. (a) 1.7917   (b) −0.4055   (c) 4.3944   (d) 0.5493
21. ln x − ln 4  23. ln x + ln y − ln z
25. ln x + 1

2 ln(x2 + 5)  27. 1
2 [ln(x − 1) − ln x]

29. ln z + 2 ln(z − 1)  31. ln 
x − 2
x + 2

33. ln  3√x(x + 3)2
x2 − 1

  35. ln 
16

√x3 + 6x
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37. (a) 

0

−3

9

f = g

3

(b)  f (x) = ln 
x2

4
= ln x2 − ln 4

   = 2 ln x − ln 4
 = g(x)

39. −∞  41. ln 4 ≈ 1.3863  43. 
1
x
  45. 

2x
x2 + 3

47. 
4(ln x)3

x
  49. 

2
t + 1

   51. 
2x2 − 1
x(x2 − 1)

53. 
1 − x2

x(x2 + 1)  55. 
1 − 2 ln t

t3
  57. 

2
x ln x2 =

1
x ln x

59. 
1

1 − x2  61. 
−4

x(x2 + 4)  63. cot x

65. −tan x +
sin x

cos x − 1
67. (a) y = 4x − 4 69. (a) 5x − y − 2 = 0

(b) 

−5

−5

5

5
(1, 0)

 (b) 

−1 2

−3

4

(1, 3)

71. (a) y= 1
3x−

1
12π + 1

2 ln 32
 (b) 

2

−2

−2

2

π , ln (( 3
24

73. (a) y = 4x + 4
 (b) 

−3 3

2

−2

(−1, 0)

75. 
2x2 + 1

√x2 + 1
  77. 

3x3 + 15x2 − 8x

2(x + 1)3√3x − 2

79. 
(2x2 + 2x − 1)√x − 1

(x + 1)3�2   81. 
2xy

3 − 2y2

83. 
y(1 − 6x2)

1 + y
  85. xy″ + y′ = x(− 2

x2) + 2
x
= 0

87. Relative minimum: (1, 12)
89. Relative minimum: (e−1, −e−1)

91. Relative minimum: (e, e); Point of inflection: (e2, 
e2

2 )
93. x ≈ 0.567
95.  Yes. If the graph of g is increasing, then g′(x) > 0. Because 

f (x) > 0, you know that f ′(x) = g′(x) f (x) and thus f ′(x) > 0. 
Therefore, the graph of f  is increasing.

97.  No. For example, 
(ln 2)(ln 3) ≈ 0.76 ≠ 1.79 ≈ ln(2 ∙ 3) = ln 6.

99. True.  101. False. π  is a constant, so 
d
dx

[ln π] = 0.

103. (a) 

0
1000 3000

50    (b) 30 yr; $503,434.80
      (c) 20 yr; $386,685.60

  (d)  When x = 1398.43, 
dt
dx

≈ −0.0805. When

   x = 1611.19, 
dt
dx

≈ −0.0287.

(e)  Two benefits of a higher monthly payment are a shorter 
term and a lower total amount paid.

105. (a) 

0
0

100

350    (c) 

0 100
0

30

(b) T′(10) ≈ 4.75°�lb�in.2  lim
p→∞

 T′(p) = 0

   T′(70) ≈ 0.97°�lb�in.2  Answers will vary.
107. (a) 

0
0

10

20    (b)  When x = 5,

 
dy
dx

= −√3.

 When x = 9, 

 
dy
dx

= −
√19

9
.

  (c) lim
x→10−

 
dy
dx

= 0

109. (a) 

0
0

500

g

f

25     For x > 4, g′(x) > f ′(x).  
g is increasing at a faster 
rate than f  for large values 
of x.

  (b) 

0 20,000
0

g

f

15     For x > 256, g′(x) > f ′(x). 
g is increasing at a faster 
rate than f  for large values 
of x.

  f (x) = ln x increases very slowly for large values of x.

Section 5.2  (page 330)

  1.  No. To use the Log Rule, look for quotients in which the 
numerator is the derivative of the denominator, with  
rewriting in mind.

  3.  Ways to alter an integrand are to rewrite using a trigonometric 
identity, multiply and divide by the same quantity, add and 
subtract the same quantity, or use long division.

  5. 5 ln∣x∣ + C  7. 1
2 ln∣2x + 5∣ + C

  9. 1
2 ln∣x2 − 3∣ + C 11. ln∣x4 + 3x∣ + C

 13. 
x2

14
− ln∣x∣ + C  15. 

1
3

 ln∣x3 + 3x2 + 9x∣ + C

 17. 1
2x

2 − 4x + 6 ln∣x + 1∣ + C
 19. 1

3x
3 + 5 ln∣x − 3∣ + C

 21. 1
3x

3 − 2x + ln√x2 + 2 + C  23. 1
3 (ln x)3 + C
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25. −
2
3

 ln∣1 − 3√x∣ + C  27. 6 ln∣x − 5∣ − 30
x − 5

+ C

29. √2x − ln∣1 + √2x∣ + C

31. x + 6√x + 18 ln∣√x − 3∣ + C  33. 3 ln∣sin 
θ
3∣ + C

35. −1
2 ln∣csc 2x + cot 2x∣ + C  37. 5θ − 1

3 sin 3θ + C
39. ln∣1 + sin t∣ + C  41. ln∣sec x − 1∣ + C
43. y = −3 ln∣2 − x∣ + C  45. y = ln∣x2 − 9∣ + C
 

−10 10

−10

(1, 0)

10  

−9 9

−4

(0, 4)

8

47. f (x) = −2 ln x + 3x − 2

49. (a) 

x

3

−3

4−2

(0, 1)
y    (b) y = ln(x + 2

2 ) + 1

    

−3 6

−3

3

51. 5
3 ln 13 ≈ 4.275  53. 7

3  55. −ln 3 ≈ 1.099

57. ln∣2 − sin 2
1 − sin 1∣ ≈ 1.929

59. 4√x − x − 4 ln(1 + √x) + C  61. 
1
x

63. 4 cot 4x  65. 6 ln 3 ≈ 6.592
67. ln∣csc 1 + cot 1∣ − ln∣csc 2 + cot 2∣ ≈ 1.048

69. 
15
2

+ 8 ln 2 ≈ 13.045  71. 
12
π  ln(2 + √3) ≈ 5.03

73. 1  75. 
1

e − 1
≈ 0.582  77. About 13.077

79. d  81. Proof  83. x = 2  85. Proof

87. −ln∣cos x∣ + C = ln∣ 1
cos x∣ + C = ln∣sec x∣ + C

89.  ln∣sec x + tan x∣ + C = ln∣sec2 x − tan2 x
sec x − tan x ∣ + C

  = −ln∣sec x − tan x∣ + C
91. (a) P(t) = 1000(12 ln∣1 + 0.25t∣ + 1)   (b) P(3) ≈ 7715
93. About 4.15 min
95. 

5 10

0.5

1

y

x

   (a) A = 1
2 ln 2 − 1

4

   (b) 0 < m < 1
   (c) A = 1

2 (m − ln m − 1)

97. True  99. True  101. Putnam Problem B2, 2014

Section 5.3  (page 339)

 1.  The functions f  and g have the effect of “undoing” each 
other.

 3. No. The domain of f−1 is the range of f.

 5. c  6. b  7. a  8. d

 9. (a) f (g(x)) = 5(x − 1
5 ) + 1 = x

  g( f (x)) = (5x + 1) − 1
5

= x

 (b) 

x

2

3

1

2 31−3

g

f

y

11. (a) f (g(x)) = ( 3√x)3 = x
  g( f (x)) = 3√x3 = x
 (b) 

x

2

1

3

2 3−3

−3

−2

−2

g

f

1

y

13. (a) f (g(x)) = √x2 + 4 − 4 = x
  g( f (x)) = (√x − 4)2 + 4 = x
 (b) 

x

4

8

10

12

2

6

42 6 8 10 12

g

f

y

15. (a) f (g(x)) = 1
1�x

= x

  g( f (x)) = 1
1�x

= x

 (b) 

x

2

1

1

3

2 3−1

f = g

y

17. 

−1

−10 2

7  19. 

−1.5

−

1.5

2
π

2
5π

 One-to-one, inverse exists Not one-to-one, 
 inverse does not exist
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21. 
−4 8

−7

1  23. 

−1 5

−2

2

One-to-one, inverse exists One-to-one, inverse exists
25. Strictly monotonic, inverse exists
27. Not strictly monotonic, inverse does not exist
29. Strictly monotonic, inverse exists
31. f ′(x) = 2(x − 4) > 0 on (4, ∞)
33. f ′(x) = −csc2 x < 0 on (0, π)

35. (a) f −1(x) = x + 3
2

(b) 

4
x

4

2

2

−2

f −1

f−2

y  (c)  f  and f−1 are symmetric 
about y = x.

   (d)  Domain of f  and f−1:  
all real numbers

  Range of f  and f−1:  
all real numbers

37. (a) f−1(x) = x1�5

 (b) 

x

f

1

2

−2

−2 1 2

y

f −1

 (c)  f  and f−1 are symmetric 
about y = x.

    (d)  Domain of f  and f−1:  
all real numbers

      Range of f  and f−1:  
all real numbers

39. (a) f−1(x) = x2, x ≥ 0
(b) 

3

2

321

1

f

f −1

x

y  (c)  f  and f −1 are symmetric 
about y = x.

   (d)  Domain of f  and f−1: 
x ≥ 0

     Range of f  and f−1: y ≥ 0

41. (a) f−1(x) = √4 − x2, 0 ≤ x ≤ 2
 (b) 

3

2

321

1

f = f −1

x

y  (c)  f  and f−1 are symmetric 
about y = x.

 (d)  Domain of f  and f−1: 
0 ≤ x ≤ 2

   Range of f  and f−1: 
0 ≤ y ≤ 2

43. (a) f−1(x) = x3 + 1
 (b) y

x
−2−3 2 3

−2

−3

2

3

f

f −1
 (c)  f  and f−1 are symmetric 

about y = x.
 (d)  Domain of f  and f−1:  

all real numbers
   Range of f  and f−1:  

all real numbers

45. (a) f−1(x) = √7x

√1 − x2
, −1 < x < 1

 (b) y

x
−3 21 3

2

1

3

f

f −1
  (c)  f  and f−1 are symmetric 

about y = x.
   (d)  Domain of f : all real  

numbers
   Domain of f−1: 

−1 < x < 1
 Range of f : −1 < y < 1
  Range of f−1: all real 

numbers

47. x 0 1 2 4

f (x) 1 2 3 4

x 1 2 3 4

f−1(x) 0 1 2 4

 

x
1 2 3 4

1

2

3

4 (4, 4)

(3, 2)

(2, 1)

(1, 0)

y

49. (a) Proof
 (b) y = 2

3 (137.5 − x)
  x: total cost
  y: number of pounds of the less expensive commodity
 (c)  [62.5, 137.5]; 50(1.25) = 62.5 gives the total cost when 

purchasing 50 pounds of the less expensive commodity, 
and 50(2.75) = 137.5 gives the total cost when  
purchasing 50 pounds of the more expensive commodity.

 (d) 43 lb
51. One-to-one 53. One-to-one
 f−1(x) = x2 + 2, x ≥ 0  f−1(x) = 2 − x, x ≥ 0
55. Sample answer: f−1(x) = √x + 3, x ≥ 0
57. Sample answer: f−1(x) = x − 3, x ≥ 0
59.  Inverse exists. Volume is an increasing function and  

therefore is one-to-one. The inverse function gives the time t 
corresponding to the volume V.

61. Inverse does not exist.  63. −1
6  65. 1

17  

67. 
2√3

3
  69. −2

71. (a) Domain of f : (−∞, ∞)   (b) Range of f : (−∞, ∞)
  Domain of f−1: (−∞, ∞) Range of f−1: (−∞, ∞)
 (c) 

x

2

3

1

2 31−3

−2

−2

−3

f

f −1

y  (d) f ′(1
2) = 3

4, ( f−1)′(1
8) = 4

3

73. (a) Domain of f : [4, ∞) (b) Range of f : [0, ∞)
  Domain of f−1: [0, ∞) Range of f−1: [4, ∞)
 (c) 

x

4

8

10

12

2

6

42 6 8 10 12

f

f −1

y  (d) f ′(5) = 1
2, ( f−1)′(1) = 2
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75. 32  77. 88 79. (g−1 ∘ f−1)(x) = x + 1
2

81. ( f ∘ g)−1(x) = x + 1
2

83.  Yes. Functions of the form f (x) = xn, n is odd, are always 
increasing or always decreasing. So, it is one-to-one and 
therefore has an inverse function.

 85.  Many x-values yield the same y-value. For example, 

  f (π) = 0 = f (0). The graph is not continuous at 
(2n − 1)π

2
,

where n is an integer.
 87. k = 1

4  89. False. Let f (x) = x2.
91. (a) 

5

−45

−6

90    (b) c = 2

f  does not pass the Horizontal Line Test.

93–95. Proofs  97. Proof; 
√5
5

99.  Proof; The graph of f  is symmetric about the line y = x.
101. Proof; concave upward

Section 5.4  (page 348)

1.  The graph of f (x) = ex is concave upward and increasing 
on the entire domain.

  3. x = 4  5. x ≈ 2.485  7. x = 0  9. x ≈ 0.511
11. x ≈ 8.862  13. x ≈ 7.389  15. x ≈ 10.389
17. x ≈ 5.389
19. 

3

4

31 2−1
x

y  21. y

x
−1−2−3 1 2 3

−1

1

2

3

4

5

23. 

2

1−1
x

y

25. c  26. d  27. a  28. b
29. 

x

4

6

2

4 62−2

−2

g

f

y  31. 

f

g

2 4 6

2

4

6

x

y

33. 5e5x  35. 
e√x

2√x
  37. ex−4  39. ex(1x + ln x)

41. ex(x + 1)(x + 3)  43. 3(e−t + et)2(et − e−t)

45. −
5e5x

2 − e5x  47. 
−2(ex − e−x)
(ex + e−x)2   49. −

2ex

(ex − 1)2

51. 2ex cos x  53. 
cos x
x

  55. y = 3x + 1

57. y = −3x + 10  59. y = (1e)x −
1
e

61. y = ex  63. 
10 − ey

xey + 3
  65. y = (−e − 1)x + 1

67. 3(6x + 5)e−3x

69. y″ − y = 0
4e−x − 4e−x = 0

71. Relative minimum: (0, 1)

−3 3
0

(0, 1)

6

73. Relative maximum:   

0
0

4

0.8
2, ( (2π

1

3, ( (2π
e−0.5

1, ( (2π
e−0.5

(2, 
1

√2π)
Points of inflection: 

(1, 
e−0.5

√2π), (3, 
e−0.5

√2π)
75. Relative maximum: (1, e) 77. Relative maximum:
 Point of inflection: (0, 2)  (−1, 1 + e)
 

−6 6

4

−4

(0, 2)
(1, e)

  Point of inflection: (0, 3)
  

−6

−3

6

5

(−1, 1 + e)
(0, 3)

79. A = √2e−1�2

81. (1
2, e)   

20
0

8

, e ((1
2

f(x) = e2x

f(x) = (2e)x

83. (a) 

0 10
0

20,000    (b) When t = 1, 

 
dV
dt

≈ −5028.84.

 When t = 5, 

 
dV
dt

≈ −406.89.

 (c) 

0 10
0

20,000
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85. (a) 

0 25

10

0

  ln P = −0.1499h + 6.9797

(b) P = 1074.6e−0.1499h

(c) 

0 25

1100

0

(d) h = 5: −76.13 millibars�km
h = 18: −10.84 millibars�km

87. P1 = 1 + x; P2 = 1 + x + 1
2x

2

−1

−6 4

8

f

P1

P2

The values of f, P1, and P2 and their first derivatives agree 
at x = 0.

89. 12! = 479,001,600 
  Stirling’s Formula: 12! ≈ 475,687,487

91. e5x + C  93. 1
5e

5x−3 + C  95. ex2+x + C
97. 2e√x + C

 99. x − ln(ex + 1) + C1 or −ln(1 + e−x) + C2

101. −2
3 (1 − ex)3�2 + C  103. ln∣ex − e−x∣ + C

105. −5
2e

−2x + e−x + C  107. ln∣cos e−x∣ + C

109. 
e2 − 1

2e2   111. 
e − 1

2e
  113. 

e
3
(e2 − 1)

115. 
1
4

 ln 
1 + e8

2
  117. 

1
π [esin(π2�2) − 1]

119. y = 1
18e

9x2 + C  121. f (x) = 1
2 (ex + e−x)

123. e6 − 1 ≈ 402.4  125. 2(1 − e−3�2) ≈ 1.554
127. 92.190
129.  The natural exponential function has a horizontal asymptote 

y = 0 to the left and the natural logarithmic function has a 
vertical asymptote x = 0 from the right.

131. False. The derivative is ex(g′(x) + g(x)).
133. True
135.  The probability that a given battery will last between  

48 months and 60 months is approximately 47.72%.
137. (a) R = 428.78e−0.6155t

  (b) 

−1
0

5

450

  (c) About 637.2 L

139. (a) 

−4 5

−2

4

(b)  When x increases without bound, 1�x approaches zero, 
and e1�x approaches 1. Therefore, f (x) approaches 
2�(1 + 1) = 1. So, f (x) has a horizontal asymptote 
at y = 1. As x approaches zero from the right, 1�x 
approaches ∞, e1�x approaches ∞, and f (x) approaches 
zero. As x approaches zero from the left, 1�x approaches 
−∞, e1�x approaches zero, and f (x) approaches 2. The 
limit does not exist because the left limit does not equal 
the right limit. Therefore, x = 0 is a nonremovable  
discontinuity.

141. ∫x
0

 et dt ≥ ∫x
0

 1 dt; ex − 1 ≥ x; ex ≥ x + 1 for x ≥ 0

143. Relative maximum: (1k, 
1
ke)

  Point of inflection: (2k, 
2
ke2)

145. Putnam Problem B1, 2012

Section 5.5  (page 358)

  1. a = 4, b = 6

  3.  It is necessary when you have a function of the form 
y = u(x)v(x)

  5. −3  7. 0  9. 5
6

 11. (a) log2 8 = 3   (b) log3(1
3) = −1

 13. (a) 10−2 = 0.01   (b) (1
2)−3 = 8

 15. y

x
−1−2−3 1 2 3

−1

2

3

4

5

 17. 

3

2

21−2 −1

4

x

y

 19. 

4

3

1

2

4321
x

y

21. (a) x = 3   (b) x = −1  23. (a) x = 1
3   (b) x = 1

16

25. (a) x = −1, 2   (b) x = 1
3  27. 1.965  29. −6.288

31. 12.253  33. 33.000  35. 3.429
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37. 

3

32

2

−1

−1

x

f

g

y

39. (ln 4)4x  41. (−4 ln 5)5−4x  43. 9x(x ln 9 + 1)

45. 
2t2 ln 8 − 4t

8t
  47. −2−θ [(ln 2) cos πθ + π sin πθ]

49. 
6

(ln 4)(6x + 1)  51. 
2

(ln 5)(t − 4)  53. 
x

(ln 5)(x2 − 1)

55. 
x − 2

(ln 2)x(x − 1)  57. 
3x − 2

(2x ln 3)(x − 1)  59. 
5(1 − ln t)
t2 ln 2

61. y = −2x ln 2 − 2 ln 2 + 2  63. y =
1

27 ln 3
x+ 3 −

1
ln 3

65. 2(1 − ln x)x(2�x)−2  67. (x − 2)x+1[x + 1
x − 2

+ ln(x − 2)]
69. 

3x

ln 3
+ C  71. 

1
3
x3 −

2−x

ln 2
+ C

73. −
1

2 ln 5
(5−x2) + C  75. 

ln(32x + 1)
2 ln 3

+ C  77. 
7

2 ln 2

79. 
4

ln 5
−

2
ln 3

  81. 
(ln 5)2
2 ln 4

≈ 0.934

83.  The exponential function grows more rapidly as a becomes 
larger.

85. (a)  x > 0   (b) 10x   (c) 3 ≤ f (x) ≤ 4

(d) 0 < x < 1   (e) 10   (f ) 100n

87. (a) $40.64   (b) C′(1) ≈ 0.051P, C′(8) ≈ 0.072P
(c) ln 1.05

89. n 1 2 4 12

A $1410.60 $1414.78 $1416.91 $1418.34

n 365 Continuous

A $1419.04 $1419.07

91. 
n 1 2 4 12

A $30,612.57 $31,121.37 $31,385.05 $31,564.42

n 365 Continuous

A $31,652.22 $31.655.22

93. 

t 40 50

P $20,189.65 $13,533.53

t 1 10 20 30

P $96,078.94 $67,032.00 $44,932.90 $30,119.42
 

 95. 

t 40 50

P $13,589.88 $8251.24

t 1 10 20 30

P $95,132.82 $60,716.10 $36,864.45 $22,382.66

 97. c
 99. (a) 6.7 million ft3�acre

  (b) t = 20: 
dV
dt

= 0.073, t = 60: 
dV
dt

= 0.040

101. (a) 

0
0

40

12,000

  (b) 6 months: 1487 fish
   12 months: 3672 fish
   24 months: 8648 fish
   36 months: 9860 fish
   48 months: 9987 fish
   Limiting size: 10,000 fish
  (c)  1 month: About 114 fish�mo
   10 months: About 403 fish�mo
  (d) About 15 mo
103. (a) y1 = −27.7x + 565, y2 = 843 − 246.3 ln x,
   y3 = 706.995(0.9106)x, y4 = 1765.4563x−0.8200

  (b) 

0 15

500

100

y1

 

0 15

500

100

y2

   

0 15

500

100

y3

 

0 15

500

100

y4

   Answers will vary.
  (c)  y1′(12) = −27.7, y2′(12) ≈ −20.53, y3′(12) ≈ −21.52,
   y4′(12) ≈ −15.72; y1 is decreasing at the greatest rate.
105. y = 1200(0.6t)  107. e  109. e2

111. (a) (23)2 = 26 = 64
   2(3

2) = 29 = 512
  (b) No. f (x) = (xx)x = x(x

2) and g(x) = x(x
x)

  (c) f ′(x) = xx
2(x + 2x ln x)

   g′(x) = xx
x+x−1[x(ln x)2 + x ln x + 1]

113. Proof

115. (a) 
dy
dx

=
y2 − yx ln y
x2 − xy ln x

  (b) (i) 1 when c ≠ 0, c ≠ e   (ii) −3.1774
   (iii) −0.3147
  (c) (e, e)
117. Putnam Problem B3, 1951
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Section 5.6  (page 369)

1.  L’Hôpital’s Rule allows you to address limits of the form 
0�0 and ∞�∞. 

  3. 
x −0.1 −0.01 −0.001 0

f (x) 1.3177 1.3332 1.3333 ?

x 0.001 0.01 0.1

f (x) 1.3333 1.3332 1.3177

  4
3

5. 
x 1 10 102

f (x) 0.9900 90,483.7 3.7 × 109

x 103 104 105

f (x) 4.5 × 1010 0 0

  0
  7. 3

8  9. 1
8  11. 0  13. 5

3  15. 4  17. 0
 19. ∞  21. 11

4   23. 3
5  25. 7

6  27. ∞
29. 0  31. 1 33. 0  35. 0  37. ∞
39. 5

9  41. ∞
43. (a) Not indeterminate 45. (a) 0 ∙ ∞

(b) ∞  (b) 1
  (c) 

4

−1

0

3   (c) 

−1 1

−0.5

1.5

47. (a) 1∞ 49. (a) ∞0

(b) e4  (b) 1
  (c) 

0
0

2

60   (c) 

−5 20

−0.5

2

51. (a) 1∞   (b) e 53. (a) 00   (b) 3
  (c) 

−1

−1

4

6   (c) 

−6 6

−1

7

55. (a) 00   (b) 1 57. (a) ∞ − ∞   (b) −3
2

(c) 

−4 8

−2

6   (c) 

5−7

−4

4

59. (a) ∞ − ∞   (b) ∞ 61. (a) ∞ − ∞   (b) ∞
(c) 

−1

−4

4

8   (c) 

−6 6

7

−1

63. Answers will vary. Sample answers:
(a) f (x) = x2 − 25, g(x) = x − 5

 (b) f (x) = (x − 5)2, g(x) = x2 − 25
 (c) f (x) = x2 − 25, g(x) = (x − 5)3

65. (a) Yes; 
0
0

   (b) No; 
0
−1

   (c) Yes; ∞∞   (d) Yes; 
0
0

 (e) No; 
−1
0

   (f ) Yes; 
0
0

67. 
x 10 102 104 106 108 1010

(ln x)4
x

2.811 4.498 0.720 0.036 0.001 0.000

69. 0  71. 0  73. 0
75. Horizontal asymptote:  77. Horizontal asymptote:  
 y = 1  y = 0

 Relative maximum: (e, e1�e)  Relative maximum: (1, 
2
e)

0
0

6

( , )e  e1/e

4

−2

−5

10

2
e

3

1, ( (

79. Limit is not of the form 
0
0

 or ∞∞.

81. Limit is not of the form 
0
0

 or ∞∞.

83. (a) lim
x→∞

 
x

√x2 + 1
= lim

x→∞
 
√x2 + 1

x = lim
x→∞

 
x

√x2 + 1
   Applying L’Hôpital’s Rule twice results in the original 

limit, so L’Hôpital’s Rule fails.
 (b) 1
 (c) 

−1.5

−6 6

1.5

85. 
1.5

0.5
0.5

−0.5

y =
sin 3x
sin 4x

y =
3 cos 3x
4 cos 4x

   As x→ 0, the graphs get closer together (they both approach 
0.75). By L’Hôpital’s Rule,

  lim
x→0

 
sin 3x
sin 4x

= lim
x→0

 
3 cos 3x
4 cos 4x

=
3
4

.

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A52 Answers to Odd-Numbered Exercises

87. 
Vt
L

  89. Proof  91. c =
2
3

  93. c =
π
4

95. False. ∞
0

= ±∞  97. True  99. True  101. 3
4

103. c = 4
3  105. a = 1, b = ±2  107. Proof

109. (a) 0 ∙ ∞   (b) 0  111. Proof  113. (a)–(c) 2
115. (a) 

20
0

−2

3

(b) lim
x→∞

 h(x) = 1   (c)  No

117. Putnam Problem A1, 1956

Section 5.7  (page 379)

1. arccos x is the angle, 0 ≤ θ ≤ π, whose cosine is x.

3. arccot  5. (−√2
2

, 
3π
4 ), (

1
2

, 
π
3), (
√3
2

, 
π
6)

7. 
π
6

  9. 
π
3

  11. 
π
6

  13. −
π
4

  15. 1.52

 17. arccos 
1

1.269
≈ 0.66  19. x  21. 

√1 − x2

x

23. 
1
x
  25. (a) 

3
5

   (b) 
5
3

  27. (a) −√3   (b) −13
5

29. √1 − 4x2  31. 
√x2 − 1

∣x∣   33. 
√x2 − 9

3

35. 
√x2 + 2

x
  37. x = 1

3 (sin 12 + π) ≈ 1.207  39. x = 1
3

41. 
1

√2x − x2
  43. −

3

√4 − x2
  45. 

ex

1 + e2x

47. 
3x − √1 − 9x2 arcsin 3x

x2√1 − 9x2
  49. −

t

√1 − t2

51. 2 arccos x  53. 
1

1 − x4  55. 
x2

√16 − x2

57. y =
1
3
(4√3x − 2√3 + π)  59. y =

1
4
x +

π − 2
4

61. y = (2π − 4)x + 4
63. Relative maximum: (1.272, −0.606)

Relative minimum: (−1.272, 3.747)
65. Relative maximum: (2, 2.214)
67. 

2
π

2
π

π

π

y

−1 1 2 3
x

−

−

))2, 
2
π

))0, −  
2
π

(1, 0)

 69. 

−2 −1 1 2
x

y

( 

( ( 

( 1
2

, π−

1
2

, 0 

2
π

Maximum: (2, 
π
2)  Maximum: (−1

2
, π)

Minimum: (0, −
π
2)  Minimum: (12, 0)

Point of inflection: (1, 0)  Asymptote: y =
π
2

71. y = −
2πx
π + 8

+ 1 −
π2

2π + 16
  73. y = −x + √2

75. (a) arcsin(arcsin 0.5) ≈ 0.551
arcsin(arcsin 1) does not exist.

 (b) sin(−1) ≤ x ≤ sin 1
77. No
79.  In order to have a true inverse function, the domain of sine 

must be restricted. As a result, 2π  is not in the range of the 
arcsine function.

81. (a) and (b) Proofs  83. True  85. True

87. (a) θ = arccot 
x
5

(b) x = 10: 16 rad�h
x = 3: 58.824 rad�h

89. (a) h(t) = −16t2 + 256; t = 4 sec
 (b) t = 1: −0.0520 rad�sec

t = 2: −0.1116 rad�sec
91. 50√2 ≈ 70.71 ft  93. (a) and (b) Proofs
95. 

−1 1

1

2

y

x

   (a)  The graph is a horizontal

 line at 
π
2

.

   (b) Proof

97. c = 2  99. Proof

Section 5.8  (page 387)

1. (a) No
(b) Yes. Use the rule involving the arcsecant function.

3. arcsin 
x
3
+ C  5. arcsec∣2x∣ + C

7. arcsin(x + 1) + C  9. 1
2 arcsin t2 + C

11. 
1
10

 arctan 
t2

5
+ C  13. 

1
4

 arctan 
e2x

2
+ C

15. arcsin 
csc x

5
+ C  17. 2 arcsin √x + C

19. 1
2 ln(x2 + 1) − 3 arctan x + C

21. 8 arcsin 
x − 3

3
− √6x − x2 + C  23. 

π
6

  25. 
π
6

27. 
1
3 (arctan 3 −

π
4) ≈ 0.155  29. arctan 5 −

π
4
≈ 0.588

31. 
π
4

  33. 
1
32

π 2 ≈ 0.308  35. 
π
2

37. 
√2
2

 arcsin[√6
6

(x − 2)] + C  39. arcsin 
x + 2

2
+ C

41. 4 − 2√3 +
1
6
π ≈ 1.059

43. 2√et − 3 − 2√3 arctan 
√et − 3

√3
+ C  45. 

π
6

47. (a) arcsin x + C   (b) −√1 − x2 + C   (c) Not possible
49. (a) 2

3(x − 1)3�2 + C   (b) 2
15(x − 1)3�2(3x + 2) + C

 (c) 2
3√x − 1(x + 2) + C

51. Proof
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53.  No. Graphing f (x) = arcsin x and g(x) = −arccos x, you can 
see that the graph of f  is the graph of g shifted vertically.

55. (a) 

4

−4

4

x

y  (b) y =
2
3

 arctan 
x
3
+ 2

4

−1

−4

5

57. 

−6 12

−8

4   59.

−3

−1

3

3

61. y = arcsin 
x
2
+ π   63. 

π
3

  65. 
3π
2

67. (a) 

1 2

1

2

y

x

   (b) 0.5708

     (c) 
π − 2

2

69. (a)  F(x) represents the average value of f (x) over the interval 
[x, x + 2]; Maximum at x = −1

(b) Maximum at x = −1

71. False. ∫ 
dx

3x√9x2 − 16
=

1
12

 arcsec ∣3x∣
4

+ C

73–75. Proofs

77. (a) ∫1

0
 

1
1 + x2 dx   (b) About 0.7857

 (c) Because ∫1

0
 

1
1 + x2 dx =

π
4

, you can use the Midpoint

   Rule to approximate 
π
4

. Multiplying the result by 4 gives

  an estimation of π.

Section 5.9  (page 397)

1.  Hyperbolic function came from the comparison of the area 
of a semicircular region with the area of a region under a 
hyperbola.

3. sinh2 x =
−1 + cosh 2x

2
  5. (a) 10.018   (b) −0.964

7. (a) 4
3   (b) 13

12  9. (a) 1.317   (b) 0.962
11–17. Proofs

19. cosh x =
√13

2
, tanh x =

3√13
13

, csch x =
2
3

, 

 sech x =
2√13

13
, coth x =

√13
3

21. ∞  23. 1  25. 9 cosh 9x
27. −10x(sech 5x2 tanh 5x2)  29. coth x

31. −
t
2

 cosh(−3t) + sinh(−3t)
6

  33. sech t

35. y = −2x + 2  37. y = 1 − 2x
39. Relative maximum: (1.20, 0.66)

Relative minimum: (−1.20, −0.66)
41. Relative maxima: (±π, cosh π), Relative minimum: (0, −1)
43. (a) 

2010

10

20

30

−10

y

x

   (b) 33.146 units, 25 units
    (c) m = sinh 1 ≈ 1.175

45. 1
4 sinh 4x + C  47. −1

2 cosh(1 − 2x) + C
49. 1

3 cosh3(x − 1) + C  51. ln∣sinh x∣ + C

53. −coth 
x2

2
+ C  55. ln 

5
4

  57. coth 1 − coth 2

59. −1
3 (csch 2 − csch 1)

61. y

x
−1−2−3 1 2 3

−2

−3

2

3

y1 = cosh x y2 = sinh x

   The graphs do not intersect.

63. Proof  65. 
3

√9x2 − 1
  67. 

1

2√x(1 − x)
69. ∣sec x∣  71. −csc x  73. 2 sinh−1(2x)

75. 
√3
18

 ln ∣1 + √3x

1 − √3x∣ + C  77. ln(√e2x + 1 − 1) − x + C

79. 2 sinh−1 √x + C = 2 ln(√x + √1 + x) + C

81. 
1
4

 ln ∣x − 4
4 ∣ + C  83. ln(3 + √5

2 )  85. 
ln 7
12

87. −
x2

2
− 4x −

10
3

 ln∣x − 5
x + 1∣ + C

89. 8 arctan e2 − 2π ≈ 5.207  91. 5
2 ln(√17 + 4) ≈ 5.237

93. (a) −
√a2 − x2

x
   (b) Proof

95–103. Proofs  105. Putnam Problem 8, 1939

Review Exercises for Chapter 5  (page 400)

 1. y

x
−1 1 2 3 4 5

−1

−2

−3

−4

−5

−6

x = 0

   Domain: x > 0

 3. (a) 2.9957   (b) −0.2231   (c) 6.4376   (d) 0.8047
 5. 1

5 [ln(2x + 1) + ln(2x − 1) − ln(4x2 + 1)]

 7. ln 
3 3√4 − x2

x
  9. 

1
2x

  11. 
1 + 2 ln x

2√ln x

13. −
8x

x4 − 16
  15. 

7
(1 − 7x)[ln(1 − 7x)]2
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17. y = −x + 1  19. 
5x2 − 4x

2√x − 1
  21. 

1
7

 ln∣7x − 2∣ + C

23. −ln∣1 + cos x∣ + C  25. x − 3 ln(x2 + 1) + C
27. 3 + ln 2  29. ln(2 + √3)  31. 2 ln 123

25 ≈ 3.187
33. (a) f−1(x) = 2x + 6
 (b) y

x
−6 −2−8 6 8

−6

−8

6

2

8

f

f −1

   (c) Proof

 (d)  Domain of f  and f−1: all real numbers 
Range of f  and f−1: all real numbers

35. (a) f−1(x) = x2 − 1, x ≥ 0
 (b) y

x

f

f −1

−1−2 1 2 3 4
−1

−2

1

2

3

4

   (c) Proof

 (d)  Domain of f : x ≥ −1, Domain of f−1: x ≥ 0 
Range of f : y ≥ 0, Range of f−1: y ≥ −1

37. (a) f−1(x) = x3 − 1
 (b) y

x

f

f −1

−2 2 3 4

−2

2

3

4

   (c) Proof

 (d)  Domain of f  and f−1: all real numbers 
Range of f  and f−1: all real numbers

39. 
1

3( 3√−3)2
≈ 0.160  41. 

3
4

  43. x ≈ 1.134

45. e4 − 1 ≈ 53.598  47. tet(t + 2)  49. 
e2x − e−2x

√e2x + e−2x

51. 
3x2 − 2x3

e2x   53. y = 6x + 1

55. Relative maximum: (0, 1)

 Point of inflection: (1, 
2
e)

 

−2 4

3

−1

(0, 1) 2
e

1, ( (

57. −
1
2
e1−x2 + C  59. 

e4x − 3e2x − 3
3ex

+ C

61. 
1 − e−3

6
  63. ln(e2 + e + 1)  65. About 1.729

 67. 

x
1 432−2

−2

−1−3−4

4

5

6

3

2

y

69. 1 −
ln 52
ln 4

≈ −1.850  71. 
ln 3

12 ln 1.0025
≈ 36.666

 73. 35  75. 3x−1 ln 3  77. 
8t(t ln 8 − 2)

t3

 79. −
1

(2 − 2x) ln 3
  81. x2x+1(2 ln x + 2 +

1
x)

 83. 
5(x+1)2

2 ln 5
+ C  85. 

30
ln 6

 87. (a) $613.92   (b) $4723.67   (c) 6.93%
 89. 0  91. ∞  93. 1  95. 1000e0.09 ≈ 1094.17

 97. (a) 
1
2

   (b) 
√3
2

  99. −
2

x√4x4 − 1

101. 
x

∣x∣√x2 − 1
+ arcsec x  103. (arcsin x)2

105. 1
2 arctan e2x + C  107. 1

2 arcsin x2 + C

109. 
1
4

 (arctan 
x
2)

2

+ C  111. 
π
14

113. arctan 
e4

5
− arctan 

e−2

5
  115. 

2
3
π + √3 − 2 ≈ 1.826

117. Proof  119. y′ = −4 sech(4x − 1) tanh(4x − 1)

121. y′ = −16x csch2(8x2)  123. y′ =
4

√16x2 + 1
125. 1

3 tanh x3 + C  127. ln∣tanh x∣ + C

129. 
1
12

 ln∣3 + 2x
3 − 2x∣ + C  131. −

1
2

 sech 4 +
1
2

 sech 2

133. ln 2

P.S. Problem Solving  (page 403)

  1. a = 1, b = 1
2, c = −1

2

  f (x) = 1 + x�2
1 − x�2

  6

−2

−5 2

ex
f

  3. ln 3
  5. (a) ∞   (b) 0   (c) −2

3

  The form 0 ∙ ∞ is indeterminant.
  7. 

−2−3−4 1 2 3 4

−2

2

3

4

5

6

a = 0.5

a = 1.2

a = 2
y = x

x

y     y = 0.5x and y = 1.2x  
intersect the line y = x; 
0 < a < e1�e
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 9. (a) Area of region A =
√3 − √2

2
≈ 0.1589

  Area of region B =
π
12

≈ 0.2618

 (b) 1
24 [3π√2 − 12(√3 − √2) − 2π] ≈ 0.1346

 (c) 1.2958   (d) 0.6818
11–13. Proof  15. 2 ln 32 ≈ 0.8109
17. (a) (i) 

−2 2

−1

y

y1

4

  (ii) 
y

−2 2

−1

y2

4

  (iii) y

−2 2

−1

y3

4

 (b) Pattern: yn = 1 +
x
1!

+
x2

2!
+ .  .  . +

xn

n!
+ .  .  .

  y4 = 1 +
x
1!

+
x2

2!
+

x3

3!
+

x4

4!
  

y
−5 3

−1

y4

4

 (c) The pattern implies that ex = 1 +
x
1!

+
x2

2!
+

x3

3
+ .  .  . .

Chapter 6
Section 6.1  (page 411)

 1.  Substitute f (x) and its derivatives into the differential  
equation. If the equation is satisfied, then f (x) is a solution.

 3.  The line segments show the general shape of all the solutions 
of a differential equation and give a visual perspective of the 
directions of the solutions of the differential equation.

 5–13. Proofs  15. Solution   17. Not a solution
19. Solution  21. Not a solution  23. Not a solution
25. Solution  27. Not a solution
29. Not a solution
31. y = 3e−x�2

33. 4y2 = x3

35. 

−3 3

−2

C = 0

2   

−3 3

−2

C = 1

2

 

−3 3

−2

C = −1

2
  

−3 3

−2

C = 4

2

 

−3 3

−2

C = −4

2

37. y = 3e−6x  39. y = 2 sin 3x − 1
3 cos 3x

41. y = −2x + 1
2x

3  43. 4x3 + C
45. y = 1

2 ln(1 + x2) + C  
47. y = −1

2 cos 2x + C
49. y = 2

5 (x − 6)5�2 + 4(x − 6)3�2 + C  51. y = 1
2e

x2 + C
53. 

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −4 Undef. 0 1 4
3

2

55. 
x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −2√2 −2 0 0 −2√2 −8

57. b  58. c  59. d  60. a
61. (a) and (b) 63. (a) and (b)
 

8

5

y

x

(4, 2)

−2

  

4

−3

5

x

y
(2, 2)

−4

 (c) As x→∞, y→−∞  (c) As x→∞, y→−∞
  As x→−∞, y→−∞  As x→−∞, y→−∞
65. (a) 

6
−1

−2

−3

1

2

3

x

y

(1, 0)    (b) 

6
−1

−2

−3

1

2

3

x

y

(2, −1)

  As x→∞, y→∞  As x→∞, y→∞
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67. (a) and (b) 69. (a) and (b)

−6 6

−4

12   

−12 48

−2

12

71. (a) and (b)

8

−2

−2

8

73. 

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 4.146 4.631 5.174 5.781

n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 2 2.2 2.43 2.693 2.992 3.332 3.715

75. 

n 7 8 9 10

xn 0.35 0.4 0.45 0.5

yn 1.569 1.464 1.378 1.308

n 0 1 2 3 4 5 6

xn 0 0.05 0.1 0.15 0.2 0.25 0.3

yn 3 2.7 2.438 2.209 2.010 1.839 1.693

77. n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 1 1.1 1.212 1.339 1.488 1.670 1.900

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 2.213 2.684 3.540 5.958

79.

x 0 0.2 0.4 0.6 0.8 1

y(x) 
(exact)

3.0000 3.6642 4.4755 5.4664 6.6766 8.1548

y(x) 
(h = 0.2) 3.0000 3.6000 4.3200 5.1840 6.2208 7.4650

y(x) 
(h = 0.1) 3.0000 3.6300 4.3923 5.3147 6.4308 7.7812

81.

x 0 0.2 0.4 0.6 0.8 1

y(x) 
(exact)

0.0000 0.2200 0.4801 0.7807 1.1231 1.5097

y(x) 
(h = 0.2) 0.0000 0.2000 0.4360 0.7074 1.0140 1.3561

y(x) 
(h = 0.1) 0.0000 0.2095 0.4568 0.7418 1.0649 1.4273

83. (a) y(1) = 112.7141°, y(2) = 96.3770°, y(3) = 86.5954°
(b) y(1) = 113.2441°, y(2) = 97.0158°, y(3) = 87.1729°
(c)  Euler’s Method:  y(1) = 112.9828°, y(2) = 96.6998°, 

y(3) = 86.8863°
Exact solution:   y(1) = 113.2441°, y(2) = 97.0158°, 

y(3) = 87.1729°
The approximations are better using h = 0.05.

85.  Euler’s Method produces an exact solution to an initial value 
problem when the exact solution is a line.

87.  False. y = x3 is a solution of xy′ − 3y = 0, but y = x3 + 1 
is not a solution.

89. (a)
 

x 0 0.2 0.4 0.6 0.8 1

y 4 2.6813 1.7973 1.2048 0.8076 0.5413

y1 4 2.56 1.6384 1.0486 0.6711 0.4295

y2 4 2.4 1.44 0.864 0.5184 0.3110

e1 0 0.1213 0.1589 0.1562 0.1365 0.1118

e2 0 0.2813 0.3573 0.3408 0.2892 0.2303

r 0.4312 0.4447 0.4583 0.4720 0.4855

 (b)  If h is halved, then the error is approximately halved 
because r is approximately 0.5.

 (c) The error will again be halved.
91. (a) 

−3 3

−3

3

t

I    (b)  lim
t→∞

 I(t) = 2

93. ω = ±4  95. Putnam Problem B2, 1997

Section 6.2  (page 420)

1.  C is the initial value of y, and k is the proportionality constant.
 3. y = 1

2x
2 + 3x + C  5. y = Cex − 3

7. y2 − 5x2 = C  9. y = Ce(2x
3�2)�3  11. y = C(1 + x2)

13. 
dQ
dt

=
k
t2

Q = −
k
t
+ C
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15. (a) 

x
−5 −1

9

5

y

(0, 0)

   (b) y = 6 − 6e−x2�2

  

−6 6

−1

7

17. y = 1
4t

2 + 10 19. y = 10e−t�2

 

4

−1

−4

(0, 10)

16   

10

−1

−1

(0, 10)

16

21. N = 8192
5   23. y = 2e [(1�4)ln(3�2)]t ≈ 2e0.1014t

25. y = 5(5
2)1�4e[ln(2�5)�4]t ≈ 6.2872e−0.2291t

27.  Quadrants I and III; 
dy
dx

 is positive when both x and y are

  positive (Quadrant I) or when both x and y are negative 
(Quadrant III).

29.  Amount after 1000 yr: 12.96 g  
Amount after 10,000 yr: 0.26 g

31.  Initial quantity: 7.63 g  
Amount after 1000 yr: 4.95 g

33.  Amount after 1000 yr: 4.43 g  
Amount after 10,000 yr: 1.49 g

35.  Initial quantity: 2.16 g  
Amount after 10,000 yr: 1.62 g

37. 95.76%
39. Time to double: 5.78 yr
 Amount after 10 yr: $3320.12
41. Annual rate: 4.62%
 Amount after 10 yr: $238.09
43. Annual rate: 7.18%
 Time to double: 9.65 yr
45. $224,174.18  47. $61,377.75
49. (a) 10.24 yr   (b) 9.93 yr   (c) 9.90 yr   (d) 9.90 yr
51. (a) P = 2.113e−0.011t   (b) 1.70 million people
 (c) Because k < 0, the population is decreasing.
53. (a) P = 6.404e0.012t   (b) 8.14 million people
 (c) Because k > 0, the population is increasing.
55. (a) N = 100.1596(1.2455)t  (b) 6.3 h
57. (a) N ≈ 30(1 − e−0.0502t)  (b) 36 days
59. (a)  Because the population increases by a constant each 

month, the rate of change from month to month will 
always be the same. So, the slope is constant, and the 
model is linear.

 (b)  Although the percentage increase is constant each month, 
the rate of growth is not constant. The rate of change of y

  is 
dy
dt

= ry, which is an exponential model.

61. (a) M1 = 2335.3e0.0407t   (b) M2 = 206.9t + 1685
(c)  The exponential model fits the data better because the 

graph is closer to the data values than is the graph of the 
linear model.

(d)  2026 (t ≈ 46); Yes. The exponential model indicates a 
reasonably slow growth rate.

63. (a) 20 dB   (b) 70 dB   (c) 120 dB
65. (a) y = 1420e [ln(52�71)]t + 80 ≈ 1420e−0.3114t + 80

(b) 299.2°F
67. False. It takes 1599 years.

Section 6.3  (page 429)

1. (a) Separable   (b) Not separable
3.  The carrying capacity is the maximum population that can be 

sustained over time.
5. y2 − x2 = C  7. y4 − 2x2 + 4x = C  9. r = Ce(4�9)s

11. y = C(x + 2)3  13. y3 = C − 1
3 cos 9x

15. y = −1
4√1 − 4x2 + C  17. y = Ce(ln x)2�2

19. y2 = 4ex + 32  21. y = e−(x2+2x)�2

23. y2 = 4x2 + 3  25. u = e(5−cos v2)�2  27. P = P0e
kt

29. 4y2 − x2 = 16  31. y = (x3)
1�5

  33. f (x) = Ce−x�2

35. (a) 
dy
dx

= k(y − 4) (b) i (c) Proof

36. (a) 
dy
dx

= k(x − 4) (b) ii (c) Proof

37. (a) 
dy
dx

= ky(y − 4)   (b) iii   (c) Proof

38. (a) 
dy
dx

= ky2 (b) iv (c) Proof

39. 97.9% of the original amount
41. (a) w = 1200 − 1140e−kt

(b) w = 1200 − 1140e−0.8t w = 1200 − 1140e−0.9t

0

1400

100

 

0

1400

100

w = 1200 − 1140e−t

0

1400

100

(c) 1.31 yr, 1.16 yr, 1.05 yr   (d) 1200 lb
43. Hyperbolas: 3x2 − y2 = C

Orthogonal trajectory: y =
K
3√x

Graphs will vary.

−6 6

4

−4
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45. Parabolas: x2 = Cy 47. Curves: y2 = Cx3

Ellipses: x2 + 2y2 = K  Ellipses: 2x2 + 3y2 = K
Graphs will vary.  Graphs will vary.

 

−6 6

−4

4   

−6 6

−4

4

49. d  50. a  51. b  52. c
53. (a) k = 0.75   (b) 2100   (c) 70   (d) 4.49 yr

 (e) 
dP
dt

= 0.75P(1 −
P

2100)
55. (a) k = 3  (b) 100
 (c) 

0
0

120

5

  (d) 50

57. y =
36

1 + 8e−t  59. y =
120

1 + 14e−0.8t

61. (a) P =
200

1 + 7e−0.2640t   (b) 70 panthers   (c) 7.37 yr

 (d) 
dP
dt

= 0.2640P(1 −
P

200); 65.6; This is close to the

  exact answer.
 (e)  100 yr; P is increasing most rapidly where 

P = 200�2 = 100, which corresponds to t ≈ 7.37 years.

63. Yes. Rewrite the equation as 
1

g(y) − h(y) dy = f (x) dx.

65. Proof
67. (a) v = 20(1 − e−1.386t)

(b) s ≈ 20t + 14.43(e−1.386t − 1)
69. Homogeneous of degree 3  71. Homogeneous of degree 0
73. Not homogeneous  75. Homogeneous of degree 0
77. ∣x∣ = C(x − y)2  79. ∣y2 + 2xy − x2∣ = C
81. y = Ce−x2�(2y2)

83. False. y′ =
x
y
 is separable, but y = 0 is not a solution.

85. True

Section 6.4  (page 436)

1. The derivative in the equation is first order.

3. Linear; can be written in the form 
dy
dx

+ P(x)y = Q(x)

5. Not linear; cannot be written in the form 
dy
dx

+ P(x)y = Q(x)

7. y = 2x2 + x +
C
x

  9. y = 5 + Ce−x2

11. y = −1 + Cesin x  13. y =
1
6
e3x + Ce−3x

15. (a) Answers will vary. (b) y = 1
2 (ex + e−x)

x
−4

−3

4

5

y    (c) 

−6

−2

6

6

17. y = 3ex  19. y = sin x + (x + 1) cos x  21. xy = 4

23. y = −2 + x ln∣x∣ + 12x  25. P = −
N
k
+ (Nk + P0)ekt

27. (a) $4,212,796.94   (b) $31,424,909.75

29. (a) 
dN
dt

= k(75 − N)   (b) N = 75 + Ce−kt

(c) N = 75 − 55.9296e−0.0168t

31. v(t) = −49.1(1 − e−0.1996t); −49.1 m�sec

33. I =
E0

R
+ Ce−Rt�L  35. Proof

37. (a) Q = 25e−t�20   (b) −20 ln(3
5) ≈ 10.2 min  (c) 0

39. a  41. Use separation of variables or an integrating factor.
43. c  44. d  45. a  46. b
47. (a) 

−4

−6

10

4

   (c) 

−6

10

−4 4

(b) (−2, 4): y = 1
2x(x2 − 8)

(2, 8): y = 1
2x(x2 + 4)

49. 2ex + e−2y = C  51. y = Ce−sin x + 1

53. y =
ex(x − 1) + C

x2   55. y =
12
5
x2 +

C
x3

57. 
1
y2 = Ce2x3 +

1
3

  59. y =
1

Cx − x2

61. 
1
y2 = 2x + Cx2  63. y2�3 = 2ex + Ce2x�3

65. False. y′ + xy = x2 is linear.

Review Exercises for Chapter 6  (page 439)

1. Solution  3. y = 4
3x

3 + 7x + C  5. y = 1
2 sin 2x + C

7. y = −e2−x + C
9. 

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −10 −4 −4 0 2 8
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11. (a) and (b)
 y

x

(0, 2)

3−3

5

−1

13. 

n 6 7 8 9 10

xn 0.3 0.35 0.4 0.45 0.5

yn 2.9756 2.8418 2.7172 2.6038 2.4986

n 0 1 2 3 4 5

xn 0 0.05 0.1 0.15 0.2 0.25

yn 4 3.8 3.6125 3.4369 3.2726 3.1190

15. y = 3x2 −
1
4
x4 + C  17. y = 1 −

1
x + C

19. y =
Cex

(2 + x)2  21. y = Ce2√x+1

23. 
dy
dt

=
k
t3

, y = −
k

2t2
+ C  25. y ≈

3
4
e0.379t

27. y =
9
20

e(1�2) ln(10�3)t  29. About 7.79 in.

31. About 37.5 yr  
33. (a) S ≈ 30e−1.7918�t   (b) 20,965 units

35. y2 = 5x2 + C  37. y = −ln(C −
e4x

4 )
39. y4 = 6x2 − 8  41. y4 = 2x4 + 1  43. y2 = 2x2 + 7
45. Hyperbolas: 5x2 − 4y2 = C
 Orthogonal trajectory: y = Kx−4�5

 Graphs will vary.
 

−6 6

4

−4

47. (a) k = 0.55   (b) 5250   (c) 150   (d) 6.41 yr

 (e) 
dP
dt

= 0.55P(1 −
P

5250)
49. y =

80
1 + 9e−t  51. 184 racoons

53. y = −10 + Cex  55. y = ex�4(1
4x + C)

57. y =
x + C
x − 2

  59. y =
1
10

e5x +
29
10

e−5x

61. y = −5
3 + 5

3e
3 sin x

P.S. Problem Solving  (page 441)

 1. (a) y =
1

(1 − 0.01t)100; T = 100

 (b) y = 1�[( 1
y0
)
ε
− kεt]

1�ε
; Explanations will vary.

 3. (a) y = Le−Ce−kt

 (b) 2000

0
0 500

   (c)  As t→∞, y→L, the  
carrying capacity.

 (d) y0 = 500 = 5000e−C ⇒ eC = 10 ⇒ C = ln 10
  7000

0
0 500

   The graph is concave upward on (0, 41.7) and downward 
on (41.7, ∞).

 5. 1481.45 sec ≈ 24 min, 41 sec 
 7. 2575.95 sec ≈ 42 min, 56 sec
 9. (a) s = 184.21 − Ce−0.019t

 (b) 

0
0 200

400    (c)  As t→∞, Ce−0.019t→ 0, 
and s→ 184.21.

11. (a) C = C0e
−Rt�V   (b) 0

13. (a) C =
Q
R
(1 − e−Rt�V)   (b) 

Q
R

Chapter 7
Section 7.1  (page 450)

 1.  In variable x, the area of the region between two graphs is 
the area under the graph of the top function minus the area 
under the graph of the bottom function.

 3.  The points of intersection are used to determine the vertical 
lines that bound the region.

 5. −∫6

0
 (x2 − 6x) dx  7. ∫3

0
 (−2x2 + 6x) dx

 9. −6∫1

0
 (x3 − x) dx

11. 

5

4

3

2

1

542 31
x

y  13. 

−1 1 2 3 4 5
−1

−3

2

3

x

y

15. 

x

y

−2−4 2 4

−2

2

4

6

 17. 

x

y

−4 2 4

−2

2

4

6

(−2, 0)

(1, 3)

 32
3    9

2
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19. y

x
−1 3 4

−1

3

4

1 2

 21. y

x

(−1, 1)

(1, 3)

(0, 2)

1 2

1

3

4

 17
18   2

3

23. 
3

2

1

542 31
−1

−3

(4, 2)

(1, −1)

x

y  25. 

64 5

3

1

32

−2

x

y

(0, −1)

(0, 2) (5, 2)

(2, −1)

    6

 9
2

27. 
12

8

6

864−4 −2 2

4

x

y

(1, 10)(0, 10)

(5, 2)(0, 2)

 10 ln 5 ≈ 16.094

29. (a) 125
6    (b) 125

6

 (c) Integrating with respect to y; Answers will vary.
31. (a) 

−6 12

−1

(3, 9)

(1, 1)(0, 0)

11  33. (a) 

−4 4

−5

2

(−2, 0) (2, 0)

(−1, −3) (1, −3)

 (b) 37
12  (b) 8

35. (a) 

−3 3

−1

1, 1
2( (−1, 1

2( (
3  37. 

x

y

2

3

−1

ππ

π

π
2

2

g

f

(2  , 1)

(0, 1)

 (b) 
π
2
−

1
3
≈ 1.237

    4π ≈ 12.566
39. 

3

4

1

2

−3

−4

x
(0, 0)

3

g

f

π

2
π

2
π−

−    , −    3( (

3
π    ,     3( (

y  41. 

1

x
1

(0, 0)

1, ))

y

1
e

    
1
2 (1 −

1
e) ≈ 0.316

 2(1 − ln 2) ≈ 0.614

43. (a) 

0
0

3

π

 45. (a) 

0
60

4

(1, e)

(3, 0.155)

(b) 4  (b) About 1.323

47. (a) 

−1

−1

4

6  49. (a) 

3

−1

−3

5

(b)  The function is difficult   (b) The intersections are 
to integrate.   difficult to find.

(c) About 4.7721  (c) About 6.3043
51. 2
53. F(x) = 1

4x
2 + x

(a) F(0) = 0  (b) F(2) = 3

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

    

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

(c) F(6) = 15
  

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

55. F(α) = 2
π (sin 

πα
2

+ 1)
 (a) F(−1) = 0  (b) F(0) = 2

π ≈ 0.6366

  y

1

3
2

1
2

1
2

θ

−

1
2

1
2

−

    y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−

 (c) F(12) =
√2 + 2

π ≈ 1.0868

  y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−
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57. 3  59. 16  61. ∫1

−2
 [(2x3 − 1) − (6x − 5)] dx = 27

2

63. ∫1

0
 [ 1
x2 + 1

− (−1
2
x + 1)] dx ≈ 0.0354

65. Answers will vary.
 Example: x4 − 2x2 + 1 ≤ 1 − x2 on [−1, 1]

 ∫1

−1
 [(1 − x2) − (x4 − 2x2 + 1)] dx = 4

15
67. (a)  The integral ∫5

0  [v1(t) − v2(t)] dt = 10 means that the first 
car traveled 10 more meters than the second car between 
0 and 5 seconds.

   The integral ∫10
0  [v1(t) − v2(t)] dt = 30 means that the first 

car traveled 30 more meters than the second car between 0 
and 10 seconds.

   The integral ∫30
20  [v1(t) − v2(t)] dt = −5 means that the 

second  car traveled 5 more meters than the first car 
between 20 and 30 seconds.

 (b)  No. You do not know when both cars started or the initial 
distance between the cars.

 (c) The car with velocity v1 is ahead by 30 meters.
 (d) Car 1 is ahead by 8 meters.

69. b = 9(1 −
1

3√4) ≈ 3.330  71. a = 4 − 2√2 ≈ 1.172

73. Answers will vary. Sample answer: 1
6

  

x
(1, 0)

f(x) = x − x2

(0, 0)

0.2

0.2

0.4

0.6

0.4 0.6 0.8 1.0

y

75. R1; $1.625 million
77. (a) y = 0.0124x2 − 0.385x + 7.85
 (b) 

Percents of families

Pe
rc

en
ts

 o
f 

to
ta

l i
nc

om
e

x
20 40 60 80 100

20

40

60

80

100

y

 (c) 

Percents of families

Pe
rc

en
ts

 o
f 

to
ta

l i
nc

om
e

x
20 40 60 80 100

20

40

60

80

100

y     For 6 ≤ x ≤ 100, the values 
of y are larger for the model 
y = x.

 (d) About 2006.7 
79. (a) About 6.031 m2   (b) About 12.062 m3   (c) 60,310 lb

81. 
√3
2

+
7π
24

+ 1 ≈ 2.7823  83. True

85.  False. Let f (x) = x and g(x) = 2x − x2. Then f  and g  
intersect at (1, 1), the midpoint of [0, 2], but

 ∫b

a
 [ f (x) − g(x)] dx = ∫2

0
 [x − (2x − x2)] dx = 2

3 ≠ 0.

87. Putnam Problem A1, 1993

Section 7.2  (page 461)

 1.  Find the integral of the square of the radius of the solid over 
the defined interval and then multiply by π.

 3.  When the solid of revolution is formed by two or more  
distinct solids.

 5. π∫4

1
 (√x)2 dx = 15π

2
  7. π∫1

0
 [(x2)2 − (x5)2] dx = 6π

55

 9. π∫4

0
 (√y)2 dy = 8π   11. π∫1

0
 (y3�2)2 dy = π

4

13. (a) 
9π
2

   (b) 
36π√3

5
   (c) 

24π√3
5

   (d) 
84π√3

5

15. (a) 
32π

3
   (b) 

64π
3

  17. 18π   19. π(16 ln 5 −
16
5 )

21. 
124π

3
  23. 

832π
15

  25. 
π
3

 ln 
11
5

  27. 24π

29. π(1 − e−12

6 )  31. 
277π

3
  33. 8π   35. 

25π
2

37. 
π2

2
≈ 4.935  39. 

π
2
(e2 − 1) ≈ 10.036  41. 

π
3

43. 
π
3

  45. 
2π
15

  47. 
π
2

  49. 1.969  51. 15.4115

53. (a)  A sine curve on [0, 
π
2] revolved about the x-axis

 (b) A polynomial function on [2, 4] revolved about the y-axis
55. b < c < a  57. √5  59. V = 4

3π(R2 − r2)3�2

61. Proof  63. πr2h(1 −
h
H

+
h2

3H2)
65. 

0 2

−0.25

0.5

 
π
30

67. (a) 60π   (b) 50π
69. (a) V = π(4b2 − 64

3 b + 512
15 )

 (b) 

0
0

4

120    (c) b = 8
3 ≈ 2.67

  b ≈ 2.67
71. (a) ii; right circular cylinder of radius r and height h
 (b)  iv; ellipsoid whose underlying ellipse has the equation 

  (xb)
2

+ (ya)
2

= 1

 (c) iii; sphere of radius r
 (d) i; right circular cone of radius r and height h
 (e) v; torus of cross-sectional radius r and other radius R
73. (a) 81

10   (b) 9
2  75. 16

3 r
3

77. (a) 2
3r

3   (b) 2
3r

3 tan θ; As θ→ 90°, V→∞.
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Section 7.3  (page 470)

1.  Determine the distance from the center of a representative 
rectangle to the axis of revolution, and find the height of the 
rectangle. Then use the formula V = 2π∫dc  p(y)h(y) dy for a

  horizontal axis of revolution or V = 2π∫ba  p(x)h(x) dx for a 
vertical axis of revolution. 

 3. 2π∫2

0
 x2 dx =

16π
3

  5. 2π∫4

0
 x√x dx =

128π
5

 7. 2π∫4

0
 
1
4
x3 dx = 32π   9. 2π∫2

0
 x(4x − 2x2) dx = 16π

3

11. 2π∫4

5�2
 x√2x − 5 dx =

34π√3
5

13. 2π∫2

0
 y(2 − y) dy = 8π

3

15. 2π[∫1�2

0
 y dy + ∫1

1�2
 y(1y − 1) dy] = π

2

17. 2π∫8

0
 y 4�3 dy =

768π
7

  19. 2π∫2

0
 y(4 − 2y) dy = 16π

3

21. ∫1

0
 y(y2 − 3y + 2) dy = π

2

23. 8π   25. 
45π
16

27.  Shell method; It is much easier to put x in terms of y rather 
than vice versa.

29. (a) 
128π

7
   (b) 

64π
5

    (c) 
96π

5

31. (a) 
πa3

15
   (b) 

πa3

15
   (c) 

4πa3

15
33. (a) 

y = (1 − x4/3)3/4

−0.25

−0.25 1.5

1.5    (b) 1.506

35. (a) 

−1

−1

7

(x − 2)2(x − 6)2y = 3

7    (b) 187.25

37. (a) Height: b, radius: k   (b) Height: k, radius: b
39.  Both integrals yield the volume of the solid generated by 

revolving the region bounded by the graphs of y = √x − 1,
y = 0, and x = 5 about the x-axis.

41. a, c, b

43. (a) Region bounded by y = x2, y = 0, x = 0, x = 2
(b) Revolved about the y-axis

45. (a) Region bounded by x = √6 − y, y = 0, x = 0
(b) Revolved about y = −2

47. Diameter = 2√4 − 2√3 ≈ 1.464  49. 4π2

51. (a) Proof   (b) (i) V = 2π    (ii) V = 6π2  53. Proof

55. (a) R1(n) =
n

n + 1
   (b) lim

n→∞
 R1(n) = 1

(c) V = πabn+2( n
n + 2); R2(n) =

n
n + 2

(d) lim
n→∞

 R2(n) = 1

(e) As n→∞, the graph approaches the line x = b.
57. About 121,475 ft3  59. c = 2

61. (a) 
64π

3
   (b) 

2048π
35

   (c) 
8192π

105

Section 7.4  (page 481)

1.  The graph of a function f  is rectifiable between (a, f (a)) and 
(b, f (b)) if f ′ is continuous on [a, b].

 3. Answers will vary by a constant. Sample answer: f (x) = 2x2

 5. (a) and (b) √13  7. 5
3  9. 2

3 (2√2 − 1) ≈ 1.219
11. 5√5 − 2√2 ≈ 8.352  13. 309.3195

15. ln 
√2 + 1

√2 − 1
≈ 1.763  17. 

1
2(e2 −

1
e2) ≈ 3.627

19. 
76
3

21. (a) 

−1−3 1 3
−1

−2

1

2

3

x

y  23. (a) 

−1 1 2 3 4
−1

1

2

3

x

y

 (b) ∫2

0
 √1 + 4x2 dx  (b) ∫3

1
 √1 +

1
x4 dx

 (c) About 4.647  (c) About 2.147
25. (a) 

−1.5

0.5

1.0

1.5

2
π

2
π3−

x

y

2
π

 27. (a) 

−0.5 0.5 1.0 1.5 2.0

−2.0

−3.0

1.0

2.0

3.0

x

y

(b) ∫π
0

 √1 + cos2 x dx  (b) ∫1

0
 √1 + ( 2

1 + x2)
2

 dx

(c) About 3.820  (c) About 1.871

29. (a) 

−1 1 3 4 5
−1

−2

1

2

3

4

x

y    (b) ∫2

0
 √1 + e−2y dy

= ∫1

e−2

 √1 +
1
x2 dx

(c) About 2.221

31. (a) 64.125   (b) 64.525   (c) 64.672

33. 
20(e2 − 1)

e
≈ 47.0 m  35. About 1480

37. 3 arcsin 23 ≈ 2.1892

39. 2π∫3

0
 
1
3
x3√1 + x4 dx =

π
9
(82√82 − 1) ≈ 258.85
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41. 2π∫2

1
 (x

3

6
+

1
2x)(

x2

2
+

1
2x2) dx = 47π

16
≈ 9.23

43. 2π∫1

−1
 2 dx = 8π ≈ 25.13

45. 2π∫8

1
 x√1+

1
9x4�3 dx=

π
27

(145√145− 10√10) ≈ 199.48

47. 2π∫2

0
 x√1 +

x2

4
 dx =

π
3
(16√2 − 8) ≈ 15.318

49. 14.424  51. b  53. They have the same value.
55. (a) 

x
−1 1 2 3 4 5

−1

1

2

3

4

5

y

y1

y2

y3

y4

   (b) y1, y2, y3, y4

      (c)  s1 ≈ 5.657, s2 ≈ 5.759, 
s3 ≈ 5.916, s4 ≈ 6.063

57. 20π   59. 6π(3 − √5) ≈ 14.40
61. (a) Answers will vary. Sample answer: 5207.62 in.3

 (b) Answers will vary. Sample answer: 1168.64 in.2

 (c) r = 0.0040y3 − 0.142y2 + 1.23y + 7.9
  

−1
−1 19

20

 (d) V = 5279.64 in.3, S = 1179.5 in.2

63. (a) π(1 −
1
b)   (b) 2π∫b

1
 
√x4 + 1

x3  dx

 (c) lim
b→∞

 V = lim
b→∞

 π(1 −
1
b) = π

 (d) Because 
√x4 + 1

x3 >
√x4

x3 =
1
x

> 0 on [1, b],

  you have ∫b
1

 
√x4 + 1

x3  dx > ∫b
1

 
1
x
 dx = [ln x]

b

1
= ln b

  and lim
b→∞

 ln b→∞. So, lim
b→∞

 2π∫b
1

 
√x4 + 1

x3  dx = ∞.

65. Fleeing object: 2
3 unit

 Pursuer: 
1
2∫

1

0
 
x + 1

√x
 dx =

4
3
= 2(23)

67. 
384π

5
  69. Proof  71. Proof; g(x) = 1

Section 7.5  (page 491)

 1.  Work is done by a force when it moves an object.
 3.  The force needed to extend or compress a spring by some 

distance is proportional to that distance.
 5. 48,000 ft-lb  7. 896 N-m  9. 40.833 in.-lb ≈ 3.403 ft-lb
11. 160 in.-lb ≈ 13.3 ft-lb  13. 37.125 ft-lb
15. (a) 487.8 mile-tons ≈ 5.679 × 109 ft-lb
 (b) 1395.3 mile-tons ≈ 1.624 × 1010 ft-lb
17. (a) 29,333.3 mile-tons ≈ 3.415 × 1011 ft-lb
 (b) 33,846.2 mile-tons ≈ 3.941 × 1011 ft-lb
19. (a) 2496 ft-lb   (b) 9984 ft-lb  21. 470,400π  N-m

23. 2995.2π  ft-lb  25. 20,217.6π  ft-lb  27. 2457π  ft-lb
29. 600 ft-lb  31. 450 ft-lb  33. 168.75 ft-lb
35.  No. Something can require a lot of physical effort but take no 

work. There is no work because there is no change in distance.

37. Gm1m2(1a −
1
b)  39. 

3k
4

41. (a) 54 ft-lb   (b) 160 ft-lb   (c) 9 ft-lb   (d) 18 ft-lb
43. 2000 ln 32 ≈ 810.93 ft-lb  45. 3249.4 ft-lb
47. 10,330.3 ft-lb 
49. (a) 16,000π  ft-lb
 (b)  F(x) = −16,261.36x4 + 82,295.45x3 − 157,738.64x2

   + 104,386.36x − 32.4675
  

0 2
0

25,000

 (c) 0.524 ft   (d) 25,180.5 ft-lb

Section 7.6  (page 502)

 1.  Weight is a force that is dependent on gravity. Mass is a 
measure of a body’s resistance to changes in motion and is 
independent of the gravitational system in which the body is 
located. The weight (or force) of an object is its mass times the 
acceleration due to gravity.

 3.  A planar lamina is a flat plate of material of constant density. 
The center of mass of a lamina is its balancing point.

 5. x = −4
3  7. x = 4  9. x = 6 ft

11. (x, y) = (10
9 , −1

9)  13. (x, y) = (2, 48
25)

15. Mx =
ρ
3

, My =
4ρ
3

, (x, y) = (43, 
1
3)

17. Mx = 4ρ, My =
64ρ

5
, (x, y) = (12

5
, 

3
4)

19. Mx =
ρ
35

, My =
ρ
20

, (x, y) = (35, 
12
35)

21. Mx =
99ρ

5
, My =

27ρ
4

, (x, y) = (32, 
22
5 )

23. Mx =
192ρ

7
, My = 96ρ, (x, y) = (5, 

10
7 )

25. Mx = 0, My =
256ρ

15
, (x, y) = (85, 0)

27. Mx =
27ρ

4
, My = −

27ρ
10

, (x, y) = (−3
5

, 
3
2)

29. 

−25

−5

25

50

 (x, y) = (0, 16.2)
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31. 

x
1 3

2

1

−1

−2

y  33. 

x
−4 −3 −2 −1 1 2 3 4

7

6

5

4

3

2

1

y

 (x, y) = (4 + 3π
4 + π , 0)  (x, y) = (0, 

135
34 )

35. (x, y) = (2 + 3π
2 + π , 0)  37. 160π2 ≈ 1579.14

39. 
128π

3
≈ 134.04

41.  The center of mass is translated k units as well.
43.  Answers will vary. Sample answer: Use three rectangles 

with width 1 and length 4 and place them as follows.
 y

x
1 2 3 4 5 6

1

2

3

4

5

(x, y) = (3, 1.5)

45. (x, y) = (b3, 
c
3)  47. (x, y) = ((a + 2b)c

3(a + b) , 
a2 + ab + b2

3(a + b) )
49. (x, y) = (0, 

4b
3π)

51. (a) 

−1−2−3−4−5 1 2 3 4 5
x

y = b

y

(b)   My = ∫√b

−√b

 x(b − x2) dx = 0 because x(b − x2) is an odd 

  function; x = 0 by symmetry.

 (c) y >
b
2

 because the area is greater for y >
b
2

.

(d) y = 3
5b

53. (a) y = (−1.02 × 10−5)x4 − 0.0019x2 + 29.28
 (b) (x, y) = (0, 12.85)
55. 9π√2

57.  (x, y) = (n + 1
n + 2

, 
n + 1
4n + 2); As n→∞, the region shrinks

 toward the line segments y = 0 for 0 ≤ x ≤ 1 and x = 1 for 

 0 ≤ y ≤ 1; (x, y)→ (1, 
1
4).

59. Putnam Problem A1, 1982

Section 7.7  (page 509)

1.  Fluid pressure is the force per unit area over the surface of a 
body submerged in a fluid.

3. 1497.6 lb  5. 4992 lb   7. 2223 lb  9. 1123.2 lb

11. 748.8 lb  13. 1064.96 lb  15. 117,600 N
17. 2,381,400 N  19. 2814 lb  21. 6753.6 lb
23. 94.5 lb
25.  Because you are measuring total force against a region 

between two depths

27.  
3√2

2
≈ 2.12 ft; The pressure increases with increasing depth.

29–31. Proofs  33. 960 lb  35. 2936 lb

Review Exercises for Chapter 7  (page 511)

1. y

x
−3−4 1 3 4−1

−2

1

2

3

4

5
(−2, 4) (2, 4)

1
22, 1 ))

1
2−2, −1 ))

  3. 

2

1

−1 1

1
2

x

1, 

y

(−1, 0) (1, 0)

))1
2

−1, ))

64
3

   
π
2

5. 

1

1

−1

−1
x

(1, 1)

(0, 0)

(−1, −1)

y   7. 

4

6

321−1
x

(0, 1)

(2, e2)

(0, e2)

y

1
2   e2 + 1

 9. 

x

−1

y

4
5 2

2
π

2
π π

( (, −

4
2

2
π( (, 

 11. (a) 

−4 10

−16

(0, 3)

(8, 3)
20

    (b) 170.6667

 2√2
13. (a) 

−1

(0, 1)

(1, 0)
2

2

−1

 (b) 0.1667

15. F(x) = 3
2x

2 + x
 (a) F(0) = 0 (b) F(2) = 8
  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21

  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21
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 (c) F(6) = 60
  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21

17. R1; $1.125 million  19. 
π2

2
  21. 

π2

4
23. (a) 9π    (b) 18π    (c) 9π    (d) 36π
25. 3 ft3  27. 8

15(1 + 6√3) ≈ 6.076

29. 2π∫6

3
 
x3

18√1 +
x4

36
 dx ≈ 459.098

31. 2π∫2

0
 x√1 + x2 dx ≈ 21.322  33. 5.208 ft-lb

35. 952.4 mile-tons ≈ 1.109 × 1010 ft-lb  37. 200 ft-lb
39. 693.15 ft-lb

41. 3.6  43. Mx =
544ρ

15
, My =

32ρ
3

, (x, y) = (1, 
17
5 )

45. Answers will vary. Sample answer:
 y

t
−1 2

−1

−2

1

2

 (x, y) = (1.596, 0)
47. 374.4 lb  49. 3072 lb  51. 723,822.95 lb

P.S. Problem Solving  (page 513)

 1. 3  3. y = 0.2063x  5. (x, y) = (2(9π + 49)
3(π + 9) , 0)

 7. V = 2π (d + 1
2√w2 + l 2)lw

 9. f (x) = 2ex�2 − 2  11. 89.3%

13. 

1

−1
−1 2 3 4 5

−2

−3

2

3

y

x

y = − 1
x4

y = 1
x4

   (a) (x, y) = (63
43

, 0)
      (b) (x, y) = ( 3b(b + 1)

2(b2 + b + 1), 0)
      (c) (32, 0)

15. Consumer surplus: 1600, Producer surplus: 400
17. Wall at shallow end: 9984 lb
 Wall at deep end: 39,936 lb
 Side wall: 19,968 + 26,624 = 46,592 lb

Chapter 8
Section 8.1  (page 520)

 1.  Use long division to rewrite the function as the sum of a 
polynomial and a proper rational function.

 3. b

 5. ∫ un du  7. ∫ 
du
u

  9. ∫ 
du

√a2 − u2

 u = 5x − 3, n = 4  u = 1 − 2√x  u = t, a = 1

11. ∫ sin u du 13. ∫ eu du 15. 2(x − 5)7 + C

 u = t2  u = sin x

17. −
7

6(z − 10)6 + C  19. 
z3

3
−

1
5(z − 1)5 + C

21. −1
3 ln∣−t3 + 9t + 1∣ + C  23. 1

2x
2 + x + ln∣x − 1∣ + C

25. x + ln∣x + 1∣ + C  27. 
x

15
(48x4 + 200x2 + 375) + C

29. 
sin 2πx2

4π + C  31. −2√cos x + C

33. 2 ln(1 + ex) + C  35. (ln x)2 + C

37. −ln∣csc α + cot α∣ + ln∣sin α∣ + C

39. −
1
4

 arcsin(4t + 1) + C  41. 
1
2

 ln∣cos 
2
t ∣ + C

43. 
6
5

 arcsec 
∣3z∣

5
+ C  45. 

1
4

 arctan 
2x + 1

8
+ C

47. (a) 

t

s

1

1

−1

−1

   (b) 1
2 arcsin t2 − 1

2

   

1.2−1.2

−0.8

0.8

49. y = 4e0.8x

 

3−5

−1

9

51. y = 1
2e

2x + 10ex + 25x + C  53. r = 10 arcsin et + C

55. y =
1
2

 arctan 
tan x

2
+ C  57. 

1
15

  59. 
1
2

61. 
1
2
(1 − e−1) ≈ 0.316  63. 

3
2
[(ln 4)2 − (ln 3)2] ≈ 1.072

65. 8  67. ln 9 +
8
3
≈ 4.864  69. 

π
18

71. 
240
ln 3

≈ 218.457  73. 
18√6

5
≈ 8.82  75. 

4
3
≈ 1.333

77. 1
3 arctan[ 1

3(x + 2)] + C 79. tan θ − sec θ + C
 Graphs will vary.   Graphs will vary.
 Example:   Example:
 

−7 5

−1

1

C = 0

C = −0.2

  

−6

6

− 7π
2

π
2

C = 2

C = 0

 One graph is a vertical   One graph is a vertical 
 translation of the other.  translation of the other.
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 81.  No. When u = x2, it does not follow that x = √u because x 
is negative on [−1, 0).

 83. a = √2, b =
π
4

; −
1

√2
 ln∣csc(x + π

4) + cot(x + π
4)∣ + C

 85. (a) They are equivalent because
   ex+C1 = ex ∙ eC1 = Cex, C = eC1.
  (b) They differ by a constant.
   sec2 x + C1 = (tan2 x + 1) + C1 = tan2 x + C
 87. a
 89. (a) 

x

y

−1−2−3 1 2 3

5

10

15

20

25

   (b) 

321−1−2−3

−3

−2

−1

1

2

3

x

y
y =    2x

  (c) 

2−2

−1

2

3

x

y

y = x

 91. (a) π(1 − e−1) ≈ 1.986

  (b) b =√ln 
3π

3π − 4
≈ 0.743

 93. ln(√2 + 1) ≈ 0.8814

 95. 
8π
3
(10√10 − 1) ≈ 256.545  97. 

1
3

 arctan 3 ≈ 0.416

 99. About 1.0320
101. (a) 1

3 sin x(cos2 x + 2)
  (b) 1

15 sin x(3 cos4 x + 4 cos2 x + 8)
  (c) 1

35 sin x(5 cos6 x + 6 cos4 x + 8 cos2 x + 16)

  (d) ∫ cos15 x dx = ∫ (1 − sin2 x)7 cos x dx

   You would expand (1 − sin2 x)7.
103. Proof

Section 8.2  (page 529)

  1. The formula for the derivative of a product
  3. Let dv = dx.  5. u = x, dv = e9x dx
  7. u = (ln x)2, dv = dx  9. u = x, dv = sec2 x dx
 11. 1

16x
4(4 ln x − 1) + C

 13. −1
4 (2x + 1) cos 4x + 1

8 sin 4x + C

 15. 
e4x

16
(4x − 1) + C  17. ex(x3 − 3x2 + 6x − 6) + C

 19. 1
4 [2(t2 − 1) ln∣t + 1∣ − t2 + 2t] + C  21. 1

3 (ln x)3 + C

 23. 
e2x

4(2x + 1) + C  25. 
2
15

(x − 5)3�2(3x + 10) + C

 27. −x cot x + ln∣sin x∣ + C
 29. (6x − x3)cos x + (3x2 − 6)sin x + C
 31. x arctan x − 1

2 ln(1 + x2) + C
 33. − 3

34e
−3x sin 5x − 5

34e
−3x cos 5x + C

 35. x ln x − x + C

37.  y =
2
5
t2√3 + 5t −

8t
75

(3 + 5t)3�2 +
16

1875
(3 + 5t)5�2 + C

  =
2

625
√3 + 5t (25t2 − 20t + 24) + C

39. (a) 

x
42−2

8

6

2

y

−4

  (b) 2√y − cos x − x sin x = 3
    

−6 6

−2

6

41. 

−10 10

−2

10

43. 2e3�2 + 4 ≈ 12.963  45. 
π
8
−

1
4
≈ 0.143

47. 
π − 3√3 + 6

6
≈ 0.658

49. 1
2 [e(sin 1 − cos 1) + 1] ≈ 0.909

51. 8 arcsec 4 +
√3
2

−
√15

2
−

2π
3

≈ 7.380

53. 
e2x

4
(2x2 − 2x + 1) + C

55. −cos x(x + 2)2 + 2 sin x(x + 2) + 2 cos x + C

57. 1
20 (4x + 9)3�2(2x + 17) + C

59.  Answers will vary. Sample answer: ∫ x3 sin x dx

  It takes three applications until the algebraic factor becomes 
a constant.

61. (a) No, substitution   (b) Yes, u = ln x, dv = x dx
 (c) Yes, u = x2, dv = e−3x dx   (d) No, substitution

 (e) Yes, u = x and dv =
1

√x + 1
 dx   (f ) No, substitution

63. 2(sin √x − √x cos√x) + C

65. 1
2 (x4ex

2 − 2x2ex
2 + 2ex

2) + C

67. (a) and (b) 1
3√4 + x2 (x2 − 8) + C

69. n = 0: x(ln x − 1) + C
 n = 1: 1

4x
2(2 ln x − 1) + C

 n = 2: 1
9x

3(3 ln x − 1) + C 

 n = 3: 1
16x

4(4 ln x − 1) + C

 n = 4: 1
25x

5(5 ln x − 1) + C

 ∫ x
n ln x dx =

xn+1

(n + 1)2 [(n + 1) ln x − 1] + C

71–75. Proofs  77. −x2 cos x + 2x sin x + 2 cos x + C
79. 1

36x
6(6 ln x − 1) + C

81. 
e−3x(−3 sin 4x − 4 cos 4x)

25
+ C
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83. 

7−1

−1

1   85. 

0 1.5
0

1

2 −
8
e3 ≈ 1.602  

π
1 + π2 (1e + 1) ≈ 0.395

87. (a) 1   (b) π(e − 2) ≈ 2.257   (c) 1
2π(e2 + 1) ≈ 13.177

(d) (e
2 + 1

4
, 
e − 2

2 ) ≈ (2.097, 0.359)

89.  In Example 6, we showed that the centroid of an equivalent

region was (1, 
π
8). By symmetry, the centroid of this region

 is (π8, 1).
91. 

7
10π (1 − e−4π) ≈ 0.223  93. $931,265

95. Proof  97. bn =
8h

(nπ)2 sin 
nπ
2

99.  For any integrable function, ∫ f (x) dx = C + ∫ f (x) dx, but 
this cannot be used to imply that C = 0.

Section 8.3  (page 538)

1. ∫ sin8 x dx; The other integral can be found using u-substitution.
 3. −1

6 cos6 x + C  5. 1
5 sin5 x − 1

7 sin7 x + C
7. −1

3 cos3 x + 1
5 cos5 x + C

9. −1
3(cos 2θ)3�2 + 1

7(cos 2θ)7�2 + C
11. 1

12 (6x + sin 6x) + C  13. 2x2 + 2x sin 2x + cos 2x + C

15. 
2
3

  17. 
π
4

  19. 
63π
512

  21. 
1
4

 ln∣sec 4x + tan 4x∣ + C

23. 
sec πx tan πx + ln∣sec πx + tan πx∣

2π + C

25. 
1
2

 tan4 x
2
− tan2 

x
2
− 2 ln∣cos 

x
2∣ + C

27. 
1
2[

sec5 2t
5

−
sec3 2t

3 ] + C  29. 
1
24

 sec6 4x + C

31. 1
7 sec7 x − 1

5 sec5 x + C
33. ln∣sec x + tan x∣ − sin x + C

35. 
12πθ − 8 sin 2πθ + sin 4πθ

32π + C

37. y = 1
9 sec3 3x − 1

3 sec 3x + C

39. (a) 

x

y

4

4

−4

   (b) y = 1
2x −

1
4 sin 2x

   

−6 6

−4

4

41. 

−9 9

−4

8   43. 1
16 (2 sin 4x + sin 8x) + C

45. 1
14 cos 7t − 1

22 cos 11t + C

47. 1
8 (2 sin 2θ − sin 4θ) + C

49. 1
4 (ln∣csc2 2x∣ − cot2 2x) + C

51. −1
3 cot 3x − 1

9 cot3 3x + C

53. ln∣csc t − cot t∣ + cos t + C
55. ln∣csc x − cot x∣ + cos x + C  57. t − 2 tan t + C
59. π   61. 3(1 − ln 2)  63. ln 2  65. 4
67. (a) 1

18 tan6 3x + 1
12 tan4 3x + C1, 

1
18 sec6 3x − 1

12 sec4 3x + C2

(b) 

−0.5 0.5

−0.05

0.05    (c) Proof

69. (a) 1
2 sin2 x + C   (b) −1

2 cos2 x + C

(c) 1
2 sin2 x + C   (d) −1

4 cos 2x + C
The answers are all the same, but they are written in different 
forms. Using trigonometric identities, you can rewrite each 
answer in the same form.

71. 
1
3

  73. 1  75. 2π(1 −
π
4) ≈ 1.348

77. (a) 
π2

2
   (b) (x, y) = (π2, 

π
8)  79–81. Proofs

83. − 1
15 cos x(3 sin4 x + 4 sin2 x + 8) + C

85. − 1
48 (8 cos3 x sin3 x+ 6 cos3 x sin x− 3 cos x sin x− 3x) + C

87. (a) and (b) Proofs
89. (a) Proof   (b) a1 = 2, a2 = −1, a3 =

2
3

Section 8.4  (page 547)

1. (a) x = 3 tan θ   (b) x = 2 sin θ
(c) x = 5 sin θ   (d) x = 5 sec θ

3. 
x

16√16 − x2
+ C

5. 4 ln∣4 − √16 − x2

x ∣ + √16 − x2 + C

7. ln∣x + √x2 − 25∣ + C

9. 1
15 (x2 − 25)3�2(3x2 + 50) + C

11. 
(4 + x2)3�2

6
+ C  13. 

1
4 (arctan 

x
2
+

2x
4 + x2) + C

15. 
1
2
x√49 − 16x2 +

49
8

 arcsin 
4x
7

+ C

17. 
1

2√5 (√5x√36 − 5x2 + 36 arcsin 
√5x

6 ) + C

19. 4 arcsin 
x
2
+ x√4 − x2 + C  21. −

(1 − x2)3�2

3x3 + C

23. −
1
3

 ln∣√4x2 + 9 + 3
2x ∣ + C  25. −

x

√x2 + 3
+ C

27. 
1
2
(arcsin ex + ex√1 − e2x) + C

29. 
1
4 (

x
x2 + 2

+
1

√2
 arctan 

x

√2) + C

31. x arcsec 2x − 1
2 ln∣2x + √4x2 − 1∣ + C

33. 2 arcsin 
x − 2

2
− √4x − x2 + C

35. √x2 + 6x + 12 − 3 ln∣√x2 + 6x + 12 + (x + 3)∣ + C
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37. (a) and (b) √3 −
π
3
≈ 0.685

39. (a) and (b) 9(2 − √2) ≈ 5.272

41. (a) and (b) −
9
2

 ln(2√7
3

−
4√3

3
−
√21

3
+

8
3)

+ 9√3 − 2√7 ≈ 12.644
43. Substitution: u = x2 + 1, du = 2x dx
45. (a) −√1 − x2 + C; The answers are equivalent.

 (b) x − 3 arctan 
x
3
+ C; The answers are equivalent.

47. True  49. False. ∫√3

0
 

dx
(1 + x2)3�2 = ∫π�3

0
 cos θ dθ

51. πab

53. ln 
5(√2 + 1)
√26 + 1

+ √26 − √2 ≈ 4.367  55. 6π 2

57. (0, 0.422)

59. (a) V =
3π
2

+ 3 arcsin(d − 1) + 3(d − 1)√2d − d2

(b) 

0 2
0

10

(c)  The full tank holds 3π ≈ 9.4248 cubic meters. The  
horizontal lines

  y =
3π
4

, y =
3π
2

, y =
9π
4

  intersect the curve at d = 0.596, 1.0, 1.404. The dipstick 
would have these markings on it.

 (d) d′(t) = 1

24√1 − (d − 1)2
(e) 

0 2
0

0.3

The minimum occurs at d = 1, which is the widest part 
of the tank.

61. (a) Proof

 (b) y = −12 ln 
12 − √144 − x2

x
− √144 − x2

0
0

12

30

(c) Vertical asymptote: x = 0   (d) About 5.2 m
63. (a) 187.2π lb   (b) 62.4πd lb  65. Proof

67. 12 +
9π
2

− 25 arcsin 
3
5
≈ 10.050

69. Putnum Problem A5, 2005

Section 8.5  (page 557)

1. (a) 
A
x
+

B
x − 8

   (b) 
A

x − 3
+

B
(x − 3)2 +

C
(x − 3)3

(c) 
A
x
+

Bx + C
x2 + 10

   (d) 
A
x
+

Bx + C
x2 + 1

+
Dx + E
(x2 + 1)2

3. 
1
6

 ln∣x − 3
x + 3∣ + C  5. ln∣x − 1

x + 4∣ + C

7. 5 ln∣x − 2∣ − ln∣x + 2∣ − 3 ln∣x∣ + C
9. x2 + 3

2 ln∣x − 4∣ − 1
2 ln∣x + 2∣ + C

11. 
1
x
+ ln∣x4 + x3∣ + C

13. 
9

x + 1
+ 2 ln∣x∣ − ln∣x + 1∣ + C

15. 9 ln∣x∣ − 32
7

 ln(7x2 + 1) + C

17. 
1
6 (ln∣x − 2

x + 2∣ + √2 arctan 
x

√2) + C

19. ln∣x + 1∣ + √2 arctan 
x − 1

√2
+ C  21. ln 3

23. 
1
2

 ln 
8
5
−

π
4
+ arctan 2 ≈ 0.557  25. ln∣1 + sec x∣ + C

27. ln∣tan x + 2
tan x + 3∣ + C  29. 

1
5

 ln∣ex − 1
ex + 4∣ + C

31. 2√x + 2 ln∣√x − 2

√x + 2∣ + C  33–35. Proofs

37. Substitution: u = x2 + 2x − 8
39. Trigonometric substitution (tan) or inverse tangent rule
41. 12 ln 97  43. 5

2 ln 5  45. 4.90, or $490,000
47. (a) V = 2π(arctan 3 − 3

10) ≈ 5.963
 (b) (x, y) ≈ (1.521, 0.412)

49. x =
n[e(n+1)kt − 1]
n + e(n+1)kt   51. 

π
8

53. Putnam Problem B4, 1992

Section 8.6  (page 564)

 1.  No. The integral can be easily evaluated using basic 
integration rules.

 Trapezoidal Simpson’s Exact
 3. 2.7500 2.6667 2.6667
 5. 0.6970 0.6933 0.6931
 7. 20.2222 20.0000 20.0000
 9. 12.6640 12.6667 12.6667
11. 0.3352 0.3334 0.3333
13. 0.5706 0.5930 0.5940
 Trapezoidal Simpson’s Graphing Utility
15. 3.2833 3.2396 3.2413
17. 0.7828 0.7854 0.7854
19. 102.5553 93.3752 92.7437
21. 0.5495 0.5483 0.5493
23. 0.1940 0.1860 0.1858
25. (a) 1

12   (b) 0  27. (a) 1
4   (b) 1

12

29. (a) n = 366   (b) n = 26
31. (a) n = 77   (b) n = 8
33. (a) n = 643   (b) n = 48
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35. Trapezoidal Rule: 24.5
Simpson’s Rule: 25.67

37. 0.701 39. Tn =
1
2(Ln + Rn)  41. 89,250 m2

43. 10,233.58 ft-lb  45. 2.477  47. Proof

Section 8.7  (page 570)

1. Formula 40  3. −
1
2
x(10 − x) + 25 ln∣5 + x∣ + C

5. −
√1 − x2

x
+ C

7. 1
24 (3x + sin 3x cos 3x + 2 cos3 3x sin 3x) + C

9. −2(cot√x + csc√x) + C  11. x − 1
2 ln(1 + e2x) + C

13. 
x7

49
(7 ln x − 1) + C  15. (a) and (b) x(ln 

x
3
− 1) + C

17. (a) and (b) ln∣x − 1
x ∣ + 1

x
+ C

19. 1
2 [(x2 + 1) arccsc(x2 + 1) + ln(x2 + 1 + √x4 + 2x2 )] + C

21. 
√x4 − 1

x2 + C  23. 
1
36 (

7
7 − 6x

+ ln∣7 − 6x∣) + C

25. ex arccos(ex) − √1 − e2x + C
27. 1

2 (x2 + cot x2 + csc x2) + C

29. 
√2
2

 arctan 
1 + sin θ
√2

+ C  31. −
√2 + 9x2

2x
+ C

33. 1
4 (2 ln∣x∣ − 3 ln∣3 + 2 ln∣x∣∣) + C

35. 
3x − 10

2(x2 − 6x + 10) +
3
2

 arctan(x − 3) + C

37. 1
2 ln∣x2 − 3 + √x4 − 6x2 + 5∣ + C

39. 
2

1 + ex
−

1
2(1 + ex)2 + ln(1 + ex) + C

41. 2
3 (2 − √2) ≈ 0.3905  43. 32

5  ln 2 − 31
25 ≈ 3.1961

45. 
π
2

  47. 
π3

8
− 3π + 6 ≈ 0.4510  49–53. Proofs 

55. 
1

√5
 ln∣2 tan(θ�2) − 3 − √5

2 tan(θ�2) − 3 + √5∣ + C  57. ln 2

59. 1
2 ln(3 − 2 cos θ) + C  61. −2 cos√θ + C

63. 4√3

65. (a) ∫ x ln x dx =
1
2
x2 ln x −

1
4
x2 + C

  ∫ x2 ln x dx =
1
3
x3 ln x −

1
9
x3 + C

  ∫ x3 ln x dx =
1
4
x4 ln x −

1
16

x4 + C

 (b) ∫ x
n ln x dx =

xn+1

n + 1
 ln x −

xn+1

(n + 1)2 + C

 (c) Proof
67. 1919.145 ft-lb  69. About 401.4   71. 32π2

73. Putnam Problem A3, 1980

Section 8.8  (page 579)

 1.  One or both of the limits of integration are infinite, or the 
function has a finite number of infinite discontinuities on the 
interval you are considering.

 3.  To evaluate the improper integral ∫∞a  f (x) dx, find the limit 
as b→∞ when f  is continuous on [a, ∞) or find the limit as 
a→−∞ when f  is continuous on (−∞, b].

 5. Improper; 0 ≤ 3
5 ≤ 1

  7. Not improper; continuous on [0, 1]
  9. Not improper; continuous on [0, 2]
 11. Improper; infinite limits of integration
 13. Infinite discontinuity at x = 0; 4
 15. Infinite discontinuity at x = 1; diverges
 17. 1

8  19. Diverges  21. Diverges  23. 2

 25. 
1

2(ln 4)2  27. π   29. 
π
4

  31. Diverges

 33. Diverges   35. 0  37. −
1
4

  39. Diverges

 41. 
π
3

  43. ln 3  45. 
π
6

  47. 
2π√6

3
  49. p > 1

 51. Proof  53. Converges  55. Converges
 57. Converges  59. Converges
 61. The improper integral diverges.  63. 7

8  65. π

 67. (a) 1   (b) 
π
2

   (c) 2π   69. 2π

 71. (a) W = 20,000 mile-tons   (b) 4000 mi
 73. (a) Proof   (b) 48.66%
 75. (a) 

50 90

0.15

0

  (b) About 0.1587   (c) 0.1587; same by symmetry
 77. (a) $807,992.41   (b) $887,995.15   (c) $1,116,666.67

 79. P =
2πNI(√r2 + c2 − c)

kr√r2 + c2

 81. False. Let f (x) = 1
x + 1

.  83. True  85. True

 87. (a) and (b) Proofs

  (c)  The definition of the improper integral ∫∞
−∞

 is not lim
a→∞

 ∫a
−a

    but rather that if you rewrite the integral that diverges, you  
can find that the integral converges.

 89. Proof

 91. 
1
s
, s > 0  93. 

2
s3, s > 0  95. 

s
s2 + a2, s > 0

 97. 
s

s2 − a2, s > ∣a∣
 99. (a) Γ(1) = 1, Γ(2) = 1, Γ(3) = 2   (b) Proof
  (c) Γ(n) = (n − 1)!

101. c = 1; ln 2  103. 8π[(ln 2)2
3

−
ln 4

9
+

2
27] ≈ 2.01545

105. ∫1

0
 2 sin u2 du; 0.6278  107. Proof

Review Exercises for Chapter 8 (page 583)

  1. 
2
9
(x3 − 27)3�2 + C  3. −4 cot 

x + 8
4

+ C

  5. 
1
2
+ ln 2 ≈ 1.1931  7. 100 arcsin 

x
10

+ C

  9. −xe1−x − e1−x + C

 11. 1
13e

2x(2 sin 3x − 3 cos 3x) + C

 13. x tan x + ln∣cos x∣ + C

 15. 1
16 [(8x2 − 1) arcsin 2x + 2x√1 − 4x2] + C
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17. −
cos5 x

5
+ C  19. 

sin(πx − 1)[cos2(πx − 1) + 2]
3π + C

21. 
2
3 (tan3 

x
2
+ 3 tan 

x
2) + C

23. 
tan3 x2

6
−

tan x2

2
+

x2

2
+ C  25. tan θ + sec θ + C

27. 
3π
16

+
1
2
≈ 1.0890  29. 

3√4 − x2

x
+ C

31. 1
3(x2 + 4)1�2(x2 − 8) + C  33. 256 − 62√17 ≈ 0.3675

35. (a), (b), and (c) 1
3√4 + x2 (x2 − 8) + C

37. 2 ln∣x + 2∣ − ln∣x − 3∣ + C
39. 1

4 [6 ln∣x − 1∣ − ln(x2 + 1) + 6 arctan x] + C

41. x +
1

1 − x
+ 2 ln∣x − 1∣ + C

43. −ln∣ex + 1∣ + 1
2 ln∣ex + 3∣ + 1

2 ln∣ex − 1∣ + C

 Trapezoidal Simpson’s Graphing Utility
45. 0.2848 0.2838 0.2838
47. 0.6366 0.6847 0.7041

49. 
1
25 (

4
4 + 5x

+ ln∣4 + 5x∣) + C  51. 1 −
√2
2

53. 
1
2

 ln∣x2 + 4x + 8∣ − arctan 
x + 2

2
+ C

55. 
ln∣tan πx∣

π + C  57. 1
8 (sin 2θ − 2θ cos 2θ) + C

59. 4
3 (x3�4 − 3x1�4 + 3 arctan x1�4) + C

61. 2√1 − cos x + C  63. sin x ln(sin x) − sin x + C

65. 
5
2

 ln∣x − 5
x + 5∣ + C

67. y = x ln∣x2 + x∣ − 2x + ln∣x + 1∣ + C  69. 1
5

71. 1
2(ln 4)2 ≈ 0.961

73. π2 − 4 sin 2 − 2 cos 2 − 6 ≈ 1.0647  75. 
√27

5
≈ 1.0392

77. (x, y) = (0, 
4

3π)  79. 
32
3

  81. Diverges  83. 1

85. 
π
4

  87. (a) $6,321,205.59   (b) $10,000,000

89. (a) 0.4581   (b) 0.0135

P.S. Problem Solving  (page 585)

 1. (a) 4
3, 16

15   (b) Proof  
 3. (a) R(n), I, T(n), L(n)
 (b) S(4) = 1

3 [ f (0) + 4 f (1) + 2 f (2) + 4 f (3) + f (4)] ≈ 5.42

 5. 
π√3

9
≈ 0.6046  7. (x, y) = (0, 

√2
4 )

 9. (a) Proof   (b) x arcsin x + √1 − x2 + C   (c) 1

11. Proof  13. (a) 
π
4

   (b) 
π
4

15.  s(t) = −16t2 + 12,000t(1 + ln 
50,000

50,000 − 400t)
  + 1,500,000 ln 

50,000 − 400t
50,000

; 557,168.626 ft

17. Proof  19. (a) 
2
π    (b) 0

Chapter 9
Section 9.1  (page 596)

 1.  You need to be given one or more of the first few terms of a 
sequence, and then all other terms are defined using previous 
terms.

 3. g; Factorial functions grow faster than exponential functions.
 5. 3, 9, 27, 81, 243  7. 1, 0, −1, 0, 1  9. 2, −1, 23, −1

2, 25
11. 3, 4, 6, 10, 18  13. c  14. a  15. d  16. b
17. n2 + n  19. n(n − 1)(n − 2)  21. 1  23. 2
25. 

0

7

0 11

 27. 

−2

2

0 11

 Converges to 4  Diverges
29. Converges to 0  31. Diverges  33. Converges to 34
35. Converges to 0  37. Diverges  39. Converges to 0
41. Converges to 1  43. Converges to 0
45. 6n − 4; diverges  47. n2 − 3; diverges

49. 
n + 1
n + 2

; converges  51. 
n + 1
n

; converges

53. Monotonic, bounded  55. Not monotonic, bounded
57. Monotonic, bounded  59. Not monotonic, bounded

61. (a) ∣7 +
1
n∣ ≥ 7 ⇒ bounded

  an > an+1 ⇒ monotonic
  So, {an} converges.
 (b) 

0

10

0 11

   Limit = 7

63. (a) ∣13 (1 −
1
3n)∣ <

1
3
⇒ bounded

  an < an+1 ⇒ monotonic
  So, {an} converges.
 (b) 

−1

−0.1

12

0.4    Limit = 1
3

65. (a) No. lim
n→∞

 An does not exist.

 (b)
 

n 1 2 3 4

An $10,045.83 $10,091.88 $10,138.13 $10,184.60

n 5 6 7

An $10,231.28 $10,278.17 $10,325.28

n 8 9 10

An $10,372.60 $10,420.14 $10,467.90
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67. $26,125.00, $27,300.63, $28,529.15, $29,812.97, $31,154.55
69. Answers will vary. Sample answers:

(a) an = 10 −
1
n

   (b) an =
3n

4n + 1
71.  The sequence {an} could converge or diverge. If {an} is 

increasing, then it converges to a limit less than or equal to 
1. If {an} is decreasing, then it could converge (example: 
an = 1�n) or diverge (example: an = −n).

73. 1, 1.4142, 1.4422, 1.4142, 1.3797, 1.3480; Converges to 1
75. Proof
77.  False. The sequence could also alternate between two values.
79. True
81. (a) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

(b)  1, 2, 1.5, 1.6667, 1.6, 1.6250, 1.6154, 1.6190,  
1.6176, 1.6182   (c) Proof

(d) ρ =
1 + √5

2
≈ 1.6180

83. (a) 1.4142, 1.8478, 1.9616, 1.9904, 1.9976
(b) an = √2 + an−1   (c) lim

n→∞
 an = 2

85. (a) Proof
(b) 

x

y

2 3 4

0.5

1.0

1.5

2.0

n + 1...

y = lnx

   (c) and (d) Proofs

      (e) 
20√20!

20
≈ 0.4152

 
50√50!

50
≈ 0.3897

 
100√100!

100
≈ 0.3799

87–89. Proofs  91. Putnam Problem A1, 1990

Section 9.2  (page 605)

1.  lim
n→∞

 an = 5 means that the limit of the sequence {an} is 5.

 ∑
∞

n=1
 an = a1 + a2 + .  .  . = 5 means that the limit of the

 partial sums is 5.
 3.  You cannot make a conclusion. The series may either  

converge or diverge.
 5. 1, 1.25, 1.361, 1.424, 1.464
 7. 3, −1.5, 5.25, −4.875, 10.3125
 9. 3, 4.5, 5.25, 5.625, 5.8125
11. Geometric series: r = 5

2 > 1  13. lim
n→∞

 an = 1 ≠ 0

15. lim
n→∞

 an = 1 ≠ 0  17. lim
n→∞

 an =
1
4 ≠ 0

19. Geometric series: r = 5
6 < 1

21. Geometric series: r = 0.9 < 1
23. Telescoping series: an = 1�n − 1�(n + 1); Converges to 1.
25. (a) 11

3

(b) 
n 5 10 20 50 100

Sn 2.7976 3.1643 3.3936 3.5513 3.6078

 (c) 

0
0

5

11

   (d)  The terms of the series 
decrease in magnitude 
relatively slowly, and the 
sequence of partial sums 
approaches the sum of the 
series relatively slowly.

27. (a) 20
 (b) 

n 5 10 20 50 100

Sn 8.1902 13.0264 17.5685 19.8969 19.9995

 (c) 

0
0

11

22    (d)  The terms of the series 
decrease in magnitude  
relatively slowly, and the 
sequence of partial sums 
approaches the sum of the 
series relatively slowly.

29. 15  31. 3  33. 32  35. 
1
2

  37. 
sin 1

1 − sin 1

39. (a) ∑
∞

n=0
 

4
10

(0.1)n  41. (a) ∑
∞

n=0
 

12
100 (

1
100)

n

 (b) 
4
9

 (b) 
4
33

43. (a) ∑
∞

n=0
 

3
40

(0.01)n   (b) 
5
66

45. Diverges  47. Diverges  49. Converges
51. Diverges  53. Diverges  55. Diverges
57. Diverges
59.  Yes. If you remove a finite number of terms, the sum of the 

sequence of partial sums still diverges.

61. ∣x∣ <
1
3

; 
3x

1 − 3x
  63. 0 < x < 2; 

x − 1
2 − x

65. −1 < x < 1; 
1

1 + x

67. (a) x   (b) f (x) = 1
1 − x

, ∣x∣ < 1

 (c) 

1.5−1.5
0

f

S3

S5

3    Answers will vary.

69.  The required terms for the two series are n = 100 and n = 5, 
respectively. The second series converges at a higher rate.

71. 160,000(1 − 0.95n) units

73. ∑
∞

i=0
 200(0.75)i; Sum = $800 million  75. 152.42 ft

77. 
1
8

; ∑
∞

n=0
 
1
2 (

1
2)

n

=
1�2

1 − 1�2
= 1

79. (a) −1 + ∑
∞

n=0
 (12)

n

= −1 +
a

1 − r
= −1 +

1
1 − 1�2

= 1

 (b) No   (c) 2
81. (a) 126 in.2   (b) 128 in.2

83.  The $2,000,000 sweepstakes has a present value of 
$1,146,992.12. After accruing interest over the 20-year period, 
it attains its full value.

85. (a) $5,368,709.11   (b) $10,737,418.23   (c) $21,474,836.47
87. (a) $14,739.84   (b) $14,742.45
89. (a) $518,136.56   (b) $518,168.67

91. False. lim
n→∞

 
1
n
= 0, but ∑

∞

n=1
 
1
n

 diverges.
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93. False. ∑
∞

n=1
 arn =

a
1 − r

− a; The formula requires that the

 geometric series begins with n = 0.
95. True

97. Answers will vary. Sample answer: ∑
∞

n=0
 1, ∑

∞

n=0
 (−1)

99–101. Proofs  103. Putnam Problem A2, 1984

Section 9.3  (page 613)

1.  f  must be positive, continuous, and decreasing for x ≥ 1 and 
an = f (n).

3. Diverges  5. Converges  7. Converges
9. Diverges  11. Diverges  13. Converges

15. Converges  17. Converges  19. Diverges
21. Converges  23. Diverges
25. f (x) is not positive for x ≥ 1.
27. f (x) is not always decreasing.  29. Converges
31. Diverges  33. Diverges  35. Converges
37. Converges
39. (a) 

n 5 10 20 50 100

Sn 3.7488 3.75 3.75 3.75 3.75

  

11
0

0

11     The partial sums approach the 
sum 3.75 very quickly.

 (b) 
n 5 10 20 50 100

Sn 1.4636 1.5498 1.5962 1.6251 1.635

  

12
0

0

8     The partial sums approach the

 sum 
π2

6
≈ 1.6449 more slowly

 than the series in part (a).

41. No. Because ∑
∞

n=1
 
1
n

 diverges, ∑
∞

n=10,000
 
1
n

 also diverges. The 

  convergence or divergence of a series is not determined by the 
first finite number of terms of the series.

43. (a) 

1 2 3 4

1

x

y

The area under the rectangles is greater than the area under

the curve. Because ∫∞
1

 
1

√x
 dx = [2√x]

∞

1
= ∞ diverges,

  ∑
∞

n=1
 

1

√n
 diverges.

 (b) 

1 2 3 4

1

x

y

  The area under the rectangles is less than the area under 

  the curve. Because ∫∞
1

 
1
x2 dx = [−1

x]
∞

1
= 1 converges,

  ∑
∞

n=2
 
1
n2 converges (and so does ∑

∞

n=1
 
1
n2).

45. p > 1  47. p > 1  49. p > 3  51. Proof
53. S3 ≈ 1.0748 55. S8 ≈ 0.9597
 R3 ≈ 0.0123  R8 ≈ 0.1244
57. S4 ≈ 0.4049
 R4 ≈ 5.6 × 10−8

59. N ≥ 7  61. N ≥ 16

63. (a) ∑
∞

n=2
 

1
n1.1 converges by the p-Series Test because 1.1 > 1.

  ∑
∞

n=2
 

1
n ln n

 diverges by the Integral Test because

  ∫∞
2

 
1

x ln x
 dx diverges.

 (b)  ∑
∞

n=2
 

1
n1.1 = 0.4665 + 0.2987 + 0.2176 + 0.1703

   + 0.1393 + .  .  .

   ∑
∞

n=2
 

1
n ln n

= 0.7213 + 0.3034 + 0.1803 + 0.1243

   + 0.0930 + .  .  .

 (c) n ≥ 3.431 × 1015

65. (a)  Let f (x) = 1
x
. f  is positive, continuous, and decreasing

  on [1, ∞).

  Sn − 1 ≤ ∫n
1

 
1
x
 dx = ln n

  Sn ≥ ∫n+1

1
 
1
x
 dx ln(n + 1) 

  So, ln(n + 1) ≤ Sn ≤ 1 + ln n.
 (b) ln(n + 1) − ln n ≤ Sn − ln n ≤ 1
   Also, ln(n + 1) − ln n > 0 for n ≥ 1. So, 

0 ≤ Sn − ln n ≤ 1, and the sequence {an} is bounded.
 (c)  an − an+1 = [Sn − ln n] − [Sn+1 − ln(n + 1)]

   = ∫n+1

n

 
1
x
 dx −

1
n + 1

≥ 0

  So, an ≥ an+1.
 (d)  Because the sequence is bounded and monotonic, it  

converges to a limit, γ.
 (e) 0.5822
67. (a) Diverges   (b) Diverges

 (c) ∑
∞

n=2
 xln n converges for x <

1
e
.

69. Diverges  71. Converges  73. Converges
75. Diverges  77. Diverges  79. Converges
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Section 9.4  (page 620)

1.  Yes. The test requires that 0 ≤ an ≤ bn for all n greater 
than some integer N. The beginning terms do not affect the  
convergence or divergence of a series.

 3. (a)

n

2

1

2

4

3

4

6

5

6 8 10

6
n3/2

6
n2 + 0.5

an =

6
n3/2 + 3

an =

an =
n

an   

n

2

2

4

4

6

6 8

8

10

10

12

∑
k = 1

n

∑
k = 1

n

∑ 6
k2 + 0.5kk = 1

n

Sn
6

k3/2

6
k3/2 + 3

(b) ∑
∞

n=1
 

6
n3�2; Converges

 (c)  The magnitudes of the terms are less than the magnitudes 
of the terms of the p-series. Therefore, the series converges.

 (d)  The smaller the magnitudes of the terms, the smaller the 
magnitudes of the terms of the sequence of partial sums.

 5. Diverges  7. Diverges  9. Diverges
11. Converges  13. Converges  15. Converges
17. Diverges  19. Diverges  21. Converges
23. Converges  25. Diverges
27. Diverges; p-Series Test

29. Converges; Direct Comparison Test with ∑
∞

n=1
 (15)

n

31. Diverges; nth-Term Test  33. Converges; Integral Test

35. lim
n→∞

 
an

1�n
= lim

n→∞
 nan; lim

n→∞
 nan ≠ 0 but is finite.

 The series diverges by the Limit Comparison Test.
37. Diverges  39. Converges

41. lim
n→∞

 n( n3

5n4 + 3) =
1
5
≠ 0

43. Diverges  45. Converges
47.  Convergence or divergence is dependent on the form of 

the general term for the series and not necessarily on the  
magnitudes of the terms.

49. (a) Proof
(b) 

n 5 10 20 50 100

Sn 1.1839 1.2087 1.2212 1.2287 1.2312

 (c) 0.1226   (d) 0.0277

51. Proof  53. False. Let an =
1
n3 and bn =

1
n2.

55. True  57. True  59. Proof  61. ∑
∞

n=1
 
1
n2, ∑

∞

n=1
 
1
n3

63– 69. Proofs
71. Putnam Problem 1, afternoon session, 1953

Section 9.5  (page 629)

1.  The series diverges because of the nth-Term Test for 
Divergence.

 3.  ∑an is absolutely convergent if ∑∣an∣ converges. ∑an is 
conditionally convergent if ∑∣an∣ diverges, but ∑an  
converges.

 5. (a) n 1 2 3 4 5

Sn 1.0000 0.6667 0.8667 0.7238 0.8349

n 6 7 8 9 10

Sn 0.7440 0.8209 0.7543 0.8131 0.7605

 (b) 

0.6
0 11

1.1

(c)  The points alternate sides of the horizontal line y =
π
4

 that

   represents the sum of the series. The distances between the 
successive points and the line decrease.

 (d)  The distance in part (c) is always less than the magnitude 
of the next term of the series.

 7. (a) 
n 1 2 3 4 5

Sn 1.0000 0.7500 0.8611 0.7986 0.8386

n 6 7 8 9 10

Sn 0.8108 0.8312 0.8156 0.8280 0.8180

 (b) 

0.6
0 11

1.1

 (c)  The points alternate sides of the horizontal line y =
π2

12
   that represents the sum of the series. The distances 

between the successive points and the line decrease.
 (d)  The distance in part (c) is always less than the magnitude 

of the next term of the series.
 9. Converges  11. Converges  13. Diverges
15. Diverges  17. Converges  19. Diverges
21. Diverges  23. Converges  25. Converges
27. Converges  29. Converges  31. 1.8264 ≤ S ≤ 1.8403
33. 1.7938 ≤ S ≤ 1.8054  35. 10  37. 7
39. 7 terms (Note that the sum begins with n = 0.)
41. Converges absolutely  43. Converges absolutely
45. Converges conditionally  47. Diverges
49. Converges conditionally  51. Converges absolutely
53. Converges absolutely  55. Converges conditionally
57. Converges absolutely
59. Overestimate; The next term is negative.
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61. (a) False. For example, let an =
(−1)n
n

.

  Then ∑ an = ∑ 
(−1)n
n

 converges

  and ∑ (−an) = ∑ 
(−1)n+1

n
 converges.

  But, ∑ ∣an∣ = ∑ 
1
n

 diverges.

 (b) True. For if ∑ ∣an∣ converged, then so would ∑ an by 

  Theorem 9.16.

63. p > 0

65. Proof; The converse is false. For example: Let an =
1
n

.

67. ∑
∞

n=1
 
1
n2 converges, and so does ∑

∞

n=1
 
1
n4.

69. (a) No; an+1 ≤ an is not satisfied for all n. For example, 19 < 1
8.

 (b) Yes; 0.5
71. Diverges; p-Series Test  73. Diverges; nth-Term Test
75. Diverges; Geometric Series Test
77. Converges; Integral Test
79. Converges; Alternating Series Test
81.  You cannot arbitrarily change 0 to 1 − 1.

Section 9.6  (page 637)

 1. Conveges  3. Diverges  5. Inconclusive  7. Proof

 9. d  10. c  11. f  12. b  13. a  14. e
15. (a) Proof
 (b)
 

n 5 10 15 20 25

Sn 13.7813 24.2363 25.8468 25.9897 25.9994

 (c) 

0

28

0 11

   (d) 26

 (e)  The more rapidly the terms of the series approach 0, the 
more rapidly the sequence of partial sums approaches the 
sum of the series.

17. Converges  19. Diverges  21. Diverges
23. Diverges  25. Converges  27. Converges
29. Diverges  31. Converges  33. Converges
35. Diverges  37. Converges  39. Converges
41. Diverges  43. Converges  45. Diverges
47. Converges  49. Converges  51. Converges
53. Converges; Alternating Series Test
55. Converges; p-Series Test  57. Diverges; nth-Term Test
59. Diverges; Geometric Series Test

61. Converges; Limit Comparison Test with bn =
1
2n

63. Converges; Direct Comparison Test with bn =
1
3n

 65. Diverges; Ratio Test  67. Converges; Ratio Test
 69. Converges; Ratio Test  71. a and c  73. a and b

 75. ∑
∞

n=0
 
n + 1
7n+1   77. Diverges; lim

n→∞
 ∣an+1

an ∣ > 1

 79. Converges; lim
n→∞

 ∣an+1

an ∣ < 1  81. Diverges; lim an ≠ 0

 83. Converges  85. Converges  87. (−3, 3)
 89. (−2, 0]  91. x = 0  93. The test is inconclusive.

 95. No; The series ∑
∞

n=1
 

1
n + 10,000

 diverges.

 97–103. Proofs
105. (a) Diverges   (b) Converges   (c) Converges
  (d) Converges for all integers x ≥ 2
107. Putnam Problem 7, morning session, 1951

Section 9.7  (page 648)

  1.  The graphs of the approximating polynomial P and the 
elementary function f  both pass through the point (c, f (c)), 
and the slope of the graph of P is the same as the slope of 
the graph of f  at the point (c, f (c)). If P is of degree n, then 
the first n derivatives of f  and P agree at c. This allows the 
graph of P to resemble the graph of f  near the point (c, f (c)).

  3.  The accuracy is represented by the remainder of the Taylor

  polynomial. The remainder is Rn(x) =
f (n+1)(z)(x − c)n+1

(n + 1)! .

  5. d  6. c  7. a  8. b

  9. P1 =
1
16

x +
1
4

  11. P1 =
2√3

3
+

2
3 (x −

π
6)

 

−0.5

1

−2 10

4, 1
2( (P1

f

   

p
2

p
2

−

−1

5

 13. 

−2 6

−2

10

P2

f

(1, 4)

 
x 0 0.8 0.9 1 1.1

f (x) Error 4.4721 4.2164 4.0000 3.8139

P2(x) 7.5000 4.4600 4.2150 4.0000 3.8150

x 1.2 2

f (x) 3.6515 2.8284

P2(x) 3.6600 3.5000

15. (a)

3−3

−2

2

P6

P2

P4

f

 (b) f (2)(0) = −1 P2
(2)(0) = −1

  f (4)(0) = 1 P4
(4)(0) = 1

  f (6)(0) = −1 P6
(6)(0) = −1

   (c) f (n)(0) = Pn
(n)(0)
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17. 1 + 4x + 8x2 + 32
3 x

3 + 32
3 x

4  19. x − 1
6x

3 + 1
120x

5

21. x + x2 + 1
2x

3 + 1
6x

4  23. 1 + x + x2 + x3 + x4 + x5

25. 1 + 1
2x

2  27. 2 − 2(x − 1) + 2(x − 1)2 − 2(x − 1)3

29. 2 + 1
4 (x − 4) − 1

64 (x − 4)2
31. ln 2 + 1

2(x − 2) − 1
8(x − 2)2 + 1

24(x − 2)3 − 1
64(x − 2)4

33. (a) P3(x) = πx + π3

3
x3

 (b) Q3(x) = 1 + 2π(x− 1
4) + 2π2(x− 1

4)
2

+
8π3

3 (x−
1
4)

3

 

f

P3
Q3

−0.5 0.5

−4

4

35. (a) 
x 0 0.25 0.50 0.75 1.00

sin x 0 0.2474 0.4794 0.6816 0.8415

P1(x) 0 0.25 0.50 0.75 1.00

P3(x) 0 0.2474 0.4792 0.6797 0.8333

P5(x) 0 0.2474 0.4794 0.6817 0.8417

 (b) 

−3

P5

P3 P1
f

2π−2π

3

 (c)  As the distance increases, the polynomial approximation 
becomes less accurate.

37. (a) P3(x) = x + 1
6 x

3

 (b) 
x −0.75 −0.50 −0.25 0 0.25

f (x) −0.848 −0.524 −0.253 0 0.253

P3(x) −0.820 −0.521 −0.253 0 0.253

x 0.50 0.75

f (x) 0.524 0.848

P3(x) 0.521 0.820

 (c) 

1−1

2
f

x

P3

π

2
π

y

−

39. 2.7083  41. 0.227  43. 0.7419
45. R4 ≤ 2.03 × 10−5; 0.000001
47. R5 ≤ 1.8 × 10−8; 2.5 × 10−9

49. R3 ≤ 7.82 × 10−3; 0.00085  51. 3  53. 5  55. 2
57. n = 9; ln(1.5) ≈ 0.4055  59. −0.3936 < x < 0

61. −0.9467 < x < 0.9467
63.  The tangent line to a function at a point is the first Taylor 

polynomial for the function at the point.
65.  Substitute 2x into the polynomial for f (x) = ex to obtain the 

polynomial for g(x) = e2x.
67. (a) f (x) ≈ P4(x) = 1 + x + 1

2x
2 + 1

6x
3 + 1

24x
4

  g(x) ≈ Q5(x) = x + x2 + 1
2x

3 + 1
6x

4 + 1
24x

5

  Q5(x) = xP4(x)

 (b) g(x) ≈ P6(x) = x2 −
x4

3!
+

x6

5!

 (c) g(x) ≈ P4(x) = 1 −
x2

3!
+

x4

5!

69. (a) Q2(x) = −1 + (π
2

32)(x + 2)2

 (b) R2(x) = −1 + (π
2

32)(x − 6)2

 (c)  No. Horizontal translations of the result in part (a) are  
possible only at x = −2 + 8n (where n is an integer) 
because the period of f  is 8.

71–73. Proofs

Section 9.8  (page 658)

 1.  A Maclaurin polynomial approximates a function, whereas 
a power series exactly represents a function. The Maclaurin 
polynomial has a finite number of terms and the power series 
has an infinite number of terms.

 3. R = 5  5. 0  7. 2  9. R = 1  11. R = 1
4

13. R = ∞  15. (−4, 4)  17. (−1, 1]  19. (−∞, ∞)
21. x = 0  23. (−6, 6)  25. (−5, 13]  27. (0, 2]
29. (0, 6)  31. (−1

2, 12)  33. (−∞, ∞)  35. (−1, 1)
37. x = 3  39. R = c  41. (−k, k)  43. (−1, 1)

45. ∑
∞

n=1
 

xn−1

(n − 1)!  47. ∑
∞

n=1
 

xn

(7n + 6)!
49. (a) (−3, 3)   (b) (−3, 3)   (c) (−3, 3)   (d) [−3, 3)
51. (a) (0, 2]   (b) (0, 2)   (c) (0, 2)   (d) [0, 2]

53. ∑
∞

n=1
 (x3)

n

; Answers will vary.

55. Answers will vary. Sample answer: 

 ∑
∞

n=1
 
xn

n
 converges for −1 ≤ x < 1. At x = −1, the 

 convergence is conditional because ∑ 
1
n

 diverges.

 ∑
∞

n=1
 
xn

n2 converges for −1 ≤ x ≤ 1. At x = ±1, the

 convergence is absolute.
57. (a) For f (x): (−∞, ∞); For g(x): (−∞, ∞)
 (b) Proofs   (c) f (x) = sin x, g(x) = cos x
59– 63. Proofs
65. (a) and (b) Proofs
 (c) 

−6 6

−5

3    (d) 0.92
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67. (a) 8
3  (b) 8

13

0 6
0

4     

0 6
0

1

(c)  The alternating series converges more rapidly. The partial 
sums of the series of positive terms approach the sum from 
below. The partial sums of the alternating series alternate 
sides of the horizontal line representing the sum.

(d) 
M 10 100 1000 10,000

N 5 14 24 35

69. 

−3 3

2

−2

 71. 

1−1
0

3

 f (x) = cos πx  f (x) = 1
1 + x

73. False. Let an =
(−1)n
n2n

.  75. True  77. Proof

79. (a) (−1, 1)   (b) f (x) =
c0 + c1x + c2x

2

1 − x3

81. Proof

Section 9.9  (page 666)

 1.  You need to algebraically manipulate 
b

c − x
 so that it resembles

 the form 
a

1 − r
.

 3. ∑
∞

n=0
 
xn

4n+1  5. ∑
∞

n=0
 
4
3 (

−x
3 )

n

 

 7. ∑
∞

n=0
 (15)(

x − 1
5 )

n

  9. ∑
∞

n=0
 (3x)n

 (−4, 6) (−1
3, 13)

11. −
5
9

 ∑
∞

n=0
 [29 (x + 3)]

n

  13. −2 ∑
∞

n=0
 [5(x + 1)]n

 (−15
2 , 32) (−6

5, −4
5)

15. ∑
∞

n=0
 [ 1
(−3)n − 1]xn  17. ∑

∞

n=0
 xn[1 + (−1)n] = 2 ∑

∞

n=0
 x2n

 (−1, 1) (−1, 1)

19. 2 ∑
∞

n=0
 x2n  21. ∑

∞

n=1
 n(−1)nxn−1  23. ∑

∞

n=0
 
(−1)nxn+1

n + 1
 (−1, 1) (−1, 1) (−1, 1]

25. ∑
∞

n=0
 (−1)n x2n  27. ∑

∞

n=0
 (−1)n(2x)2n

 (−1, 1) (−1
2, 12)

29. 

−4 8

−3

S3
f

S2

5

 
x 0.0 0.2 0.4 0.6 0.8 1.0

S2 0.000 0.180 0.320 0.420 0.480 0.500

ln(x + 1) 0.000 0.182 0.336 0.470 0.588 0.693

S3 0.000 0.183 0.341 0.492 0.651 0.833

31. (a) 

−3

0 4

n = 1
n = 3

n = 6
n = 2

3    (b) ln x, 0 < x ≤ 2, R = 1
   (c) −0.6931
   (d)  ln(0.5); The error is  

approximately 0.

33. 0.245  35. 0.125  37. ∑
∞

n=1
 nxn−1, −1 < x < 1

39. ∑
∞

n=0
 (2n + 1)xn, −1 < x < 1

41.  E(n) = 2; Yes. Because the probability of obtaining a head on a 
single toss is 1

2, it is expected that, on average, a head will be 
obtained in two tosses.

43. Proof  45. (a) Proof   (b) 3.14
47. ln 32 ≈ 0.4055; See Exercise 23.

49. ln 75 ≈ 0.3365; See Exercise 47.

51. arctan 12 ≈ 0.4636; See Exercise 50.
53.  The series in Exercise 50 converges to its sum at a lower rate 

because its terms approach 0 at a much lower rate.
55.  The series converges on the interval (−5, 3) and perhaps also 

at one or both endpoints.

57. S1 = 0.3183098862, 
1
π ≈ 0.3183098862

Section 9.10  (page 677)

 1.  The Taylor series converges to f (x) if and only if Rn(x)→ 0 
as n→∞.

 3. Multiply and divide as you would polynomials.

 5. ∑
∞

n=0
 
(2x)n
n!

  7. 
√2
2

 ∑
∞

n=0
 
(−1)n(n+1)�2

n! (x − π
4)

n

 9. ∑
∞

n=0
 (−1)n(x − 1)n  11. ∑

∞

n=0
 
(−1)n(x − 1)n+1

n + 1

13. ∑
∞

n=0
 
(−1)n(3x)2n+1

(2n + 1)!   15. 1 +
x2

2!
+

5x4

4!
+ .  .  .

17–19. Proofs  21. 1 + ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)xn

2nn!

23. 1 + ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)x2n

2nn!

25. 1 +
1
4
x + ∑

∞

n=2
 
(−1)n+1 3 ∙ 7 ∙ 11 .  .  . (4n − 5)xn

4nn!

27. ∑
∞

n=0
 
x2n

2nn!
  29. ∑

∞

n=1
 
(−1)n−1 xn

n
  31. ∑

∞

n=0
 
(−1)n42nx2n

(2n)!

33. ∑
∞

n=0
 
(−1)n (5x)2n+1

2n + 1
  35. ∑

∞

n=0
 
(−1)n x3n

(2n)!
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37. ∑
∞

n=0
 

x2n+1

(2n + 1)!  39. 
1
2[1 + ∑

∞

n=0
 
(−1)n(2x)2n

(2n)! ]
41. Proof  43. ∑

∞

n=0
 
(−1)n x2n+2

(2n + 1)!

45. { ∑∞n=0
 
(−1)n x2n

(2n + 1)!,

1,

x ≠ 0

x = 0

47. P5(x) = x + x2 + 1
3x

3 − 1
30x

5

 

−6 6

−2

P5

f

14

49. P5(x) = x − 1
2x

2 − 1
6x

3 + 3
40x

5

 

−3 9

−4

h

P5

4

51. P4(x) = x − x2 + 5
6x

3 − 5
6x

4

 

−6 6

−4

g

4

P4

53. ∑
∞

n=0
 
(−1)(n+1)x2n+3

(2n + 3)(n + 1)!  55. 0.6931  57. 7.3891

59. 0  61. 1  63. 0.8075  65. 0.9461  67. 0.4872
69. 0.2010  71. 0.7040  73. 0.3412
75.  Square the series for cos x, use a half-angle identity, or  

compute the coefficients using the definition.

 First three terms: 1, 
x2

2
, 
x4

3

77. f (x) = sin(x + 3)
4

; Answers will vary.

79.  Proof
81. (a) 

21 3

2

1

−1−2−3
x

y    (b) Proof

      (c) ∑
∞

n=0
 0xn = 0 ≠ f (x); The

    series converges to f  at 
x = 0 only.

83. Proof  85. 20  87. −0.612864  89. ∑
∞

n=0
 (kn)xn

91. Proof  93. Putnam Problem 4, morning session, 1962

Review Exercises for Chapter 9  (page 680)

 1. 4, 34, 214, 1294, 7774  3. −1
4, 1

16, − 1
64, 1

256, − 1
1024

 5. a   6. c  7. d  8. b
 9. 

120
0

8    Converges to 5

 11. Converges to 0  13. Converges to 5  15. Diverges
 17. Diverges  19. an = 5n − 2; diverges

 21. an =
1

(n! + 1); converges  23. Monotonic, bounded

 25. (a) 
n 1 2 3 4

An $8100.00 $8201.25 $8303.77 $8407.56

n 5 6 7 8

An $8512.66 $8619.07 $8726.80 $8835.89

  (b) $13,148.96
 27. 3, 4.5, 5.5, 6.25, 6.85
 29. (a) 

n 5 10 15 20 25

Sn 13.2 113.3 873.8 6648.5 50,500.3

  (b) 

120

−10

120

 31. 
5
3

  33. 
35
3

  35. (a) ∑
∞

n=0
 (0.09)(0.01)n   (b) 

1
11

 37. Diverges  39. Diverges
 41. 120,000[1 − 0.92n], n > 0  43. Diverges
 45. Converges  47. Diverges  49. Diverges
 51. Converges  53. Diverges  55. Converges
 57. Converges  59. Diverges  61. 10  63. Diverges
 65. Diverges   67. Converges
 69. (a) Proof
  (b) 

n 5 10 15 20 25

Sn 2.8752 3.6366 3.7377 3.7488 3.7499

  (c) 

−1

0 12

4    (d) 3.75

 71. Converges; p-Series Test  73. Diverges; nth-Term Test

 75. Diverges; Limit Comparison Test

 77. P3(x) = 1 − 2x + 2x2 − 4
3x

3

 79. P3(x) = 1 − 3(x − 1) + 6(x − 1)2 − 10(x − 1)3

 81. 3   83. (−10, 10)  85. [1, 3]
 87. Converges only at x = 2
 89. (a) (−5, 5)   (b) (−5, 5)   (c) (−5, 5)   (d) [−5, 5)

 91. Proof  93. ∑
∞

n=0
 
2
3 (

x
3)

n

  95. ∑
∞

n=0
 2(x − 1

3 )
n

; (−2, 4)

 97. ln 54 ≈ 0.2231  99. e1�2 ≈ 1.6487

101. cos 23 ≈ 0.7859  103. 
√2
2

 ∑
∞

n=0
 
(−1)n(n+1)�2

n! (x − 3π
4 )

n

105. ∑
∞

n=0
 
(x ln 3)n

n!
  107. −∑

∞

n=0
 (x + 1)n
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109. 1 +
x
5
−

2x2

25
+

6x3

125
−

21x4

625
+ .  .  .

111. (a)–(c) 1 + 2x + 2x2 +
4
3
x3  113. ∑

∞

n=0
 
(6x)n
n!

115. ∑
∞

n=0
 
(−1)n(5x)2n+1

(2n + 1)!   117. 0.5

P.S. Problem Solving  (page 683)

  1. (a) 1   (b) Answers will vary. Sample answer: 0, 13, 23
  (c) 0
  3. Proof  5. (a) Proof   (b) Yes   (c) Any distance

  7. (a) ∑
∞

n=0
 

xn+2

(n + 2)n!
; 

1
2

  (b) ∑
∞

n=0
 
(n + 1)xn

n!
; 5.4366

  9.  For a = b, the series converges conditionally. For no values 
of a and b does the series converge absolutely.

 11. Proof  13. (a) and (b) Proofs
 15. (a) The height is infinite.   (b) The surface area is infinite.
  (c) Proof

Chapter 10
Section 10.1  (page 696)

  1.  A parabola is the set of all points that are equidistant from a 
fixed line, the directrix, and a fixed point, the focus, not on 
the line. An ellipse is the set of all points the sum of whose 
distances from two distinct fixed points called foci is constant. 
A hyperbola is the set of all points whose absolute value of 
the difference between the distances from two distinct fixed 
points called foci is constant.

  3. (a) 0 < e < 1
  (b) As e gets closer to 1, the graph of the ellipse flattens.
  5. a  6. e  7. c  8. b  9. f  10. d
 11. Vertex: (−5, 3) 13. Vertex: (−1, 2)
  Focus: (−21

4 , 3)  Focus: (0, 2)
  Directrix: x = −19

4   Directrix: x = −2
  

x

y

−2−4−6−8−10−12−14
−1

1

2

3

4

5

6

(−5, 3)

  

6

4

6

42−2

−2

x

(−1, 2)

y

 15. Vertex: (−2, 2)
  Focus: (−2, 1)
  Directrix: y = 3
  

x
2

4

−2

−4

(−2, 2)

−2−4−6

y

 17. (y − 4)2 = 4(−2)(x − 5)  19. (x − 0)2 = 4(8)(y − 5)
 21. (x − 1)2 = 4(−1

3)(y + 1)  23. (x − 7
5)2 = 4( 3

20)(y + 4
15)

25. Center: (0, 0) 27. Center: (3, 1)
 Foci: (0, ±√15)  Foci: (3, 4), (3, −2)
 Vertices: (0, ±4)  Vertices: (3, 6), (3, −4)

 e =
√15

4
  e =

3
5

 

x

y

(0, 0)

2

−4

1

2

4

−2−3−4 3 4

  

x

y

−2 2 4 6 8

−2

−4

4

6

(3, 1)

29. Center: (−2, 3)
 Foci: (−2, 3 ± √5)
 Vertices: (−2, 6), (−2, 0)

 e =
√5
3

 

6

4

2

2−2−4−6
x

(−2, 3)

y

31. 
x2

36
+

y2

11
= 1  33. 

(x − 3)2
9

+
(y − 5)2

16
= 1

35. 
x2

16
+

7y2

16
= 1

37. Center: (0, 0) 

−10−15 10 15
−5

−10

−15

5

10

15

x

y

 Foci: (±√41, 0)
 Vertices: (±5, 0)

 e =
√41

5

 Asymptotes: y = ±
4
5
x

39. Center: (2, −3) 

642−2

−2

−4

−6

x

y

 Foci: (2 ± √10, −3)
 Vertices: (1, −3), (3, −3)
 e = √10
 Asymptotes: y = −3 ± 3(x − 2)

41. 
x2

1
−

y2

25
= 1  43. 

y2

9
−

(x − 2)2
9�4

= 1

45. 
y2

4
−

x2

12
= 1  47. 

(x − 3)2
9

−
(y − 2)2

4
= 1

49. (a) (6, √3): 2x − 3√3y − 3 = 0

  (6, −√3): 2x + 3√3y − 3 = 0

 (b) (6, √3): 9x + 2√3y − 60 = 0

  (6, −√3): 9x − 2√3y − 60 = 0
51. Parabola  53. Hyperbola   55. Circle
57. (a) Ellipse   (b) Hyperbola   (c) Circle
 (d)  Answers will vary. Sample answer: Eliminate the y2-term.
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59.  Recall that 0 ≤ sin2 θ ≤ 1. The circumference is given by

 C = 4∫π�2

0
 √a2 − (a2 − b2) sin2 θ dθ

 

x

y

61. 9
4 m  63. (a) Proof   (b) (3, −3)  65. y = 1

180 x
2

67. 
16(4 + 3√3 − 2π)

3
≈ 15.536 ft2

69. Minimum distance: 147,099,713.4 km
 Maximum distance: 152,096,286.6 km
71. e ≈ 0.1373  73. e ≈ 0.9671
75. (a) Area = 2π

 (b) Volume =
8π
3

  Surface area =
2π(9 + 4√3π)

9
≈ 21.48

 (c) Volume =
16π

3

  Surface area =
4π[6 + √3 ln(2 + √3)]

3
≈ 34.69

77. 37.96  79. 40  81. 
(x − 6)2

9
−

(y − 2)2
7

= 1

83. 110.3 mi  85. Proof
87. False. See the definition of a parabola.  89. True
91. True  93. Putnam Problem B4, 1976

Section 10.2  (page 707)

 1. The position, direction, and speed at a given time
 3.  Different parametric representations can be used to represent 

various speeds at which objects travel along a given path.
 5. 

x

y

−1−2−3−5 1 2 3

1

2

3

4

6

7

  7. 

4

42−2
x

y

 3x − 2y + 11 = 0  y = (x − 1)2

 9. 

1

321−1−2−3
x

y  11. 

x

y

−1−2−3−4 1 3 4

−2

−3

−4

−5

−6

1

2

 y = 1
2x

2�3

    y = x2 − 5, x ≥ 0

13. 

x

y

−1−3−4 1 2 3 4

2

3

4

5

1

 15. 

4

8

1284−4
x

y

    y =
∣x − 4∣

2
 y =

x + 3
x

17. 

3

2

4

5

−1
3 421−2 −1

1

x

y  19. 

x

y

−6 −4 −2 62 4

−4

−6

2

4

6

 y = x3 + 1, x > 0  x2 + y2 = 64

21. 

2

3

31 2

−2

−3

1

x

y

 y =
1
x
, ∣x∣ ≥ 1

23. 

−9

−6

9

6  25. 

−1

−4

8

2

 
x2

36
+

y2

16
= 1  

(x − 4)2
4

+
(y + 1)2

1
= 1

27. 

−12

−4

6

8  29. 

−9 9

−6

6

 
(x + 3)2

16
+

(y − 2)2
25

= 1  
x2

16
−

y2

9
= 1

31. 

−1

−2

5

2  33. 

−1

−1

5

3

 y = ln x  y =
1
x3, x > 0

35.  Both curves represent the parabola y = x2.
  Domain Orientation Smooth
 (a) −∞ < x < ∞ Left to right Yes
 (b) −∞ < x < ∞ Right to left Yes
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37. Each curve represents a portion of the line y = 2x + 1.
  Domain Orientation Smooth
 (a) −∞ < x < ∞ Up  Yes

 (b) −1 ≤ x ≤ 1 Oscillates No, 
dx
dθ =

dy
dθ = 0

     when 
     θ = 0, ±π, ±2π, .  .  .
 (c) 0 < x < ∞ Down  Yes
 (d) 0 < x < ∞ Up  Yes

39. y − y1 =
y2 − y1

x2 − x1
(x − x1)  41. 

(x − h)2
a2 +

(y − k)2
b2 = 1

43. x = 4t 45. x = 1 + 2 cos θ
 y = −7t  y = 1 + 2 sin θ
 (Solution is not unique.)  (Solution is not unique.)
47. x = 2 + 5 cos θ 49. x = 2 tan θ
 y = 4 sin θ  y = sec θ
 (Solution is not unique.)  (Solution is not unique.)
51. x = t 53. x = t
 y = 6t − 5;  y = t3;
 x = t + 1  x = tan t
 y = 6t + 1  y = tan3 t
 (Solution is not unique.)  (Solution is not unique.)
55. x = t + 3, y = 2t + 1 57. x = t, y = t2

59. 

−2 16

−1

5  61. 

−2 7

−1

5

 Not smooth at θ = 2nπ   Smooth everywhere
63. 

−6 6

−4

4  65. 

−6 6

−4

4

 Not smooth at θ = 1
2nπ   Smooth everywhere

67.  The orientation moves right to left on [−1, 0] and left to right 
on [0, 1], failing to determine a definite direction.

69.  No. In the interval 0 < θ < π, cos θ = cos(−θ) and 
sin2 θ = sin2(−θ). So, the parameter was not changed.

71. d; (4, 0) is on the graph.  73. b; (1, 0) is on the graph.
75. x = aθ − b sin θ, y = a − b cos θ
77.  False. The graph of the parametric equations is the portion of 

the line y = x when x ≥ 0.
79. True
81. (a) x = (440

3  cos θ)t, y = 3 + (440
3  sin θ)t − 16t2

 (b) 

0
0

400

30    (c) 

0
0

400

60

  Not a home run    Home run
 (d) 19.4°

Section 10.3  (page 715)

 1.  The slope of the curve at (x, y)
 3.  Horizontal tangent lines when dy�dt = 0 and dx�dt ≠ 0 for 

some value of t; vertical tangent lines when dx�dt = 0 and 
dy�dt ≠ 0 for some value of t

 5. −
3
t
  7. −1

 9.  
dy
dx

=
3
4

, 
d2y
dx2 = 0;  Neither concave upward nor concave

 downward

11. 
dy
dx

= 2t + 3, 
d 2y
dx2 = 2

 At t = −2, 
dy
dx

= −1, 
d2y
dx2 = 2; Concave upward

13. 
dy
dx

= −cot θ, 
d2y
dx2 = −

(csc θ)3
4

  At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 = −

√2
2

; Concave downward

15. 
dy
dx

= 2 csc θ, 
d2y
dx2 = −2 cot3 θ

  At θ = −
π
3

, 
dy
dx

= −
4√3

3
, 
d2y
dx2 =

2√3
9

; 

 Concave upward

17. 
dy
dx

= −tan θ, 
d2y
dx2 = sec4 θ csc 

θ
3

  At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 =

4√2
3

; Concave upward

19. (− 2

√3
, 

3
2): 3√3x − 8y + 18 = 0

 (0, 2): y − 2 = 0

 (2√3, 
1
2): √3x + 8y − 10 = 0

21. (0, 0): 2y − x = 0
 (−3, −1): y + 1 = 0
 (−3, 3): 2x − y + 9 = 0
23. (a) and (d) 
 

−8 7

6

−4

(−3, 0)

 (b)  At t = −
1
2

, 
dx
dt

= 6, 
dy
dt

= 4,

 and 
dy
dx

=
2
3

.

   (c) y =
2
3
x + 2

25. (a) and (d)
 

−1

−3

8

(4, 2)

5    (b)  At t = −1, 
dx
dt

= −3,

 
dy
dt

= 0, and 
dy
dx

= 0.

    (c) y = 2

27. y = ±3
4x  29. y = 3x − 5 and y = 1

31. Horizontal: (−1, −π), (−1, π), (1, 2π), (1, −2π)

 Vertical: (π2, 1), (π2, −1), (−3π
2

, 1), (−3π
2

, −1)
33. Horizontal: (9, 0) 35. Horizontal: (2, 22), (6, −10)
 Vertical: None  Vertical: None

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Answers to Odd-Numbered Exercises A81

37. Horizontal: (0, 7), (0, −7)
 Vertical: (7, 0), (−7, 0)
39. Horizontal: (5, −1), (5, −3) 41. Horizontal: None
 Vertical: (8, −2), (2, −2) Vertical: (4, 0)
43. Concave downward: −∞ < t < 0
 Concave upward: 0 < t < ∞
45. Concave upward: t > 0

47. Concave downward: 0 < t <
π
2

 Concave upward: 
π
2

< t < π

49. 4√13 ≈ 14.422  51. √2 (1 − e−π�2) ≈ 1.12

53. 1
12 [ln(√37 + 6) + 6√37] ≈ 3.249  55. 6a  57. 8a

59. (a) 

0
0

240

35    (b) 219.2 ft   (c) 230.8 ft

61. (a) 

6−6

−4

4    (b) (0, 0), (4
3√2
3

, 
4 3√4

3 )
    (c) About 6.557

63. (a) 27π√13   (b) 18π√13  65. 50π   67. 
12πa2

5

69. S = 2π∫2

0
 (t + 2)√9t4 + 1 dt ≈ 185.78

71.  S = 2π∫π�2

0
 (sin θ cos θ√4 cos2 θ + 1 ) dθ

  =
(5√5 − 1)π

6
  ≈ 5.330
73. (a) 

−1

3

π− π3

 

−1

3

π− π3

 (b)  The average speed of the particle on the second path is 
twice the average speed of the particle on the first path.

 (c) 4π
75. Answers will vary. Sample answer: Let x = −3t, y = −4t.
 

x

y

−1−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

77. Proof  79. 
3π
2

  81. d  82. b  83. f  84. c

85. a  86. e  87. (3
4, 85)  89. 288π

91. (a) 
dy
dx

=
sin θ

1 − cos θ , 
d2y
dx2 = −

1
a(cos θ − 1)2

 (b) y = (2 + √3)[x − a(π6 −
1
2)] + a(1 −

√3
2 )

 (c) (a(2n + 1)π, 2a)
 (d) Concave downward on (0, 2π), (2π, 4π), etc.
 (e) s = 8a
93. Proof
95. (a) 

−3

−2

3

2

 (b)  Circle of radius 1 and center at (0, 0) except the point 
(−1, 0)

 (c)  As t increases from −20 to 0, the speed increases, and as 
t increases from 0 to 20, the speed decreases.

97. False. 
d2y
dx2 =

d
dt[

g′(t)
f ′(t)]
f ′(t) =

f ′(t)g″(t) − g′(t)f ″(t)
[ f ′(t)]3 .

99.  False. The resulting rectangular equation is a line.

Section 10.4  (page 726)

 1.  r is the directed distance from the origin to the point in the 
plane. θ is the directed angle, counterclockwise from the polar 
axis to the segment from the origin to the point in the plane.

 3.  The rectangular coordinate system is a collection of points of 
the form (x, y), where x is the directed distance from the y-axis 
to the point and y is the directed distance from the x-axis to the 
point. Every point has a unique representation.

  The polar coordinate system is a collection of points of 
the form (r, θ), where r is the directed distance from the 
origin O to a point P and θ is the directed angle, measured  
counterclockwise, from the polar axis to the segment OP. 
Polar coordinates do not have unique representations.

 5. 

0
2 4 6

π
2

8,  ( (

π
2   7. 

0
21 3 4

π
4

3−4, − ( (

π
2

 (0, 8)  (2√2, 2√2) ≈ (2.828, 2.828)

 9. 

0
1

π
2

π
4

57,  ( (

 11. 

0

2, 2.36( )

1

π
2

 (−4.95, −4.95)  (−1.004, 0.996)
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13. 

0
1

π
2

(−8, 0.75)  

 15. 

x

y

(1, 0)

1 2

−1

1

 (−5.854, −5.453)  (1, 0), (−1, π)
17. 

x
1−1−2−3−4

5

4

3

2

1

(−3, 4)

y  19. 

x

y

−2−4−6−8−10 2 4
−2

−4

−6

−8

−10

−12

2

(−5, −5    3 )

 (5, 2.214), (−5, 5.356)  (10, 
4π
3 ), (−10, 

π
3)

21. 

x

y

(   7, −     7 )

−1 1 2 3 4

−1

−2

−3

−4

1

 23. 

x

y

(4, 5)

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

 (√14, 
7π
4 ), (−√14, 

3π
4 )  (√41, 0.8961),

    (−√41, 4.0376)
25. r = 3 27. r = a
 

0

π
2

1 2

  

0
a

π
2

29. r = 8 csc θ 31. r =
−2

3 cos θ − sin θ
 

0

π
2

2 4 6

  

0
21

π
2

33. r = 9 csc2 θ cos θ 35. x2 + y2 = 16

 

0
21 3 5 74 6

π
2

  

x

y

−3 −2 −1 31 2

−2

−3

1

2

3

37. x2 + y2 − 3y = 0 39. √x2 + y2 = arctan 
y
x

 

x

y

−1−2 1 2

1

2

4

  

9

−6

−9

−12

3

6

9

12

x

y

41. x − 3 = 0 43. x2 − y = 0

 

2

1

3

21
x

y
  

x

y

−1−2−3−4 1 2 3 4

1

2

3

4

5

6

7

45. 

−9

−4

3

4  47. 

−3 3

3

−1

 0 ≤ θ < 2π   0 ≤ θ < 2π
49. 

−10

−5

5

5  51. 

−7 8

5

−5

 −π < θ < π   0 ≤ θ < 4π
53. 

−3 3

−2

2  

 0 ≤ θ <
π
2

55. (x − h)2 + (y − k)2 = h2 + k2

 Radius: √h2 + k2

 Center: (h, k)
57. (a) 

0
1 2

π
2    (b) 

0
1 2

π
2

 (c) 

0
1 2

π
2
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59. √17  61. About 5.6

63. 
dy
dx

=
−2 cos θ sin θ + 2 cos θ(1 − sin θ)
−2 cos θ cos θ − 2 sin θ(1 − sin θ)

 (2, 0): dy
dx

= −1

 (3, 
7π
6 ): 

dy
dx

 is undefined.

 (4, 
3π
2 ): 

dy
dx

= 0

65. (a) and (b) 67. (a) and (b)

 

−8

−4

4

4

  

−4

−1

5

5

 (c) 
dy
dx

= −1  (c) 
dy
dx

= −√3

69. Horizontal: (2, 
3π
2 ), (

1
2

, 
π
6), (

1
2

, 
5π
6 )

 Vertical: (32, 
7π
6 ), (

3
2

, 
11π

6 )
71. (5, 

π
2), (1, 

3π
2 )

73. 

0

π
2

1 2 3

 75. 

0

π
2

2 4 6

 θ = 0
77. 

0

π
2

4

 79. 

0
3

π
2

 θ =
π
6

, 
π
2

, 
5π
6

  θ = 0, 
π
2

81. 

0

π
2

4 12

 83. 

0
642 10

π
2

85. π
2

0
2

 87. 

0

π
2

2 4 6

 89. 

0

π
2

24 32

 91. 

0
1

π
2

 93. 

−6

−4

6

x = −1
4

 95. 

−3 3

−1

y = 2

3

 97. 

0

π
2

1 2

 99. (a)  To test for symmetry about the x-axis, replace (r, θ) 
by (r, −θ) or (−r, π − θ). If the substitution yields an 
equivalent equation, then the graph is symmetric about 
the x-axis.

  (b)  To test for symmetry about the y-axis, replace (r, θ) 
by (r, π − θ) or (−r, −θ). If the substitution yields an 
equivalent equation, then the graph is symmetric about 
the y-axis.

101. Proof

103. (a)  r = 2 − sin(θ −
π
4)  (b) r = 2 + cos θ

    = 2 −
√2(sin θ − cos θ)

2
  

−6 6

−4

4

   

−6 6

−4

4

  (c) r = 2 + sin θ  (d) r = 2 − cos θ
   

−6 6

−4

4   

−6 6

−4

4

105. (a) 

0
21

π
2   (b) π

2

0
21
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107. 

−6

−3

3

3  109. 

−3

−2

3

2

θ

ψ

  ψ =
π
2

   ψ = arctan 13 ≈ 18.4°

111. 

−20 22

−12

θ

ψ

16   113. True  115. True

  ψ =
π
3

, 60°

Section 10.5  (page 735)

  1.  Check that f  is continuous and either nonnegative or  
nonpositive on the interval of consideration.

  3. 8∫π�2

0
 sin2 θ dθ  5. 

1
2∫

3π�2

π�2
 (3 − 2 sin θ)2 dθ  7. 9π

  9. 
π
3

  11. 
π
16

  13. 
97π

4
− 60 ≈ 16.184  15. 

33π
2

 17. 4

 19. 

−1 4

−2

2  21. 

−3

−0.5

3

3.5

  
2π − 3√3

2
  

2π − 3√3
2

 23. 

−1 4

−2

2  25. 
−9

−10

9

2

  π + 3√3  9π + 27√3

 27. (1, 
π
2), (1, 

3π
2 ), (0, 0)

 29. (2 − √2
2

, 
3π
4 ), (

2 + √2
2

, 
7π
4 ), (0, 0)

 31. (32, 
π
6), (

3
2

, 
5π
6 ), (0, 0)  33. (2, 4), (−2, −4)

 35. r = cos

−4 5

−5

θ

θr = 2 − 3 sin

1
 37. 

6−6

−4

4r = 2 θr = 4 sin 2

  (0, 0), (0.935, 0.363),  4
3 (4π − 3√3)

  (0.535, −1.006)
   The graphs reach the pole  

at different times (θ-values).

39. 

9−9

−6

6 r = −3 + 2 sin θ

r = 3 − 2 sinθ

 41. 

−6 6

−3

5

r = 2

r = 4 sin θ

 11π − 24  2
3 (4π − 3√3)

43. 

−2

−1.5

2.5

1.5

r = 1

r = 2 cos θ

 
π
3
+
√3
2

45. 
5πa2

4
  47. 

a2

2
(π − 2)

49. (a) (x2 + y2)3�2 = ax2

 (b) 

−6 6

−4

a = 4 a = 6

4    (c) 
15π

2

51.  The area enclosed by the function is 
πa2

4
 if n is odd and is 

 
πa2

2
 if n is even.

53. 
4π
3

  55. 4π   57. 8

59. 

2−1

−1

4  61. 

−0.5

−0.5

0.5

0.5

 About 4.16  About 0.71
63. 

−1

−1

2

1

 About 4.39

65. 36π   67. 
2π√1 + a2

1 + 4a2 (eπa − 2a)  69. 21.87

71. (a) 

5
0

π
2    (b) 0 ≤ θ < π

      (c) and (d) 25π

73.  Answers will vary. Sample answer: f (θ) = cos2 θ + 1,
g(θ) = −3

2
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75. 40π2

77. (a) 16π
 (b)
 θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A 6.32 12.14 17.06 20.80 23.27 24.60 25.08

 (c) and (d) For 
1
4

 of area (4π ≈ 12.57): 0.42

  For 
1
2

 of area (8π ≈ 25.13): 1.57(π2)
  For 

3
4

 of area (12π ≈ 37.70): 2.73

 (e)  No; Answers will vary.
79. (a) 12

14

−12

−10

   The graph becomes larger and more spread out. The graph 
is reflected over the y-axis.

 (b) (anπ, nπ), where n = 1, 2, 3, .  .  .

 (c) About 21.26   (d) 
4

3π3

81. r = √2 cos θ

83. (a) r =
3 cos θ sin θ

cos3 θ + sin3 θ
 (b) 

1 2
0

π
2

 (c) 
3
2

Section 10.6  (page 743)

 1. (a) Hyperbola   (b) Parabola

 (c) Ellipse   (d) Hyperbola
 3. 

−4 8

−4

e = 1.5

e = 1.0

e = 0.5

4   5. 

−40

30−30

e = 0.25

e = 0.1

e = 0.5

e = 0.75

e = 0.9

5

 (a) Parabola  Ellipse
 (b) Ellipse   As e→ 1−, the ellipse
 (c) Hyperbola    becomes more elliptical, and 

as e→ 0+, it becomes more 
circular.

 7. c  8. f  9. a  10. e  11. b  12. d

13. e = 1 15. e = 2
 Distance = 1  Distance = 7

8

 Parabola  Hyperbola
 

0

π
2

1 2 3 4 5

   

0

π
2

1 2

17. e = 3
2 19. e = 1

2

 Distance = 2  Distance = 6
 Hyperbola  Ellipse

 

0

π
2

2 3 4 5 7 8

  

0
1 3

π
2

 21. e = 1
2 23. 

2−2

−2

1

 Distance = 50
 Ellipse
 

0

π
2

10 20 40

    Ellipse
    e = 1

2

25. 

−8

−15

7

15  27. 

−12 12

−8

8

 Parabola  Rotated 
π
3

 radian

 e = 1  counterclockwise.

29.  

−8 4

−3

5  31. r =
8

8 + 5 cos(θ +
π
6)

 Rotated 
π
6

 radian clockwise.

33. r =
3

1 − cos θ   35. r =
1

4 + sin θ

37. r =
8

3 + 4 cos θ   39. r =
2

1 − sin θ

41. r =
16

5 + 3 cos θ   43. r =
9

4 − 5 sin θ
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45.  No. The flatness of the ellipse does not depend on the distance 
between foci.

47. r =
4

2 + cos θ   49. Proof

51. r2 =
9

1 − (16�25) cos2 θ   53. r2 =
−16

1 − (25�9) cos2 θ
55. 10.88  57. 1.88

59. r =
7979.21

1 − 0.9372 cos θ , 11,015 mi

61. r =
149,558,278.0560
1 − 0.0167 cos θ

 Perihelion: 147,101,680 km
 Aphelion: 152,098,320 km

63. r =
4,494,426,033

1 − 0.0113 cos θ
 Perihelion: 4,444,206,500 km
 Aphelion: 4,545,793,500 km
65. Answers will vary. Sample answers:
 (a) 3.591 × 1018 km2; 9.322 yr
 (b)  α ≈ 0.361 + π; Larger angle with the smaller ray to  

generate an equal area
 (c)  Part (a): 1.583 × 109 km; 1.698 × 108 km�yr
  Part (b): 1.610 × 109 km; 1.727 × 108 km�yr
67. Proof

Review Exercises for Chapter 10  (page 746)

 1. e  2. c  3. b  4. d  5. a  6. f
 7. Circle 

x

y

(1, 4)

−2−4−6 4 6 8
−2

2

4

6

10

12 Center: (1, 4)
 Radius: 5

 9. Hyperbola 

6

4

2

−2−4−6
x

y

 Center: (−4, 3)
 Vertices: (−4 ± √2, 3)
 Foci: (−4 ± √5, 3)

 e =√5
2

 Asymptotes:

 y = 3 ±
√3

√2
(x + 4)

11. Circle 

21−1

1

−2

x

1
2

3
4

y

, − ))

 Center: (1
2, −3

4)
 Radius: 1

13. Parabola 

x

y

(−5, −1)−10−15 5

−5

5

10

15 Vertex: (−5, −1)
 Directrix: y = −4
 Focus: (−5, 2)

15. (y − 0)2 = 4(2)(x − 7)  17. 
x2

36
+

(y − 1)2
20

= 1

19. 
(x − 3)2

5
+

(y − 4)2
9

= 1  21. 
y2

64
−

x2

16
= 1

23. 
x2

49
−

(y + 1)2
32

= 1

25. (a) (0, 50)   (b) About 38,294.49
27. 

x

y

−2−4 2 4 6
−2

−4

−6

2

6

 29. 

x

y

−1−2 1 2 3 4 5
−1

−2

−3

−4

1

2

3

 x + 2y − 7 = 0  y = (x − 1)2 − 3, x ≥ 1
31. 

−2

−4

42−2−4

2

4

x

y  33. 

4

8

−2

−4

842−4

2

x

y

 x2 + y2 = 36  (x − 2)2 − (y − 3)2 = 1
35. x = t, y = 4t + 3; x = t + 1, y = 4t + 7
 (Solution is not unique.)
37. 

−7 8

−5

5

39. 
dy
dx

= −
5
6

, 
d2y
dx2 = 0

 At t = 3, 
dy
dx

= −
5
6

, 
d2y
dx2 = 0; Neither concave upward nor

 downward.

41. 
dy
dx

= −2t3, 
d2y
dx2 = 6t4

 At t = −2, 
dy
dx

= 16, 
d2y
dx2 = 96; Concave upward

43. 
dy
dx

= −e−2t, 
d2y
dx2 =

2
e3t

 At t = 1, 
dy
dx

= −
1
e2, 

d2y
dx2 =

2
e3; Concave upward
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45. 
dy
dx

= −cot θ, 
d2y
dx2 = −

1
10

 csc3 θ

 At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 = −

√2
5

; Concave downward

47. (a) and (d) 
 

−3 3

−2

2

 (b) 
dx
dθ = −4, 

dy
dθ = 1, 

dy
dx

= −
1
4

   (c) y = −
1
4
x +

3√3
4

49. Horizontal: (5, 0)  51. Horizontal: (2, 2), (2, 0)
 Vertical: None Vertical: (4, 1), (0, 1)
53. 1

54 (1453�2 − 1) ≈ 32.315
55. (a) 25π    (b) 20π   57. A = 3π
59. 

0
21 3 4

π
2

35,  ( (

π
2  61. 

0

π
2

1
(   7, 3.25)

 (0, −5)  (−2.6302, −0.2863)
63. 

2 51

1

43

−2

−5

−1

−4

−3

(4, −4)

x

y  65. 
(−1, 3)

2

3

1

1 2 3
x

−1

−2

−3

−3 −2 −1

y

 (4√2, 
7π
4 ), (−4√2, 

3π
4 )  (√10, 1.89), (−√10, 5.03)

67. r = 5 69. r = 9 csc θ
 

0

π
2

2 4 6

  

0

π
2

2 4 6

71. r =
3

4 sin θ − cos θ  73. x2 + y2 − 6x = 0

 

0

π
2

1 2 3

  

x

y

1 2 3 4 5 7−1

−2

−3

−4

1

2

3

4

 75. x = −4 77. y = −x

  

x

y

−1−2−3−5 1
−1

−2

−3

1

2

3

  

x

y

−1−2−3 1 2 3
−1

−2

−3

1

2

3

 79. 

−9 9

6

−6

 81. 

−6 6

−4

4

  0 ≤ θ ≤ π   0 ≤ θ ≤ π

 83. Horizontal: (32, 
2π
3 ), (

3
2

, 
4π
3 )

  Vertical: (12, 
π
3), (2, π), (12, 

5π
3 )

 85. 

0

π
2

1 2 3 4

 87. Circle
  

0

π
2

2 4 8

  θ = 0, 
π
3

, 
2π
3

 89. Line 91. Limaçon
  

0
1

π
2

  

0
2 4

π
2

 93. Spiral 95. Lemniscate
  

5 1510
0

π
2   

0

π
2

1 2 3

 97. 
9π
20

  99. 
9π
2

101. (1 +
√2
2

, 
3π
4 ), (1 −

√2
2

, 
7π
4 ), (0, 0)
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103. 

−12

−6

6

6   105. 

−12

−6

6

6

 9π −
27√3

2
 9π + 27√3

107. 

−12 12

8

−8

  109. 
5π
2

  111. 4π2

27π − 40
113. e = 1 115. e = 2

3

Distance = 6   Distance = 3 
  Parabola   Ellipse
  

0
2 6 8

π
2    

0
2

π
2

117. e = 3
2 

2 3 4

π
2

0

Distance = 4
3

Hyperbola

119. r =
5

1 + cos θ   121. r =
9

1 + 3 sin θ

123. r =
4

1 + sin θ   125. r =
5

3 − 2 cos θ

P.S. Problem Solving  (page 749)

1. (a) 

6

4

8

10

−2
642−4−6 −2

2

x

y

(4, 4)
1
4

−1, ))

  3. Proof

  (b) and (c) Proofs

 5. (a) y2 = x2(1 − x
1 + x)   (b) r = cos 2θ ∙ sec θ

(c) 

1 2
0

π
2    (d) y = x, y = −x

(e) (√5 − 1
2

, ±
√5 − 1

2
√−2 + √5)

7. (a) 

Generated by Mathematica

   (b) Proof   (c) a; 2π

9. A = 1
2ab  11. r2 = 2 cos 2θ

13. r =
d

√2
e((π�4)−θ), θ ≥ π

4
15. (a) r = 2a tan θ sin θ

 (b) x =
2at2

1 + t2

  y =
2at3

1 + t2

 (c) y2 =
x3

2a − x
17. 

6−6

−4

4

n = −5
 

n = −4

6−6

−4

4

 
n = −3

6−6

−4

4  

n = −2

6−6

−4

4

 

n = −1

6−6

−4

4  

n = 0
6−6

−4

4

 

n = 1

6−6

−4

4  

n = 2

6−6

−4

4

 

n = 3

6−6

−4

4  

n = 4

6−6

−4

4

 

n = 5

6−6

−4

4

  n = −1, −2, −3, −4, −5 produce “hearts”; n = 1, 2, 3, 4, 
5 produce “bells”
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A

Abel, Niels Henrik (1802–1829), 232
Absolute convergence, 626
Absolute maximum of a function, 166
Absolute minimum of a function, 166
Absolute value, 54

derivative involving, 320
function, 22

Absolute Value Theorem, 592
Absolute zero, 78
Absolutely convergent series, 626
Acceleration, 128
Accumulation function, 287
Acute angle, 31
Additive Interval Property, 275
Agnesi, Maria Gaetana (1718–1799), 202 
Algebraic function(s), 24, 25, 378
Alternating series, 623

geometric, 623
harmonic, 624, 626, 628

Alternating Series Remainder, 625
Alternating Series Test, 623
Alternative form

of the derivative, 105
of L’Hôpital’s Rule, 364
of Log Rule for Integration, 324
of Mean Value Theorem, 177

Amplitude of a function, 37
Angle(s), 31

acute, 31
coterminal, 31
directed, 719
of incidence, 688
initial ray (or side) of, 31
obtuse, 31
radian measure of, 32
reference, 35
of reflection, 688
standard position of, 31
terminal ray (or side) of, 31
trigonometric values of common, 34
vertex of, 31

Antiderivative, 248
of f  with respect to x, 249

 finding by integration by parts, 523
 general, 249
 notation for, 249
 representation of, 248
Antidifferentiation, 249
 of a composite function, 296
Aphelion, 698, 745
Apogee, 698
Approximating zeros
 bisection method, 82
 Intermediate Value Theorem, 81
 Newton’s Method, 229
Approximation 
 linear, 235
 Padé, 403

 polynomial, 640
 Stirling’s, 525
 tangent line, 235
 Two-point Gaussian Quadrature, 311
Arc length, 32, 474, 475
 in parametric form, 713
 of a polar curve, 733
Arccosecant function, 373
Arccosine function, 373
Arccotangent function, 373
Archimedes (287–212 b.c.), 260
 Principle, 514
 spiral of, 721, 737
Arcsecant function, 373
Arcsine function, 373
 series for, 674
Arctangent function, 373
 series for, 674
Area
 found by exhaustion method, 260
 in polar coordinates, 729 
 problem, 50
 of a rectangle, 260
 of a region between two curves, 445
 of a region in the plane, 264
 of a surface of revolution, 479 
  in parametric form, 714
  in polar coordinates, 734 
Astroid, 149
Asymptote(s)
 horizontal, 200
 of a hyperbola, 693 
 slant, 205, 211
 vertical, 89
Average rate of change, 12
Average value of a function on an 

interval, 285
Average velocity, 116
Axis
 conjugate, of a hyperbola, 693
 major, of an ellipse, 689
 minor, of an ellipse, 689
 of a parabola, 687
 polar, 719
 of revolution, 454
 transverse, of a hyperbola, 693

B

Barrow, Isaac (1630–1677), 148
Base(s), 317, 352
 of the natural exponential function, 352
 of a natural logarithm, 317
 other than e

derivatives for, 354
exponential function, 352 
logarithmic function, 353

Basic differentiation rules for elementary 
functions, 378

Basic equation obtained in a partial 
fraction decomposition, 552

 guidelines for solving, 556
Basic integration rules, 250, 385, 516
 procedures for fitting integrands to, 519
Basic limits, 63
Basic types of transformations, 23
Bernoulli equation, 438
 general solution of, 438
Bernoulli, James (1654–1705), 706
Bernoulli, John (1667–1748), 550
Bessel function, 659
Bifolium, 149
Binomial coefficient, 679
Binomial series, 673
Bisection method, 82
Bounded 
 above, 595
 below, 595
 monotonic sequence, 595
 sequence, 595
Brachistochrone problem, 706
Breteuil, Emilie de (1706–1749), 486
Bullet-nose curve, 141

C

Cantor set, 683
Cardioid, 724, 725
Carrying capacity, 425, 427
Cassini, Giovanni Domenico (1625-1712), 

728
Cassini oval, 728
Catenary, 393
Cauchy, Augustin-Louis (1789–1857), 79
Cavalieri’s Theorem, 464
Center
 of an ellipse, 689
 of gravity, 496, 497
  of a one-dimensional system, 496
  of a two-dimensional system, 497
 of a hyperbola, 693
 of mass, 495, 496, 497
  of a one-dimensional system, 495, 

  496
  of a planar lamina, 498
  of a two-dimensional system, 497
 of a power series, 651
Centered at c, 640
Centroid, 499
Chain Rule, 133, 134, 139
 and trigonometric functions, 138
Change in x, 101
Change in y, 101
Change of variables, 299
 for definite integrals, 302
 guidelines for making, 300
 for homogeneous equations, 431
Charles, Jacques (1746–1823), 78
Charles’s Law, 78

Index
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Circle, 149, 686, 725
	 of curvature, 163
	 unit, 32
Circular function definitions of  

trigonometric functions, 33
Circumscribed rectangle, 262
Cissoid, 149
	 of Diocles, 750
Classification of conics by eccentricity, 

738
Coefficient(s), 24
	 binomial, 679
	 leading, 24
Collinear, 17
Combinations of functions, 25
Common logarithmic function, 353
Common types of behavior associated 

with nonexistence of a limit, 55
Comparison Test
	 Direct, 616
	 for improper integrals, 580
	 Limit, 618
Completeness, 81, 595
Completing the square, 384
Composite function, 25
	 antidifferentiation of, 296
	 continuity of, 79
	 derivative of, 133
	 limit of, 65
Composition of functions, 25
Compound interest formulas, 356
Compounding, continuous, 356
Concave downward, 191
Concave upward, 191
Concavity, 191
	 test for, 192
Conditional convergence, 626
Conditionally convergent series, 626
Conic(s), 686 
	 circle, 686
	 classification by eccentricity, 738
	 degenerate, 686
	 directrix of, 738
	 eccentricity, 738
	 ellipse, 686, 689
	 focus of, 738
	 hyperbola, 686, 693
	 parabola, 686, 687
	 polar equations of, 739
	 section, 686
Conjugate axis of a hyperbola, 693
Constant
	 Euler’s, 615
	 force, 485
	 function, 24
	 gravitational, 487
	 of integration, 249
	 Multiple Rule, 113, 139
		  differential form, 238
		  for integration, 298
	 Rule, 110, 139
	 term of a polynomial function, 24

Continued fraction expansion, 683
Continuity
	 on a closed interval, 77
	 of a composite function, 79
	 differentiability implies, 106
	 and differentiability of inverse 

	 functions, 337
	 implies integrability, 272
	 properties of, 79
Continuous, 74
	 at c, 63, 74
	 on the closed interval [a, b], 77
	 compounding, 356
	 everywhere, 74
	 from the left and from the right, 77
	 on an open interval (a, b), 74
Continuously differentiable, 474
Converge, 231, 589, 599
Convergence 
	 absolute, 626
	 conditional, 626
	 endpoint, 654
	 of a geometric series, 601
	 of improper integral with infinite  

	 discontinuities, 575
	 interval of, 652, 656
	 of Newton’s Method, 231, 232
	 of a power series, 652
	 of p-series, 611
	 radius of, 652, 656
	 of a sequence, 589
	 of a series, 599
	 of Taylor series, 670
	 tests for series
		  Alternating Series Test, 623
		  Direct Comparison Test, 616
		  geometric series, 601
		  guidelines, 635
		  Integral Test, 609
		  Limit Comparison Test, 618
		  p-series, 611
		  Ratio Test, 631
		  Root Test, 634
		  summary, 636
Convergent power series, form of, 668
Convergent series, limit of nth term of, 603
Conversion factors, 485, 494
Convex limaçon, 725
Coordinate conversion
	 polar to rectangular, 720
	 rectangular to polar, 720
Coordinate system, polar, 719
Coordinates
	 polar, 719 
		  area in, 729
		  area of a surface of revolution in, 734
		  converting to rectangular, 720
		  Distance Formula in, 727
	 rectangular, converting to polar, 720
Copernicus, Nicolaus (1473–1543), 689
Cornu spiral, 749
Cosecant function, 33
	 derivative of, 126, 139

	 integral of, 329
	 inverse of, 373
		  derivative of, 376
Cosine function, 33
	 derivative of, 115, 139
	 integral of, 329
	 inverse of, 373
		  derivative of, 376
	 series for, 674
Cotangent function, 33
	 derivative of, 126, 139
	 integral of, 329
	 inverse of, 373
		  derivative of, 376
Coterminal angles, 31
Coulomb’s Law, 487
Critical number(s)
	 of a function, 168
	 relative extrema occur only at, 168
Cruciform, 149
Cubic function, 24
Cubing function, 22
Curtate cycloid, 708
Curvature, circle of, 163
Curve(s)
	 astroid, 149
	 bifolium, 149
	 bullet-nose, 141
	 cissoid, 149 
	 cruciform, 149
	 equipotential, 426
	 folium of Descartes, 149, 737
	 isothermal, 426
	 kappa, 148, 150
	 lemniscate, 44, 147, 150, 725
	 logistic, 427
	 piecewise smooth, 705
	 plane, 700
	 pursuit, 395
	 rectifiable, 474
	 rose, 722, 725
	 smooth, 474, 705
		  piecewise, 705
Curve sketching, summary of, 209
Cusps, 705
Cycloid, 705, 709
	 curtate, 708
	 prolate, 712

D

Darboux’s Theorem, 246
Decay model, exponential, 416
Decomposition of N(x)�D(x) into partial 

fractions, 551
Decreasing function, 181
	 test for, 181
Definite integral(s), 272
	 approximating
		  Midpoint Rule, 561
		  Simpson’s Rule, 562
		  Trapezoidal Rule, 560
	 as the area of a region, 273
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	 change of variables, 302
	 properties of, 276
	 two special, 275
Degenerate conic, 686
	 line, 686
	 point, 686
	 two intersecting lines, 686
Degree of a polynomial function, 24
Demand, 18
Density, 498
Dependent variable, 19
Derivative(s)
	 alternative form, 105
	 Chain Rule, 133, 134, 139
	 of a composite function, 133
	 Constant Multiple Rule, 113, 139
	 Constant Rule, 110, 139
	 of cosecant function, 126, 139
	 of cosine function, 115, 139
	 of cotangent function, 126, 139
	 Difference Rule, 114, 139
	 of an exponential function, base a, 354
	 from the left and from the right, 105
	 of a function, 103
	 General Power Rule, 135, 139
	 higher-order, 128
	 of hyperbolic functions, 392
	 implicit, 145
	 of an inverse function, 337
	 of inverse trigonometric functions, 376
	 involving absolute value, 320
	 of a logarithmic function, base a, 354
	 of the natural exponential function, 344
	 of the natural logarithmic function, 318
	 notation, 103
	 parametric form, 710
		  higher-order, 711
	 Power Rule, 111, 139
	 Product Rule, 122, 139
	 Quotient Rule, 124, 139
	 of secant function, 126, 139
	 second, 128
	 Simple Power Rule, 111, 139
	 simplifying, 137
	 of sine function, 115, 139
	 Sum Rule, 114, 139
	 of tangent function, 126, 139
	 third, 128
	 of trigonometric functions, 126, 139
Descartes, René (1596–1650), 2
Difference quotient, 20, 101
Difference Rule, 114, 139
	 differential form, 238
Difference of two functions, 25
Differentiability
	 and continuity of inverse functions, 337
	 implies continuity, 106
Differentiable at x, 103
Differentiable, continuously, 474
Differentiable function
	 on the closed interval [a, b], 105
	 on an open interval (a, b), 103

Differential, 236
	 of x, 236
	 of y, 236
Differential equation, 132, 249, 406
	 Bernoulli equation, 438
	 doomsday, 441
	 Euler’s Method, 410
	 first-order linear, 432
	 general solution of, 249, 406
	 Gompertz, 441
	 homogeneous, 431
		  change of variables, 431
	 initial condition, 253, 407
	 integrating factor, 432
	 logistic, 245, 427
	 order of, 406
	 particular solution of, 253, 407
	 separable, 423
	 separation of variables, 415, 423
	 singular solution of, 406
	 solution of, 406
Differential form, 238
Differential formulas, 238
	 constant multiple, 238
	 product, 238
	 quotient, 238
	 sum or difference, 238
Differentiation, 103
	 applied minimum and maximum 

	� problems, guidelines for solving, 
220

	 basic rules for elementary functions, 378
	 formulas, 250
	 implicit, 144
		  guidelines for, 145
	 involving inverse hyperbolic functions, 

	 396
	 logarithmic, 319
	 numerical, 106
	 of power series, 656
Differentiation rules 
	 basic, 378
	 Chain, 133, 134, 139
	 Constant, 110, 139
	 Constant Multiple, 113, 139
	 cosecant function, 126, 139
	 cosine function, 115, 139
	 cotangent function, 126, 139
	 Difference, 114, 139
	 general, 139
	 General Power, 135, 139
	 Power, 111, 139
		  for Real Exponents, 355
	 Product, 122, 139
	 Quotient, 124, 139
	 secant function, 126, 139
	 Simple Power, 111, 135, 139
	 sine function, 115, 139
	 Sum, 114, 139
	 summary of, 139
	 tangent function, 126, 139
Diminishing returns, point of, 227
Dimpled limaçon, 725

Direct Comparison Test, 616
Direct substitution, 63, 64
Directed angle, 719
Directed distance
	 from points to a line, 497
	 polar coordinates, 719
Direction field, 255, 315, 408
Directrix
	 of a conic, 738
	 of a parabola, 687
Dirichlet function, 55
Dirichlet, Peter Gustav (1805–1859), 55
Discontinuity, 75
	 infinite, 572
	 nonremovable, 75
	 removable, 75
Disk, 454
	 method, 455
		  compared to shell, 467
Displacement of a particle, 290, 291
Distance
	 between a point and a line, 18
	 directed, 497
	 total, traveled on [a, b], 291
Distance Formula, in polar coordinates, 

727
Diverge, 589, 599
Divergence
	 of improper integral with infinite 

	 discontinuities, 575
	 of a sequence, 589
	 of a series, 599
	 tests for series
		  Direct Comparison Test, 616
		  geometric series, 601
		  guidelines, 635
		  Integral Test, 609
		  Limit Comparison Test, 618
		  nth-Term Test, 603
		  p-series, 611
		  Ratio Test, 631
		  Root Test, 634
		  summary, 636
Divide out like factors, 67
Domain
	 feasible, 219
	 of a function, 19
		  explicitly defined, 21
	 implied, 21
	 of a power series, 652
Doomsday equation, 441
Double-angle formulas, 33
Dummy variable, 274
Dyne, 485

E

e, the number, 317
	 limit involving, 356
Eccentricity, 738
	 classification of conics by, 738
	 of an ellipse, 691
	 of a hyperbola, 694
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Eight curve, 163
Elementary function(s), 24, 378
	 basic differentiation rules for, 378
	 polynomial approximation of, 640
	 power series for, 674
Eliminating the parameter, 702
Ellipse, 686, 689
	 center of, 689
	 eccentricity of, 691
	 foci of, 689
	 major axis of, 689
	 minor axis of, 689
	 reflective property of, 691
	 standard equation of, 689
	 vertices of, 689
Elliptic integral, 565
Endpoint convergence, 654
Endpoint extrema, 166
Epicycloid, 708, 709, 713
Epsilon-delta, ε-δ definition of limit, 56
Equation(s)
	 basic, 552
		  guidelines for solving, 556
	 Bernoulli, 438
	 of conics, polar, 739
	 doomsday, 441
	 of an ellipse, 689
	 general second-degree, 686
	 Gompertz, 441
	 graph of, 2
	 of a hyperbola, 693
	 of a line
		  general form, 14
		  horizontal, 14
		  point-slope form, 11, 14
		  slope-intercept form, 13, 14
		  summary, 14
		  vertical, 14
	 of a parabola, 687
	 parametric, 700
		  finding, 704
		  graph of, 700
	 primary, 219, 220
	 related-rate, 152
	 secondary, 220
	 separable, 423
	 solution point of, 2
Equilibrium, 495
Equipotential curves, 426
Error
	 in approximating a Taylor polynomial, 

	 646
	 in measurement, 237
		  percent error, 237
		  propagated error, 237
		  relative error, 237
	 in Simpson’s Rule, 563
	 in Trapezoidal Rule, 563
Escape velocity, 98
Euler, Leonhard (1707–1783), 20
Euler’s
	 constant, 615
	 Method, 410

Evaluate a function, 19
Even function, 26
	 integration of, 304
	 test for, 26
Even/odd identities, 33
Everywhere continuous, 74
Existence
	 of an inverse function, 335
	 of a limit, 77
	 theorem, 81, 166
Expanded about c, approximating  

polynomial, 640
Explicit form of a function, 19, 144
Explicitly defined domain, 21
Exponential decay, 416
Exponential function, 24
	 to base a, 352
		  derivative of, 354
	 integration rules, 346
	 natural, 342
		  derivative of, 344
		  properties of, 343
		  operations with, 343
		  series for, 674
Exponential growth and decay model, 416
	 initial value, 416
	 proportionality constant, 416
Exponentiate, 343
Extended Mean Value Theorem, 245, 363
Extrema
	 endpoint, 166
	 of a function, 166
	 guidelines for finding, 169
	 relative, 167
Extreme Value Theorem, 166
Extreme values of a function, 166

F

Factorial, 591
Family of functions, 272
Famous curves
	 astroid, 149
	 bifolium, 149
	 bullet-nose curve, 141
	 circle, 149, 686, 725
	 cissoid, 149
	 cruciform, 149
	 eight curve, 163
	 folium of Descartes, 149, 737
	 kappa curve, 148, 150
	 lemniscate, 44, 147, 150, 725
	 parabola, 2, 149, 686, 687
	 pear-shaped quartic, 163
	 semicircle, 21, 141
	 serpentine, 130
	 witch of Agnesi, 130, 149, 202
Feasible domain, 219
Fermat, Pierre de (1601–1665), 168
Fibonacci sequence, 598, 608
Field
	 direction, 255, 315, 408
	 slope, 255, 305, 315, 408

Finite Fourier series, 540
First Derivative Test, 183
First-order linear differential equations, 432
	 solution of, 433
Fitting integrands to basic rules, 519
Fixed point, 180, 233
Fluid(s)
	 force, 506
	 pressure, 505
	 weight-densities of, 505
Focal chord of a parabola, 687
Focus
	 of a conic, 738
	 of an ellipse, 689
	 of a hyperbola, 693
	 of a parabola, 687
Folium of Descartes, 149, 737
Force, 485
	 constant, 485
	 exerted by a fluid, 506
	 variable, 486
Form of a convergent power series, 668
Formula(s)
	 compound interest, 356
	 differential, 238
	 differentiation, 250
	 double-angle, 33
	 integration, 250
	 power-reducing, 33
	 reduction, 540, 568
	 special integration, 545
	 Stirling’s, 350
	 sum and difference, 33
	 summation, 259
	 Wallis’s, 534
Fourier, Joseph (1768–1830), 661
Fourier series, finite, 540
Fourier Sine Series, 531
Fraction expansion, continued, 683
Fractions, partial, 550
	 decomposition of N(x)�D(x) into, 551
	 method of, 550
Fresnel function, 311
Function(s), 19
	 absolute maximum of, 166
	 absolute minimum of, 166
	 absolute value, 22
	 acceleration, 128
	 accumulation, 287
	 addition of, 25
	 algebraic, 24, 25, 378
	 amplitude of, 37
	 antiderivative of, 248
	 arc length, 474, 475
	 arccosecant, 373
	 arccosine, 373
	 arccotangent, 373
	 arcsecant, 373
	 arcsine, 373
	 arctangent, 373
	 average value of, 285
	 Bessel, 659
	 combinations of, 25
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	 common logarithmic, 353
	 composite, 25
	 composition of, 25
	 concave downward, 191
	 concave upward, 191
	 constant, 24
	 continuous, 74
	 continuously differentiable, 474
	 cosecant, 33
	 cosine, 33
	 cotangent, 33
	 critical number of, 168
	 cubic, 24
	 cubing, 22
	 decreasing, 181
		  test for, 181
	 defined by power series, properties of, 

	 656
	 derivative of, 103
	 difference of, 25
	 differentiable, 103, 105
	 Dirichlet, 55
	 domain of, 19
		  implied, 21
	 elementary, 24, 378
		  algebraic, 24, 25
		  exponential, 24
		  logarithmic, 24
		  trigonometric, 24, 33
	 evaluate, 19
	 even, 26
	 explicit form, 19, 144
	 exponential to base a, 352
	 extrema of, 166
	 extreme values of, 166
	 family of, 272
	 feasible domain of, 219
	 Fresnel, 311
	 Gamma, 371, 582
	 global maximum of, 166
	 global minimum of, 166
	 graph of, guidelines for analyzing, 209
	 greatest integer, 76
	 Gudermannian, 399, 404
	 Heaviside, 43
	 homogeneous, 431
	 hyperbolic, 390
	 identity, 22
	 implicit form, 19
	 implicitly defined, 144
	 increasing, 181
		  test for, 181
	 inner product of two, 540
	 integrable, 272
	 inverse, 333
	 inverse hyperbolic, 394
	 inverse trigonometric, 373
	 involving a radical, limit of, 64
	 jerk, 164
	 limit of, 52
	 linear, 24
	 local extrema of, 167
	 local maximum of, 167

	 local minimum of, 167
	 logarithmic, 314
		  to base a, 353
	 logistic growth, 357
	 natural exponential, 342
	 natural logarithmic, 314
	 notation, 19
	 odd, 26
	 one-to-one, 21
	 onto, 21
	 orthogonal, 540
	 period of, 36
	 periodic, 36
	 point of inflection, 193, 194
	 polynomial, 24, 64
	 position, 116
	 present value of, 531
	 product of, 25
	 pulse, 98
	 quadratic, 24
	 quotient of, 25
	 range of, 19
	 rational, 22, 25
	 real-valued, 19
	 relative extrema of, 167
	 relative maximum of, 167
	 relative minimum of, 167
	 representation by power series, 661
	 Riemann zeta, 615
	 secant, 33
	 signum, 86
	 sine, 33
	 sine integral, 312
	 square root, 22
	 squaring, 22
	 standard normal probability density, 345
	 step, 76
	 strictly monotonic, 182, 335
	 sum of, 25
	 tangent, 33
	 that agree at all but one point, 66
	 transcendental, 25, 378
	 transformation of a graph of, 23
		  horizontal shift, 23 
		  reflection about origin, 23
		  reflection about x-axis, 23
		  reflection about y-axis, 23
		  reflection in the line y = x, 334
		  vertical shift, 23
	 trigonometric, 24, 33
	 unit pulse, 98
	 Vertical Line Test, 22
	 zero of, 26
		  approximating with Newton’s  

		  Method, 229
Fundamental Theorem of Calculus, 281, 

282
	 guidelines for using, 282
	 Second, 288

G

Gabriel’s Horn, 578

Galilei, Galileo (1564–1642), 311, 378
Galois, Evariste (1811–1832), 232
Gamma Function, 371, 582
Gauss, Carl Friedrich (1777–1855), 259
Gaussian Quadrature Approximation, 

two-point, 311
General antiderivative, 249
General differentiation rules, 139
General form
	 of the equation of a line, 14
	 of a second-degree equation, 686
General harmonic series, 611
General partition, 271
General Power Rule
	 for differentiation, 135, 139
	 for Integration, 301
General second-degree equation, 686
General solution
	 of the Bernoulli equation, 438
	 of a differential equation, 249, 406
Geometric power series, 661
Geometric series, 601
	 alternating, 623
	 convergence of, 601
	 divergence of, 601
	 nth partial sum of, 601
	 sum of, 601
Global maximum of a function, 166
Global minimum of a function, 166
Golden ratio, 598
Gompertz equation, 441
Graph(s)
	 of absolute value function, 22
	 of cubing function, 22
	 of an equation, 2
	 of a function
		  guidelines for analyzing, 209
		  transformation of, 23
	 of hyperbolic functions, 391
	 of identity function, 22
	 intercepts of, 4
	 of inverse hyperbolic functions, 395
	 of inverse trigonometric functions, 374
	 orthogonal, 150
	 of parametric equations, 700
	 polar, 721
		  points of intersection, 731
		  special polar graphs, 725
	 of rational function, 22
	 of the six trigonometric functions, 36
	 of square root function, 22
	 of squaring function, 22
	 symmetry of, 5
Gravitation, Newton’s Law of Universal, 

487
Gravitational constant, 487
Greatest integer function, 76
Gregory, James (1638–1675), 656
Gudermannian function, 399, 404
Guidelines
	 for analyzing the graph of a function, 

	 209

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A94	 Index

	 for evaluating integrals involving 
	 secant and tangent, 535

	 for evaluating integrals involving sine 
	 and cosine, 532

	 for finding extrema on a closed 
	 interval, 169

	 for finding intervals on which a  
	� function is increasing or 

decreasing, 182
	 for finding an inverse function, 335
	 for finding limits at infinity of rational  

	 functions, 202
	 for finding a Taylor series, 672
	 for implicit differentiation, 145
	 for integration, 327
	 for integration by parts, 523
	 for making a change of variables, 300
	 for solving applied minimum and 

	 maximum problems, 220
	 for solving the basic equation, 556
	 for solving related-rate problems, 153
	 for testing a series for convergence or 

	 divergence, 635
	 for using the Fundamental Theorem of 

	 Calculus, 282

H

Half-life, 352, 417
Harmonic series, 611, 615
	 alternating, 624, 626, 628
Heaviside function, 43
Heaviside, Oliver (1850–1925), 43
Herschel, Caroline (1750–1848), 695
Higher-order derivative, 128
Homogeneous of degree n, 431
Homogeneous differential equation, 431
	 change of variables for, 431
Homogeneous function, 431
Hooke’s Law, 487
Horizontal asymptote, 200
Horizontal line, 14
Horizontal Line Test, 335
Horizontal shift of a graph of a function, 23
Huygens, Christian (1629–1795), 475
Hypatia (370–415 a.d.), 686
Hyperbola, 686, 693
	 asymptotes of, 693
	 center of, 693
	 conjugate axis of, 693
	 eccentricity of, 694
	 foci of, 693
	 standard equation of, 693
	 transverse axis of, 693
	 vertices of, 693
Hyperbolic functions, 390
	 derivatives of, 392
	 graphs of, 391
	 identities, 391
	 integrals of, 392
	 inverse, 394
		  differentiation involving, 396
		  graphs of, 395

		  integration involving, 396
Hyperbolic identities, 391
Hypocycloid, 709

I

Identities
	 even/odd, 33
	 hyperbolic, 391
	 Pythagorean, 33
	 quotient, 33
	 reciprocal, 33
	 trigonometric, 33
Identity function, 22
If and only if, 14
Image of x under f, 19
Implicit derivative, 145
Implicit differentiation, 144
	 guidelines for, 145
Implicit form of a function, 19
Implicitly defined function, 144
Implied domain, 21
Improper integral(s), 572
	 comparison test for, 580
	 with infinite discontinuities, 575
		  convergence of, 575
		  divergence of, 575
	 with infinite integration limits, 572
		  convergence of, 572
		  divergence of, 572
	 special type, 578
Incidence, angle of, 688
Increasing function, 181
	 test for, 181
Indefinite integral, 249
	 pattern recognition, 296
Indefinite integration, 249
Independent variable, 19
Indeterminate form, 67, 90, 201, 362, 

363, 365
Index of summation, 258
Inductive reasoning, 593
Inequality
	 Napier’s, 331
	 preservation of, 276
Infinite discontinuities, 572
	 improper integrals with, 575
		  convergence of, 575
		  divergence of, 575
Infinite integration limits, 572
	 improper integrals with, 572
		  convergence of, 572 
		  divergence of, 572
Infinite interval, 199
Infinite limit(s), 87
	 at infinity, 205
	 from the left and from the right, 87
	 properties of, 91
Infinite series (or series), 599
	 absolutely convergent, 626
	 alternating, 623
		  geometric, 623
		  harmonic, 624, 626

		  remainder, 625
	 conditionally convergent, 626
	 convergence of, 599
	 convergent, limit of nth term, 603
	 divergence of, 599
		  nth-term test for, 603
	 geometric, 601
	 guidelines for testing for convergence 

	 or divergence of, 635
	 harmonic, 611
		  alternating, 624, 626, 628
	 nth partial sum, 599
	 properties of, 603
	 p-series, 611
	 sum of, 599
	 telescoping, 600
	 terms of, 599
Infinity
	 infinite limit at, 205
	 limit at, 199, 200
Inflection point, 193, 194
Initial condition(s), 253, 407
Initial ray (or side) of an angle, 31
Initial value, 416
Inner product of two functions, 540
Inner radius of a solid of revolution, 457
Inscribed rectangle, 262
Instantaneous rate of change, 103, 116
Instantaneous velocity, 117
Integrability and continuity, 272
Integrable function, 272
Integral(s)
	 of cosecant function, 329
	 of cosine function, 329
	 of cotangent function, 329
	 definite, 272
		  properties of, 276
		  two special, 275
	 elliptic, 565
	 of hyperbolic functions, 392
	 improper, 572
	 indefinite, 249
	 involving inverse trigonometric 

	 functions, 382
	 involving secant and tangent,  

	 guidelines for evaluating, 535
	 involving sine and cosine, guidelines 

	 for evaluating, 532
	 involving sine-cosine products, 537
	 Mean Value Theorem, 284
	 of p(x) = Ax2 + Bx + C, 561
	 of secant function, 329
	 of sine function, 329
	 of the six basic trigonometric 

	 functions, 329
	 of tangent function, 329
	 trigonometric, 532
Integral Test, 609
Integrand(s), procedures for fitting to 

basic rules, 519
Integrating factor, 432
Integration
	 as an accumulation process, 449
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	 Additive Interval Property, 275
	 basic rules of, 250, 385, 516
	 change of variables, 299
		  guidelines for, 300
	 constant of, 249
	 Constant Multiple Rule for, 298
	 of even and odd functions, 304
	 guidelines for, 327
	 indefinite, 249
		  pattern recognition, 296
	 involving inverse hyperbolic function, 

	 396
	 Log Rule, 324
	 lower limit of, 272
	 of power series, 656
	 preservation of inequality, 276
	 rules for exponential functions, 346
	 upper limit of, 272
Integration by parts, 523
	 guidelines for, 523
	 summary of common integrals using, 

	 528
	 tabular method, 528
Integration by tables, 566
Integration formulas, 250
	 reduction formulas,  540, 568
	 special, 545
Integration rules
	 basic, 250, 385, 516
	 General Power Rule, 301
	 Power Rule, 250
Integration techniques
	 basic integration rules, 250, 385, 516
	 integration by parts, 523
	 method of partial fractions, 550
	 substitution for rational functions of 

	 sine and cosine, 569
	 tables, 566
	 trigonometric substitution, 541
Intercept(s), 4
	 x-intercept, 4
	 y-intercept, 4
Interest formulas, summary of, 356
Intermediate Value Theorem, 81
Interpretation of concavity, 191
Interval of convergence, 652
Interval, infinite, 199
Inverse function(s), 333
	 continuity and differentiability of, 337
	 derivative of, 337
	 existence of, 335
	 guidelines for finding, 335
	 Horizontal Line Test, 335
	 properties of, 353
	 reciprocal slopes of, 338
	 reflective property of, 334
Inverse hyperbolic functions, 394
	 differentiation involving, 396
	 graphs of, 395
	 integration involving, 396
Inverse trigonometric functions, 373
	 derivatives of, 376
	 graphs of, 374

	 integrals involving, 382
	 properties of, 375
Isothermal curves, 426
Iteration, 229
ith term of a sum, 258

J

Jerk function, 164

K

Kappa curve, 148, 150
Kepler, Johannes, (1571–1630), 689, 741
Kepler’s Laws, 741
Kirchhoff’s Second Law, 434

L

Lagrange form of the remainder, 646
Lagrange, Joseph-Louis (1736–1813), 

176
Lambert, Johann Heinrich (1728–1777), 

390
Lamina, planar, 498
Laplace Transform, 582
Latus rectum, of a parabola, 687
Law of Cosines, 33
Leading coefficient
	 of a polynomial function, 24
	 test, 24
Least squares regression, 7
Least upper bound, 595
Left-hand limit, 76
Leibniz, Gottfried Wilhelm (1646–1716), 

238
Leibniz notation, 238
Lemniscate, 44, 147, 150, 725
Length
	 of an arc, 32, 474, 475
		  parametric form, 713
		  polar form, 733
	 of the moment arm, 495
L’Hôpital, Guillaume (1661–1704), 363
L’Hôpital’s Rule, 363
	 alternative form of, 364
Limaçon, 725
	 convex, 725
	 dimpled, 725
	 with inner loop, 725
Limit(s), 49, 52
	 basic, 63
	 of a composite function, 65
	 definition of, 56
	 ε-δ definition of, 56
	 evaluating
		  direct substitution, 63, 64
		  divide out like factors, 67
		  rationalize the numerator, 68
	 existence of, 77
	 from the left and from the right, 76
	 of a function involving a radical, 64
	 indeterminate form, 67

	 infinite, 87
		  from the left and from the right, 87
		  properties of, 91
	 at infinity, 199, 200
		  infinite, 205
		  of a rational function, guidelines for 

		  finding, 202
	 of integration
		  lower, 272
		  upper, 272
	 involving e, 356
	 of the lower and upper sums, 264
	 nonexistence of, common types of 

	 behavior, 55
	 of nth term of a convergent series, 603
	 one-sided, 76
	 of polynomial and rational functions, 64
	 properties of, 63
	 of a sequence, 589
		  properties of, 590
	 strategy for finding, 66
	 of trigonometric functions, 65
	 two special trigonometric, 69
Limit Comparison Test, 618
Line(s)
	 as a degenerate conic, 686
	 equation of
		  general form, 14
		  horizontal, 14
		  point-slope form, 11, 14
		  slope-intercept form, 13, 14
		  summary, 14
		  vertical, 14
	 moment about, 495
	 normal, 150, 217
	 parallel, 14
	 perpendicular, 14
	 radial, 719
	 secant, 49, 101
	 slope of, 10
	 tangent, 49, 100, 101
		  approximation, 235
		  at the pole, 724
		  with slope, 101
		  vertical, 102
Linear approximation, 235
Linear function, 24
Local maximum, 167
Local minimum, 167
Locus, 686
Log Rule for Integration, 324
Logarithmic differentiation, 319
Logarithmic function, 24, 314
	 to base a, 353
		  derivative of, 354
	 common, 353
	 natural, 314
		  derivative of, 318
		  properties of, 315
Logarithmic properties, 316
Logarithmic spiral, 737, 750
Logistic curve, 427
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Logistic differential equation, 245, 427
	 carrying capacity, 427
Logistic growth function, 357
Lorenz curves, 452
Lower bound of a sequence, 595
Lower bound of summation, 258
Lower limit of integration, 272
Lower sum, 262
	 limit of, 264
Lune, 549

M

Macintyre, Sheila Scott (1910–1960), 532
Maclaurin, Colin, (1698–1746), 669
Maclaurin polynomial, 642
Maclaurin series, 669
Major axis of an ellipse, 689
Mass, 494
	 center of, 495, 496, 497
		  of a one-dimensional system, 495,  

		  496
		  of a planar lamina, 498
		  of a two-dimensional system, 497
	 pound, 494
	 total, 496, 497
Mathematical model, 7
Maximum
	 absolute, 166
	 of f  on I, 166
	 global, 166
	 local, 167
	 relative, 167
Mean Value Theorem, 176
	 alternative form of, 177
	 Extended, 245, 363
	 for Integrals, 284
Measurement, error in, 237
Mechanic’s Rule, 234
Mercator, Gerardus (1512–1594), 399
Mercator map, 399
Method of partial fractions, 550
Midpoint Rule, 266, 561
Minimum
	 absolute, 166
	 of f  on I, 166
	 global, 166
	 local, 167
	 relative, 167
Minor axis of an ellipse, 689
Model
	 exponential growth and decay, 416
	 mathematical, 7
Moment(s)
	 about a line, 495
	 about the origin, 495, 496
	 about a point, 495
	 about the x-axis
		  of a planar lamina, 498
		  of a two-dimensional system, 497
	 about the y-axis
		  of a planar lamina, 498

		  of a two-dimensional system, 497
	 arm length of, 495
	 of mass
		  of a one-dimensional system, 496
		  of a planar lamina, 498
Monotonic sequence, 594
	 bounded, 595
Monotonic, strictly, 182, 335
Mutually orthogonal, 426

N

n factorial, 591
Napier, John (1550–1617), 314
Napier’s inequality, 331
Natural exponential function, 342
	 derivative of, 344
	 integration rules, 346
	 operations with, 343
	 properties of, 343
	 series for, 674
Natural logarithmic base, 317
Natural logarithmic function, 314
	 base of, 317
	 derivative of, 318
	 properties of, 315
	 series for, 674
Net change, 290
Net Change Theorem, 290
Newton (unit of force), 485
Newton, Isaac (1642–1727), 100, 229
Newton’s Law of Cooling, 419
Newton’s Law of Universal Gravitation, 

487
Newton’s Method for approximating the 

zeros of a function, 229
	 convergence of, 231, 232
	 iteration, 229
Newton’s Second Law of Motion, 433
Nonexistence of a limit, common types 

of behavior, 55
Nonremovable discontinuity, 75
Norm of a partition, 271
Normal line, 150, 217
Normal probability density function, 345
	 standard, 345
Notation
	 antiderivative, 249
	 derivative, 103
	 function, 19
	 Leibniz, 238
	 sigma, 258
nth Maclaurin polynomial for f, 642
nth partial sum, 599
	 of geometric series, 601
nth Taylor polynomial for f  at c, 642
nth term
	 of a convergent series, 603
	 of a sequence, 588
nth-Term Test for Divergence, 603
Number, critical, 168
Number e, 317
	 limit involving, 356

Numerical differentiation, 106

O
Obtuse angle, 31
Odd function, 26
	 integration of, 304
	 test for, 26
Ohm’s Law, 241
One-dimensional system
	 center of gravity of, 496
	 center of mass of, 495, 496
	 moment of, 495, 496
	 total mass of, 496
One-sided limit, 76
One-to-one function, 21
Onto function, 21
Open interval
	 continuous on, 74
	 differentiable on, 103
Operations
	 with exponential functions, 343
	 with power series, 663
Order of a differential equation, 406
Orientation of a plane curve, 701
Origin
	 moment about, 495, 496
	 of a polar coordinate system, 719
	 reflection about, 23
	 symmetry, 5
Orthogonal 
	 functions, 540
	 graphs, 150
	 trajectory, 150, 426
Outer radius of a solid of revolution, 457

P

Padé approximation, 403
Pappus
	 Second Theorem of, 504
	 Theorem of, 501
Parabola, 2, 149, 686, 687
	 axis of, 687
	 directrix of, 687
	 focal chord of, 687
	 focus of, 687
	 latus rectum of, 687
	 reflective property of, 688
	 standard equation of, 687
	 vertex of, 687
Parabolic spandrel, 503
Parallel lines, 14
Parameter, 700
	 eliminating, 702
Parametric equations, 700
	 finding, 704
	 graph of, 700
Parametric form
	 of arc length, 713
	 of the area of a surface of revolution, 

	 714
	 of the derivative, 710
		  higher-order, 711
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Partial fractions, 550
	 decomposition of N(x)�D(x) into, 551
	 method of, 550
Partial sum(s)
	 nth, 599
		  of geometric series, 601
	 sequence of, 599
Particular solution of a differential 

equation, 253, 407
Partition
	 general, 271
	 norm of, 271
	 regular, 271
Pascal, Blaise (1623–1662), 505
Pascal’s Principle, 505
Pear-shaped quartic, 163
Percent error, 237
Perigee, 698
Perihelion, 698, 745
Period of a function, 36
Periodic function, 36
Perpendicular lines, 14
Piecewise smooth curve, 705
Planar lamina, 498
	 center of mass of, 498
	 moment of, 498
Plane region, area of, 264
Plane curve, 700
	 orientation of, 701
Point
	 as a degenerate conic, 686
	 of diminishing returns, 227
	 fixed, 180, 233
	 of inflection, 193, 194
	 of intersection, 6
		  of polar graphs, 731
	 moment about, 495
Point-slope equation of a line, 11, 14
Polar axis, 719
Polar coordinate system, 719
	 polar axis of, 719
	 pole (or origin), 719
Polar coordinates, 719 
	 area in, 729
	 area of a surface of revolution in, 734
	 converting to rectangular, 720
	 Distance Formula in, 727
Polar curve, arc length of, 733
Polar equations of conics, 739
Polar form of slope, 723
Polar graphs, 721
	 cardioid, 724, 725
	 circle, 725
	 convex limaçon, 725 
	 dimpled limaçon, 725
	 lemniscate, 725
	 limaçon with inner loop, 725
	 points of intersection, 731
	 rose curve, 722, 725
Pole, 719
	 tangent lines at, 724
Polynomial
	 Maclaurin, 642

	 Taylor, 163, 642
Polynomial approximation, 640
	 centered at c, 640
	 expanded about c, 640
Polynomial function, 24, 64
	 constant term of, 24
	 degree of, 24
	 leading coefficient of, 24
	 limit of, 64
	 zero, 24
Position function, 116, 128
Pound mass, 494
Power-reducing formulas, 33
Power Rule
	 for differentiation, 111, 139
	 for integration, 250, 301
	 for Real Exponents, 355
Power series, 651
	 centered at c, 651
	 convergence of, 652
	 convergent, form of, 668
	 differentiation of, 656
	 domain of, 652
	 for elementary functions, 674
	 endpoint convergence, 654
	 geometric, 661
	 integration of, 656
	 interval of convergence, 652
	 operations with, 663
	 properties of functions defined by, 656
		  interval of convergence, 656
		  radius of convergence, 656
	 radius of convergence, 652
	 representation of functions by, 661
Present value of a function, 531
Preservation of inequality, 276
Pressure, fluid, 505
Primary equation, 219, 220
Prime Number Theorem, 323
Probability density function, 581
	 normal, 345
	 standard normal, 345
Procedures for fitting integrands to basic 

rules, 519
Product of two functions, 25
	 inner, 540
Product Rule, 122, 139
	 differential form, 238
Prolate cycloid, 712
Propagated error, 237
Properties
	 of continuity, 79
	 of definite integrals, 276
	 of functions defined by power series, 

	 656
	 of infinite limits, 91
	 of infinite series, 603
	 of inverse functions, 353
	 of inverse trigonometric functions, 375
	 of limits, 63
	 of limits of sequences, 590
	 logarithmic, 316
	 of the natural exponential function, 343

	 of the natural logarithmic function, 315
Proportionality constant, 416
p-series, 611
	 convergence of, 611
	 divergence of, 611
	 harmonic, 611
Pulse function, 98
	 unit, 98
Pursuit curve, 395
Pythagorean identities, 33, 541

Q

Quadratic function, 24
Quotient, difference, 20, 101
Quotient identities, 33
Quotient Rule, 124, 139
	 differential form, 238
Quotient of two functions, 25

R

Radial lines, 719
Radian measure of angles, 32, 374
Radical, limit of a function involving a, 64
Radicals, solution by, 232
Radioactive isotopes, half-lives of, 417
Radius
	 of convergence, 652
	 inner, 457
	 outer, 457
Ramanujan, Srinivasa (1887–1920), 665
Range of a function, 19
Raphson, Joseph (1648–1715), 229
Rate of change, 12, 116
	 average, 12
	 instantaneous, 103, 116
Ratio, 12
	 golden, 598
Ratio Test, 631
Rational function(s), 22, 25
	 guidelines for finding limits at infinity 

	 of, 202
	 limit of, 64
Rationalize the numerator, 68
Rationalizing technique, 68
Real Exponents, Power Rule for, 355
Real numbers, completeness of, 81, 595
Real-valued function f  of a real variable x, 

19
Reasoning, inductive, 593
Reciprocal identities, 33
Rectangle
	 area of, 260
	 circumscribed, 262
	 inscribed, 262
	 representative, 444
Rectangular coordinates, converting to 

polar, 720
Rectifiable curve, 474
Recursively defined sequence, 588
Reduction formulas, 540, 568
Reference angle, 35
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Reflection
	 about the origin, 23
	 about the x-axis, 23
	 about the y-axis, 23
	 angle of, 688
	 in the line y = x, 334
Reflective property
	 of an ellipse, 691
	 of inverse functions, 334
	 of a parabola, 688
Reflective surface, 688
Refraction, 227
Region in the plane
	 area of, 264
		  between two curves, 445
	 centroid of, 499
Regression, least squares, 7
Regular partition, 271
Related-rate equation, 152
Related-rate problems, guidelines for 

solving, 153
Relation, 19
Relative error, 237
Relative extrema
	 First Derivative Test for, 183
	 of a function, 167
	 occur only at critical numbers, 168
	 Second Derivative Test for, 195
Relative maximum
	 at (c, f (c)), 167
	 First Derivative Test for, 183
	 of a function, 167
	 Second Derivative Test for, 195
Relative minimum
	 at (c, f (c)), 167
	 First Derivative Test for, 183
	 of a function, 167
	 Second Derivative Test for, 195
Remainder
	 alternating series, 625
	 of a Taylor polynomial, 646
Removable discontinuity, 75
Representation of antiderivatives, 248
Representative element, 449
	 disk, 454
	 rectangle, 444
	 shell, 465
	 washer, 457
Review
	 of basic differentiation rules, 378
	 of basic integration rules, 385, 516
Revolution
	 axis of, 454
	 solid of, 454
	 surface of, 478
		  area of, 479, 714, 734
	 volume of solid of
		  disk method, 454
		  shell method, 465, 466
		  washer method, 457
Riemann, Georg Friedrich Bernhard 

(1826–1866), 271, 628

Riemann sum, 271
Riemann zeta function, 615
Right triangle definitions of trigonometric 

functions, 33
Right-hand limit, 76
Rolle, Michel (1652–1719), 174
Rolle’s Theorem, 174
Root Test, 634
Rose curve, 722, 725

S

Secant function, 33
	 derivative of, 126, 139
	 integral of, 329
	 inverse of, 373
		  derivative of, 376
Secant line, 49, 101
Second derivative, 128
Second Derivative Test, 195
Second Fundamental Theorem of 

Calculus, 288
Second Theorem of Pappus, 504
Secondary equation, 220
Second-degree equation, general, 686
Semicircle, 21, 141
Separable differential equation, 423
Separation of variables, 415, 423
Sequence, 588
	 Absolute Value Theorem, 592
	 bounded, 595
	 bounded above, 595
	 bounded below, 595
	 bounded monotonic, 595
	 convergence of, 589
	 divergence of, 589
	 Fibonacci, 598, 608
	 least upper bound of, 595
	 limit of, 589
		  properties of, 590
	 lower bound of, 595
	 monotonic, 594
	 nth term of, 588
	 of partial sums, 599
	 pattern recognition for, 592
	 recursively defined, 588
	 Squeeze Theorem, 591
	 terms of, 588
	 upper bound of, 595
Series, 599
	 absolutely convergent, 626
	 alternating, 623
		  geometric, 623
		  harmonic, 624, 626, 628
	 Alternating Series Test, 623
	 binomial, 673
	 conditionally convergent, 626
	 convergence of, 599
	 convergent, limit of nth term, 603
	 Direct Comparison Test, 616
	 divergence of, 599
		  nth-term test for, 603
	 finite Fourier, 540

	 Fourier Sine, 531 
	 geometric, 601
		  alternating, 623
		  convergence of, 601
		  divergence of, 601
	 guidelines for testing for convergence 

	 or divergence, 635
	 harmonic, 611, 615
		  alternating, 624, 626, 628
	 infinite, 599
		  properties of, 603
	 Integral Test, 609
	 Limit Comparison Test, 618
	 Maclaurin, 669
	 nth partial sum, 599
	 nth term of convergent, 603
	 power, 651
	 p-series, 611
	 Ratio Test, 631
	 Root Test, 634
	 sum of, 599
	 summary of tests for, 636
	 Taylor, 668, 669
	 telescoping, 600
	 terms of, 599
Serpentine, 130
Shell method, 465, 466
	 and disk method, comparison of, 467
Shift of a graph
	 horizontal, 23
	 vertical, 23
Sigma notation, 258
	 index of summation, 258
	 ith term, 258
	 lower bound of summation, 258
	 upper bound of summation, 258
Signum function, 86
Simple Power Rule, 111, 135, 139
Simpson’s Rule, 562
	 error in, 563
Sine function, 33
	 derivative of, 115, 139
	 integral of, 329
	 inverse of, 373
		  derivative of, 376
	 series for, 674
Sine integral function, 312
Sine Series, Fourier, 531
Singular solution, differential equation, 406
Slant asymptote, 205, 211
Slope(s)
	 field, 255, 305, 315, 408
	 of the graph of f  at x = c, 101
	 of a line, 10
	 reciprocal, of inverse functions, 338
	 of a tangent line, 101
		  parametric form, 710
		  polar form, 723
Slope-intercept equation of a line, 13, 14
Smooth curve, 474, 705
	 piecewise, 705
Snell’s Law of Refraction, 227
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Solid of revolution, 454
	 volume of
		  disk method, 454
		  shell method, 465, 466
		  washer method, 457
Solution
	 curves, 407
	 of a differential equation, 406
		  Bernoulli, 438
		  Euler’s Method, 410
		  first-order linear, 433
		  general, 249, 406
		  particular, 253, 407
		  singular, 406
	 point of an equation, 2
	 by radicals, 232
Some basic limits, 63
Spandrel, parabolic, 503
Special integration formulas, 545
Special polar graphs, 725
Special type of improper integral, 578
Speed, 117
Spiral
	 of Archimedes, 721, 737
	 cornu, 749
	 logarithmic, 737, 750
Square root function, 22
Squaring function, 22
Squeeze Theorem, 69
	 for Sequences, 591
Standard equation of
	 an ellipse, 689
	 a hyperbola, 693
	 a parabola, 687
Standard form of the equation of
	 an ellipse, 689
	 a hyperbola, 693
	 a parabola, 687
Standard form of a first-order linear 

differential equation, 432
Standard normal probability density 

function, 345
Standard position of an angle, 31
Step function, 76
Stirling’s approximation, 525
Stirling’s Formula, 350
Strategy for finding limits, 66
Strictly monotonic function, 182, 335
Strophoid, 749
Substitution for rational functions of sine 

and cosine, 569
Sum(s)
	 and difference formulas, 33
	 of geometric series, 601
	 ith term of, 258
	 lower, 262
		  limit of, 264
	 nth partial, 599
		  of geometric series, 601
	 Riemann, 271
	 Rule, 114, 139
		  differential form, 238
	 of a series, 599

	 sequence of partial, 599
	 of two functions, 25
	 upper, 262
		  limit of, 264
Summary
	 of common integrals using integration  

	 by parts, 528
	 of compound interest formulas, 356
	 of curve sketching, 209
	 of differentiation rules, 139
	 of equations of lines, 14
	 of tests for series, 636
Summation
	 formulas, 259
	 index of, 258
	 lower bound of, 258
	 upper bound of, 258
Surface, reflective, 688
Surface of revolution, 478
	 area of, 479
		  parametric form, 714
		  polar form, 734
Symmetry
	 tests for, 5
	 with respect to the origin, 5
	 with respect to the point (a, b), 403
	 with respect to the x-axis, 5
	 with respect to the y-axis, 5

T

Table of values, 2
Tables, integration by, 566
Tabular method for integration by parts, 

528
Tangent function, 33
	 derivative of, 126, 139
	 integral of, 329
	 inverse of, 373
		  derivative of, 376
Tangent line(s), 49, 100, 101
	 approximation of f  at c, 235
	 at the pole, 724
	 problem, 49
	 slope of, 101
		  parametric form, 710
		  polar form, 723
	 with slope m, 101
	 vertical, 102
Tautochrone problem, 706
Taylor, Brook (1685–1731), 642
Taylor polynomial, 163, 642
	 error in approximating, 646
	 remainder, Lagrange form of, 646
Taylor series, 668, 669
	 convergence of, 670
	 guidelines for finding, 672
Taylor’s Theorem, 646
Telescoping series, 600
Terminal ray (or side) of an angle, 31
Terms
	 of a sequence, 588
	 of a series, 599

Test(s)
	 comparison, for improper integrals, 580
	 for concavity, 192
	 for convergence
		  Alternating Series, 623
		  Direct Comparison, 616
		  geometric series, 601
		  guidelines, 635
		  Integral, 609
		  Limit Comparison, 618
		  p-series, 611
		  Ratio, 631
		  Root, 634
		  summary, 636
	 for even and odd functions, 26
	 First Derivative, 183
	 Horizontal Line, 335
	 for increasing and decreasing functions, 

	 181
	 Leading Coefficient, 24
	 Second Derivative, 195
	 for symmetry, 5
	 Vertical Line, 22
Theorem
	 Absolute Value, 592
	 of Calculus, Fundamental, 281, 282
		  guidelines for using, 282
	 of Calculus, Second Fundamental, 288
	 Cavalieri’s, 464
	 Darboux’s, 246
	 existence, 81, 166
	 Extended Mean Value, 245, 363
	 Extreme Value, 166
	 Intermediate Value, 81
	 Mean Value, 176
		  alternative form, 177
		  Extended, 245, 363
		  for Integrals, 284
	 Net Change, 290
	 of Pappus, 501
		  Second, 504
	 Prime Number, 323
	 Rolle’s, 174
	 Squeeze, 69
		  for sequences, 591
	 Taylor’s, 646
Third derivative, 128
Torque, 496
Torricelli’s Law, 441
Total distance traveled on [a, b], 291
Total mass, 496, 497
	 of a one-dimensional system, 496
	 of a two-dimensional system, 497
Tractrix, 323, 395
Trajectories, orthogonal, 150, 426
Transcendental function, 25, 378
Transformation, 23
Transformation of a graph of a function, 23
	 basic types, 23
	 horizontal shift, 23
	 reflection about origin, 23
	 reflection about x-axis, 23
	 reflection about y-axis, 23
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	 reflection in the line y = x, 334
	 vertical shift, 23
Transverse axis of a hyperbola, 693
Trapezoidal Rule, 560
	 error in, 563
Trigonometric function(s), 24, 33
	 and the Chain Rule, 138
	 circular function definitions of, 33
	 derivatives of, 126, 139
	 integrals of the six basic, 329
	 inverse, 373
		  derivatives of, 376
		  graphs of, 374
		  integrals involving, 382
		  properties of, 375
	 limit of, 65
	 right triangle definitions of, 33
Trigonometric identities, 33
Trigonometric integrals, 532
Trigonometric substitution, 541
Trigonometric values of common angles, 

34
Two special definite integrals, 275
Two special trigonometric limits, 69
Two-dimensional system
	 center of gravity of, 497
	 center of mass of, 497
	 moment of, 497
	 total mass of, 497
Two-Point Gaussian Quadrature 

Approximation, 311

U

Unit circle, 32
Unit pulse function, 98
Universal Gravitation, Newton’s Law of, 

487
Upper bound
	 least, 595
	 of a sequence, 595
	 of summation, 258

Upper limit of integration, 272
Upper sum, 262
	 limit of, 264
u-substitution, 296

V

Value of f  at x, 19
Variable
	 dependent, 19
	 dummy, 274
	 force, 486 
	 independent, 19
Velocity, 117
	 average, 116
	 escape, 98
	 function, 128
	 instantaneous, 117
	 potential curves, 426
Vertéré, 202
Vertex
	 of an angle, 31
	 of an ellipse, 689
	 of a hyperbola, 693
	 of a parabola, 687
Vertical asymptote, 89
Vertical line, 14
Vertical Line Test, 22
Vertical shift of a graph of a function, 23
Vertical tangent line, 102
Volume of a solid
	 disk method, 455
	 with known cross sections, 459
	 shell method, 465, 466
	 washer method, 457

W

Wallis, John (1616–1703), 534, 540
Wallis Product, 540
Wallis’s Formulas, 534
Washer, 457

Washer method, 457
Weight-densities of fluids, 505
Wheeler, Anna Johnson Pell 

(1883–1966), 432
Witch of Agnesi, 130, 149, 202
Work, 485
	 done by a constant force, 485
	 done by a variable force, 486

X

x-axis
	 moment about, of a planar lamina, 498
	 moment about, of a two-dimensional 

	 system, 497
	 reflection about, 23
	 symmetry, 5
x-intercept, 4

Y

y-axis
	 moment about, of a planar lamina, 498 
	 moment about, of a two-dimensional 

	 system, 497
	 reflection about, 23
	 symmetry, 5
y-intercept, 4
Young, Grace Chisholm (1868–1944), 49

Z

Zero factorial, 591
Zero of a function, 26
	 approximating
		  bisection method, 82
		  Intermediate Value Theorem, 81
		  with Newton’s Method, 229
Zero polynomial, 24
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Factors and Zeros of Polynomials
Let p(x) = anxn + an−1x

n−1 + .  .  . + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the 
polynomial and a solution of the equation p(x) = 0. Furthermore, (x − a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these 
zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax2 + bx + c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b ± √b2 − 4ac)�2a.

Special Factors
x2 − a2 = (x − a)(x + a) x3 − a3 = (x − a)(x2 + ax + a2)

x3 + a3 = (x + a)(x2 − ax + a2) x4 − a4 = (x − a)(x + a)(x2 + a2)

Binomial Theorem
(x + y)2 = x2 + 2xy + y2 (x − y)2 = x2 − 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3 (x − y)3 = x3 − 3x2y + 3xy2 − y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x − y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

(x + y)n = xn + nxn−1y +
n(n − 1)

2!
xn−2y2 + .  .  . + nxyn−1 + yn

(x − y)n = xn − nxn−1y +
n(n − 1)

2!
xn−2y2 − .  .  . ± nxyn−1 ∓ yn

Rational Zero Theorem
If p(x) = anxn + an−1x

n−1 + .  .  . + a1x + a0 has integer coefficients, then every  
rational zero of p is of the form x = r�s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx + bd = ax2(cx + d) + b(cx + d) = (ax2 + b)(cx + d)

Arithmetic Operations

ab + ac = a(b + c) a
b
+

c
d
=

ad + bc
bd

 
a + b

c
=

a
c
+

b
c

(ab)
(cd)

= (ab)(
d
c) =

ad
bc

 
(ab)

c
=

a
bc

 
a

(bc)
=

ac
b

a(bc) =
ab
c

 
a − b
c − d

=
b − a
d − c

 
ab + ac

a
= b + c

Exponents and Radicals

a0 = 1, a ≠ 0 (ab)x = axbx axay = ax+y √a = a1�2 
ax

ay = ax−y n√a = a1�n

(ab)
x

=
ax

bx 
n√am = am�n a−x =

1
ax 

n√ab = n√a n√b (ax)y = axy n√a
b
=

n√a
n√b
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FORMULAS FROM GEOMETRY

Triangle
h = a sin θ 

a

b

h
c

θArea =
1
2

bh

(Law of Cosines)

c2 = a2 + b2 − 2ab cos θ

Right Triangle
(Pythagorean Theorem) a

b

c

c2 = a2 + b2

Equilateral Triangle

h =
√3s

2
 s

s

h
s

Area =
√3s2

4

Parallelogram
Area = bh 

b

h

Trapezoid

Area =
h
2
(a + b) 

a

h

b

a
b

h

Circle
Area = πr2 r

Circumference = 2πr

Sector of Circle
(θ in radians) 

r

s

θArea =
θr2

2

s = rθ

Circular Ring
(p = average radius, 

R

p w
r

w = width of ring)
 Area = π(R2 − r2)

 = 2πpw

Sector of Circular Ring
(p = average radius, 

w

p

θw = width of ring,

θ in radians)
Area = θpw

Ellipse
Area = πab 

a

b

Circumference ≈ 2π√a2 + b2

2

Cone
(A = area of base) 

h

A
Volume =

Ah
3

Right Circular Cone

Volume =
πr2h

3
 

r

h

Lateral Surface Area = πr√r2 + h2

Frustum of Right Circular Cone

Volume =
π(r2 + rR + R2)h

3
 

h R

r

s

Lateral Surface Area = πs(R + r)

Right Circular Cylinder
Volume = πr2h 

r

hLateral Surface Area = 2πrh

Sphere

Volume =
4
3
πr3 r

Surface Area = 4πr2

Wedge
(A = area of upper face, 

B

A

θ

 B = area of base)
A = B sec θ

T
ear out F

orm
ula C

ards for H
om

ew
ork S

uccess.
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Business and Economics

Annuities, 607
Apartment rental, 18
Average cost, 198 
Average price, 332
Biodiesel production, 17
Break-even analysis, 41
Break-even point, 9
Capitalized cost, 581
Compound interest, 356, 357, 359, 360, 

371, 401, 421, 440, 597, 680
Consumer and producer surpluses, 514
Cost, 142, 178, 243, 340
	 of a data plan, 85
	 of fuel, 121
	 of a long-distance phone call, 61, 340
	 of removing a chemical, 558
	 of removing pollutants, 96
	 of tuition, 422
Declining sales, 418
Depreciation, 143, 307, 349, 359, 401, 

606, 680
Eliminating budget deficits, 452
Government expenditures, 597
Gross Domestic Product (GDP), 9
Health care expenditures, 131
Home mortgage, 323, 404
Income distribution in a country, 452
Inflation, 359, 597
Inventory management, 85, 121
Inventory replenishment, 130
Investment growth, 436
Manufacturing, 459, 463
Marketing, 606, 681
Maximum profit, 227
Medicare Hospital Insurance Trust Fund, 

189
Minimum cost, 226
Multiplier effect, 606
Outlays for national defense, 243
Present value, 531, 584, 607
Profit, 452
Revenue, 452, 511
Salary, 607
Sales, 40, 179, 196, 307, 332, 440, 441
Sales growth, 198, 243
Value
	 of a machine, 41
	 of a mid-sized sedan, 350
	 of a product, 17

Social and Behavioral 
Sciences

Cell phone subscribers, 9
Free lunch program, 160
Group project in learning theory, 360
Learning curve, 421, 422, 436
Memory model, 531
Population, 12, 16, 421, 598

Population growth, 431, 436, 439, 441, 
571, 684

Life Sciences

AIDS, 360
Bacterial culture growth, 143, 357, 421, 430
Biomass, 442
Carbon dioxide concentration, 7
Concentration of a chemical in the 

bloodstream, 189, 234
Concentration of a tracer drug in a fluid, 

442
Endangered species, 430
Epidemic model, 442, 558
Forestry, 422
Grand Canyon, 257
Growth of a dog, 294
Intravenous feeding, 437
Oxygen level in a pond, 204
Population growth
	 of bacteria, 130, 256, 332
	 of brook trout, 440
	 of coyotes, 425
	 of elk, 428
	 of fish, 360
	 of fruit flies, 418
	 of raccoons, 440
Respiratory cycle, 293
Topographic map, 150
Trachea contraction, 189
Tree growth, 256

General

Area, 120, 130, 157, 240, 260, 607, 678
Average quiz and exam scores, 18
Average typing speed, 198, 207
Buffon’s Needle Experiment, 293
Cantor set, 683
Cantor’s disappearing table, 608	
Cassini oval, 728
Choosing a job, 18
Depth
	 of water in a swimming pool, 157
	 of water in a trough, 158
	 of water in a vase, 30, 197
Distance traveled by a bouncing ball, 

604, 606, 681
Driving distance, 120
Error
	 in volume of a ball bearing, 237
	 in volume and surface area of a cube, 

	 241
Folding paper, 246
Frequency of a musical note, 86
Golf ball, 61
Height of a mountain, 39
Hiking on a mountain, 86
Inflating balloon, 154, 157
Jewelry, 61

Lawn sprinkler, 173
Maximizing an angle, 377, 381
Maximum area, 43, 223, 224, 225, 226, 

228, 244
Maximum cross-sectional area of an irri-

gation canal, 227
Maximum length, 244
Maximum volume, 225, 226, 227
	 of a box, 219, 220, 224
	 of a package, 226
Mercator map, 399
Minimum area, 221, 225
Minimum distance, 221, 224, 228, 245
Minimum length, 222, 225, 226, 244
Minimum perimeter, 224
Minimum surface area, 226
Minimum time, 226, 227, 228, 234
Optical illusions, 151
Probability, 308, 351, 581, 584, 606, 607, 

667, 678
Pyramid of Khufu, 493
Refrigeration, 162
Revolutions of a saw 94
Road grade, 16
Rolling 
	 a ball bearing, 189
	 a wheel, 708
School commute, 29
Seating capacity, 269
Security camera, 160
Speed, 29, 155, 177, 180
Sphereflake, 607
Stacking blocks, 683
Stacking spheres, 684
Stopping distance, 121, 132, 241, 246
Surface area, 157, 162, 241
	 of Gabriel’s Horn, 578
	 of an ornamental light bulb, 484
	 of a roof, 482
	 of a satellite-signal receiving dish, 698
	 of a vase, 483
Swimming, 86
Throwing a dart, 269
Timber yield, 360
Unwinding a string, 718
Upgrading a car, 29
Volume, 86, 120, 130, 157
	 of a box, 30
	 of a container, 463
	 of fluid in a storage tank, 548
	 of a fuel tank, 463
	 of a pond, 473
	 of a pontoon, 469
	 of a pyramid, 460
	 of a shampoo bottle, 226
	 of a shed, 472
	 of a spherical ring, 513
	 of a vase, 483
	 of water in a conical tank, 152
Weight gain, 430
Weight loss, 438
Wheelchair ramp, 12

Index of Applications    (continued from front inside cover)
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