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Basic Differentiation

1. %[cu] =cu'
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d 2 N
28. a[coth u] = —(csch? u)u
d u'
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Basic Integration Formulas
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Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < 0 < m/2.

h
© o sin9=m cs09=ﬂ
@0@0\‘ z hyp opp
w & _ adj _ hyp
g IS cos B = hyp sec O = adi
Adj t i
Jacen tan 6 = ﬂ cotf = adj
adj opp

’
1 T s1n0=%csc6=—
=V x
(x, ) . Y X yr
g rm cos@=; sec@=)—c
L N i ; "
kJ tanf == coth =~
X y
Reciprocal Identities
. 1 1 1
sinx = —— secx = tanx = ——
cos cot x
1 1
cSCX =—/—— COsx = cotx = ——
sec x tan x
Quotient Identities
sin x COS X
tanx = —— cotx = —
coS x sin x

Pythagorean ldentities
sin?x + cos?x = 1

1 + tan?x = sec2x 1 + cot?x = csc?x

Cofunction ldentities

. i T .

Sln(g - x) = COS x COS(E - x) = Sin x
T T

CSC(E — x) = sec x tan(E — x) = cotx

sec(z - x) = CSC X cot(z - x) = tan x
2 2

Even/0Odd Identities

sin(—x) = —sinx cos(—x) = cos x
csc(—x) = —cscx  tan(—x) = —tanx
sec(—x) = sec x cot(—x) = —cotx

Sum and Difference Formulas
sin(u * v) = sinu cos v * cos u sin v
cos(u = v) = cos ucos v * sin u sin v
tanu * tan v

tan(u £ v) = ——————
anu £ v) 1 *tanutanvy

Double-Angle Formulas
sin 2u = 2 sin u cos u
cos2u = cos?u — sinfu=2cos2u—1=1—2sin2u
2 tan u
tan 2u = —————
1 — tan’u

Power-Reducing Formulas

Gin? y = 1 — cos2u
2

) 1 + cos2u

cos*uy = —————
2

tan® 1 = 1 — cos 2u

1 + cos2u

Sum-to-Product Formulas
. o futwy u—v
sinu + siny = 251n< 2 )cos( > )
sinu — siny = 2cos<u * v) sin(” — v)
v 2 2
+ —
cosu +cosyv =2 cos(u v) cos(u v)
2 2
-2 sin(u + v) sin(u — v)
2 2

Product-to-Sum Formulas

cosu — Cosv

sinusinv = %[cos(u —v) — cos(u + v)]
1

COS U COS v = E[cos(u — ) + cos(u + v)]
1

sin u cos v = E[sin(u + v) + sin(u — v)]

. | .
cosusiny = E[sm(u +v) — sin(u — v)]
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Welcome to Calculus, Eleventh Edition. We are excited to offer you a new edition with even more
resources that will help you understand and master calculus. This textbook includes features and
resources that continue to make Calculus a valuable learning tool for students and a trustworthy
teaching tool for instructors.

Calculus provides the clear instruction, precise mathematics, and thorough coverage that you expect
for your course. Additionally, this new edition provides you with free access to three companion websites:

¢ CalcView.com—video solutions to selected exercises
¢ CalcChat.com—worked-out solutions to odd-numbered exercises and access to online tutors

* LarsonCalculus.com—companion website with resources to supplement your learning

These websites will help enhance and reinforce your understanding of the material presented in
this text and prepare you for future mathematics courses. CalcView® and CalcChat® are also
available as free mobile apps.
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ADT02017PB Final
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The website CalcView.com contains video
solutions of selected exercises. Watch
instructors progress step-by-step through
solutions, providing guidance to help you
solve the exercises. The CalcView mobile app
is available for free at the Apple® App Store®
or Google Play™ store. The app features an
embedded QR Code® reader that can be used
to scan the on-page codes =% and go directly
to the videos. You can also access the videos
at CalcView.com.

[E.mﬂm Free Easy Acoess Study Guade and

By Foo Larson Tuoring for Caloulus Students U PDATED E mc ':hﬁt ®
Easy Access Study Guide In each exercise set, be sure to notice the reference to
—r e CalcChat.com. This website provides free step-by-step
Caleulus & Linear Precabiubus & Gallege Applied solutions to all odd-numbered exercises in many of
Abgehra Algebra Benes

— our textbooks. Additionally, you can chat with a tutor,
CALC LUs at no charge, during the hours posted at the site. For

3 over 14 years, hundreds of thousands of students have
m visited this site for help. The CalcChat mobile app is

- also available as a free download at the Apple® App
Store® or Google Play™ store and features an
embedded QR Code® reader.

VIEW

App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc.
QR Code is a registered trademark of Denso Wave Incorporated.
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Preface

REVISED LarsonCalculus.com

All companion website features have been updated based on this revision. Watch videos explaining
concepts or proofs from the book, explore examples, view three-dimensional graphs, download articles
from math journals, and much more.

NEW Conceptual Exercises

The Concept Check exercises and Exploring Concepts exercises appear in each section. These
exercises will help you develop a deeper and clearer knowledge of calculus. Work through these
exercises to build and strengthen your understanding of the calculus concepts and to prepare you for
the rest of the section exercises.

REVISED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous and
relevant and to include topics our users have suggested. The exercises are organized and titled

S0 you can better see the connections between examples and exercises. Multi-step, real-life exercises
reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the
concepts in real-life situations.

REVISED Section Projects

Projects appear in selected sections and encourage you to explore applications related to the topics
you are studying. We have added new projects, revised others, and kept some of our favorites.

All of these projects provide an interesting and engaging way for you and other students to work
and investigate ideas collaboratively.

Table of Contents Changes

Based on market research and feedback from users, we have made several changes to the table
of contents.

*  We added a review of trigonometric functions (Section P.4) to Chapter P.

* To cut back on the length of the text, we moved previous Section P.4 Fitting Models to Data
(now Appendix G in the Eleventh Edition) to the text-specific website at CengageBrain.com.

* To provide more flexibility to the order of coverage of calculus topics, Section 3.5 Limits at
Infinity was revised so that it can be covered after Section 1.5 Infinite Limits. As a result of this
revision, some exercises moved from Section 3.5 to Section 3.6 A Summary of Curve Sketching.

e We moved Section 4.6 Numerical Integration to Section 8.6.
*  We moved Section 8.7 Indeterminate Forms and L’Hopital’s Rule to Section 5.6.

Chapter Opener

Each Chapter Opener highlights real-life applications used in the examples and exercises.



X Preface

Section Objectives

A bulleted list of learning objectives provides
you with the opportunity to preview what will
be presented in the upcoming section.

Theorems

Theorems provide the conceptual framework
for calculus. Theorems are clearly stated and
separated from the rest of the text by boxes
for quick visual reference. Key proofs often
follow the theorem and can be found at
LarsonCalculus.com.

Definitions

As with theorems, definitions are clearly stated
using precise, formal wording and are separated
from the text by boxes for quick visual reference.

Explorations

Explorations provide unique challenges to
study concepts that have not yet been formally
covered in the text. They allow you to learn by
discovery and introduce topics related to ones
presently being studied. Exploring topics in this
way encourages you to think outside the box.

Remarks

These hints and tips reinforce or expand upon
concepts, help you learn how to study
mathematics, caution you about common errors,
address special cases, or show alternative or
additional steps to a solution of an example.

How Do You See It? Exercise

166

Chapter 3 Applications of Differentiation

3.1 Extrema on an Interval

T

(2. 5) - Maximum

©,1) Minimum

123

(a) £ is continuous, [~ 1, 2] is closed.

-1

(b) fis

y

_Nota

maximum
fy=xt+1

©.1) Minimum
x
1 2 3

continuous, (~ 1, 2) is open.
y

(2, 5) 9~ Maximum

e {1 a0
2 x=0

< Nota

‘minimum
‘E"H—’_’ x

-1

23

(¢) g is not continuous, [~ 1, 2] is closed.
Figure 3.1

# Understand the definition of extrema of a function on an interval.
8 Understand the definition of relative extrema of a function on an open interval.
# Find extrema on a closed interval.

Extrema of a Function

In calculus, much effort is devoted to determining the behavior of a function f on an
interval 1. Does f have a maximum value on /? Does it have a minimum value? Where
is the function increasing? Where is it decreasing? In this chapter, you will learn
how derivatives can be used to answer these questions. You will also see why these
questions are important in real-life applications.

Definition of Extrema

Let f be defined on an interval / containing c.

1. f(c) is the minimum of f on I when f(c) < f(x) for all x in .
2. f(c) is the maximum of f on I when f(c) = f(x) for all x in /.

The minimum and maximum of a function on an interval are the extreme
values, or extrema (the singular form of extrema is extremum), of the function
on the interval. The minimum and maximum of a function on an interval are
also called the absolute minii and absolute i or the global
minimum and global maximum, on the interval. Extrema can occur at interior
points or endpoints of an interval (see Figure 3.1). Extrema that occur at the
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in
Figures 3.1(a) and (b), you can see that the function f(x) = x*> + 1 has both a minimum
and a maximum on the closed interval [~ 1, 2] but does not have a maximum on the
open interval (— 1, 2). Moreover, in Figure 3.1(c), you can see that continuity (or the
lack of it) can affect the existence of an extremum on the interval. This suggests the
theorem below. (Although the Extreme Value Theorem is intuitively plausible, a proof
of this theorem is not within the scope of this text.)

The Extreme Value Theorem
If f is continuous on a closed interval [a, b], then f has both a minimum and a
maximum on the interval.

Exploration

Finding Minimum and Maximum Values The Extreme Value Theorem (like
the Intermediate Value Theorem) is an existence theorem because it tells of the
existence of minimum and maximum values but does not show how to find
these values. Use the minimum and maximum features of a graphing utility to
find the extrema of each function. In each case, do you think the x-values are
exact or approxi ? Explain your i

a. f(x) = x> — 4x + 5 on the closed interval [—1, 3]
b. f(x) = x* — 2x> — 3x — 2 on the closed interval [— 1, 3]

The How Do You See It? exercise in each section presents a problem that you will solve
by visual inspection using the concepts learned in the lesson. This exercise is excellent for

classroom discussion or test preparation.

Applications

Carefully chosen applied exercises and examples are included throughout to address the
question, “When will I use this?” These applications are pulled from diverse sources, such

as current events, world data, industry trends, and more, and relate to a wide range of interests.
Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Historical Notes and Biographies

Historical Notes provide you with background information on the foundations of calculus.
The Biographies introduce you to the people who created and contributed to calculus.

Technology

Throughout the book, technology boxes show you how to use technology to solve problems
and explore concepts of calculus. These tips also point out some pitfalls of using technology.

Putnam Exam Challenges

Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will
challenge you and push the limits of your understanding of calculus.




Student Resources

Student Solutions Manual for Calculus of a Single Variable
ISBN-13: 978-1-337-27538-5

Need a leg up on your homework or help to prepare for an exam? The Student
Solutions Manual contains worked-out solutions for all odd-numbered exercises in the
text. This manual is a great resource to help you understand how to solve those tough
problems.

CengageBrain.com

To access additional course materials, please visit www.cengagebrain.com. At the
CengageBrain.com home page, search for the ISBN of your title (from the back cover
of your book) using the search box at the top of the page. This will take you to the
product page where these resources can be found.

MindTap for Mathematics

MindTap® provides you with the tools you need to better manage your limited
time—you can complete assignments whenever and wherever you are ready to learn
with course material specifically customized for you by your instructor and
streamlined in one proven, easy-to-use interface. With an array of tools and
apps—from note taking to flashcards—you’ll get a true understanding of course
concepts, helping you to achieve better grades and setting the groundwork for your
future courses. This access code entitles you to 3 terms of usage.

Er e )
Enhanced WebAssign® WebAssign

Enhanced WebAssign (assigned by the instructor) provides you with instant feedback
on homework assignments. This online homework system is easy to use and includes
helpful links to textbook sections, video examples, and problem-specific tutorials.
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Instructor Resources

Complete Solutions Manual for Calculus of a Single Variable, Vol. 1
ISBN-13: 978-1-337-27540-8

Complete Solutions Manual for Calculus of a Single Variable, Vol. 2
ISBN-13: 978-1-337-27541-5

The Complete Solutions Manuals contain worked-out solutions to all exercises
in the text. They are posted on the instructor companion website.

Instructor’s Resource Guide (on instructor companion site)

This robust manual contains an abundance of instructor resources keyed to the
textbook at the section and chapter level, including section objectives, teaching
tips, and chapter projects.

Cengage Learning Testing Powered by Cognero (login.cengage.com)

CLT is a flexible online system that allows you to author, edit, and manage test
bank content; create multiple test versions in an instant; and deliver tests from your
LMS, your classroom, or wherever you want. This is available online via
www.cengage.com/login.

Instructor Companion Site

Everything you need for your course in one place! This collection of book-specific
lecture and class tools is available online via www.cengage.com/login. Access and
download PowerPoint® presentations, images, instructor’s manual, and more.

Test Bank (on instructor companion site)
The Test Bank contains text-specific multiple-choice and free-response test forms.

MindTap for Mathematics

MindTap® is the digital learning solution that helps you engage and transform
today’s students into critical thinkers. Through paths of dynamic assignments and
applications that you can personalize, real-time course analytics, and an
accessible reader, MindTap helps you turn cookie cutter into cutting edge,

apathy into engagement, and memorizers into higher-level thinkers.

P rianEng )
Enhanced WebAssign® WebAssign

Exclusively from Cengage Learning, Enhanced WebAssign combines the
exceptional mathematics content that you know and love with the most powerful
online homework solution, WebAssign. Enhanced WebAssign engages students
with immediate feedback, rich tutorial content, and interactive, fully customizable
e-books (YouBook), helping students to develop a deeper conceptual understanding
of their subject matter. Quick Prep and Just In Time exercises provide opportunities
for students to review prerequisite skills and content, both at the start of the course
and at the beginning of each section. Flexible assignment options give instructors
the ability to release assignments conditionally on the basis of students’ prerequisite
assignment scores. Visit us at www.cengage.com/ewa to learn more.
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2 Chapter P Preparation for Calculus

P.1 Graphs and Models

@ Sketch the graph of an equation.

# Find the intercepts of a graph.

@ Test a graph for symmetry with respect to an axis and the origin.
# Find the points of intersection of two graphs.

# Interpret mathematical models for real-life data.

The Graph of an Equation

In 1637, the French mathematician René Descartes revolutionized the study of
mathematics by combining its two major fields—algebra and geometry. With
Descartes’s coordinate plane, geometric concepts could be formulated analytically and
algebraic concepts could be viewed graphically. The power of this approach was such
that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing
calculus from multiple perspectives—graphically, analytically, and numerically—you
will increase your understanding of core concepts.

Consider the equation 3x + y = 7. The point (2, 1) is a solution point of the
equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is
substituted for y. This equation has many other solutions, such as (1, 4) and (0, 7). To
find other solutions systematically, solve the original equation for y.

RENE DESCARTES (1596-1650)

y=7—3x Analytic approach

Descartes made many o
contributions to philosophy, Then construct a table of values by substituting several values of x.

science, and mathematics. The
idea of representing points in the

plane by pairs of real numbers x| 0|1 ]2] 3 4 .
and representing curves in the 714l ) s Numerical approach
plane by equations was described Yy B B

by Descartes in his book La
Géométrie, published in 1637.

See LarsonCalculus.com to read From the table, you can see that (0, 7), (1, 4), (2, 1), 1

more of this biography. (3, —2), and (4, —5) are solutions of the original No.7)
equation 3x + y = 7. Like many equations, this 6\
equation has an infinite number of solutions. The set 4 (1,4)‘
of all solution points is the graph of the equation, as 2
shown in Figure P.1. Note that the sketch shown in | Nt x
Figure P.1 is referred to as the graph of 3x + y = 7, I (43, _62) 8
even though it really represents only a portion of the -4 4.-5)

graph. The entire graph would extend beyond the page. -6

In this course, you will study many sketching
techniques. The simplest is point plotting—that is,
you plot points until the basic shape of the graph
seems apparent.

Sketching a Graph by Point Plotting

To sketch the graph of y = x> — 2, first construct a table of values. Next, plot the points
shown in the table. Then connect the points with a smooth curve, as shown in Figure
X P.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

Graphical approach: 3x + y =7
Figure P.1

~

— N W R N

} }
T T
4 -3 -

N
N ——
© -
g

x| -2 -1 0 | 1 [2]|3
y| 2 | -1 -2|-1]2|7 -

The parabola y = x2 — 2
Figure P.2

Granger, NYC

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



Exploration

Comparing Graphical and
Analytic Approaches

Use a graphing utility to
graph each equation. In each
case, find a viewing window
that shows the important
characteristics of the graph.

ay=x>—-3x2+2x+5

b. y=x3—3x>+ 2x + 25
c.y=—x>—32+20x+5
d. y = 3x3 — 40x% + 50x — 45
e.y=—(x+ 127
f.y=Gx—-2)(x—4)(x—-6)

A purely graphical approach
to this problem would involve
a simple “guess, check, and
revise” strategy. What types of
things do you think an analytic
approach might involve? For
instance, does the graph have
symmetry? Does the graph
have turns? If so, where are
they? As you proceed through
Chapters 1, 2, and 3 of this
text, you will study many new
analytic tools that will help you
analyze graphs of equations
such as these.

P.1 Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of
a graph, you may need to plot many points. With only a few points, you could badly
misrepresent the graph. For instance, to sketch the graph of

1 2
- — — + x4
Y= 30 (39 — 10x x*)
you plot five points:
(=3,-3), (=1,-1), (1, 1),

as shown in Figure P.3(a). From these five points, you might conclude that the graph is
a line. This, however, is not correct. By plotting several more points, you can see that
the graph is more complicated, as shown in Figure P.3(b).

(0,0), and (3,3)

y | y=2x(39-10x%+x%

=30
3+ (3.3)07
’ 3T
2+ e
’ 2+
7
= 21,0 -
0,0 7
1 1 1 1 1 1 x
-3 -2 -1, 7 1 2 3 1 1 1 1 1 F—x
. -3 -2 -1 1 2 3
-1 l)’ -1 Plotting only a 71
, few points can
2+ X
, 4 misrepresent a 2+
graph.
3 _ -3
, (=3,-3) 3L
(@) (b)

Figure P.3

Graphing an equation has been made easier by technology. Even
with technology, however, it is possible to misrepresent a graph badly. For instance,
each of the graphing utility* screens in Figure P.4 shows a portion of the graph of

y=x>—x*— 25

From the screen on the left, you might assume that the graph is a line. From the
screen on the right, however, you can see that the graph is not a line. So, whether
you are sketching a graph by hand or using a graphing utility, you must realize that
different “viewing windows” can produce very different views of a graph. In choosing
a viewing window, your goal is to show a view of the graph that fits well in the
context of the problem.

10 5

=5 [ 5
JPTs ) (S S P 10 L
-10 -35

Graphing utility screens of y = x3 — x2 — 25
Figure P.4

*In this text, the term graphing utility means either a graphing calculator, such as the
TI-Nspire, or computer graphing software, such as Maple or Mathematica.
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Some texts
denote the x-intercept as the
x-coordinate of the point (a, 0)
rather than the point itself.
Unless it is necessary to make
a distinction, when the term
intercept is used in this text, it
will mean either the point or
the coordinate.

No x-intercepts
One y-intercept
Figure P.5

Example 2
uses an analytic approach
to finding intercepts. When
an analytic approach is not
possible, you can use a graphical
approach by finding the points
at which the graph intersects the
axes. Use the trace feature of a
graphing utility to approximate
the intercepts of the graph of
the equation in Example 2. Note
that your utility may have a
built-in program that can find
the x-intercepts of a graph.
(Your utility may call this the
root or zero feature.) If so, use
the program to find the
x-intercepts of the graph of the
equation in Example 2.

Three x-intercepts
One y-intercept

Intercepts of a Graph

Two types of solution points that are especially useful in graphing an equation are
those having zero as their x- or y-coordinate. Such points are called intercepts because
they are the points at which the graph intersects the x- or y-axis. The point (g, 0) is an
x-intercept of the graph of an equation when it is a solution point of the equation. To
find the x-intercepts of a graph, let y be zero and solve the equation for x. The point
(0, b) is a y-intercept of the graph of an equation when it is a solution point of the
equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For
instance, consider the four graphs shown in Figure P.5.

y

] <O

One x-intercept
Two y-intercepts

No intercepts

EXAMPLE 2 Finding x- and y-Intercepts

Find the x- and y-intercepts of the graph of y = x> — 4x.

Solution To find the x-intercepts, let y be zero and solve for x.

X —4x=0 Let y be zero.
xx —2)x+2)=0 Factor.
X = 0, 2, or —2 Solve for x.

Because this equation has three solutions, you can conclude that the graph has three
x-intercepts:

(0,0), (2,0), and (—2,0).

x-intercepts

To find the y-intercepts, let x be zero. Doing this produces y = 0. So, the y-intercept is
(0, 0).

(See Figure P.6.)

y-intercept

Intercepts of a graph
Figure P.6
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y-axis
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(x,y)
x-axis x, —y)
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Figure P.7

Origin
symmetry

X

Origin symmetry
Figure P.8
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Symmetry of a Graph

Knowing the symmetry of a graph before attempting to sketch it is useful because you
need only half as many points to sketch the graph. The three types of symmetry listed
below can be used to help sketch the graphs of equations (see Figure P.7).

1. A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on the
graph, then (—x, y) is also a point on the graph. This means that the portion of the
graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.

2. A graph is symmetric with respect to the x-axis if, whenever (x, y) is a point on the
graph, then (x, —y) is also a point on the graph. This means that the portion of the
graph below the x-axis is a mirror image of the portion above the x-axis.

3. A graph is symmetric with respect to the origin if, whenever (x, y) is a point on
the graph, then (—x, —y) is also a point on the graph. This means that the graph is
unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1. The graph of an equation in x and y is symmetric with respect to the y-axis
when replacing x by —x yields an equivalent equation.

2. The graph of an equation in x and y is symmetric with respect to the x-axis
when replacing y by —y yields an equivalent equation.

3. The graph of an equation in x and y is symmetric with respect to the origin
when replacing x by —x and y by —y yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term
has an even exponent (or is a constant). For instance, the graph of

y=2*—x*+2
has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has

symmetry with respect to the origin when each term has an odd exponent, as illustrated
in Example 3.

EXAMPLE 3 Testing for Symmetry

Test the graph of y = 2x3 — x for symmetry with respect to (a) the y-axis and (b) the
origin.

Solution
a. y= 2% — x Write original equation.
y = 2(—x)3 - (—x) Replace x by —x.
y = —2x3 + x Simplify. The result is not an equivalent equation.

Because replacing x by —x does not yield an equivalent equation, you can conclude
that the graph of y = 2x* — x is not symmetric with respect to the y-axis.

b. y= 23 — x Write original equation.
-y = 2(—)6)3 - (—x) Replace x by —x and y by —y.
—y=-2x+x Simplify.
y = 233 — x Equivalent equation

Because replacing x by —x and y by —y yields an equivalent equation, you can
conclude that the graph of y = 2x3 — x is symmetric with respect to the origin, as
shown in Figure P.8. |
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y
(5.2
2 —+
21
1 —+
(1’ 0) | | | |
2 3 4 s
ny
x-intercept
_2 —+
Figure P.9

Two points of intersection
Figure P.10

Using Intercepts and Symmetry to Sketch a Graph

e > See LarsonCalculus.com for an interactive version of this type of example.
Sketch the graph of x — y? = 1.

Solution The graph is symmetric with respect to the x-axis because replacing y by
—y yields an equivalent equation.

X — y2 =1 Write original equation.
x—(—y?=1 Replace y by —y.
X — y2 =1 Equivalent equation

This means that the portion of the graph below the x-axis is a mirror image of the
portion above the x-axis. To sketch the graph, first plot the x-intercept and the points
above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in
Figure P.9. |

Graphing utilities are designed so that they most easily graph
equations in which y is a function of x (see Section P.3 for a definition of function).
To graph other types of equations, you need to split the graph into two or more parts
or you need to use a different graphing mode. For instance, to graph the equation in
Example 4, you can split it into two parts.

V= VX~ 1 Top portion of graph
Yo = —VX T 1 Bottom portion of graph

Points of Intersection

A point of intersection of the graphs of two equations is a point that satisfies both
equations. You can find the point(s) of intersection of two graphs by solving their
equations simultaneously.

FVNZNRM  Finding Points of Intersection

Find all points of intersection of the graphs of
xX>—y=3 and x—y=1

Solution Begin by sketching the graphs of both equations in the same rectangular
coordinate system, as shown in Figure P.10. From the figure, it appears that the graphs
have two points of intersection. You can find these two points as follows.

y = x> =3 Solve first equation for y.
y=Xx— 1 Solve second equation for y.
xX*—-3=x—-1 Equate y-values.
X=—x—2=0 Write in general form.
x—-2)x+1)=0 Factor.
x=2o0r —1 Solve for x.
The corresponding values of y are obtained by substituting x = 2 and x = —1 into
either of the original equations. Doing this produces two points of intersection:
(2,1) and (-1, —2). Points of intersection =

You can check the points of intersection in Example 5 by substituting into both of
the original equations or by using the intersect feature of a graphing utility.



The Mauna Loa Observatory
in Hawaii has been measuring
the increasing concentration
of carbon dioxide in Earth’s
atmosphere since 1958.

P.1  Graphs and Models 7

Mathematical Models

Real-life applications of mathematics often use equations as mathematical models. In
developing a mathematical model to represent actual data, you should strive for two
(often conflicting) goals—accuracy and simplicity. That is, you want the model to be
simple enough to be workable, yet accurate enough to produce meaningful results.
Appendix G explores these goals more completely.

Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in
parts per million) in Earth’s atmosphere. The January readings for various years are
shown in Figure P.11. In the July 1990 issue of Scientific American, these data were
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using
the quadratic model

y = 0.0187> + 0.70¢ + 316.2 Quadratic model for 1960-1990 data

where ¢ = 0 represents 1960, as shown in Figure P.11(a). The data shown in
Figure P.11(b) represent the years 1980 through 2014 and can be modeled by

y = 0.014> + 0.66¢ + 320.3 Quadratic model for 1980-2014 data

where ¢ = 0 represents 1960. What was the prediction given in the Scientific American
article in 19907 Given the second model for 1980 through 2014, does this prediction
for the year 2035 seem accurate?

y y

400 400

390 // 390 /
380 380

370 370

360 / 360 /

P : pd
350 350

340 / 340 /
330 /

330
320 r/ 320
310 310

} I I } } } } } } } } t ¢ T T T T T T T T

I I

T Tt T T T 1 T Tt

5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55
Year (0 <> 1960) Year (0 <> 1960)

(a) (b)
Figure P.11

CO, (in parts per million)
CO, (in parts per million)

Il Il Il Il Il Il Il Il Il Il t

Solution To answer the first question, substitute # = 75 (for 2035) into the first
model.

y = 0.018(75)% + 0.70(75) + 316.2 = 469.95 Model for 1960-1990 data

So, the prediction in the Scientific American article was that the carbon dioxide
concentration in Earth’s atmosphere would reach about 470 parts per million in the year
2035. Using the model for the 1980-2014 data, the prediction for the year 2035 is

y = 0.014(75)% + 0.66(75) + 320.3 = 448.55. Model for 1980-2014 data

So, based on the model for 1980-2014, it appears that the 1990 prediction was too high.
|

The models in Example 6 were developed using a procedure called least squares
regression (see Section 13.9). The older model has a correlation of > = 0.997, and for
the newer model it is #2 = 0.999. The closer 72 is to 1, the “better” the model.

Gavriel Jecan/Terra/Corbis
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P.1 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Finding Intercepts Describe how to find the x- and
y-intercepts of the graph of an equation.

2. Verifying Points of Intersection How can you
check that an ordered pair is a point of intersection of
two graphs?

Matching In Exercises 3—6, match the equation with its
graph. [The graphs are labeled (a), (b), (c), and (d).]

(b) Y

(@)

4. y= /9 —x*

6. y=x—x

jm Sketching a Graph by Point Plotting In
Exercises 7-16, sketch the graph of the equation
by point plotting.

=57x+2 8. y=5—-—2x
y=4-x 10. y = (x — 3)?
11. y = |x + 1| 12. y = |x| = 1
13.y=J/x—6 4. y=J/x+2
3 1
15. y == 16. y =
YT 6. y x+ 2

idp Approximating Solution Points Using Technology In

Exercises 17 and 18, use a graphing utility to graph the
equation. Move the cursor along the curve to approximate the
unknown coordinate of each solution point accurate to two
decimal places.

17. y= 5 —x 18. y = x° — 5x
@ (2,y) @ (=05,
(b) (x,3) (b) (x, —4)

EEre
The symbol E@ and a red exercise number indicates that a video solution can be seen
at CalcView.com.

[=] Finding Intercepts In Exercises 19-28, find
"¢ any intercepts.

[

19. y=2x—-5 20. y =4x>+3

2l y=x2+x—2 22, y? = x* — 4x

23. y = xJ/16 — x? 24 y=(x -1/ +1
2 — Jx x2 + 3x

By = Grr 1y

27. )y — x> +4y=0 28. y=2x — Jx*+ 1

[=] Testing for Symmetry In Exercises 29-40,
"¢ test for symmetry with respect to each axis and to
the origin.

[

29. y=x>—6 30. y =9x — x?

31. y2 = x> — 8 2. y=x>+x

3. xy=4 34. 02 = —10

3[.y=4—-/x+3 36. xy — V4 —x* =
X x°

My=aa By=i—=2

39. y = | + x| 40. |y| —x =3

Using Intercepts and Symmetry to Sketch
a Graph In Exercises 41-56, find any intercepts
and test for symmetry. Then sketch the graph of
the equation.

41. y =2 — 3x 42 y=3x+1
43. y =9 — x2 4. y=2x>+x
45. y=x>+2 46. y = x3 — 4x
47. y=xJx +5 48. y= /25 — 22
49. x = 3 50. x = y*— 16
51.y=% 52.y=le_€1
53.y =6 — |x| 54. y = |6 — x|
55. 3> —x=9 56. x> + 4y* =

Finding Points of Intersection In Exercises
!E-I' "¢ 57-62, find the points of intersection of the graphs
- of the equations.
E? [

57. x+y=28 58.3x —2y= —4
4x —y=17 4x + 2y = —10

59. »+y=15 60. x =3 —
—3x+y=11 y=x—1

The symbol i‘jp' indicates an exercise in which you are instructed to use graphing
technology or a symbolic computer algebra system. The solutions of other exercises may
also be facilitated by the use of appropriate technology.
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6l. x> +3y2 =15 62. x> +y> =16 69. Break-Even Point Find the sales necessary to break
x—y=1 Xx+2y =4 even (R = C) when the cost C of producing X uni.ts %s
C = 2.04x + 5600 and the revenue R from selling x units is
BB Finding Points of Intersection Using Technology In R =3.29x.
Exercises 63-66, use a graphing utility to find the points of 70. Using Solution Points For what values of k does the
intersection of the graphs of the equations. Check your results graph of y? = 4kx pass through the point?
analytlcally. (a) (]’ ]) (b) (2’ 4)
63. y=x*-2x>+x—-1 64 y=x* —2x2 + 1 (c) (0,0) @ (3,3)
y=-x2+3x—1 y=1-x2
65.y=x+6 66. y=—[2x—3] +6 EXPLORING CONCEPTS
y == — 4x y=6—x 71. Using Intercepts Write an equation whose graph
has intercepts at x = —%, x =4, and x = % (There is
fjp 67. Modeling Data The table shows the Gross Domestic more than one correct answer.)
Product, or GDP (in trillions of dollars), for 2009 through 72. Symmetry A graph is symmetric with respect to the

2014 (Source: U.S. Bureau of Economic Analysis) x-axis and to the y-axis. Is the graph also symmetric with

respect to the origin? Explain.

Y 2009 | 2010 | 2011 | 2012 | 2013 | 2014
cat 73. Symmetry A graph is symmetric with respect to one

GDP | 144 | 150 | 155 | 162 | 167 | 173 axis and to the origin. Is the graph also symmetric with
respect to the other axis? Explain.

(a) Use the regression capabilities of a graphing utility to find
a mathematical model of the form y = at + b for the data.
In the model, y represents the GDP (in trillions of dollars)
and t represents the year, with # = 9 corresponding to 2009.

)| HOW DO YOU SEE IT? Use the graphs of

the two equations to answer the questions below.

(b) Use a graphing utility to plot the data and graph the model.
Compare the data with the model.

(c) Use the model to predict the GDP in the year 2024.

0'68,M0de|ingDataoo-coo.-coo.-ooo.

The table shows the numbers of cell phone subscribers
(in millions) in the United States for selected years.
(Source: CTIA-The Wireless Association)

Year 2000 | 2002 | 2004 | 2006 (a) What are the intercepts for each equation?

Number | 109 | 141 182 | 233 (b) Determine the symmetry for each equation.

(c) Determine the point of intersection of the two
equations.

Year 2008 | 2010 | 2012 | 2014

Number | 270 | 296 | 326 355

True or False? In Exercises 75-78, determine whether the
statement is true or false. If it is false, explain why or give an

(a) Use the regression capabilities of a graphing utility to
example that shows it is false.

find a mathematical model of the form y = ar> + bt + ¢
for the data. In the model, y represents the number of
subscribers (in millions) and ¢ represents the year, with
t = 0 corresponding to 2000.

75. If (—4, —5) is a point on a graph that is symmetric with
respect to the x-axis, then (4, —5) is also a point on the graph.

® © © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

76. If (—4, —5) is a point on a graph that is symmetric with
respect to the y-axis, then (4, —5) is also a point on the graph.

77. If b> — 4ac > 0 and a # 0, then the graph of

(b) Use a graphing
utility to plot the
data and graph the
model. Compare
the data with the
model.

y=ax>+ bx + ¢

has two x-intercepts.

(c) Use the model to 78. If b> — 4ac = 0 and a # 0, then the graph of
predict the number
of cell phone

subscribers in the United States in the year 2024.

y=ax® +bx+c

has only one x-intercept.

ChrisMilesPhoto/Shutterstock.com
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P.2 Linear Models and Rates of Change

Ay =y, —y, = change in y
Ax = x, — x; = change in x
Figure P.12

If m is positive, then the line
rises from left to right.
Figure P.13

# Find the slope of a line passing through two points.

# Write the equation of a line with a given point and slope.

@ Interpret slope as a ratio or as a rate in a real-life application.

@ Sketch the graph of a linear equation in slope-intercept form.

B Write equations of lines that are parallel or perpendicular to a given line.

The Slope of a Line

The slope of a nonvertical line is a measure of the number of units the line rises (or
falls) vertically for each unit of horizontal change from left to right. Consider the two
points (x,, y;) and (x,, y,) on the line in Figure P.12. As you move from left to right
along this line, a vertical change of

Change in y

Ay =y, =
units corresponds to a horizontal change of
Ax = X, — X Change in x

units. (The symbol A is the uppercase Greek letter delta, and the symbols Ay and Ax
are read “delta y” and “delta x.”)

Definition of the Slope of a Line

The slope m of the nonvertical line passing through (x,, y,) and (x,, y,) is

Ay Y=

X, #F X,.
Ax x,—x  ~'0 77

Slope is not defined for vertical lines.

When using the formula for slope, note that

P SN O U Bl oY N R o

Xy T X _(xl - x2) X T X

So, it does not matter in which order you subtract as long as you are consistent and both
“subtracted coordinates” come from the same point.

Figure P.13 shows four lines: one has a positive slope, one has a slope of zero,
one has a negative slope, and one has an “undefined” slope. In general, the greater the
absolute value of the slope of a line, the steeper the line. For instance, in Figure P.13,
the line with a slope of —35 is steeper than the line with a slope of %

y y 7
4+ 4-4(0,4) 4+ 3,4
my =0 m,=-5
3 3 37 3+ .
m, is
(-1,2) 2,2) ) 5 | undefined.

1+ 1 1+ 3,1

If m is zero, then the line
is horizontal.

| —t—t—x | F——t—t—>x | — > x
-1 1 2 3 -1 2 3 4 -1 1 2 4
—1 -1 (1,-1) —14

If m is undefined, then the
line is vertical.

If m is negative, then the line
falls from left to right.
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Exploration
Investigating Equations of
Lines Use a graphing utility
to graph each of the linear
equations. Which point is
common to all seven lines?
Which value in the equation
determines the slope of each
line?

Ly —4=-2x+1)
y—4=-1x+1)
y—d4=—3+1)
y—4=0x+1)
y—4=350+1
y—4=1x+1)

Ly —4=2(x+1)

I

Use your results to write an
equation of a line passing
through (— 1, 4) with a slope
of m.

-5 7
The line with a slope of 3 passing
through the point (1, —2)

Figure P.15

P.2 Linear Models and Rates of Change 1"

Equations of Lines

Any two points on a nonvertical line can be used to calculate its slope. This can be
verified from the similar triangles shown in Figure P.14. (Recall that the ratios of
corresponding sides of similar triangles are equal.)

A

Any two points on a nonvertical line
can be used to determine its slope.
Figure P.14

If (x,, y,) is a point on a nonvertical line that has a slope of m and (x, y) is any other
point on the line, then

Yy =N
X —x

This equation in the variables x and y can be rewritten in the form
y =y =mx—x)

which is the point-slope form of the equation of a line.

Point-Slope Form of the Equation of a Line
The point-slope form of the equation of the line that passes through the point
(x,, ;) and has a slope of m is

y_ylzmx_xl)-

Remember that only nonvertical lines have a slope. Consequently,
vertical lines cannot be written in point-slope form. For instance, the equation of the
vertical line passing through the point (1, —2) is x = 1.

Finding an Equation of a Line

Find an equation of the line that has a slope of 3 and passes through the point (1, —2).
Then sketch the line.

Solution
y =y =mx—x) Point-slope form
y—(=2)=3(x—-1) Substitute —2 for y,, 1 for x,, and 3 for m.
y+2=3x-3 Simplify.
y=3x-—-5 Solve for y.

To sketch the line, first plot the point (1, —2). Then, because the slope is m = 3, you
can locate a second point on the line by moving one unit to the right and three units
upward, as shown in Figure P.15. |
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46
44

42
4.0

-~ *3139,000

ros
3.8 . 5

3.6 &

Population (in millions)

3.4

T T T T T T T T
2010 2014 2018 2022
Year

Population of Oregon
Figure P.17

Ratios and Rates of Change

The slope of a line can be interpreted as either a ratio or a rate. If the x- and y-axes have
the same unit of measure, then the slope has no units and is a ratio. If the x- and y-axes
have different units of measure, then the slope is a rate or rate of change. In your study
of calculus, you will encounter applications involving both interpretations of slope.

S NR A  Using Slope as a Ratio

The maximum recommended slope of a wheelchair ramp is 117 A business installs a
wheelchair ramp that rises to a height of 22 inches over a length of 24 feet, as shown
in Figure P.16. Is the ramp steeper than recommended? (Source: ADA Standards for
Accessible Design)

- A
.......

Figure P.16

Solution The length of the ramp is 24 feet or 12(24) = 288 inches. The slope of the
ramp is the ratio of its height (the rise) to its length (the run).

Slope of ramp = %

_ 22in.
288 in.
~ 0.076

Because the slope of the ramp is less than ﬁ ~ (.083, the ramp is not steeper than
recommended. Note that the slope is a ratio and has no units.

Using Slope as a Rate of Change

The population of Oregon was about 3,831,000 in 2010 and about 3,970,000 in 2014.
Find the average rate of change of the population over this four-year period. What will
the population of Oregon be in 2024?  (Source: U.S. Census Bureau)

Solution Over this four-year period, the average rate of change of the population of
Oregon was

change in population
change in years
_ 3,970,000 — 3,831,000
2014 — 2010
= 34,750 people per year.

Rate of change =

Assuming that Oregon’s population continues to increase at this same rate for the next
10 years, it will have a 2024 population of about 4,318,000. (See Figure P.17.) " |

The rate of change found in Example 3 is an average rate of change. An
average rate of change is always calculated over an interval. In this case, the interval
is [2010, 2014]. In Chapter 2, you will study another type of rate of change called an
instantaneous rate of change.
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Graphing Linear Models
Many problems in coordinate geometry can be classified into two basic categories.

1. Given a graph (or parts of it), find its equation.

2. Given an equation, sketch its graph.

For lines, problems in the first category can be solved by using the point-slope form.
The point-slope form, however, is not especially useful for solving problems in the
second category. The form that is better suited to sketching the graph of a line is the
slope-intercept form of the equation of a line.

The Slope-Intercept Form of the Equation of a Line
The graph of the linear equation

y=mx+b Slope-intercept form

is a line whose slope is m and whose y-intercept is (0, b).

Sketching Lines in the Plane

Sketch the graph of each equation.
a.y=2xt1

b. y=2

c.3y+tx—6=0

Solution

a. Because b = 1, the y-intercept is (0, 1). Because the slope is m = 2, you know that
the line rises two units for each unit it moves to the right, as shown in Figure P.18(a).

b. By writing the equation y = 2 in slope-intercept form
y=(0)x+2

you can see that the slope is m = 0 and the y-intercept is (0, 2). Because the slope
is zero, you know that the line is horizontal, as shown in Figure P.18(b).

c. Begin by writing the equation in slope-intercept form.

3y+x—6=0 Write original equation.
3y=—x+6 Isolate y-term on the left.
y = —%x +2 Slope-intercept form
In this form, you can see that the y-intercept is (0, 2) and the slope is m = —%. This

means that the line falls one unit for every three units it moves to the right, as shown
in Figure P.18(c).

(a) m = 2; line rises

Figure P.18

y y
~
0,2)
1 1
x 1 1 1 x
1 2 3
(b) m = 0; line is horizontal (©) m = _%; line falls
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In mathematics,
the phrase “if and only if” is a
way of stating two implications
in one statement. For instance,
the first statement at the right
could be rewritten as the
following two implications.

a. If two distinct nonvertical
lines are parallel, then their
slopes are equal.

b. If two distinct nonvertical

lines have equal slopes,
then they are parallel.

Because the slope of a vertical line is not defined, its equation cannot be written in
slope-intercept form. However, the equation of any line can be written in the general
form

Ax+ By + C=0 General form of the equation of a line

where A and B are not both zero. For instance, the vertical line
X =a Vertical line
can be represented by the general form

x—a=0. General form

SUMMARY OF EQUATIONS OF LINES

1. General form: Ax + By +C=0
2. Vertical line: xX=a

3. Horizontal line: y=b

4. Slope-intercept form: y = mx + b

5. Point-slope form: y—y, =mx — x,)

Parallel and Perpendicular Lines

The slope of a line is a convenient tool for determining whether two lines are parallel
or perpendicular, as shown in Figure P.19. Specifically, nonvertical lines with the
same slope are parallel, and nonvertical lines whose slopes are negative reciprocals are
perpendicular.

m

/ '
Parallel lines Perpendicular lines
Figure P.19

Parallel and Perpendicular Lines

1. Two distinct nonvertical lines are parallel if and only if their slopes are
equal—that is, if and only if

m; = m,. Parallel <ZZ> Slopes are equal.
2. Two nonvertical lines are perpendicular if and only if their slopes are

negative reciprocals of each other—that is, if and only if

m; = —mf. Perpendicular <ZZ)> Slopes are negative reciprocals.
2
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Finding Parallel and Perpendicular Lines

e > See LarsonCalculus.com for an interactive version of this type of example.

Find the general forms of the equations of the lines that pass through the point (2, —1)
and are (a) parallel to and (b) perpendicular to the line 2x — 3y = 5.

Solution Begin by writing the linear equation 2x — 3y = 5 in slope-intercept form.

2x —3y =5 Write original equation.

\ w s s
\ y=35x—3% Slope-intercept form
|

So, the given line has a slope of m = % (See Figure P.20.)

; ; / X a. The line through (2, — 1) that is parallel to the given line also has a slope of %
4

y—y, = m(x - x]) Point-slope form
T y—(-1) = %(x - 2) Substitute.
3y + 1) =2(x—-2) Simplify.
3y+3=2x—-4 Distributive Property
Lines parallel and perpendicular to 2x—3y—-7=0 General form
i“)icg;rin.:Z 05 Note the similarity to the equation of the given line, 2x — 3y = 5.

b. Using the negative reciprocal of the slope of the given line, you can determine that
the slope of a line perpendicular to the given line is —%.

y—y =mx— xl) Point-slope form
y — (* l) = —% X — 2) Substitute.
2(y+ 1) = -3(x—2) Simplify.
2y +2=-3x+6 Distributive Property
3x+2y—4=0 General form |

The slope of a line will appear distorted if you use
different tick-mark spacing on the x- and y-axes. For instance, the graphing utility
screens in Figures P.21(a) and P.21(b) both show the lines

y=2x and y=—%x+3.

Because these lines have slopes that are negative reciprocals, they must be
perpendicular. In Figure P.21(a), however, the lines do not appear to be perpendicular
because the tick-mark spacing on the x-axis is not the same as that on the y-axis. In
Figure P.21(b), the lines appear perpendicular because the tick-mark spacing on the
x-axis is the same as on the y-axis. This type of viewing window is said to have a
square setting.

-10 10 |9
~10 -6
(a) Tick-mark spacing on the x-axis is not the (b) Tick-mark spacing on the x-axis is the
same as tick-mark spacing on the y-axis. same as tick-mark spacing on the y-axis.

[ ]
(]
(]
(]
(]
(]
[ ]
L]
L]
L]
. 10
L]
L]
L]
L]
L
.
(]
[ ]
.
[ ]
(]
(]

Figure P.21
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P.2 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Slope-Intercept Form In the form y = mx + b,
what does m represent? What does b represent?

2. Perpendicular Lines Is it possible for two lines with
positive slopes to be perpendicular? Why or why not?

Estimating Slope In Exercises 3—6, estimate the slope of
the line from its graph. To print an enlarged copy of the graph,
go to MathGraphs.com.

3. 4. Y
7 / 7
6 6
5 5
4
3 3
2 2
1 1
X X
1/234567 1234567

—_ N W R
>
L~

4 \ .

123\567

123456

[¥] Finding the Slope of a Line In Exercises
7-12, plot the pair of points and find the slope of
the line passing through them.

i

7. (3,—4),(5,2) 8. (0,0), (—2,3)

9. (4,6). (4. 1) 10. (3, —5). (5. —5)
1. (=3.3). (=3.5) 12. (5.3). G —3)

j|[1] Sketching Lines In Exercises 13 and 14, sketch
the lines through the point with the indicated
slopes. Make the sketches on the same set of
coordinate axes.

Point Slopes
13. (3,4) @1l ® -2 (o —% (d) Undefined
14. (-2,5) @3 (B -3 (o % (d o0

Finding Points on a Line In Exercises 15-18,
use the point on the line and the slope of the line
to find three additional points that the line passes
through. (There is more than one correct answer.)

Point  Slope Point Slope
15. (6,2) m=0 16. (—4,3) m is undefined.
17. (1,7) m= -3 18. (-2,-2) m=2

wandee007/Shutterstock.com

« « 26. Conveyor Design

19.
20.
21.
22.
23.
24.

25.

27.

jj[=] Finding an Equation of a Line In Exercises
19-24, find an equation of the line that passes
through the point and has the indicated slope.
Then sketch the line.

Point Slope

0,3) m=3

(=5, -2) m=3

(1,2) m is undefined.

(0,4) m=0

3, -2) m=3

(—2,4) m=—3

Road Grade You are driving on a road that has a 6%

uphill grade. This means that the slope of the road is &.
Approximate the amount of vertical change in your position
when you drive 200 feet.

A moving conveyor is built to rise 1 meter for each
3 meters of horizontal change.

(a) Find the slope of E:-nﬁ"’i’ _ Tt 32

L
the conveyor. A P i

A
'éz‘.

e o o o

(b

=

Suppose the
conveyor runs
between two floors
in a factory. Find
the length of the
conveyor when the
vertical distance
between floors is 10 feet.

.
L]
°
L]
® © © o o © o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Modeling Data The table shows the populations y (in
millions) of the United States for 2009 through 2014. The
variable ¢ represents the time in years, with t = 9 corresponding

to 2009. (Source: U.S. Census Bureau)
t 9 10 11 12 13 14
y | 307.0 | 309.3 | 311.7 | 314.1 | 316.5 | 318.9

(a) Plot the data by hand and connect adjacent points with
a line segment. Use the slope of each line segment to
determine the year when the population increased least
rapidly.

(b) Find the average rate of change of the population of the
United States from 2009 through 2014.

(c) Use the average rate of change of the population to predict
the population of the United States in 2025.
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28. Biodiesel Production The table shows the biodiesel
productions y (in thousands of barrels per day) for the United
States for 2007 through 2012. The variable 7 represents the time
in years, with = 7 corresponding to 2007. (Source: U.S.
Energy Information Administration)

t 7 8 9 | 10 | 11 | 12

y [ 32|44 |34 |22 |63 | 64

(a) Plot the data by hand and connect adjacent points with
a line segment. Use the slope of each line segment to
determine the year when biodiesel production increased
most rapidly.

(b) Find the average rate of change of biodiesel production for
the United States from 2007 through 2012.

(c) Should the average rate of change be used to predict future

biodiesel production? Explain.

=154 =] Finding the Slope and y-Intercept In
] Exercises 29-34, find the slope and the y-intercept

E (if possible) of the line.

29. y=4x — 3 30. x+y=1

31 Sx+y =120 32. 6x— 5y =15

33. x=4 4. y=-1

[E]#F[E] Sketching a Line in the Plane In Exercises
- J#5°5  35-42, sketch the graph of the equation.

[m]:

35.y=-3 36. x =14

37.y=—2x+ 1 38. y=1x—1

39.y-2=2x-1)
41.3x -3y +1=0
[=]:
b
[=]z54:
43. (4,3), (0, —5)
45. (2,8), (5,0)
47. (6,3), (6, 8)
49. 3,1), (5, 1)

40. y —1=3(x+4)
42. x+2y+6=0
[=] Finding an Equation of a Line In Exercises

43-50, find an equation of the line that passes
through the points. Then sketch the line.

44. (-2,-2),(1,7)
46. (—3,6),(1,2)
48. (1,-2),(3,-2)
50. (2,5),(2,7)

51. Writing an Equation Write an equation for the line that
passes through the points (0, b) and (3, 1).

52. Using Intercepts Show that the line with intercepts (a, 0)
and (0, b) has the following equation.

+==1 a#0,b#0

Q=

S =

Writing an Equation in General Form In Exercises
53-56, use the result of Exercise 52 to write an equation of the

line with the given characteristics in general form.
53. x-intercept: (2, 0) 54. x-intercept: (—2,0)

y-intercept: (0, 3) y-intercept: (0, —2)

P.2 Linear Models and Rates of Change 17

55. Point on line: (9, —2) 56. Point on line: (—3, —2)

x-intercept: (2a, 0) x-intercept: (a, 0)
y-intercept: (0, —a)

(a # 0)

y-intercept: (0, a)
(a # 0)

[f] Finding Parallel and PerpendicularLines In

‘2 Exercises 57-62, write the general forms of the
equations of the lines that pass through the point
and are (a) parallel to the given line and (b)
perpendicular to the given line.

Point Line
57. (—7,-2) x =1
58. (—1,0) y=-3
59. (—3,2) x+y=7
60. (2,5) x—y= -2
61. (3.7) Sx—3y=0
62. (%, —%) Tx + 4y =8

Rate of Change In Exercises 63 and 64, you are given the
dollar value of a product in 2016 and the rate at which the
value of the product is expected to change during the next
5 years. Write a linear equation that gives the dollar value V of
the product in terms of the year ¢. (Let # = 0 represent 2010.)

2016 Value Rate
63. $1850
64. $17,200

$250 increase per year

$1600 decrease per year
Collinear Points In Exercises 65 and 66, determine whether

the points are collinear. (Three points are collinear if they lie
on the same line.)

65. (—2,1),(—1,0), (2, —-2)
66. (0,4), (7, —6), (=5, 11)

EXPLORING CONCEPTS
67. Square Show that the points (—1,0), (3,0), (1,2),
and (1, —2) are vertices of a square.

68. Analyzing a Line A line is represented by the
equation ax + by = 4.

(a) When is the line parallel to the x-axis?
(b) When is the line parallel to the y-axis?

(c) Give values for a and b such that the line has a slope
of %
(d) Give values for @ and b such that the line is
: _ 2
perpendicular to y = 5x + 3.

(e) Give values for a and b such that the line coincides
with the graph of 5x + 6y = 8.

69. Tangent Line Find an equation of the line tangent to the
circle x2 + y*> = 169 at the point (5, 12).

70. Tangent Line Find an equation of the line tangent to the
circle (x — 1)2 + (y — 1)> = 25 at the point (4, —3).



18 Chapter P Preparation for Calculus

71. Finding Points of Intersection Find the coordinates of
the point of intersection of the given segments. Explain your
reasoning.

(a) Perpendicular bisectors (b) Medians
(b, c) (b, c)

(=a, 0) (a, 0) (=a, 0) (a, 0)

JHOW DO YOU SEE IT? Several lines are

shown in the figure below. (The lines are labeled

a—f.) y

(a) Which lines have a
positive slope?

(b) Which lines have a
negative slope?

(c) Which lines appear
parallel?

(d) Which lines appear
perpendicular?

73. Temperature Conversion Find a linear equation that
expresses the relationship between the temperature in degrees
Celsius C and degrees Fahrenheit F. Use the fact that water
freezes at 0°C (32°F) and boils at 100°C (212°F). Use the
equation to convert 72°F to degrees Celsius.

74. Choosing a Job  As a salesperson, you receive a monthly
salary of $2000, plus a commission of 7% of sales. You are
offered a new job at $2300 per month, plus a commission of
5% of sales.

(a) Write linear equations for your monthly wage W in terms of
your monthly sales s for your current job and your job offer.

Hv (b) Use a graphing utility to graph each equation and find the
point of intersection. What does it signify?

(¢) You think you can sell $20,000 worth of a product per
month. Should you change jobs? Explain.

75. Apartment Rental A real estate office manages an
apartment complex with 50 units. When the rent is $780 per
month, all 50 units are occupied. However, when the rent
is $825, the average number of occupied units drops to 47.
Assume that the relationship between the monthly rent p and
the demand x is linear. (Note: The term demand refers to the
number of occupied units.)

(a) Write a linear equation giving the demand x in terms of the
rent p.

Flv (b) Linear extrapolation Use a graphing utility to graph the

demand equation and use the trace feature to predict the

number of units occupied when the rent is raised to $855.

(c) Linear interpolation Predict the number of units occupied
when the rent is lowered to $795. Verify graphically.

Hv76. Modeling Data An instructor gives regular 20-point

quizzes and 100-point exams in a mathematics course. Average
scores for six students, given as ordered pairs (x, y), where x
is the average quiz score and y is the average exam score, are
(18, 87), (10, 55), (19, 96), (16, 79), (13, 76), and (15, 82).

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use a graphing utility to plot the points and graph the
regression line in the same viewing window.

(c) Use the regression line to predict the average exam score
for a student with an average quiz score of 17.

(d) Interpret the meaning of the slope of the regression line.

(e) The instructor adds 4 points to the average exam score of
everyone in the class. Describe the changes in the positions
of the plotted points and the change in the equation of the
line.

77. Distance Show that the distance between the point (x;, y,)
and the line Ax + By + C = 0is
|Ax, + By, + C|

N

Distance =

Hv 78. Distance Write the distance d between the point (3, 1) and

the line y = mx + 4 in terms of m. Use a graphing utility to
graph the equation. When is the distance 0? Explain the result
geometrically.

Distance In Exercises 79 and 80, use the result of Exercise 77
to find the distance between the point and line.

79. Point: (—2,1)
Line: x —y—2=0

80. Point: (2, 3)
Line: 4x + 3y = 10
81. Proof Prove that the diagonals of a rhombus intersect at

right angles. (A rhombus is a quadrilateral with sides of equal
lengths.)

82. Proof Prove that the figure formed by connecting consecutive
midpoints of the sides of any quadrilateral is a parallelogram.

83. Proof Prove that if the points (x,, y,) and (x,, y,) lie on the
same line as (x7, y;) and (x3, y;), then

Y=y TN
X5 —xi X —Xx,
Assume x, # x, and xj # xj.

84. Proof Prove that if the slopes of two nonvertical lines
are negative reciprocals of each other, then the lines are
perpendicular.

True or False? 1In Exercises 85 and 86, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

85. The lines represented by
ax+by=c¢ and bx —ay=c,

are perpendicular. Assume a # 0 and b # 0.

86. If a line contains points in both the first and third quadrants,
then its slope must be positive.
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P.3 Functions and Their Graphs

A real-valued function f of a real
variable
Figure P.22

FUNCTION NOTATION

The word function was first
used by Gottfried Wilhelm
Leibniz in 1694 as a term to
denote any quantity connected
with a curve, such as the
coordinates of a point on a
curve or the slope of a curve.
Forty years later, Leonhard
Euler used the word “function”
to describe any expression
made up of a variable and some
constants. He introduced the
notation y = f(x). (To read
more about Euler, see the
biography on the next page.)

@ Use function notation to represent and evaluate a function.
@ Find the domain and range of a function.

@ Sketch the graph of a function.

@ Identify different types of transformations of functions.

# Classify functions and recognize combinations of functions.

Functions and Function Notation

A relation between two sets X and Y is a set of ordered pairs, each of the form (x, y),
where x is a member of X and y is a member of Y. A function from X to Y is a relation
between X and Y that has the property that any two ordered pairs with the same
x-value also have the same y-value. The variable x is the independent variable, and
the variable y is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area A of
a circle is a function of the circle’s radius r.

A = mr? A is a function of r.

In this case, r is the independent variable and A is the dependent variable.

Definition of a Real-Valued Function of a Real Variable

Let X and Y be sets of real numbers. A real-valued function f of a real
variable x from X to Y is a correspondence that assigns to each number x in
X exactly one number y in Y.

The domain of f is the set X. The number y is the image of x under f
and is denoted by f(x), which is called the value of f at x. The range of f is
a subset of Y and consists of all images of numbers in X. (See Figure P.22.)

Functions can be specified in a variety of ways. In this text, however, you will
concentrate primarily on functions that are given by equations involving the dependent
and independent variables. For instance, the equation

X +2y=1 Equation in implicit form

defines y, the dependent variable, as a function of x, the independent variable. To
evaluate this function (that is, to find the y-value that corresponds to a given x-value),
it is convenient to isolate y on the left side of the equation.

y = %(1 - x2) Equation in explicit form
Using f as the name of the function, you can write this equation as

f(x) = %(1 - xz). Function notation
The original equation

X +2y=1
implicitly defines y as a function of x. When you solve the equation for y, you are
writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable
as f(x) while at the same time telling you that x is the independent variable and that the
function itself is “£.” The symbol f(x) is read “f of x.” Function notation allows you to

be less wordy. Instead of asking “What is the value of y that corresponds to x = 3?” you
can ask “What is £(3)?”
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LEONHARD EULER (1707-1783)

In addition to making major
contributions to almost every
branch of mathematics, Euler
was one of the first to apply
calculus to real-life problems in
physics. His extensive published
writings include such topics as
shipbuilding, acoustics, optics,
astronomy, mechanics, and
magnetism.

See LarsonCalculus.com to read
more of this biography.

The expression
in Example 1(c) is called a
difference quotient and has a

special significance in calculus.

You will learn more about this
in Chapter 2.

In an equation that defines a function of x, the role of the variable x is simply that
of a placeholder. For instance, the function

fx) =2x* —4x + 1
can be described by the form
) =200 P-4l ) +

where rectangles are used instead of x. To evaluate f(—2), replace each rectangle
with —2.

f(=2)=2(-22%—-4(-2) +1 Substitute —2 for x.
=2(4)+8+1 Simplify.
=17 Simplify.

Although f is often used as a convenient function name with x as the independent
variable, you can use other symbols. For instance, these three equations all define the
same function.

f(x) =x2—4x+7 Function name is f, independent variable is x.
f(t) =12 —4t+7 Function name is f, independent variable is .
g(s) =52 —4s+ 7 Function name is g, independent variable is s.

EXAMPLE 1 Evaluating a Function

For the function f defined by f(x) = x> + 7, evaluate each expression.

a fGa) b fb—1) o LEFA0Z/W

Ax

Solution

a. f(3a) = Ba)> +7 Substitute 3a for x.

=9a>+ 7 Simplify.

b. fb—-1)=0B-12*+7 Substitute b — 1 for x.
= -2b+1+7 Expand binomial.
=p>—2b+38 Simplify.

c [+ Ay) —f) [+ A2 +7] - (2 +7)

) Ax Ax
X2+ 2xAx + (AP + T X2 —7
Ax
_ 2xAx + (Ax)?
Ax
_ Ax(2x + Ax)
AX
=2x+Ax, Ax#0 |

In calculus, it is important to specify the domain of a function or expression clearly.
For instance, in Example 1(c), the two expressions

[+ Ax) — fx)

and 2x + Ax, Ax#0
Ax

are equivalent because Ax = 0 is excluded from the domain of each expression.
Without a stated domain restriction, the two expressions would not be equivalent.

North Wind Picture Archives / Alamy Stock Photo



Range: y 20

Domain: x > 1

(a) The domain of f is[1, o), and the
range is [0, 00).

Range: 0<y<2

Domain: -2 <x<2

(b) The domain of g is [—2, 2], and the
range is [0, 2].
Figure P.23

THE SQUARE ROOT SYMBOL

The first use of a symbol to
denote the square root can
be traced to the sixteenth
century. Mathematicians first
used the symbol /, which
had only two strokes. The
symbol was chosen because it
resembled a lowercase r, to
stand for the Latin word radix,
meaning root.
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The Domain and Range of a Function

The domain of a function can be described explicitly, or it may be described implicitly
by an equation used to define the function. The implied domain is the set of all real
numbers for which the equation is defined, whereas an explicitly defined domain is one
that is given along with the function. For example, the function

1

x2 -4

4=x=5

fx) =
has an explicitly defined domain given by {x: 4 < x < 5}. On the other hand, the
function

1
x2—4

gx) =

has an implied domain that is the set {x: x # *=2}.

Finding the Domain and Range of a Function

Find the domain and range of each function.

a. flx)=Vx—1 b. g(x) = V4 — 2
Solution

a. The domain of the function
f) =Vx—1

is the set of all x-values for which x — 1 = 0, which is the interval [1, o©). To
find the range, observe that f(x) = /x — 1 is never negative. So, the range is the
interval [0, ©0), as shown in Figure P.23(a).

b. The domain of the function
glx) = V4 — ¥

is the set of all values for which 4 — x> = 0, or x> < 4. So, the domain of g is the
interval [—2, 2]. To find the range, observe that g(x) = /4 — x? is never negative
and is at most 2. So, the range is the interval [0, 2], as shown in Figure P.23(b).
Note that the graph of g is a semicircle of radius 2.

A Function Defined by More than One Equation

For the piecewise-defined function v [1-x x<I
1 [fo=9
f()_{l—x, x <1 - |Va-1,x>1
VTl —1, x=1 N
i
f is defined for x < 1 and x = 1. So, the g
domain is the set of all real numbers. On the ~ x
portion of the domain for which x = 1, the
function behaves as in Example 2(a). For Domain: all real x
x < 1, the values of 1 — x are positive. So, . .
the range of the function is the interval The domain of fis (—90, 90), and
[0, o). (See Figure P.24.) the range is [0, 00).
Figure P.24 d

A function from X to Y is one-to-one when to each y-value in the range there
corresponds exactly one x-value in the domain. For instance, the function in Example 2(a)
is one-to-one, whereas the functions in Examples 2(b) and 3 are not one-to-one.
A function from X to Y is onto when its range consists of all of Y.
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The Graph of a Function

The graph of the function y = f(x) consists of all points (x, f(x)), where x is in the
domain of f. In Figure P.25, note that

x = the directed distance from the y-axis

and

f(x) = the directed distance from the x-axis.
The graph of a function

. A vertical line can intersect the graph of a function of x at most once. This
Figure P.25

observation provides a convenient visual test, called the Vertical Line Test, for
functions of x. That is, a graph in the coordinate plane is the graph of a function of x if
and only if no vertical line intersects the graph at more than one point. For example, in
Figure P.26(a), you can see that the graph does not define y as a function of x because
a vertical line intersects the graph twice, whereas in Figures P.26(b) and (c), the graphs
do define y as a function of x.

(a) Not a function of x (b) A function of x (¢) A function of x
Figure P.26

Figure P.27 shows the graphs of six basic functions. You should be able to
recognize these graphs. (The graphs of the six basic trigonometric functions are shown
in Section P.4.)

_— ———x 27
-2 -1 1 2
—1- 1+
ol ] > x
-2 -1 1 2
Identity function Squaring function
y y y
4+ 4 2
2+ 2 o ———>x
-1 1 2
1+ 1+ 1=
1 1 1 1 x 1 1 1 1 x 4
1 2 3 4 -2 -1 1 2
Square root function Absolute value function Rational function

The graphs of six basic functions
Figure P.27
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Transformations of Functions

Some families of graphs have the same basic shape. For example, compare the graph
of y = x? with the graphs of the four other quadratic functions shown in Figure P.28.

y y
4 —_
3 —_
f f f f x Tt
-2 -1 ‘ 1 2 -3 =2 -1 ‘ 1
(a) Vertical shift upward (b) Horizontal shift to the left
y y
2 AT
3 —_
1 —
| | | |
SN NN
-5 -3 —1 1 2
,] — —_
_2 -+ 1
(¢) Reflection (d) Shift left, reflect, and shift upward
Figure P.28

Each of the graphs in Figure P.28 is a transformation of the graph of y = x2.
The three basic types of transformations illustrated by these graphs are vertical shifts,
horizontal shifts, and reflections. Function notation lends itself well to describing
transformations of graphs in the plane. For instance, using

f(x) =x? Original function

as the original function, the transformations shown in Figure P.28 can be represented
by these equations.

a. y = f(x) +2 Vertical shift up two units

b. y= f(x + 2) Horizontal shift to the left two units

C. y= —f(x) Reflection about the x-axis

d. y= —f(x + 3) +1 Shift left three units, reflect about the x-axis, and shift up one unit

Basic Types of Transformations (¢ > 0)
Original graph: y = f(x)
Horizontal shift c units to the right: y = f(x — ¢)
Horizontal shift c units to the left: vy = f(x + ¢)

Vertical shift ¢ units downward: y=Ffkx) —c
Vertical shift ¢ units upward: y=Ffkx) +c
Reflection (about the x-axis): y = —f(x)
Reflection (about the y-axis): y = f(—x)

Reflection (about the origin): y = —f(—x)



24 Chapter P Preparation for Calculus

B FOR FURTHER INFORMATION

For more on the history of the
concept of a function, see the

article “Evolution of the Function

Concept: A Brief Survey” by
Israel Kleiner in The College

Mathematics Journal. To view this

article, go to MathArticles.com.
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Classifications and Combinations of Functions

The modern notion of a function is derived from the efforts of many seventeenth-
and eighteenth-century mathematicians. Of particular note was Leonhard Euler, who
introduced the function notation y = f(x). By the end of the eighteenth century,
mathematicians and scientists had concluded that many real-world phenomena could
be represented by mathematical models taken from a collection of functions called
elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)

2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic functions

You will review the trigonometric functions in the next section. The other nonalgebraic
functions, such as the inverse trigonometric functions and the exponential and logarithmic

functions, are introduced in Chapter 5.
The most common type of algebraic function is a polynomial function

f&=ax"+a,_x""'+---+ax®+ax+a,

where 7 is a nonnegative integer. The numbers q, are coefficients, with g, the leading
coefficient and a, the constant term of the polynomial function. If a, # 0, then n is
the degree of the polynomial function. The zero polynomial f(x) = 0 is not assigned
a degree. It is common practice to use subscript notation for coefficients of general
polynomial functions, but for polynomial functions of low degree, these simpler forms

are often used. (Note that a # 0.)

Constant function

Zeroth degree: f(x) = a

First degree:  f(x) = ax + b

Second degree: f(x) = ax* + bx + ¢

Third degree: f(x) = ax® + bx> + cx + d

Although the graph of a nonconstant polynomial function can have several turns,
eventually the graph will rise or fall without bound as x moves to the right or left.
Whether the graph of

) = apt +a, @t

eventually rises or falls can be determined by the function’s degree (odd or even) and
by the leading coefficient a,, as indicated in Figure P.29. Note that the dashed portions
of the graphs indicate that the Leading Coefficient Test determines only the right and

left behavior of the graph.

Linear function
Quadratic function

Cubic function

. 2
+ ax” + ax + a,

Graphs of polynomial functions of even degree

a <0 a >0 a <0
n n n
y y y
’ \ Up to
RN Upto , \ left
1 1
’I \‘ I'lght b \‘
. \ ! No.

'l \‘ , - N Il “’ So \\

1 1 s N ’ A)
/Down % Down Selv '
' toleft  \toright | Down = Down

\ £ | | to left to right |
' \ ' v ' '

Graphs of polynomial functions of odd degree

The Leading Coefficient Test for polynomial functions

Figure P.29
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The domain of the composite function
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Figure P.30
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Just as a rational number can be written as the quotient of two integers, a rational
function can be written as the quotient of two polynomials. Specifically, a function f
is rational when it has the form

) = ’;E—§ 4() # 0

where p(x) and g(x) are polynomials.

Polynomial functions and rational functions are examples of algebraic functions.
An algebraic function of x is one that can be expressed as a finite number of
sums, differences, multiples, quotients, and radicals involving x". For example,
flx) = Vx + 1 is algebraic. Functions that are not algebraic are transcendental. For
instance, the trigonometric functions (see Section P.4) are transcendental.

Two functions can be combined in various ways to create new functions. For
example, given f(x) = 2x — 3 and g(x) = x> + 1, you can form the functions shown.

(f+ k) =fx) +gx) = 2x = 3) + (¥ + 1) Sum

(f =9 =flx) —gly) = (2x = 3) = (> + 1) Difference

(fg)(x) :f(x)g(x) = (2x - 3)(X2 + 1) Product
= Q = o3 uotient

(0 =1 = 2 .

You can combine two functions in yet another way, called composition. The
resulting function is called a composite function.

Definition of Composite Function

Let f and g be functions. The function (f° g)(x) = f(g(x)) is the composite
of f with g. The domain of fo g is the set of all x in the domain of g such that
g(x) is in the domain of f (see Figure P.30).

The composite of f with g is generally not the same as the composite of g with f.
This is shown in the next example.

EXAMPLE 4 Finding Composite Functions

e > See LarsonCalculus.com for an interactive version of this type of example.

For f(x) = 2x — 3 and g(x) = x?> + 1, find each composite function.

a. fog b. gof

Solution
a. (fog)lx) = flgx) Definition of fo g
=f(x*+1) Substitute x> + 1 for g(x).
=2(x2+1) —3 Definition of f(x)
=22 -1 Simplify.
b. (g°f)x = g(f(x)) Definition of g » f
= g(2x — 3) Substitute 2x — 3 for f(x).
=2x—-3)02+1 Definition of g(x)
=4x* — 12x + 10 Simplify.

Note that (f g)(x) # (g f)(x). L
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(a) Odd function

(¢) Neither even nor odd

Figure P.31

In Section P.1, an x-intercept of a graph was defined to be a point (a, 0) at which
the graph crosses the x-axis. If the graph represents a function f, then the number a is
a zero of f. In other words, the zeros of a function f are the solutions of the equation
f(x) = 0. For example, the function

fa)=x—4

has a zero at x = 4 because f(4) = 0.

In Section P.1, you also studied different types of symmetry. In the terminology of
functions, a function y = f(x) is even when its graph is symmetric with respect to the
y-axis, and is odd when its graph is symmetric with respect to the origin. The symmetry
tests in Section P.1 yield the following test for even and odd functions.

Test for Even and Odd Functions
The function y = f(x) is even when

f(=x) = fx).
The function y = f(x) is odd when
f(=x) = —f().

EXAMPLE 5 Even and Odd Functions and Zeros of Functions

Determine whether each function is even, odd, or neither. Then find the zeros of the
function.
1
a f(x) =x>—x b. g(x)=; c. hix) = —x2—x—1
Solution

a. This function is odd because

=0 = (23 = (-2) = =¥ +x = —( = %) = —/().

The zeros of f are

X—x=0 Let f(x) = 0.

x(x? — l) =0 Factor.

xx—Dx+1)=0 Factor.
x=0,1, -1 Zeros of f
See Figure P.31(a).
b. This function is even because
1 1

89 = = @ = 8.

This function does not have zeros because 1/x? is positive for all x in the domain,
as shown in Figure P.31(b).

c. Substituting —x for x produces

—=x)=—(—xP—-(—x)—1=—-x>+x—-1.

Because h(x) = —x*> — x — 1 and —h(x) = x> + x + 1, you can conclude that
h(—x) # h(x) Function is ot even.

and
h(—x) = —h(x). Function is not odd.

So, the function is neither even nor odd. This function does not have zeros because
—x%> — x — 1is negative for all x, as shown in Figure P.31(c).
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Writing Describe how a relation and a function are

different.

2. Domain and Range In your own words, explain the
meanings of domain and range.

3. Transformations What are the three basic types of
function transformations?

4. Right and Left Behavior Describe the four cases of
the Leading Coefficient Test.

i4|[=] Evaluating a Function In Exercises 5-12,
evaluate the function at the given value(s) of the
independent variable. Simplify the results.

5 fx) =3x— 2
() £(0) (b) f(5) (c) f(b) (d) flx—1)
6. flx) =Tx — 4
() £(0) ) f(=3) (o) f(b) (d) flx+2)
7. f(0) = V¥ + 4
(@ f(=2) (b) f3) © f(2) (d) f(x + bx)
8 fl)=Vx+5
@ f(=4) ) f(11) () f4) (d) flx + Ax)
9. glx) =5 —x2
@ g0)  ®gV3) © -2 (@ glt-1D
10. g(x) = x*(x — 4)
@ g ®el) @0 @ g+
11. f(x) = x° 12. f(x) =3x— 1
[+ Ax) = f(x) f) = f(1)
Ax x—1

[El%s)[=] Finding the Domain and Range of a
Function In Exercises 13-22, find the domain

O] and range of the function.

13. f(x) = 42 14. gx) =x* -5
15. f(x) = x° 16. h(x) = 4 — x2
17. glx) = J/6x 18. h(x) = —/x + 3
19. f(x) = J16 — x? 20. f(x) = |x — 3|
21. f(x) = % 2. f(x) = i N Z

Finding the Domain of a Function In Exercises 23-26,
find the domain of the function.

23, f(x) = Jx 1—x 24. f(x) = /o2 —3x +2

1 1
25. f(x) = |x T 3| 26. g(x) = m

[f] Finding the Domain and Range of a
F Piecewise Function In Exercises 27-30,
evaluate the function at the given value(s) of the
independent variable. Then find the domain and
range.

2x+1, x<0

27 &) = {2x+ 2, x=20

(@ f(=1) () f0) (@© f2 @ f(A+1)
x2+2 x=1
28. f(x)={2x2+2, x> 1
@ f(=2) ® f0) (© f1) (@ f(s*>+2)
[kl ox<1
29. fx) = {—x +1, x=1
@ f(=3) ® f1) (© B @ fG+1)
_[Jx+4, x=5
30. fx) = {(x —52 x>5
@ f(=3) (® f0) (o f(5 (@ f(10)

Sketching a Graph of a Function In Exercises 31-38,
sketch a graph of the function and find its domain and range.
Use a graphing utility to verify your graph.

31. f(x) =4 —x 32. fx) =x2+5

B gl = 5 M) =
35. h(x) = Jx — 6 36. f(x) =12 + 3

37. flx) = V9 — x? 38. f(x) =x+ J4—x*

Using the Vertical Line Test In Exercises 39-42, use the
Vertical Line Test to determine whether y is a function of x.
To print an enlarged copy of the graph, go to MathGraphs.com.

4. /x> —4—-y=0

y
2 4T
3Ak
1 i
D E 1+

12 3 4 x

39. x — > =0

-2 _o L
x+1, x<0
41. y = ’ 2. 2+ =4
{—x +2, 0 vy
y y
2
| | x f f x
-2 N -1 1
_1 _IAV
-2
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jj[m] Deciding Whether an Equation Is a
Function In Exercises 43-46, determine whether
y is a function of x.

43. X2 +y> =16
45. y» = x> -1

4. >+y=16
46. x>y — x>+ 4y =0

[E]%4)[=] Transformation of a Function In Exercises
47-50, the graph shows one of the six basic
functions on page 22 and a transformation of
the function. Describe the transformation. Then
use your description to write an equation for the

transformation.
47. y 48. y
5+ 5
4+ 4
3,,
2+ 2
1,,
—+— X —+— ———>x
gl 12345 7372—14123
49. y 50. y

— W
w B W

| —
—

—4 1 > x 1+
-2-1 <|J: 1\/3 4 [ [ X

| | |
T T T T T T
2 —3/ 1123

Matching In Exercises 51-56, use the graph of y = f(x) to
match the function with its graph.

<

51. y = f(x + 5)
53. y= —f(—x) — 2
55. y=f(x+6)+2

52. y=f(x) =5

54y = —f(x — 4)

56. y=f(x—1)+3

57. Sketching Transformations Use the graph of f shown

in the figure to sketch the graph of each function. To print an
enlarged copy of the graph, go to MathGraphs.com.

(@) fx +3) ®) fx—1)
© f)+2 (@ flx) -4
(@) 3f(x) (f) 1/ ()

(& —f) (b —f(—x)

y y
2 4
27 @20
> x +~ A —
-4 -2 4 1> x
-2 -4 2 T 2
f L
—4 =4
(—4,-3) _4
Figure for 57 Figure for 58

58. Sketching Transformations Use the graph of f shown
in the figure to sketch the graph of each function. To print an
enlarged copy of the graph, go to MathGraphs.com.

(@ flx—4) (d) flx+2)

(© flx) +4 @ fx)—1

(©) 2f(v) () 3/

(g f(—x) () —f(x)
afFEd40l Combinations of Functions In Exercises
|.r 59 and 60, find (a) f(x) + g(x), (b) f(x) — g(x),
l'Ei : (c) f(x) - g(x), and (d) f(x)/g(x).
59. f(x) =2x—5 60. f(x) =x>+5x+4

glx) =4 — 3x gx)=x+1

61. Evaluating Composite Functions Given f(x) = /x
and g(x) = x> — 1, evaluate each expression.

@ f(g(1)) (b) g(f(1)) (©) g(£(0)

@ flg(=4) (e f(gl)) () g(f(x)

62. Evaluating Composite Functions Given f(x) = 2x°
and g(x) = 4x + 3, evaluate each expression.

(@) f(g(0)) ® r(s()  © g(f0)
@ glr(=3) @ fleW) () g(f(x)

g0l

[w] Finding Composite Functions In Exercises
"¢ 63-66, find the composite functions fo g and g o f.
Find the domain of each composite function. Are

©  the two composite functions equal?
63. f(x) = x2 64. f(x) =x2—1
glx) = Vx glx) = —x
3 1
65. f(x) = < 66. f(x) = <
g)=x—-1 gx) = Ux+2

67. Evaluating Composite Functions Use the graphs of
f and g to evaluate each expression. If the result is undefined,
explain why.

@ (f°2)03) Y
(b) g(£(2))

(© 8(£(5))

@ (feg)(=3) ‘
@ (g°N)=1)

() flg(=1)
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68. Ripples A pebble is dropped into a calm pond, causing
ripples in the form of concentric circles. The radius (in feet)
of the outer ripple is given by () = 0.6t, where ¢ is the time
in seconds after the pebble strikes the water. The area of the
circle is given by the function A(r) = 7r2. Find and interpret

(A°n@.

Think About It In Exercises 69 and 70, F(x) = fog o h.
Identify functions for f, g, and h. (There are many correct
answers.)

69. F(x) = /2x — 2

1
70. F(X) = E

Think About It In Exercises 71 and 72, find the coordinates
of a second point on the graph of a function f when the given
point is on the graph and the function is (a) even and (b) odd.

71. (-3,4) 72. (4,9)

73. Even and Odd Functions The graphs of f, g, and h are
shown in the figure. Decide whether each function is even,
odd, or neither.

6,,
NI
2,,
HH N x
-6 -4 =2 T 2 4 6
T
_6,,
Figure for 73 Figure for 74

74. Even and Odd Functions The domain of the function f
shown in the figure is —6 < x < 6.

(a) Complete the graph of f given that f is even.
(b) Complete the graph of f given that f is odd.

[Elg%=[E Even and Odd Functions and Zeros of
T Functions In Exercises 75-78, determine
whether the function is even, odd, or neither. Then
find the zeros of the function. Use a graphing
utility to verify your result.

76. f(x) = Yx
78. f(x) = 4x* — 332

75. f(x) = x*(4 — x?)
77. f(x) =29/

Writing Functions In Exercises 79-82, write an equation
for a function that has the given graph.

79. Line segment connecting (—2, 4) and (0, —6)
80. Line segment connecting (3, 1) and (5, 8)

81. The bottom half of the parabola x + y*> =

82. The bottom half of the circle x> + y*> = 36

Sketching a Graph In Exercises 83-86, sketch a possible
graph of the situation.

83. The speed of an airplane as a function of time during a 5-hour
flight

84.

85.

86.

87.

88.

P.3 Functions and Their Graphs 29

The height of a baseball as a function of horizontal distance
during a home run

A student commutes 15 miles to attend college. After driving
for a few minutes, she remembers that a term paper that is
due has been forgotten. Driving faster than usual, she returns
home, picks up the paper, and once again starts toward school.
Consider the student’s distance from home as a function of
time.

A person buys a new car and keeps it for 6 years. During year 4,
he buys several expensive upgrades. Consider the value of the
car as a function of time.

Domain Find the value of ¢ such that the domain of
f0)=e-x

is[—5,5]

Domain Find all values of ¢ such that the domain of

x+3
f(x)_x2+3cx+6

is the set of all real numbers.

EXPLORING CONCEPTS

89. One-to-One Functions Can the graph of a
one-to-one function intersect a horizontal line more than
once? Explain.

90. Composite Functions Give an example of
functions f and g such that fo g = g o fand f(x) # g(x).

91. Polynomial Functions Does the degree of a
polynomial function determine whether the function is
even or odd? Explain.

92. Think About It Determine whether the function
f(x) = 01is even, odd, both, or neither. Explain.

93

. Graphical

Reasoning An electronically controlled
thermostat is programmed to lower the temperature during the
night automatically (see figure). The temperature T in degrees
Celsius is given in terms of ¢, the time in hours on a 24-hour
clock.

24
20

12
!

‘ IR TR N B '
|3

T T T T T
12 15 18 21 24

—4
6 9
(a) Approximate 7(4) and T(15).

(b) The thermostat is reprogrammed to produce a temperature

H(t) = T(t — 1). How does this change the temperature?
Explain.

(c) The thermostat is reprogrammed to produce a temperature
H(f) = T(t) — 1. How does this change the temperature?
Explain.
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JHOW DO YOU SEE IT? Water runs into

a vase of height 30 centimeters at a constant
rate. The vase is full after 5 seconds. Use this
information and the shape of the vase shown to
answer the questions when d is the depth of the
water in centimeters and ¢ is the time in seconds
(see figure).

30 cm

le— Q, —>
|—

(a) Explain why d is a function of 7.
(b) Determine the domain and range of the function.
(c) Sketch a possible graph of the function.

(d) Use the graph in part (c) to approximate d(4). What
does this represent?

e ¢ 95, Automobile Aerodynamics e« ¢ ¢ ¢ ¢ o ¢ o ¢ o

The horsepower H required to overcome wind drag on a
certain automobile is

H(x) = 0.00004636x>

where x is the speed
of the car in miles
per hour.

(a) Use a graphing
utility to graph H. \ z
(b) Rewrite H so that x
represents the speed :
in kilometers D
per hour. [Hint: °
Find H(x/1.6).] :

Plu 96. Writing Use a graphing utility to graph the polynomial
functions
P =x*—x+1 and p,(x) = —x.

How many zeros does each function have? Is there a cubic
polynomial that has no zeros? Explain.

97. Proof Prove that the function is odd.
fx) = ay, X+ - 4 ax® +ax
98. Proof Prove that the function is even.
F&) = apx® + ay, 372+ - - -+ ax? +a,

99. Proof Prove that the product of two even (or two odd)
functions is even.

100. Proof Prove that the product of an odd function and an
even function is odd.

iStockphoto.com/EdStock

101. Length A right triangle is formed in the first quadrant
by the x- and y-axes and a line through the point (3, 2) (see
figure). Write the length L of the hypotenuse as a function of x.

y

NwW s

102. Volume An open box of maximum volume is to be made
from a square piece of material 24 centimeters on a side by
cutting equal squares from the corners and turning up the
sides (see figure).

P

ns
2y

FXAe—— 24 — Qx —>+ X+

(a) Write the volume V as a function of x, the length of the
corner squares. What is the domain of the function?

Pp(b) Use a graphing utility to graph the volume function
and approximate the dimensions of the box that yield a
maximum volume.

True or False? In Exercises 103-108, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

103. If f(a) = f(b), then a = b.

104. A vertical line can intersect the graph of a function at most
once.

105. If f(x) = f(—x) for all x in the domain of f, then the graph
of f is symmetric with respect to the y-axis.

106. If f is a function, then f(ax) = af(x).

107. The graph of a function of x cannot have symmetry with
respect to the x-axis.

108. If the domain of a function consists of a single number, then
its range must also consist of only one number.

PUTNAM EXAM CHALLENGE

109. Let R be the region consisting of the points (x,y) of
the Cartesian plane satisfying both |x| — |y| < 1 and
|y] = 1. Sketch the region R and find its area.

110. Consider a polynomial f(x) with real coefficients
having the property f(g(x)) = g(f(x)) for every
polynomial g(x) with real coefficients. Determine and
prove the nature of f(x).

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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P.4 Review of Trigonometric Functions

Coterminal angles
Figure P.33

Describe angles and use degree measure.

Use radian measure.

Understand the definitions of the six trigonometric functions.
Evaluate trigonometric functions.

Solve trigonometric equations.

Graph trigonometric functions.

Angles and Degree Measure

An angle has three parts: an initial ray (or side), a terminal ray, and a vertex (the
point of intersection of the two rays), as shown in Figure P.32(a). An angle is in
standard position when its initial ray coincides with the positive x-axis and its vertex
is at the origin, as shown in Figure P.32(b).

N

Initial ray

(a) Angle (b) Angle in standard position
Figure P.32

It is assumed that you are familiar with the degree measure of an angle.* It is common
practice to use 6 (the lowercase Greek letter theta) to represent both an angle and its measure.
Angles between 0° and 90° are acute, and angles between 90° and 180° are obtuse.

Positive angles are measured counterclockwise, and negative angles are measured
clockwise. For instance, Figure P.33 shows an angle whose measure is —45°. You
cannot assign a measure to an angle by simply knowing where its initial and terminal
rays are located. To measure an angle, you must also know how the terminal ray was
revolved. For example, Figure P.33 shows that the angle measuring —45° has the same
terminal ray as the angle measuring 315°. Such angles are coterminal. In general, if 8
is any angle, then 6 + n(360), n is a nonzero integer, is coterminal with 6.

An angle that is larger than 360° is one whose terminal ray has been revolved more
than one full revolution counterclockwise, as shown in Figure P.34(a). You can form
an angle whose measure is less than —360° by revolving a terminal ray more than one
full revolution clockwise, as shown in Figure P.34(b).

0 =720°
(a) An angle whose measure (b) An angle whose measure
is greater than 360° is less than —360°
Figure P.34

*For a more complete review of trigonometry, see Precalculus, 10th edition, or Precalculus: Real Mathematics,
Real People, Tth edition, both by Ron Larson (Boston, Massachusetts: Brooks/Cole, Cengage Learning, 2018
and 2016, respectively).
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Radian Measure

To assign a radian measure to an angle 0, consider 8 to be a central angle of a circle
of radius 1, as shown in Figure P.35. The radian measure of 6 is then defined to be
the length of the arc of the sector. Because the circumference of a circle is 27r, the
circumference of a unit circle (of radius 1) is 27. This implies that the radian measure
of an angle measuring 360° is 27. In other words, 360° = 27 radians.

Using radian measure for 0, the length s of a circular arc of radius r is s = r6, as
shown in Figure P.36.

The arc Arc length is s = r6.

length of the
sector is the
radian measure
of 6.

Unit circle Circle of radius r
Figure P.35 Figure P.36

You should know the conversions of the common angles shown in Figure P.37. For
other angles, use the fact that 180° is equal to 7 radians.

Ay Al CEN £
N

30° = 45°

180°=rm

N:\
N\:\

@

T
6
360°=2r

Radian and degree measures for several common angles
Figure P.37

EXAMPLE 1 Conversions Between Degrees and Radians

2
— radian

7 rad )
9

a. 40° = (40 deg)(moaeg

- mrad \ .
b. 540° = (540 deg)<180 ) = 37 radians
c. —270° = (—270 deg)< 7 rad ) = —?ﬂradians
. 180 deg 2

d. —% radians = <—* rad)( 180 deg) -90°

2 7 vad
e. 2 radians = (2 rad)(lgo deg) <@> ~ 114.59°
rad A
O . (97 180 deg) .,
f. > radians = ( > md><7nrad ) = 810 |

Most graphing utilities have both degree and radian modes.
You should learn how to use your graphing utility to convert from degrees to radians,
and vice versa. Use a graphing utility to verify the results of Example 1.
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The Trigonometric Functions

There are two common approaches to the study of trigonometry. In one, the trigonometric
functions are defined as ratios of two sides of a right triangle. In the other, these
functions are defined in terms of a point on the terminal ray of an angle in standard
position. The six trigonometric functions, sine, cosine, tangent, cotangent, secant,
and cosecant (abbreviated as sin, cos, tan, cot, sec, and csc, respectively), are defined
below from both viewpoints.

Opposite

Adjacent
Sides of a right triangle Definition of the Six Trigonometric Functions
Figure P.38
Right triangle definitions, where 0 < 6 < g (see Figure P.38)
y
r=/x2 42 o . . .
. pposite adjacent opposite
0=——— 0=—— tanf = ———
) s hypotenuse €08 hypotenuse an adjacent
"\
i 0 hypot hypot djacent
| _\ csc § = DPOETUSE sec § = —YPOCIUSE cot § = SJAc
‘ X opposite adjacent opposite

Circular function definitions, where 0 is any angle (see Figure P.39)

sin9=X cosH=E tan9=X,x¢0
r r X

An angle in standard position csc O = 5, y#0 sec O = K, x# 0 cotf = E, y#0
Figure P.39 y X y

The trigonometric identities listed below are direct consequences of the definitions.
[Note that ¢ is the lowercase Greek letter phi and sin? 6 is used to represent (sin 0).]

TRIGONOMETRIC IDENTITIES

Even/Odd Identities
sin(—6) = —sin 6

cos(—0) = cos 0

Pythagorean Identities
sin? @ + cos?0 =1

1 + tan? 6 = sec? 0

csc(—60) = —csc O
sec(—0) = sec 0

1 + cot?2 0 = csc2 0 tan(—0) = —tan 0 cot(—0) = —cot 0
Sum and Difference Formulas Power-Reducing Formulas Double-Angle Formulas
. . . . 1 - 26 . .
sin(f = ¢) = sin 6 cos ¢ * cos 0 sin ¢ sin? 6 = % sin 260 = 2 sin 6 cos 0
20 = 2cos? 6 — 1
1 + cos 26 €os
cos(0 = ¢) = cos 0 cos ¢ F sin O sin ¢ cos2f = — 22 =1-—2sin?0
2 _ 2 02
= cos* 0 — sin* 0
tan 6 * tan ¢ 1 — cos 20 2 tan 6
+ = - - =V 20 = ————— =
tan(6 = ¢) 1 + tan 0 tan ¢ tan® 0 1 + cos 26 tan 20 1 — tan? 0
Law of Cosines Reciprocal Identities Quotient Identities
a?> =b>+ > — 2bccos A csc O = ,1 tan0=smg
sin 0 cos 0
1 0
b a sec 0 = cot § = <2
A cos 0 sin 0
‘ cotd =

tan 6
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Figure P.40

Common angles

Figure P.41

Evaluating Trigonometric Functions

There are two ways to evaluate trigonometric functions: (1) decimal approximations
with a graphing utility and (2) exact evaluations using trigonometric identities and
formulas from geometry. When using a graphing utility to evaluate a trigonometric
function, remember to set the graphing utility to the appropriate mode—degree mode
or radian mode.

EXAMPLE 2 Exact Evaluation of Trigonometric Functions

Evaluate the sine, cosine, and tangent of /3.

Solution Because 60° = /3 radians, you can draw an equilateral triangle with
sides of length 1 and 6 as one of its angles, as shown in Figure P.40. Because the
altitude of this triangle bisects its base, you know that x = % Using the Pythagorean
Theorem, you obtain

w=ﬁﬂ‘f:\/“‘cy:\/i:é?

Now, knowing the values of x, y, and r, you can write the following.

an oY _N32_ 3
3 r 1 2
cos T X _12_1
3 r 1 2
n_y_3/2_
tang=1=" =3 -

Note that all angles in this text are measured in radians unless stated otherwise.
For example, when sin 3 is written, the sine of 3 radians is meant, and when sin 3° is
written, the sine of 3 degrees is meant.

The degree and radian measures of several common angles are shown in the
table below, along with the corresponding values of the sine, cosine, and tangent (see
Figure P.41).

Trigonometric Values of Common Angles

0 (degrees) | 0° | 30° 45° 60° 90° 180° 270°
. n n n L3 3n
0 (radians) | O 6 1 3 5 i1 >
sin 0 ol L] 2] 1 0 -1
2 2 2
cos 0 1 ﬁ Q 1 0 —1 0
2 2 2
tan 6 0 ? 1 V3 | Undefined | 0 | Undefined

EXAMPLE 3 Using Trigonometric Identities

NG

-(_z>__- m_ _J3 (=) = —sin
a. s 3 = s1n3— ) sin ) = —sin

b. sec 60° = =—=2 sec § = — i |



Quadrant IT Quadrant I
sin 0: + sin 0: +
cos 0: — cos 0: +
tan 0: — tan 0: +

Quadrant I1T Quadrant IV
sin 0: — sin 0: —
cos 6: — cos 0: +
tan 60: + tan 6: —

Quadrant signs for trigonometric

functions
Figure P.42
y
: : : / x
_z T 4 3 2r
2 2 2
_2n An
3 ERN
‘n + St
3 3

Solution points of sin § = —

Figure P.44
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The quadrant signs for the sine, cosine, and tangent functions are shown in Figure
P.42. To extend the use of the table on the preceding page to angles in quadrants other
than the first quadrant, you can use the concept of a reference angle (see Figure P.43),
with the appropriate quadrant sign. For instance, the reference angle for 37/4 is 7/4,
and because the sine is positive in Quadrant II, you can write

37 . 2

sin 7= = sin - = =~
Similarly, because the reference angle for 330° is 30°, and the tangent is negative in
Quadrant IV, you can write

V3

tan 330° = —tan 30° = —

3
Reference \«
le: 67 0
- N { x / \
\ Reference
angle: 67
Reference
angle: 6/,
Quadrant IT Quadrant IIT Quadrant IV

0’= 6 — r (radians)
0= 6— 180° (degrees)

0’=21— 60 (radians)
0’=360°— 6 (degrees)

6’ = m— 0 (radians)
0’=180°— 0 (degrees)

Figure P.43

Solving Trigonometric Equations

How would you solve the equation sin & = 0? You know that 8§ = 0 is one solution,
but this is not the only solution. Any one of the following values of 6 is also a solution.

.., 3n, 2n,—n,0,m2n 3n,. ..

You can write this infinite solution set as {nz: n is an integer}.

SN LR Solving a Trigonometric Equation

/3

Solve the equation sin 8 = 5
Solution To solve the equation, you should consider that the sine function is
negative in Quadrants IIT and IV and that

J3

. T
Simm - = ——.

3 2

So, you are seeking values of 0 in the third and fourth quadrants that have a reference
angle of /3. In the interval [0, 27], the two angles fitting these criteria are

n 4m T Sm
= + === = - ===
0=mn 3 3 and 6 =2x 3 3

By adding integer multiples of 27 to each of these solutions, you obtain the following

general solution.

024?714—21171 or 925?714—21171,

See Figure P.44.

where 7 is an integer.
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Be sure you
understand the mathematical
conventions regarding
parentheses and trigonometric
functions. For instance, in
Example 5, cos 26 means

cos(20).

Domain: (—eo, oo)

| Range: [-1, 1]

Period: 21

Chapter P Preparation for Calculus

S NIRRT Solving a Trigonometric Equation

Solve
cos260 =2 — 3sin 6
where 0 < 0 < 27.

Solution Using the double-angle formula cos 20 = 1 — 2 sin? 6, you can rewrite
the equation as follows.
cos20 =2 — 3sin 0
1 —2sin?0 =2 —3sin6
0=2sin>0 —3sinf + 1
0=(2sinf — I)(sinf — 1)

If 2sinf@ — 1 =0, then sinf® = 1/2 and 6 = n/6 or 6 = 57/6. If sinf — 1 = 0,
thensin® = 1 and 6 = n/2. So, for 0 < 6 < 27, the solutions are

Write original equation.
Double-angle formula
Quadratic form

Factor.

or

7
2 -

Graphs of Trigonometric Functions

A function f is periodic when there exists a positive real number p such that
f(x + p) = f(x) for all x in the domain of f. The least such positive value of p is the
period of f. The sine, cosine, secant, and cosecant functions each have a period of 27,
and the other two trigonometric functions, tangent and cotangent, have a period of 7,
as shown in Figure P.45.

Yy Domain: all x # nm

ST

Range: (-0, —1]

4 - Period: 21

1
1
1
1
1
1
1
1
1
} |
T
1
1
1
1
1
1
1
1
1

Domain: (—so, o) 7" Domain: all x # %+ nrw
31 Range: [-1,1] 5-+ Range: (—ee, o)
Period: 27 ad Period: ©
24 l | | |
]
L2+ | |
/\ } / ) 3 1 3 3 3
4 n n 3l 1 1 1 1
2 1t P 2 } } } } x
| L fr L S
s | | | |
-3 L | |
. T
an y Domain: all x # 7 + nx Y Domain: all x £ nr
and [1, ) Range: (—oo, —1] and [1, o) 5| Range: (=, )
‘ 4+ Period: 27 Period: ©
! ' ' 4 1 1
! 3+ ) | | ! ‘
: 1 1 1 1 3 : !
1 | 2 . . I 1 I X :
| | | | | 2 | |
| | | | | it | |
Il 1 1 1 1
—* % = ; ; x
| T A L T 21
: A\ TN
| sl ! | | i | |

[

The graphs of the six trigonometric functions

Figure P.45



To
produce the graphs shown in
Figure P.45 with a graphing
utility, make sure you set the
graphing utility to radian mode.

Period=1

Figure P.46
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Note in Figure P.45 that the maximum value of sinx and cosx is 1 and the
minimum value is — 1. The graphs of the functions y = a sin bx and y = a cos bx
oscillate between —a and a, and so have an amplitude of |a|. Furthermore, because
bx =0 when x =0 and bx = 2m when x = 2n/b, it follows that the functions
y = asinbx and y = acos bx each have a period of 27/|b|. The table below
summarizes the amplitudes and periods of some types of trigonometric functions.

Function Period Amplitude
y =asinbx or y = acos bx |277T| |a|
T .
y = atanbx or y = acot bx m Not applicable
2n .
y=asecbx or y = acscbx m Not applicable

YN JRNM  Sketching the Graph of a Trigonometric Function
Sketch the graph of f(x) = 3 cos 2x.

Solution The graph of f(x) = 3 cos 2x has an amplitude of 3 and a period of
27/2 = m. Using the basic shape of the graph of the cosine function, sketch one period
of the function on the interval [0, 7], using the following pattern.

Maximum: (0, 3)
Minimum: <g, —3>
Maximum: (7, 3)

By continuing this pattern, you can sketch several cycles of the graph, as shown in
Figure P.46.

Shifts of Graphs of Trigonometric Functions

a. To sketch the graph of f(x) = sin(x + 7/2), shift the graph of y = sin x to the left
7/2 units, as shown in Figure P.47(a).

b. To sketch the graph of f(x) = 2 + sin x, shift the graph of y = sin x upward two
units, as shown in Figure P.47(b).

¢. To sketch the graph of f(x) = 2 + sin(x — m/4), shift the graph of y = sinx
upward two units and to the right 77/4 units, as shown in Figure P.47(c).

(a) Horizontal shift to the left (b) Vertical shift upward (¢) Horizontal and vertical shifts
Transformations of the graph of y = sin x
Figure P.47 =
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P.4 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Coterminal Angles Explain how to find coterminal
angles in degrees.

2. Degrees to Radians Explain how to convert from
degrees to radians.

3. Trigonometric Functions
Find sin 6, cos 6, and tan 6. 7

24

4. Characteristics of a Graph In your own words,
describe the meaning of amplitude and period.

jj[m] Coterminal Angles in Degrees In Exercises
5 and 6, determine two coterminal angles in degree
measure (one positive and one negative) for each
angle.

5. (a) (b)

0 =36°

6. (a) 0 =300°

%

0 =-420°

<

Coterminal Angles in Radians In Exercises
7 and 8, determine two coterminal angles in radian
O] measure (one positive and one negative) for each

©  angle.

7. (a) 9=g :

(b) g_4m
0= 3

8. (a) 6=—

%'\/l_,

[a] Degrees to Radians In Exercises 9 and 10,

='1' convert the degree measure to radian measure as
O a multiple of 7 and as a decimal accurate to three
decimal places.
9. (a) 30° (b) 150° (c) 315° (d) 120°
10. (a) —20° (b) —240° (c) —270° (d) 144°

[=]FZ=[=] Radians to Degrees In Exercises 11 and 12,
: convert the radian measure to degree measure.

[=]k#

11. (a) 37” (b) %” ©) —%’ (d) —2.367

1171 1171

12. (a) 7?” (b) ——+ (c) — (d) 0.438

13. Completing a Table Let r represent the radius of a
circle, 0 the central angle (measured in radians), and s the
length of the arc subtended by the angle. Use the relationship
s = rB to complete the table.

r 8 ft 15in. | 85 cm

K 12 ft 96 in. | 8642 mi
3 2
0 1.6 1 4 3

14. Angular Speed A caris moving at the rate of 50 miles per
hour, and the diameter of its wheels is 2.5 feet.

(a) Find the number of revolutions per minute that the wheels
are rotating.

(b) Find the angular speed of the wheels in radians per minute.
E [a] Evaluating Trigonometric Functions In

Exercises 15 and 16, evaluate the six trigonometric
functions of the angle 6.

y (b) y
(.4

)
4R

X Y X

\6

(-12,-5)

16. (a) y (b) "

T T
X N

(8,-15) (1,-1)

\

Evaluating Trigonometric Functions InExercises17-20,
sketch a right triangle corresponding to the trigonometric
function of the acute angle 6. Then evaluate the other five
trigonometric functions of 6.

17. sin 6 =
19. cos 6 =

18. sin 0 =

L 1
2 3
4 _B
5 20. sec 8 = 3
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jj[m] Evaluating Trigonometric Functions In
Exercises 21-24, evaluate the sine, cosine, and
tangent of each angle. Do not use a calculator.

21. (a) 60° (b) 120° © g () %”
22. (a) —30° (b) 150° © —% () g

23. (a) 225° (b) —225° © 5?” ) “?”
24. (a) 750° (b) 510° © 107” ) ”Tﬂ

Evaluating Trigonometric Functions Using Technology
In Exercises 25-28, use a calculator to evaluate each
trigonometric function. Round your answers to four decimal
places.

25. (a) sin 10° 26. (a) sec 225°

(b) csc 10° (b) sec 135°
27. (a) tang 28. (a) cot(1.35)
(b) tanlOTﬂ (b) tan(1.35)

Determining a Quadrant In Exercises 29 and 30,
determine the quadrant in which 0 lies.
29. (a) sinf < Oandcos 6 < 0
(b) secd > Oandcotf < 0
30. (a) sinf > O0andcos 6 < 0
(b) cscf < Oandtanf > 0

Solving a Trigonometric Equation In Exercises 31-34,
find two solutions of each equation. Give your answers in
radians (0 < 6 < 27). Do not use a calculator.

V2

31. (a) cos 6 = BN 32. (a) secd =2

(b) cos O = —? (b) secf = =2
33. (a) tan 0 = 1 34. (a) sinf = ?
(b) cotf = —/3 (b) sin 6 = fé

‘@] Solving a Trigonometric Equation In
¥ Exercises 35-42, solve the equation for 6, where
0=<6=<2m

36. tan20 =3
38. 2cos?0 —cos B =1
40. sin 6 = cos 0

35. 2sin?6 =1

37. tan> 6 — tan 0 = 0
39. secfcsc§ = 2csch
41. cos? 0 + sinf = 1

42. cosg—c059=1

P.4 Review of Trigonometric Functions 39

43. Airplane Ascent An airplane leaves the runway climbing
at an angle of 18° with a speed of 275 feet per second (see
figure). Find the altitude a of the plane after 1 minute.

_o-q18e

~——— o ——1',

44. Height of a Mountain While traveling across flat land,
you notice a mountain directly in front of you. Its angle of
elevation (to the peak) is 3.5°. After you drive 13 miles closer
to the mountain, the angle of elevation is 9°. Approximate the
height of the mountain.

241 f:*)g .

Not drawn to scale

~— 13 mi—

Period and Amplitude In Exercises 45-48, determine the
period and amplitude of each function.

. 3
45. y = 2sin 2x 46. y=Ecos§
y "
3+ ;”
S Y A PN A
[l & a\3x [r 51 -2 o
| 4 2\4 4 2
3k =31
47. y = —3sin4nx 48. y = gcos%

Period In Exercises 49-52, find the period of the function.

49. y = 5tan 2x
50. y = 7 tan 27tx
51. y = sec 5x
52. y = csc4x

Flu* Writing In Exercises 53 and 54, use a graphing utility to
graph each function f in the same viewing window for ¢ = —2,
¢c=—1,¢c =1, and ¢ = 2. Give a written description of the

change in the graph caused by changing c.
53. (a) f(x) = csinx

(b) f(x) = cos(cx)

(©) f(x) = cos(mx — ¢)
54. (a) f(x) =sinx + ¢

(b) f(x) = —sinQRrx — ¢)

(c) fx) = ccosx
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E!.l" [a] Sketching the Graph of a Trigonometric 73. Think About It Sketch the graphs of
Function In Exercises 55-66, sketch the graph

of the function. f(x) =sinx, g(x) = |sinx|, and h(x) = sin(]x|).

In general, how are the graphs of |f(x)| and f(|x|) related to

55. y = sinJ 56. y = 2 cos 2x the graph of f?
57.y:_Sln@ Ss.y:2tanx :o74.Ferr|sWhee|ooo-cooo-ooo.-ooo-:
3 o The model for the height & of a Ferris wheel car is .
59. y = cse ) 60. y = tan 2x * h=51+ 50sin 8
®  where t is measured in
61. y= 2 sec 2x 62. y = CsC 27x : minutes. (The Ferris
. _ n o wheel has a radius of
63. y = sin(x + ) 64. y = cos(x 3> * 50 feet.) This model
- - : yields a height of
65. y=1+ cos(x — 5) 66. y =1+ sin(x + E) o Sl feet whent = 0.
e Alter the model so that
Graphical Reasoning In Exercises 67 and 68, find a, b, , the heightof the car .
and ¢ such that the graph of the function matches the graph . is1foot whent = 0. °

in the figure.
PP’ 75. Sales The monthly sales S (in thousands of units) of a

67. y = acos(bx — c) 68. y = asin(bx — ¢)
seasonal product are modeled by
y y
4t . § =583 + 325 cos 7
2 -+ —
% % / . | A . where ¢ is the time (in months), with # = 1 corresponding to
p 3 | T 3 ,’,\ January. Use a graphing utility to graph the model for S and
T 5T 2 4 determine the months when sales exceed 75,000 units.
47T -1 PF 76. Pattern Recognition Use a graphing utility to compare
the graph of
EXPLORING CONCEPTS ) = (Sm o+ Lain 3,”)
69. Think About It You are given the value of tan 6. 3

Is it possible to find the value of sec 8 without finding

) with the given graph. Try to improve the approximation by
the measure of 6?7 Explain.

adding a term to f(x). Use a graphing utility to verify that

70. Restricted Domain Explain how to restrict the your new approximation is better than the original. Can you
domain of the sine function so that it becomes a find other terms to add to make the approximation even better?
one-to-one function. What is the pattern? (Hint: Use sine terms.)

71. Think About It How do the ranges of the cosine Y
function and the secant function compare? 21

[ e} —

0 = =

U;ZU HOW DO YOU SEE IT? Consider an angle E_k L

in standard position with » = 12 centimeters,

as shown in the figure. Describe the changes in -2
the values of x, y, sin 6, cos 6, and tan 6 as 0
increases continually from 0° to 90°.

True or False? In Exercises 77-80, determine whether the
statement is true or false. If it is false, explain why or give an
y example that shows it is false.

*,y) 77. A measurement of 4 radians corresponds to two complete
revolutions from the initial side to the terminal side of an angle.

78. Amplitude is always positive.

79. The function y = % sin 2x has an amplitude that is twice that of
the function y = sin x.

80. The function y = 3 cos(x/3) has a period that is three times
that of the function y = cos x.

DR-Media/Shutterstock.com
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Review Exercises

Review Exercises 41

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Intercepts In Exercises 1-4, find any intercepts.

l.y=5x—-38 2. y=x*—8x+ 12
3.y=i:i 4. y=(x—-3)J/x+4

Testing for Symmetry InExercises 5-8, test for symmetry
with respect to each axis and to the origin.

5.y=x>+ 4
7.2 =x>-5

6. y=x*—x>+3
8. xy=-2
Using Intercepts and Symmetry to Sketch a Graph In

Exercises 9-14, find any intercepts and test for symmetry.
Then sketch the graph of the equation.

9.y=—x+3
11. y = 9% — &3
13. y=2/4 —x

Finding Points of Intersection In Exercises 15-18, find
the points of intersection of the graphs of the equations.

10. y=—x>+4
12. =9 — x
4. y=|x—4] -4

15. 5x + 3y = —1 16. 2x + 4y =9
x—y=-5 6x —4y =17
17. x—y=-5 18. X2+ y*=1
P—y=1 —x+y=1

Finding the Slope of a Line In Exercises 19 and 20, plot
the pair of points and find the slope of the line passing through
them.

19. (5.1). (5.3)

Finding an Equation of a Line In Exercises 21-24, find
an equation of the line that passes through the point and has
the indicated slope. Then sketch the line.

20. (—=7,8),(—1,8)

Point Slope Point Slope
21. 3,-5) m=1 22. (=8,1)  mis undefined.
23. (-3,00 m=—3 24. (5,4) m=0

Finding the Slope and y-Intercept In Exercises 25 and
26, find the slope and the y-intercept (if possible) of the line.

25.y—3x=5 26. 9 —y=x

Sketching a Line in the Plane In Exercises 27-30, sketch
the graph of the equation.

28. x = =3
30. 3x + 2y =12

27.y=6
29, y=4x—2
Finding an Equation of a Line In Exercises 31 and 32,

find an equation of the line that passes through the points.
Then sketch the line.

31. (0,0), (8,2) 32. (—5,5), (10, —1)

33. Finding Equations of Lines Find equations of the lines
passing through (— 3, 5) and having the following characteristics.

(a) Slope of %

(b) Parallel to the line 5x — 3y = 3

(c) Perpendicular to the line 3x + 4y = 8
(d) Parallel to the y-axis

34. Finding Equations of Lines Find equations of the lines
passing through (2, 4) and having the following characteristics.

(a) Slope of —%

(b) Perpendicular to the line x + y = 0
(c) Parallel to the line3x —y =0

(d) Parallel to the x-axis

35. Rate of Change The purchase price of a new machine is
$12,500, and its value will decrease by $850 per year. Use this
information to write a linear equation that gives the value V of
the machine ¢ years after it is purchased. Find its value at the
end of 3 years.

36. Break-Even Analysis A contractor purchases a piece
of equipment for $36,500 that costs an average of $9.25 per
hour for fuel and maintenance. The equipment operator is paid
$13.50 per hour, and customers are charged $30 per hour.

(a) Write a linear equation for the cost C of operating this
equipment for ¢ hours.

(b) Write a linear equation for the revenue R derived from ¢
hours of use.

(c) Find the break-even point for this equipment by finding
the time at which R = C.

Evaluating a Function In Exercises 37-40, evaluate the
function at the given value(s) of the independent variable.
Simplify the results.

37. f(x) =5x+ 4 38. f(x) =x— 2x

(@) f(0) (@) f(=3)
(b) f(5) (b) f(2)
() f(=3) (©) f(=1)
d flt+1) (d fle—1)
39. f(x) = 4x? 40. f(x) =2x—6
fle+ Ax) = f(x) f&) = (1)
Ax x—1

Finding the Domain and Range of a Function In
Exercises 41-44, find the domain and range of the function.
41. f(x) =x*+3
2. g(x) = J6 —x
43. f(x) = —|x + 1]

2

44, h(x) = Y
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Sketching a Graph of a Function In Exercises 45 and
46, sketch a graph of the function and find its domain and
range. Use a graphing utility to verify your graph.

46. g(x) = J/x+ 1

4
2x — 1

45. f(x) =

Using the Vertical Line Test In Exercises 47 and 48, use
the Vertical Line Test to determine whether y is a function of x.
To print an enlarged copy of the graph, go to MathGraphs.com.

47. x +y? =2

48. x> —y =0
y

Deciding Whether an Equation is a Function In
Exercises 49 and 50, determine whether y is a function of x.

49. xy + x> =2y =0 50. x =9 —y?

F"p 51. Transformations of Functions Use a graphing utility

to graph f(x) = x> — 3x2. Use the graph to write a formula for
the function g shown in the figure.

(a) 6 (b) 2
@, 9) [ (2, 1) /
g -1 \/ 6
8
, 1)
[ ) .-3)
-1 -4

52. Think About It What is the minimum degree of the
polynomial function whose graph approximates the given
graph? What sign must the leading coefficient have?

(b) Y

(@

Finding Composite Functions In Exercises 53 and 54,
find the composite functions f - g and g  f. Find the domain of
each composite function. Are the two composite functions equal?

54. f(x) = J/x—2

glx) =

53. f(x) =3x+ 1
gx) = —x

Even and Odd Functions and Zeros of Functions 1In
Exercises 55 and 56, determine whether the function is even,
odd, or neither. Then find the zeros of the function. Use a
graphing utility to verify your result.

56. f(x) = J/x¥*+1

Degrees to Radians In Exercises 57-60, convert the
degree measure to radian measure as a multiple of 7 and as a
decimal accurate to three decimal places.

55. f(x) = x* — x?

57. 340°
59. —480°

58. 300°
60. —900°

Radians to Degrees In Exercises 61-64, convert the
radian measure to degree measure.

T 117
61. 6 62. 1
27 137
63. — 3 64. — 3

Evaluating Trigonometric Functions In Exercises
65-70, evaluate the sine, cosine, and tangent of the angle. Do
not use a calculator.

65. —45° 66. 240°

137 4
67. 6 68. 3
69. 405° 70. 180°

Evaluating Trigonometric Functions Using Technology
InExercises 71-76, use a calculator to evaluate the trigonometric
function. Round your answers to four decimal places.

71. tan 33° 72. cot 401°
127 2
73. sec 5 74. csc 9

. T 3
75. sm( 9) 76. cos( - )

Solving a Trigonometric Equation In Exercises 77-82,
solve the equation for 6, where 0 < 0 < 27.

77. 2cos@ +1=0

78. 2cos? 0 =1

79. 2sin?0 + 3sinf +1 =0
80. cos®* 0 = cos 6

81. sec’f —sec —2=0
82. 2sec’f +tan’6 —5=0

Sketching the Graph of a Trigonometric Function In

Exercises 83-90, sketch the graph of the function.
83. y =9cosx 84. y = sinnx

2
85.y=3sin?x 86.y=8cos%

1 X
87. y= 3tanx 88. y—cot2

89. y = —sec 2nx 90. y = —4 csc3x
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see CalcChat.com for tutorial help and
worked-out solutions to odd-numbered exercises.

P.S. Problem Solving

1. Finding Tangent Lines Consider the circle
X*+y?—6x—8y =0
as shown in the figure.
(a) Find the center and radius of the circle.

(b) Find an equation of the tangent line to the circle at the point
(0,0).

(c) Find an equation of the tangent line to the circle at the point
(6,0).

(d) Where do the two tangent lines intersect?

-2+

Figure for 1

Figure for 2

2. Finding Tangent Lines There are two tangent lines from
the point (0, 1) to the circle x> + (y + 1)? = 1 (see figure).
Find equations of these two lines by using the fact that each
tangent line intersects the circle at exactly one point.

3. Heaviside Function The Heaviside function H(x) is widely
used in engineering applications.

I, x=0

HG) :{0, x<0

Sketch the graph of the Heaviside function and the graphs of the
following functions by hand.

(@) Hix) =2
(d) H(—x)

(b) H(x — 2)
(e) 3H(x)

() —H(x)
) —H(x —2) +2

D
OLIVER HEAVISIDE (1850-1925)

Heaviside was a British mathematician and physicist who contributed
to the field of applied mathematics, especially applications of
mathematics to electrical engineering. The Heaviside function is a
classic type of “on-off” function that has applications to electricity
and computer science.

Science and Society/SuperStock

4. Sketching Transformations Consider the graph of the
function f shown below. Use this graph to sketch the graphs of
the following functions. To print an enlarged copy of the graph,
go to MathGraphs.com.

@ fx+1)  ® fG&)+1 y
© 2/(x) (d) f(—x) T
(e) —f(x) ) [f()]

@ ()

5. Maximum Area A rancher plans to fence a rectangular
pasture adjacent to a river. The rancher has 100 meters of
fencing, and no fencing is needed along the river (see figure).

(a) Write the area A of the pasture as a function of x, the length
of the side parallel to the river. What is the domain of A?

(b) Graph the area function and estimate the dimensions that
yield the maximum amount of area for the pasture.

(c) Find the dimensions that yield the maximum amount of area
for the pasture by completing the square.

Figure for 5

Figure for 6

6. Mlaximum Area A rancher has 300 feet of fencing to
enclose two adjacent pastures (see figure).

(a) Write the total area A of the two pastures as a function of x.
What is the domain of A?

(b) Graph the area function and estimate the dimensions that
yield the maximum amount of area for the pastures.

(c) Find the dimensions that yield the maximum amount of area
for the pastures by completing the square.

7. Writing a Function You are in a boat 2 miles from the

nearest point on the coast. You will travel to a point Q located
3 miles down the coast and 1 mile inland (see figure). You can
row at 2 miles per hour and walk at 4 miles per hour. Write the
total time T of the trip as a function of x.

2 mi. b
iy
l :__f__\\‘_?___x_
——————
~ 1
b i &
. - 00
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8.

10.

11.

Chapter P Preparation for Calculus

Average Speed You drive to the beach at a rate of
120 kilometers per hour. On the return trip, you drive at a rate
of 60 kilometers per hour. What is your average speed for the
entire trip? Explain your reasoning.

. Slope of a Tangent Line One of the fundamental

themes of calculus is to find the slope of the tangent line to
a curve at a point. To see how this can be done, consider the
point (2, 4) on the graph of f(x) = x> (see figure).

y
10 +
8,,
6,,
M PR
—t— —t— X
-6 -4-2 | 2 4 6

(a) Find the slope of the line joining (2, 4) and (3, 9). Is the
slope of the tangent line at (2, 4) greater than or less than
this number?

(b) Find the slope of the line joining (2, 4) and (1, 1). Is the
slope of the tangent line at (2, 4) greater than or less than
this number?

(c) Find the slope of the line joining (2, 4) and (2.1, 4.41). Is
the slope of the tangent line at (2, 4) greater than or less
than this number?

(d) Findtheslopeofthelinejoining (2, 4)and (2 + h, f(2 + h))
in terms of the nonzero number A. Verify that h = 1, — 1,
and 0.1 yield the solutions to parts (a)—(c) above.

(e) What is the slope of the tangent line at (2, 4)? Explain how
you arrived at your answer.

Slope of a Tangent Line Sketch the graph of the

function f(x) = /x and label the point (4, 2) on the graph.

(a) Find the slope of the line joining (4, 2) and (9, 3). Is the
slope of the tangent line at (4, 2) greater than or less than
this number?

(b) Find the slope of the line joining (4, 2) and (1, 1). Is the
slope of the tangent line at (4, 2) greater than or less than
this number?

(c) Find the slope of the line joining (4, 2) and (4.41, 2.1). Is
the slope of the tangent line at (4, 2) greater than or less
than this number?

(d) Findtheslopeofthelinejoining (4, 2)and (4 + h, f(4 + h))
in terms of the nonzero number A.

(e) What is the slope of the tangent line at (4, 2)? Explain how
you arrived at your answer.

Composite Functions Let f(x) = llfx

(a) What are the domain and range of f?

(b) Find the composition f( f(x)). What is the domain of this
function?

(c) Find f(f(f(x))). What is the domain of this function?
(d) Graph f(f(f(x))).Is the graph a line? Why or why not?

12.

13.

14.

15.

Graphing an Equation Explain how you would graph
the equation

y+ Iyl =x+ .
Then sketch the graph.

Sound Intensity A large room contains two speakers
that are 3 meters apart. The sound intensity / of one speaker
is twice that of the other, as shown in the figure. (To print
an enlarged copy of the graph, go to MathGraphs.com.)
Suppose the listener is free to move about the room to find
those positions that receive equal amounts of sound from both
speakers. Such a location satisfies two conditions: (1) the sound
intensity at the listener’s position is directly proportional to the
sound level of a source, and (2) the sound intensity is inversely
proportional to the square of the distance from the source.

(a) Find the points on the x-axis that receive equal amounts of
sound from both speakers.

(b) Find and graph the equation of all locations (x, y) where
one could stand and receive equal amounts of sound from
both speakers.

y y
3 4T
3,,
2,,
N N
I,’ S 2+ /// N
1,, N N
’ N A4 N
// N ] // \\
I N2T I N Uk
——f——9%—x e x
1 2 3 1 2 3 4

Figure for 13 Figure for 14

Sound Intensity Suppose the speakers in Exercise 13 are
4 meters apart and the sound intensity of one speaker is k times
that of the other, as shown in the figure. To print an enlarged
copy of the graph, go to MathGraphs.com.

(a) Find the equation of all locations (x, y) where one could
stand and receive equal amounts of sound from both
speakers.

(b) Graph the equation for the case k = 3.

(c) Describe the set of locations of equal sound as k becomes

very large.
Lemniscate Let d, and d, be the distances from the point
(x, y) to the points (—1, 0) and (1, 0), respectively, as shown
in the figure. Show that the equation of the graph of all points
(x, y) satisfying d\d, = 1 is
(2 + 2 = 202 = 1),
This curve is called a lemniscate. Graph the lemniscate and
identify three points on the graph.

y
(x, y)

[.R

d, |- v d,

— % x
-1 1
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Chapter 1

1.1 A Preview of Calculus

As you progress
through this course, remember
that learning calculus is just
one of your goals. Your most
important goal is to learn how to
use calculus to model and solve
real-life problems. Here are a
few problem-solving strategies
that may help you.

* Be sure you understand the
question. What is given? What
are you asked to find?

* QOutline a plan. There are
many approaches you could
use: look for a pattern, solve
a simpler problem, work
backwards, draw a diagram,
use technology, or any of
many other approaches.

* Complete your plan. Be
sure to answer the question.
Verbalize your answer. For
example, rather than writing
the answer as x = 4.6, it
would be better to write the
answer as, “The area of the
region is 4.6 square meters.”

* Look back at your work.
Does your answer make
sense? Is there a way you can
check the reasonableness of
your answer?

Limits and Their Properties

8 Understand what calculus is and how it compares with precalculus.
@ Understand that the tangent line problem is basic to calculus.
B Understand that the area problem is also basic to calculus.

What Is Calculus?

Calculus is the mathematics of change. For instance, calculus is the mathematics of
velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids,
curvatures, and a variety of other concepts that have enabled scientists, engineers, and
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations,
tangent lines, slopes, and so on, there is a fundamental difference between precalculus
mathematics and calculus. Precalculus mathematics is more static, whereas calculus is
more dynamic. Here are some examples.

* An object traveling at a constant velocity can be analyzed with precalculus
mathematics. To analyze the velocity of an accelerating object, you need calculus.

* The slope of a line can be analyzed with precalculus mathematics. To analyze the
slope of a curve, you need calculus.

* The curvature of a circle is constant and can be analyzed with precalculus mathematics.
To analyze the variable curvature of a general curve, you need calculus.

* The area of a rectangle can be analyzed with precalculus mathematics. To analyze the
area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of
precalculus mathematics through the use of a limit process. So, one way to answer the
question “What is calculus?” is to say that calculus is a “limit machine” that involves
three stages. The first stage is precalculus mathematics, such as the slope of a line or
the area of a rectangle. The second stage is the limit process, and the third stage is a
new calculus formulation, such as a derivative or integral.

Limit
process

Precalculus
mathematics

/>

Calculus

Some students try to learn calculus as if it were simply a collection of new
formulas. This is unfortunate. If you reduce calculus to the memorization of
differentiation and integration formulas, you will miss a great deal of understanding,
self-confidence, and satisfaction.

On the next two pages are listed some familiar precalculus concepts coupled with
their calculus counterparts. Throughout the text, your goal should be to learn how
precalculus formulas and techniques are used as building blocks to produce the more
general calculus formulas and techniques. Do not worry if you are unfamiliar with some
of the “old formulas” listed on the next two pages—you will be reviewing all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to
keep track of where you are relative to the three stages involved in the study of calculus.
For instance, note how these chapters relate to the three stages.

Chapter P: Preparation for Calculus Precalculus

Chapter 1: Limits and Their Properties Limit process

Chapter 2: Differentiation Calculus

This cycle is repeated many times on a smaller scale throughout the text.



1.1 A Preview of Calculus

Without Calculus

With Differential Calculus

Value of f(x)
when x = ¢

y

Limit of f(x) as
X approaches ¢

Slope of a line

Slope of a curve

Secant line to
a curve

Tangent line to
a curve

Average rate of

change between

t=aandt=0>b

Instantaneous

rate of change =~ ------ - g ______

atr = c¢

Curvature Curvature
of a circle of a curve
y
Height of a Maximum height
curve when of a curve on ;
xX=c an interval ‘

Tangent plane
to a sphere

Tangent plane v

to a surface

Direction of
motion along
a line

Direction of
motion along
a curve
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Without Calculus

With Integral Calculus

Area of
a rectangle

Area under
a curve

Work done by a
constant force

Work done by a
variable force

Center of a Tl o . Centroid of

rectangle et e a region o
Length of a Length of
line segment an arc

Surface area
of a cylinder

Surface area of a
solid of revolution

Mass of a solid

Mass of a solid

of constant )
. of variable
density .
density
Volume of a Vol.ume 0; a
rectangular region under <
i a surface
solid
Sum of a Sum of an
finite number a, +a, +- +a,=S infinite number ata,+ta,+--- =8
of terms of terms
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Tangent line

X

The tangent line to the graph of f at P
Figure 1.1

GRACE CHISHOLM YOUNG
(1868-1944)

Grace Chisholm Young
received her degree in
mathematics from Girton

College in Cambridge, England.

Her early work was published
under the name of William
Young, her husband. Between
1914 and 1916, Grace Young
published work on the
foundations of calculus that
won her the Gamble Prize
from Girton College.
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The Tangent Line Problem

The notion of a limit is fundamental to the study of calculus. The following brief
descriptions of two classic problems in calculus—the tangent line problem and the area
problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function f and a point P on its graph
and are asked to find an equation of the tangent line to the graph at point P, as shown
in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the
tangent line at a point P is equivalent to finding the slope of the tangent line at P. You
can approximate this slope by using a line through the point of tangency and a second
point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If
P(c, f(c)) is the point of tangency and

O(c + Ax, f(c + Ax))

is a second point on the graph of f, then the slope of the secant line through these two
points can be found using precalculus and is

_ fle+ A0 = £(0) _ fle + A% = f(0)

m
see c+ Ax — ¢ Ax

Q(c+ Ax, f(c+ Ax))

Secant
lines

P(c, f(0)

fle +Ax) - f(c)

\

Tangent line

X X

(a) The secant line through (c, f(c)) and
(c + Ax, f(c + Ax))

Figure 1.2

(b) As Q approaches P, the secant lines
approach the tangent line.

As point Q approaches point P, the slopes of the secant lines approach the slope of
the tangent line, as shown in Figure 1.2(b). When such a “limiting position” exists, the
slope of the tangent line is said to be the limit of the slopes of the secant lines. (Much
more will be said about this important calculus concept in Chapter 2.)

Exploration
The following points lie on the graph of f(x) = x2.

0,(1.5,£(1.5)), 0,(1.1,£(1.1)), 05(1.01,£(1.01)),
0,(1.001, £(1.001)), Q4(1.0001, £(1.0001))

Each successive point gets closer to the point P(1, 1). Find the slopes of the
secant lines through Q, and P, O, and P, and so on. Graph these secant lines
on a graphing utility. Then use your results to estimate the slope of the tangent
line to the graph of f at the point P.

The Mistress and Fellows, Girton College, Cambridge
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[

Area under a curve
Figure 1.3

HISTORICAL NOTE

In one of the most astounding
events ever to occur in
mathematics, it was discovered
that the tangent line problem
and the area problem are
closely related. This discovery
led to the birth of calculus.
You will learn about the
relationship between these
two problems when you study
the Fundamental Theorem of
Calculus in Chapter 4.

Limits and Their Properties

The Area Problem

In the tangent line problem, you saw how the limit process can be applied to the slope
of a line to find the slope of a general curve. A second classic problem in calculus
is finding the area of a plane region that is bounded by the graphs of functions. This
problem can also be solved with a limit process. In this case, the limit process is applied
to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function
y = f(x), the x-axis, and the vertical lines x = a and x = b, as shown in Figure 1.3.
You can approximate the area of the region with several rectangular regions, as shown
in Figure 1.4. As you increase the number of rectangles, the approximation tends
to become better and better because the amount of area missed by the rectangles
decreases. Your goal is to determine the limit of the sum of the areas of the rectangles
as the number of rectangles increases without bound.

[ 1« bxla b

Approximation using four rectangles Approximation using eight rectangles

\ |

Figure 1.4
Exploration
Consider the region bounded by the graphs of
f&) =22, y=0, and x=1

as shown in part (a) of the figure. The area of the region can be approximated
by two sets of rectangles—one set inscribed within the region and the other
set circumscribed over the region, as shown in parts (b) and (c). Find the sum
of the areas of each set of rectangles. Then use your results to approximate the
area of the region.

(a) Bounded region

(b) Inscribed rectangles (¢) Circumscribed rectangles
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Precalculus and Calculus Describe the relationship
between precalculus and calculus. List three precalculus
concepts and their corresponding calculus counterparts.

2. Secant and Tangent Lines Discuss the
relationship between secant lines through a fixed point
and a corresponding tangent line at that fixed point.

[=] Precalculus or Calculus 1In Exercises 3-6,
decide whether the problem can be solved using
precalculus or whether calculus is required. If the
problem can be solved using precalculus, solve it.
If the problem seems to require calculus, explain
your reasoning and use a graphical or numerical
approach to estimate the solution.

o

w

. Find the distance traveled in 15 seconds by an object traveling
at a constant velocity of 20 feet per second.

4. Find the distance traveled in 15 seconds by an object moving
with a velocity of v(f) = 20 + 7 cos ¢ feet per second.

S,Rateofchangeoo-cooo-coo.-ooo--

A bicyclist is riding on a path modeled by the function
f(x) = 0.04(8x — x2), where x and f(x) are measured in
miles (see figure). Find the rate of change of elevation
atx = 2.

6. A bicyclist is riding on a Y
path modeled by the function 3
f(x) = 0.08x, where x and f(x)
are measured in miles (see
figure). Find the rate of change —

. T T T T T
of elevation at x = 2. 1 2 3 4 5 6

7. Secant Lines Consider the function f(x) = /x and the
point P(4, 2) on the graph of f.

(a) Graph f and the secant lines passing through P (4, 2) and
QO (x, f(x)) for x-values of 1, 3, and 5.
(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the
tangent line to the graph of f at P(4, 2). Describe how to
improve your approximation of the slope.

Egs
The symbol _‘(é& and a red exercise number indicates that a video solution can be
seen at CalcView.com.

Raphael Christinat/Shutterstock.com

8. Secant Lines Consider the function f(x) = 6x — x*> and
the point P(2, 8) on the graph of f.

(a) Graph f and the secant lines passing through P(2, 8) and
O(x, f(x)) for x-values of 3, 2.5, and 1.5.

(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the
tangent line to the graph of f at P(2, 8). Describe how to
improve your approximation of the slope.

9. Approximating Area Use the rectangles in each graph to
approximate the area of the region bounded by y = 5/x,y = 0,
x =1,and x = 5. Describe how you could continue this process
to obtain a more accurate approximation of the area.

y y

5+ 5+

4+ 4+

3+ 3+

2+ 2+

1+ 1+
T T T T t X T T T T t X
1 2 3 45 1 2 3 45

% HOW DO YOU SEE IT? How would you

describe the instantaneous rate of change of an
automobile’s position on a highway?

W s e g

EXPLORING CONCEPTS
11. Length of a Curve Consider the length of the graph
of f(x) = 5/x from (1, 5) to (5, 1).

y y
(1,5
5+ 5+
4+ 4+
3+ 3+
2+ 2+
1+ -+
—————>x ————x
1 2 3 45 1 2 3 45

(a) Approximate the length of the curve by finding the
distance between its two endpoints, as shown in the
first figure.

(b) Approximate the length of the curve by finding the
sum of the lengths of four line segments, as shown
in the second figure.

(c) Describe how you could continue this process to
obtain a more accurate approximation of the length
of the curve.
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1.2 Finding Limits Graphically and Numerically

/

lim f(x) =3
x—1 * / (173)

y

The limit of f(x) as x approaches 1 is 3.
Figure 1.5

@ Estimate a limit using a numerical or graphical approach.
@ Learn different ways that a limit can fail to exist.
@ Study and use a formal definition of limit.

An Introduction to Limits

To sketch the graph of the function

X -1

x—1

flx) =

for values other than x = 1, you can use standard curve-sketching techniques. At
x = 1, however, it is not clear what to expect. To get an idea of the behavior of the
graph of f near x = 1, you can use two sets of x-values—one set that approaches 1
from the left and one set that approaches 1 from the right, as shown in the table.

x approaches 1 from the left. > < x approaches 1 from the right.

X 0.75 0.9 099 | 0999 | 1 | 1.001 | 1.01 1.1 1.25
f(x) | 2.313 | 2710 | 2.970 | 2997 | ? | 3.003 | 3.030 | 3.310 | 3.813

f(x) approaches 3. > < f(x) approaches 3.

The graph of f is a parabola that has a hole at the point (1, 3), as shown in
Figure 1.5. Although x cannot equal 1, you can move arbitrarily close to 1, and as a
result f(x) moves arbitrarily close to 3. Using limit notation, you can write

lirr]1 flx) = 3. This is read as “the limit of f(x) as x approaches 1 is 3.”
X—>

This discussion leads to an informal definition of limit. If f(x) becomes arbitrarily
close to a single number L as x approaches c from either side, then the limit of f(x) as
x approaches c is L. This limit is written as

lim f(x) = L.

X—>C

Exploration

The discussion above gives an example of how you can estimate a limit
numerically by constructing a table and graphically by drawing a graph.
Estimate the following limit numerically by completing the table.

. x> —=3x+2
Iim ———
x—2 x—2

X 175 1 1.9 | 1.99 | 1.999 | 2 | 2.001 | 2.01 | 2.1 | 2.25

fx) | 2 ? ? ? ? ? ? ? ?

Then use a graphing utility to estimate the limit graphically.
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fis undefined
atx=0. \

The limit of f(x) as x approaches 0 is 2.

Figure 1.6

The limit of f(x) as x approaches 2 is 1.

Figure 1.7

1.2 Finding Limits Graphically and Numerically 53

EXAMPLE 1 Estimating a Limit Numerically

Evaluate the function f(x) = x/ (\/x +1- l) at several x-values near 0 and use the
results to estimate the limit

X
11

Solution The table lists the values of f(x) for several x-values near 0.

x approaches 0 from the left. > < x approaches 0 from the right.

X —0.01 —0.001 | —0.0001 0.0001 0.001 0.01
f(x) | 1.99499 | 1.99950 | 1.99995 | ? | 2.00005 | 2.00050 | 2.00499

£(x) approaches 2. > < f(x) approaches 2.

From the results shown in the table, you can estimate the limit to be 2. This limit is
reinforced by the graph of f shown in Figure 1.6. e |

In Example 1, note that the function is undefined at x = 0, and yet f(x) appears
to be approaching a limit as x approaches 0. This often happens, and it is important
to realize that the existence or nonexistence of f(x) at x = ¢ has no bearing on the
existence of the limit of f(x) as x approaches c.

EXAMPLE 2 Finding a Limit

Find the limit of f(x) as x approaches 2, where
1, x#2
f) = {0, x=2

Solution Because f(x) = 1 for all x other than x = 2, you can estimate that the limit
is 1, as shown in Figure 1.7. So, you can write

lim f(x) = 1.

The fact that f(2) = 0 has no bearing on the existence or value of the limit as x
approaches 2. For instance, as x approaches 2, the function

(x) = {1, xF2
EY 7 2, x=2
has the same limit as f. " |

So far in this section, you have been estimating limits numerically and graphically.
Each of these approaches produces an estimate of the limit. In Section 1.3, you will
study analytic techniques for evaluating limits. Throughout the course, try to develop a
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.
2. Graphical approach Draw a graph by hand or using technology.
3. Analytic approach Use algebra or calculus.



54 Chapter 1

Limits and Their Properties

x

f=1
| () |
-1 5 | 1
=1
lin}) f(x) does not exist.
Figure 1.8
y
4 —_
3 —_
2 —_
l —
2 12

lim f(x) does not exist.
x—0

Figure 1.9

Limits That Fail to Exist

In the next three examples, you will examine some limits that fail to exist.

Different Right and Left Behavior

x|
Show that the limit lim ~—_ does not exist.
x>0 X

Solution Consider the graph of the function

||
X)) = —.
f =<
In Figure 1.8 and from the definition of absolute value,
x, x=0
|x| = Definition of absolute value
—-x, x<0

you can see that

M:{ I, x>0

X -1, x<0O

So, no matter how close x gets to 0, there will be both positive and negative x-values
that yield f(x) = 1 or f(x) = —1. Specifically, if § (the lowercase Greek letter delta)
is a positive number, then for x-values satisfying the inequality 0 < |x| < 8, you can
classify the values of |x|/x as —1 or 1 on the intervals

(—=46,0) or (0, 9).
Negative x-values Positive x-values
yield |x|/x = — 1. yield |x|/x = 1.

Because |x|/x approaches a different number from the right side of 0 than it approaches
from the left side, the limit lirr(l) (|x|/x) does not exist.
xX—>

Unbounded Behavior

. . T |
Discuss the existence of the limit lim T
x—0 X

Solution Consider the graph of the function
1
f(X) - xz-

In Figure 1.9, you can see that as x approaches 0 from either the right or the left, f(x)
increases without bound. This means that by choosing x close enough to 0, you can
force f(x) to be as large as you want. For instance, f(x) will be greater than 100 when
you choose x within 11*0 of 0. That is,

1 1
0< < — = — > 100.
M<fo = fW=2

Similarly, you can force f(x) to be greater than 1,000,000, as shown.

1 1
0< < — = — > 1,000,000
bl < oo = AW =5 > L

Because f(x) does not become arbitrarily close to a single number L as x approaches 0,
you can conclude that the limit does not exist. |
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SRR Oscillating Behavior

ceen > See LarsonCalculus.com for an interactive version of this type of example.

. . T |
Discuss the existence of the limit hrr(l) sin —.
X—>

X
Y Solution Let f(x) = sin(1/x). In Figure 1.10, you can see that as x approaches 0,
f(x) oscillates between —1 and 1. So, the limit does not exist because no matter how
m small you choose &, it is possible to choose x; and x, within & units of O such that
1 sin(1/x;) = 1 and sin(1/x,) = —1, as shown in the table.
202121222
= } . . 3 | 57| 7 | 9% | lix x>0
1
sin T 1 —1 1 —1 1 —1 | Limit does not exist.
-1
[
liII(l) f(x) does not exist.
Figure 1.10 Common Types of Behavior Associated with Nonexistence
of a Limit

1. f(x) approaches a different number from the right side of ¢ than it
approaches from the left side.

2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two fixed values as x approaches c.

In addition to f(x) = sin(1/x), there are many other interesting functions that have
unusual limit behavior. An often cited one is the Dirichlet function

7w =1

Because this function has no limit at any real number c, it is not continuous at any real
number c. You will study continuity more closely in Section 1.4.

0, if x is rational
1, if x is irrational

When you use a graphing utility to investigate
the behavior of a function near the x-value at which you are trying to evaluate a
limit, remember that you cannot always trust the graphs that graphing utilities draw.
When you use a graphing utility to graph the function in Example 5 over an interval
containing 0, you will most likely obtain an incorrect graph such as that shown in
Figure 1.11. The reason that a graphing utility cannot show the correct graph is that
the graph has infinitely many oscillations over any interval that contains 0.

|
PETER GUSTAV DIRICHLET
(1805-1859)

In the early development

of calculus, the definition of
a function was much more
restricted than it is today,
and “functions” such as the
Dirichlet function would not
have been considered. The
modern definition of function
is attributed to the German
mathematician Peter Gustav
Dirichlet.

See LarsonCalculus.com to read
more of this biography.

12

-0.25 0.25

-12

Incorrect graph of f(x) = sin(1/x)
Figure 1.11

Interfoto/Alamy Stock Photo
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# FOR FURTHER INFORMATION
For more on the introduction of
rigor to calculus, see “Who Gave
You the Epsilon? Cauchy and the
Origins of Rigorous Calculus”

by Judith V. Grabiner in The
American Mathematical Monthly.
To view this article, go to
MathArticles.com.

The &-0 definition of the limit of f(x)
as x approaches ¢
Figure 1.12

Limits and Their Properties

A Formal Definition of Limit

Consider again the informal definition of limit. If f(x) becomes arbitrarily close to a
single number L as x approaches ¢ from either side, then the limit of f(x) as x approaches ¢
is L, written as

lim f(x) = L.

At first glance, this definition looks fairly technical. Even so, it is informal because
exact meanings have not yet been given to the two phrases

“f(x) becomes arbitrarily close to L”
and
“x approaches c.”

The first person to assign mathematically rigorous meanings to these two phrases was
Augustin-Louis Cauchy. His &-8 definition of limit is the standard used today.

In Figure 1.12, let & (the lowercase Greek letter epsilon) represent a (small)
positive number. Then the phrase “f(x) becomes arbitrarily close to L” means that f(x)
lies in the interval (L — &, L + &). Using absolute value, you can write this as

lfx) — L| < e

Similarly, the phrase “x approaches ¢” means that there exists a positive number & such
that x lies in either the interval (¢ — 8, ¢) or the interval (¢, ¢ + 6). This fact can be
concisely expressed by the double inequality
0<|x—r¢c| <6
The first inequality
0< |x - C| The distance between x and c is more than 0.
expresses the fact that x # c¢. The second inequality
x is within § units of c.

|x —¢c| <8

says that x is within a distance § of c.

Definition of Limit

Let f be a function defined on an open interval containing ¢ (except possibly
at ¢), and let L be a real number. The statement

lim /(x) = L

means that for each ¢ > 0 there exists a § > 0 such that if
O0<|x—c|<d

then
|fx) = L| <&

Throughout this text, the expression
lim f(x) = L
xX—cC
implies two statements—the limit exists and the limit is L.
Some functions do not have limits as x approaches c, but those that do cannot have

two different limits as x approaches c. That is, if the limit of a function exists, then the
limit is unique (see Exercise 81).



In Example 6,
note that 0.005 is the largest
value of & that will guarantee

|(2x —-5) — l| < 0.01
whenever
0<|x—=3]<é.

Any smaller positive value
of & would also work.

1.2 Finding Limits Graphically and Numerically 57

The next three examples should help you develop a better understanding of the
&-9 definition of limit.

Finding a 4 for a Given ¢

Given the limit
lﬂ 2x—=5)=1
find § such that
|(2x —5) — 1| < 0.01
whenever
0<|x—3<6é

Solution In this problem, you are working with a given value of e—namely,
e = 0.01. To find an appropriate J, try to establish a connection between the absolute
values

|[2x —5) = 1| and |x— 3|
Notice that
|2x —5) — 1| = |2x — 6] = 2|x — 3|.

Because the inequality |(2x — 5) — 1| < 0.01 is equivalent to 2|x — 3| < 0.01,
you can choose

8 = 1(0.01) = 0.005.
This choice works because
0 < |x — 3] < 0.005
implies that
|2x —5) — 1| = 2|x — 3] < 2(0.005) = 0.01.

As you can see in Figure 1.13, for x-values within 0.005 of 3 (x # 3), the values of
f(x) are within 0.01 of 1.

-2 +

The limit of f(x) as x approaches 3 is 1.
Figure 1.13 |
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44+ef--
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Figure 1.14
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The limit of f(x) as x approaches 2 is 4.

Figure 1.15

f T T T X
/ 1 2 3 4

The limit of f(x) as x approaches 2 is 4.

In Example 6, you found a §-value for a given e. This does not prove the existence
of the limit. To do that, you must prove that you can find a & for any &, as shown in
the next example.

EXAMPLE 7 Using the &-§ Definition of Limit

Use the &-§ definition of limit to prove that
)1}_}11% (B3x —2) = 4.

Solution You must show that for each € > 0, there exists a § > 0 such that
[Bx —2) —4| <e

whenever
0<|x—2] <4

Because your choice of § depends on g, you need to establish a connection between the
absolute values |(3x — 2) — 4| and |x — 2|.

IGx —2) — 4] = [3x — 6] = 3]x — 2|

So, for a given € > 0, you can choose 8 = &/3. This choice works because
€
O<|x—2|<d=<
—2l<o=1
implies that

|Gx —2) — 4] =3|x — 2| < 3@) — e

As you can see in Figure 1.14, for x-values within § of 2 (x # 2), the values of f(x) are
within & of 4.

Using the ¢-6 Definition of Limit

Use the &-§ definition of limit to prove that lirr% X2 =4,
x—

Solution You must show that for each € > 0, there exists a § > 0 such that

|x2 — 4] <&
whenever

0<|x—2] <ad.
To find an appropriate J, begin by writing |x> — 4| = |x — 2||x + 2|. You are
interested in values of x close to 2, so choose x in the interval (1, 3). To satisfy this
restriction, let § < 1. Furthermore, for all x in the interval (1, 3), x + 2 < 5 and thus

|x + 2| < 5. So, letting § be the minimum of &/5 and 1, it follows that, whenever
0 < |x — 2| < &, you have

2 — 4| =[x — 2]x + 2| < (g)(s) = e

As you can see in Figure 1.15, for x-values within & of 2 (x # 2), the values of f(x) are
within & of 4. i |

Throughout this chapter, you will use the -8 definition of limit primarily to prove
theorems about limits and to establish the existence or nonexistence of particular types
of limits. For finding limits, you will learn techniques that are easier to use than the e-8
definition of limit.
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Describing Notation Write a brief description of
the meaning of the notation liné f(x) = 25.

2. Limits That Fail to Exist Identify three types of
behavior associated with the nonexistence of a limit.
[lustrate each type with a graph of a function.

3. Formal Definition of Limit Given the limit
lin% 2x+1)=5
use a sketch to show the meaning of the phrase
“0 < |x — 2| < 0.25 implies |(2x + 1) — 5] < 0.5.”

4. Functions and Limits Is the limit of f(x) as x
approaches ¢ always equal to f(c)? Why or why not?

[E5X¥[E] Estimating a Limit Numerically In Exercises
e "¢ 5-10, complete the table and use the result to

4 estimate the limit. Use a graphing utility to graph
the function to confirm your result.

x—4

e st

X 39 | 399 | 3999 | 4 | 4001 | 4.01 | 4.1

) ?
.. ox—3
6. ;lcl—rgxz -9

X 29 1299 | 2999 | 3 | 3.001 | 3.01 | 3.1

) ?
.o WJxt+H 1 =1
7. im ———
x—0 X
X —0.1 | —0.01 | —0.001 | 0 | 0.001 | 0.01 | O.1

f&) ?

o, i [1/G+ D] = (1/4)

x—3 x—3

X 29 1299 | 2999 | 3 | 3.001 | 3.01 | 3.1

fx) ?
9. lim 22X
x—0 X
x | —01]-001|-0001|0|0001]|001] 0.1

f) ?

10, Tim X !
x—0 X
x | —01]-001|-0001|0]0001]|001] 0.1
fx) ?

Estimating a Limit Numerically In Exercises 11-18,
create a table of values for the function and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

: x—2 . x+4

11. )151—1;1} x2 +x—6 12. xl_l)l'£14 x2 + 9x + 20
4 _ 3 +

13. lim S 1 14. lim =27

a1 x0 — 1 —-3 x+3

x—>—6 x+6 2 x—2
17. lim S22 18. lim 22X

=0 X x—0 tan 2x

Limits That Fail to Exist In Exercises 19 and 20, create
a table of values for the function and use the result to explain
why the limit does not exist.

19. lim % 20. lim M

x—0 X~ =0 X2

[f] Finding a Limit Graphically In Exercises
"¢ 21-28, use the graph to find the limit (if it exists).
If the limit does not exist, explain why.

N EE

22. lim sec x
x—0

y y

[\S)
]
T

N T
N R e

} } } x -
1 2 3 4’1\
23. lim f(x) 24. lim f(x
4 —x, x+2 [ +3 x#E 1]
f(x)—{o, e f(x)—{z, t7
y y
2+ e
—— %*% ———>x
2 4L 2 4
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|x — 2 .
25. lim 26. lim
=2 x — 2 x5 X —
¥y ¥y
3 6 |
2 4+ |
1 L —— 2+ 1
—————>x = AT x
—_ 5 3 45 il '6 8 10
I
-2 —4+ 1
-3+ -6+ !
. 1 .
27. lim cos — 28. lim tanx
x—0 X x—m/2
y
I I I
/\ 2,, 1 1
I I I
I I I
1+ 1 1
I I I
| | f>=x
_n T [fr 3m
2(T 2 2
; I \/
I T~ I I
I I I

[s]g=[m] Graphical Reasoning In Exercises 29 and 30,
Wy use the graph of the function f to decide whether
the value of the given quantity exists. If it does, find
it. If not, explain why.

29. (a) f(1) y
(b) lim f(x) o1
(© f(4) \L»

(@ lim () 2y

30. (@) f(=2) Y
(b) tim_f(x)
© )
(@) lim f(x)
@© f@)
() lim f()
(2) £4)
(h) lim f(x)

[w] Limits of a Piecewise Function In Exercises
"¢ 31 and 32, sketch the graph of f. Then identify the
values of ¢ for which lim f(x) exists.

X—cC

X2, x <2
3L f) =1{8 -2, 2<x<4
4, x=4
sin x, x <0
32. f(x) ={1 —cosx, O0<x<nm
oS X, x>

Sketching a Graph In Exercises 33 and 34, sketch a graph
of a function f that satisfies the given values. (There are many
correct answers.)

33. £(0) is undefined.
lim f (x) =4
f2)=6
lim f (x) =3

34. f(-2)=0
f2)=0
lirzlzf(x) =0
lirr% f(x) does not exist.
35. Finding a § for a Given ¢ The graph of f(x) = x + 1is

shown in the figure. Find 8 such thatif 0 < |x — 2| < §, then
|f(x) — 3| <04.

36. Finding a d for a Given &£ The graph of
1

x—1

fl) =

is shown in the figure. Find & such that if 0 < |x — 2| < 4,
then | f(x) — 1| < 0.01.

y

2.0+
1.5+

1.0 +
0.5+

37. Finding a § for a Given ¢ The graph of

fo=2--

is shown in the figure. Find & such that if 0 < |x — 1| < §,
then | f(x) — 1] < 0.1.

[+ 5

38. Finding a & for a Given ¢ Repeat Exercise 37 for
e = 0.05, 0.01, and 0.005. What happens to the value of § as
the value of & gets smaller?
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[E]%4)[=] Finding a § for a Given & In Exercises Pp62. Modeling Data Repeat Exercise 61 for

e 7 39-44, find the limit L. Then find & such that
i |f&x) = L| < ewhenever 0 < |x — ¢| < §for (a)
£ = 0.01 and (b) £ = 0.005.

39. lim 3x + 2) 40. lim (6 - 5)
x—2 3

x—6
41. lin% (x2=13) 42. lirri (x2+6)
43. lirri (2 = x) 44. lirr% X2

[E)4F[E] Using the &-6 Definition of Limit In Exercises
[ ‘2 45-56, find the limit L. Then use the &-§ definition
'E_.E_ to prove that the limit is L.

: t

45. lim (x + 2) 46. lim (4x +3)
47. lim (3~ 1) 48. lim (3x + 1)
49. lim 3 50. lim (= 1)

51. lim 3x 52. lim Jx

§3. lim_|x - 5| 54. lim |x — 3|
§5. lim (x* + 1) $6. lim (x* + 4x)

57. Finding a Limit What is the limit of f(x) =4 as x
approaches 7?

58. Finding a Limit What is the limit of g(x) = x as x
approaches 7?

F’p Writing In Exercises 59 and 60, use a graphing utility to

graph the function and estimate the limit (if it exists). What is
the domain of the function? Can you detect a possible error in
determining the domain of a function solely by analyzing the
graph generated by a graphing utility? Write a short paragraph
about the importance of examining a function analytically as
well as graphically.

N 5—-3 -3
59. f() = 60. () = 5=
lim f(x) lim f(x)

61. Modeling Data For a long-distance phone call, a hotel
charges $9.99 for the first minute and $0.79 for each additional
minute or fraction thereof. A formula for the cost is given by

Ct) =999 —0.79[1 — ¢, >0

where ¢ is the time in minutes.

(Note: [x] = greatest integer n such that n < x. For example,
[3.2] = 3and [~ 1.6] = —2.)

(a) Evaluate C(10.75). What does C(10.75) represent?

Plp(b) Use a graphing utility to graph the cost function for
0 < t < 6. Does the limit of C(¢) as ¢ approaches 3 exist?
Explain.

C(t) =579 —099[1 — ], t>0.

EXPLORING CONCEPTS

63. Finding § When using the definition of limit to prove
that L is the limit of f(x) as x approaches c, you find the
largest satisfactory value of 8. Why would any smaller
positive value of § also work?

64. Using the Definition of Limit The definition of
limit on page 56 requires that f is a function defined on
an open interval containing ¢, except possibly at c. Why
is this requirement necessary?

65. Comparing Functions and Limits If £(2) = 4,
can you conclude anything about the limit of f(x) as x
approaches 2? Explain your reasoning.

66. Comparing Functions and Limits If the limit of
f(x) as x approaches 2 is 4, can you conclude anything
about f(2)? Explain your reasoning.

67. Jewelry A jeweler resizes a ring so that its inner
circumference is 6 centimeters.

(a) What is the radius of the ring?

(b) The inner circumference of the ring varies between
5.5 centimeters and 6.5 centimeters. How does the radius
vary?

(c) Use the &-8 definition of limit to describe this situation.
Identify & and 6.

lo68.Sp0rt50..ooolcoo.l.oo.loool

A sporting goods manufacturer designs a golf ball having a
volume of 2.48 cubic inches.

(a) What is the radius
of the golf ball?

(b) The volume of the
golf ball varies
between 2.45 cubic
inches and 2.51 cubic
inches. How does the
radius vary?

(c) Use the &-§ definition of limit to describe this situation.
Identify & and 6.

69. Estimating a Limit Consider the function
J@) = (140
Estimate
)l(ig(l) (1 + x)/x

by evaluating f at x-values near 0. Sketch the graph of f.

The symbol FP’ indicates an exercise in which you are instructed to use graphing technology or a symbolic
computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate

technology.

Rayjunk/Shutterstock.com
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70.
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Estimating a Limit Consider the function Flv 79
x4+ 1] = |x — 1]

fo)=——""

Estimate

= Fi= 80

lim ———

x—0 X

by evaluating f at x-values near 0. Sketch the graph of f.

. Graphical Reasoning The statement

x2—4

5=

lim 4
x—=2 X —

means that for each ¢ > 0 there corresponds a § > 0 such that

if0 < |x — 2| < 6, then 82.
X2 —4

— 4| < e. 83.
x—2

If & = 0.001, then

x2—4
—4
2

< 0.001.

x —

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval (2 — 8,2 + &) such that
the inequality is true.

HOW DO YOU SEE IT? Use the graph of f

to identify the values of ¢ for which lim f(x) exists.

81.

84.

. Evaluating Limits Use a graphing utility to evaluate

sin nx

lim
x—0 X

for several values of n. What do you notice?

. Evaluating Limits Use a graphing utility to evaluate

. tan nx
lim ——
x—0 X

for several values of n. What do you notice?

Proof Prove that if the limit of f(x) as x approaches c exists,
then the limit must be unique. [Hint: Let lim f(x) = L, and
limf(x) = L,and prove that L, = L,.] ~°

xX—c

Proof Consider the line f(x) = mx + b, where m # 0. Use
the -0 definition of limit to prove that lim f(x) = mc + b.

Proof Prove that
lim f(x) = L
is equivalent to
lim[ f(x) — L] = 0.
frares
Proof
(a) Given that
11;1(1) (3x + 1)(3x — 1)x* + 0.01 = 0.01

prove that there exists an open interval (a, b) containing 0
such that 3x + 1)(3x — 1)x + 0.01 > O for all x # 0 in
(a,b).
(b) Given that lim g(x) = L, where L > 0, prove that there
X—C

exists an open interval (a,b) containing ¢ such that
g(x) > 0 for all x # cin (a, b).

(a) y (b) y
6+ 6
T 4
T 2
o——o\ x
\ 4 e -4\, 2\/4 6
—b—— ———1>x
-2 + 2 4
_2,,

True or False? 1In Exercises 73-76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73.
74.

75.
76.
Determining a Limit In Exercises 77 and 78, consider the
function f(x) = /x.

77.
78.

If f is undefined at x = c, then the limit of f(x) as x approaches
¢ does not exist.

If the limit of f(x) as x approaches c is 0, then there must exist
a number k such that f(k) < 0.001.

If f(c) = L, then le flx) = L.
If hin. fx) = L, then f(c) = L.

Is lim </x = 0.5 a true statement? Explain.
x—0.25

Is lin}) Jx = 0 a true statement? Explain.
x—>

PUTNAM EXAM CHALLENGE

85. Inscribe a rectangle of base b and height / in a circle of
radius one, and inscribe an isosceles triangle in a region
of the circle cut off by one base of the rectangle (with
that side as the base of the triangle). For what value of &
do the rectangle and triangle have the same area?

86. A right circular cone has base of radius 1 and height 3.
A cube is inscribed in the cone so that one face of the
cube is contained in the base of the cone. What is the
side-length of the cube?

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.




1.3 Evaluating Limits Analytically 63

1.3 Evaluating Limits Analytically

@ Evaluate a limit using properties of limits.

# Develop and use a strategy for finding limits.

@ Evaluate a limit using the dividing out technique.
@ Evaluate a limit using the rationalizing technique.
@ Evaluate a limit using the Squeeze Theorem.

Properties of Limits

In Section 1.2, you learned that the limit of f(x) as x approaches ¢ does not depend on
the value of f at x = c. It may happen, however, that the limit is precisely f(c). In such
cases, you can evaluate the limit by direct substitution. That is,

lim f(x) = f(c). Substitute ¢ for x.
X—cC

Such well-behaved functions are continuous at ¢. You will examine this concept more
closely in Section 1.4.

y
E THEOREM 1.1 Some Basic Limits
c+E+y-- 5 ------- ! Let b and ¢ be real numbers, and let n be a positive integer. %E
£= , 3, g
(R S . : 1. )1(1_}n}b=b 2. )lcl_)nlx=c 3. )1(1_)11}x =c Eyﬁ
e=6 : :
i E i Proof The proofs of Properties 1 and 3 of Theorem 1.1 are left as exercises (see
* s * * s x Exercises 107 and 108). To prove Property 2, you need to show that for each € > 0
o ¢« of there exists a § > 0 such that |x — ¢| < & whenever 0 < |x — ¢| < 4. To do this,
Figure 1.16 choose § = &. The second inequality then implies the first, as shown in Figure 1.16.
-
EXAMPLE 1 Evaluating Basic Limits
a. lim3 =3 b. lim x = —4 c. imx2=22=4 |
x—2 x—>—4 x—2

THEOREM 1.2 Properties of Limits

Let b and ¢ be real numbers, let n be a positive integer, and let f and g be
functions with the limits

limf(x) =L and limg(x) = K.
xX—cC Xx—c

1. Scalar multiple: lim [bf(x)] = bL
X—C

2. Sum or difference: Lim[f(x) + glx)] =L = K
X—C

3. Product: lim [ f(x)g(x)] = LK
. . fx) L
4. Quotient: Iim—<=—, K#0
Q x—c g(x) K

5. Power: lim | f(x)[* = L" -
tim [ /(2] iy
The proof of Property 1 is left as an exercise (see Exercise 109). ..'t E
The proofs of the other properties are given in Appendix A. Tradh:

2R
The symbol Lhk.ﬁ* indicates that a video of this proof is available at LarsonCalculus.com.
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2,19)

T f X

I R T [T R T
| . — | S —
-10-8 -6 -4 -2 2 4 6 8 10

The limit of f(x) as x approaches 2 is 19.
Figure 1.17

2 1,2)

The limit of f(x) as x approaches 1 is 2.
Figure 1.18

2N JR  The Limit of a Polynomial

Find the limit: lim (4x2 + 3).
x—2

Solution
lim (4x? + 3) = lim 4x? + lim 3 Property 2, Theorem 1.2
x—2 x—2 x—2
=1 <lim x2> + lim 3 Property 1, Theorem 1.2
x—2 x—2
= 4(22) +3 Properties 1 and 3, Theorem 1.1
=19 Simplify.
This limit is reinforced by the graph of f(x) = 4x> 4+ 3 shown in Figure 1.17. |

In Example 2, note that the limit (as x approaches 2) of the polynomial function
p(x) = 4x2 + 3 is simply the value of p at x = 2.

lim p(x) = p(2) = 4(2%) + 3 =19

This direct substitution property is valid for all polynomial and rational functions with
nonzero denominators.

THEOREM 1.2 Limits of Polynomial and Rational Functions

If p is a polynomial function and c is a real number, then
lim p(x) = p(c).
xX—c

If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such
that g(c) # 0, then

i =rlc =M
)1(1_1}} r(x) - () q(C)

EXAMPLE 3 The Limit of a Rational Function

2 4+ x +
Find the limit: lim > 2
-1 x+1

Solution Because the denominator is not 0 when x = 1, you can apply Theorem 1.3
to obtain

¥+x+2 1P+1+2 4
lin} T+ 1 = 1+ 1 = B} =2 See Figure 1.18. i |
xX—>

Polynomial functions and rational functions are two of the three basic types of
algebraic functions. The next theorem deals with the limit of the third type of algebraic
function—one that involves a radical.

THEOREM 1.4 The Limit of a Function Involving a Radical

Let n be a positive integer. The limit below is valid for all ¢ when 7 is odd,
and is valid for ¢ > 0 when n is even.

A proof of this theorem is given in Appendix A.
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The next theorem greatly expands your ability to evaluate limits because it shows
how to analyze the limit of a composite function.

THEOREM 1.5 The Limit of a Composite Function
If f and g are functions such that lim g(x) = L and linz f(x) = f(L), then
X—cC xX—>

lim f(5(0) = ( limg(x) ) = £(L) Bl
s
A proof of this theorem is given in Appendix A. Elk-!%%

S VNLJREN  The Limit of a Composite Function

e > See LarsonCalculus.com for an interactive version of this type of example.
Find the limit.
a. lim /x> + 4 b. lim 3/2x> — 10
x—0 x—3
Solution
a. Because
lim (x2+4)=02+4=4 and lim Jx= /4 =2
x—0 x—4

you can conclude that

lin(l)‘/xz +4=J4=2.
x—

b. Because
lir%(ZxZ— 10) =2(3%) — 10 =8 and lir%3/>=3/§=2

you can conclude that

lim 322 - 10 =38 =2. al
x—

You have seen that the limits of many algebraic functions can be evaluated by
direct substitution. The six basic trigonometric functions also exhibit this desirable
quality, as shown in the next theorem (presented without proof).

THEOREM 1.6 Limits of Trigonometric Functions

Let ¢ be a real number in the domain of the given trigonometric function.

1. limsinx = sin ¢ 2. lim cos x = cos ¢ 3. limtan x = tan ¢
X—cC X—cC X—cC

4. lim cotx = cotc 5. lim sec x = sec ¢ 6. lim csc x = csc ¢
X—cC X—cC X—cC

EXAMPLE 5 Limits of Trigonometric Functions

a. lim tan x = tan(0) = 0
x—0

b. lim (x cos x) = (lim x)(lim cos x) =mcos(m) = —m
x> X7 X7

c. lim sin®?x = lim (sinx)? = 02 = 0 |
x—0 x—0
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f and g agree at all but one point.
Figure 1.19

When applying
this strategy for finding a limit,
remember that some functions
do not have a limit (as x
approaches c). For instance,
the limit below does not exist.

Cox+1
im

x—>1 X —

A Strategy for Finding Limits

On the previous three pages, you studied several types of functions whose limits can be
evaluated by direct substitution. This knowledge, together with the next theorem, can
be used to develop a strategy for finding limits.

Functions That Agree at All but One Point

Let ¢ be a real number, and let f(x) = g(x) for all x # ¢ in an open interval
containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x)
also exists and

lim f(x) = lim g(x).

A proof of this theorem is given in Appendix A.

Finding the Limit of a Function

Find the limit.

.o -1
lim
x—1 x — 1

Solution Let f(x) = (x* — 1)/(x — 1). By factoring and dividing out common
factors, you can rewrite f as

(x—1)2 + x + 1)
fl) = T
So, for all x-values other than x = 1, the functions f and g agree, as shown in Figure 1.19.
Because lin} g(x) exists, you can apply Theorem 1.7 to conclude that f and g have the
x—>

X+x+1=gk), x#1.

same limit at x = 1.

3 2
.ox —1 =D+ x+ 1
lim = lim ( )( ) Factor.
x—1 x — 1 x—1 x—1
lim —1J(x2 +x + 1) Divid et
= t a .
lim M ivide out common factor.
= lim(x? + x + 1) Apply Theorem 1.7.
x—1
=12+1+1 Use direct substitution.
=3 Simplify. i |

A Strategy for Finding Limits

1. Learn to recognize which limits can be evaluated by direct substitution.
(These limits are listed in Theorems 1.1 through 1.6.)

2. When the limit of f(x) as x approaches ¢ cannot be evaluated by direct
substitution, try to find a function g that agrees with f for all x other than
x = c. [Choose g such that the limit of g(x) can be evaluated by direct
substitution.] Then apply Theorem 1.7 to conclude analytically that
lim f(x) = lim g(x) = g(c).
xX—c X—>C

3. Use a graph or table to reinforce your conclusion.



In the solution
to Example 7, be sure you see
the usefulness of the Factor
Theorem of Algebra. This
theorem states that if ¢ is a
zero of a polynomial function,
then (x — ¢) is a factor of the
polynomial. So, when you
apply direct substitution to a
rational function and obtain

c) = Y
glc) 0

you can conclude that (x — ¢)

must be a common factor of

both p(x) and g(x).

o) =29 = 0

f is undefined when x = —3. The limit
of f(x) as x approaches —3 is —35.
Figure 1.20
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Dividing Out Technique

Another procedure for finding a limit analytically is the dividing out technique. This
technique involves dividing out common factors, as shown in Example 7.

Dividing Out Technique

e > See LarsonCalculus.com for an interactive version of this type of example.

2 + _
Find the limit: lim >~ —©
x——3 x+3

Solution Although you are taking the limit of a rational function, you cannot apply
Theorem 1.3 because the limit of the denominator is 0.

e
™~

Because the limit of the numerator is also 0, the numerator and denominator have a
common factor of (x + 3). So, for all x # — 3, you can divide out this factor to obtain

X2+x—6 (A43x—-2)
x+3 xr+73 -

Using Theorem 1.7, it follows that

lim x2+x—6)=0
——-3

X2+x—6
x+3

Direct substitution fails.
x——3

lim (x +3)=0

x—-3

flx) = x—2=gx), x# 3.

2
x>+ x—-6
Iim ——————= lim (x — 2 Apply Theorem 1.7.
x——3 x + 3 x——3 ( ) PPY
= —5. Use direct substitution.

This result is shown graphically in Figure 1.20. Note that the graph of the function f
coincides with the graph of the function g(x) = x — 2, except that the graph of f has
a hole at the point (=3, —5). i |

In Example 7, direct substitution produced the meaningless fractional form 0/0.
An expression such as 0/0 is called an indeterminate form because you cannot (from
the form alone) determine the limit. When you try to evaluate a limit and encounter this
form, remember that you must rewrite the fraction so that the new denominator does not
have O as its limit. One way to do this is to divide out common factors. Another way is
to use the rationalizing technique shown on the next page.

A graphing utility can give misleading information
about the graph of a function. For instance, try graphing the function from
Example 7

X*+x—6 3
x+3

flx) =

on a graphing utility. On some graphing utilities, " fis undefined /
the graph may appear to be defined at every ‘when x = i [
real number, as shown in the figure at the right.

However, because f is undefined when x = —3,
you know that the graph of f has a hole at

x = —3. You can verify this on a graphing
utility using the trace or table feature.

-9

Misleading graph of f
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The rationalizing
technique for evaluating limits
is based on multiplication by
a convenient form of 1. In
Example 8, the convenient
form is

o Jx+ 1+
\/x+1+1.

1

The limit of f(x) as x approaches 0 is 3.
Figure 1.21

Rationalizing Technique

Another way to find a limit analytically is the rationalizing technique, which involves
rationalizing either the numerator or denominator of a fractional expression. Recall
that rationalizing the numerator (denominator) means multiplying the numerator
and denominator by the conjugate of the numerator (denominator). For instance, to
rationalize the numerator of

ﬁ+4

X

multiply the numerator and denominator by the conjugate of /x + 4, which is

Jx — 4.

EXAMPLE 8 Rationalizing Technique

Find the limit: lim
x—0

yx+1-1

X

Solution By direct substitution, you obtain the indeterminate form 0/0.

lim

x—0 X

Jx+1-1

/
\ limx =0

x—0

lim(JVx+1-1)=0
x—0

Direct substitution fails.

In this case, you can rewrite the fraction by rationalizing the numerator.

Jx+1-—

X

1_<¢m—1

X

x+1)—1

>< x+1+1>
x+1+1

x(\/x +1+ 1)
X

\/x+1+1)
1
N

x#0

Now, using Theorem 1.7, you can evaluate the limit as shown.

lim

Jrx+1-—-1

1

x—0 X

lim
=0 Jx+1+1

1

1+1
_1

2

A table or a graph can reinforce your conclusion that the limit is % (See Figure 1.21.)

x approaches 0 from the left. > < x approaches 0 from the right.

X —-0.25

—0.1

—0.01

—0.001

0

0.001

0.01

0.1

0.25

f(x)| 0.5359

0.5132

0.5013

0.5001

?

0.4999

0.4988

0.4881

0.4721

f(x) approaches 0.5.

> <

f(x) approaches 0.5.




h(x) < f(x) < g(x)

y

flies in here.

g
f

T
1
1
1
1
1
1
1
1

c

The Squeeze Theorem
Figure 1.22

y

(cos 6, sin 0)
(1, tan 6)

10 Nao

A circular sector is used to prove
Theorem 1.9.
Figure 1.23
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The Squeeze Theorem

The next theorem concerns the limit of a function that is squeezed between two other
functions, each of which has the same limit at a given x-value, as shown in Figure 1.22.

THEOREM 1.8 The Squeeze Theorem

If A(x) < f(x) < g(x) for all x in an open interval containing c, except possibly
at c itself, and if

lim A(x) = L = lim g(x)
X—cC X—cC

then lim f(x) exists and is equal to L.
X—C

—
B
A proof of this theorem is given in Appendix A. [=]L7

You can see the usefulness of the Squeeze Theorem (also called the Sandwich
Theorem or the Pinching Theorem) in the proof of Theorem 1.9.

THEOREM 1.9 Two Special Trigonometric Limits Eg@
i - e vre
Loiim 30X = g i LSBT El?ﬁ

x—0 X x—0 X

Proof The proof of the second limit is left as an exercise (see Exercise 121). To avoid
the confusion of two different uses of x, the proof of the first limit is presented using the
variable 6, where 6 is an acute positive angle measured in radians. Figure 1.23 shows
a circular sector that is squeezed between two triangles.

tan 6
1 1
Area of triangle =  Areaofsector = Area of triangle
tan 0 0 sin 0
> = > —
2 2 2

Multiplying each expression by 2/sin 6 produces
1 0

> — > 1
cos @ ~ sin @

and taking reciprocals and reversing the inequalities yields

sin 6
0

Because cos 6 = cos(—6) and (sin 8)/6 = [sin(—6)]/(—0), you can conclude that this

inequality is valid for a/l nonzero 6 in the open interval (— /2, 7/2). Finally, because

%in’(l) cos =1 and éirr(l} 1 = 1, you can apply the Squeeze Theorem to conclude that
—> —

cos 0 < < 1.

fim 329 _ ¢ =

-0 0
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Be sure you
understand the mathematical
conventions regarding parentheses
and trigonometric functions. For
instance, in Example 10, sin 4x
means sin(4x).

[SIE]

NJE

-2
The limit of g(x) as x approaches 0
is 4.
Figure 1.25

SRR A Limit Involving a Trigonometric Function

. .. . tanx
Find the limit: lim .
x—0 X

Solution Direct substitution yields the indeterminate form 0/0. To solve this
problem, you can write tan x as (sin x)/(cos x) and obtain

. tanx . sin x 1
lim = lim .
x—0 X x—0 X COS x

Now, because

sinx

lim 1
x—0 X
and

tan x

fon="2

. 1
lim =
x—0 COS X

you can obtain

tan x sin x 1 oz i
lim —— = {1 2 2
x—0 X x—0 X x—0 COS X
= (1)(1) -
=1 -
The limit of f(x) as x approaches 0 is 1.
(See Figure 1.24.) Figure 1.24
S ENILERIN A Limit Involving a Trigonometric Function
sin 4x

Find the limit: lim .
x—0 X

Solution Direct substitution yields the indeterminate form 0/0. To solve this
problem, you can rewrite the limit as

sin4x _ 4<1, sin 4x>.

lim
x—0 X

1m

Multiply and divide by 4.
x—=0  4x

Now, by letting y = 4x and observing that x approaches 0 if and only if y approaches
0, you can write

x—0 X x—0 4x
= 4<lim Sy ) Lety = 4x.
y—0 y
= 4(1) Apply Theorem 1.9(1).
=4,
(See Figure 1.25.) |

Use a graphing utility to confirm the limits in the examples and
in the exercise set. For instance, Figures 1.24 and 1.25 show the graphs of

tan x sin 4x
flo) = T and g(x) = :

X

Note that the first graph appears to contain the point (0, 1) and the second graph
appears to contain the point (0, 4), which lends support to the conclusions obtained
in Examples 9 and 10.



1.3 Exercises

CONCEPT CHECK
1. Polynomial Function Describe how to find the limit
of a polynomial function p(x) as x approaches c.

2. Indeterminate Form What is meant by an
indeterminate form?

3. Squeeze Theorem In your own words, explain the
Squeeze Theorem.

4. Special Limits List the two special trigonometric
limits.

Fa'y
=

[§] Finding a Limit In Exercises 5-22, find the
limit.

5. lim x° 6. lim x*
7. lim (2x +5) 8. lim (4x — 1)
9. xl_i)r£13 (x2 + 3x) 10. )l}_)rr% (=x3+1)
1L lim (26> + 4x + 1) 12. lim (2% — 6x + 5)
13. lim Jx+8 14. lim Y12x + 3
15. lim (1 = x)} 16. lim (3x — 2)*
17. 1imi 18. lim
—=22x + 1 x—-5x + 3
9 2.1y
21, lim —% 2. lim Y16

.x—>3 x+2

Finding Limits In Exercises 23-26, find the
limits.

23.--f(x) - 5—x gk =x

(@) limf ) (b lim gx)
24. f(x) = x + 7,8(x) = x?

(a) lim f ) (b lim g(x)
25. fx) =4 —x2,gx) = Sx+ 1

(@ )l(i_r)r}f(x) (b) lim g (© lim g(f(x)
26. f(x) =2x2 —3x+ L,g) =¥x+ 6

(@) lim f (x)  (b) lim g (0 lim g(f(x)

(© lim g(/(x)

(© lim_ g(f(x)

[v] Finding a Limit of a Trigonometric
1 Function In Exercises 27-36, find the limit of
the trigonometric function.

[

[=]
27

lim sin x 28. lim tan x
x—om/2 x—T
29. lim cos = 30. lim sin 7%
x—1 3 x—2 12

1.3 Evaluating Limits Analytically

31. lim sec 2x

x—0
33. lim sinx
x—51/6

. X
35. lim tan 1

x—3

EEE
@ lim [55(]

(b) lim [£(x) + g()]
(© lim [()g(0]

fx)
@ lim"
39, limf(x) =16

(@ lim [£()F
(b) lim /f (x)
(© lim [3 ()]
(@ tim [F()2

E#

X2+ 3x

41. lim

x—0 X

2 _
43. lim > 1
—-1x+ 1

45. lim

limit.
[=]4
47. lim
x—>0x - X
4. lim 5
2 _
51, fim X6

x——3 x2 -9

+ —_
53. lim XX 273

x—4 x—4

55, lim YA P2 T V0 _f

x—>0

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

32. lim cos 3x

X1

34. lim cosx
x—51/3

36. lim sec e
x—7 6

38. lim f(x) = 2
lim g(o) = §
(@ tim [4/(0)]
(b) lim [£(x) + g}
(©) tim [/(1)5()]
@ tm L9

x—c g( )
40. lim f(x) = 27

x—c

(@) lim Jf(x)

)
(b im™g

(©) lim [/
(@ tim [F(]*

x4 — 5x2

42. lim 3

x—0 X
2 + —
44, fim XX ~2

x——2 x+2

3
46. lim © !
x——1 x+1

3 _ 42
48. lim X~ %

x—0 X

5—x
30 im0

2 —
52, lim M
x—2 x - X — 2

+ —_
54, lim XX P12

x—3 x—3

\/2+x—\/>

x—>()
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VAl

E E Evaluating Limits In Exercises 37-40, use the
information to evaluate the limits.

Finding a Limit In Exercises 41-46, write a
simpler function that agrees with the given function at
all but one point. Then find the limit of the function.
Use a graphing utility to confirm your result.

E j|[8] Finding a Limit In Exercises 47-62, find the
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57.

Limits and Their Properties

o (/G + 0] = (1/3)

x—0

X

o [/ + 4] = (1/4)

58.
x—0 X
59. lim 2(x + Ax) — 2x
Ax—>0 Ax
2 _ 42
60. lim X A0 22
AX—0 Ax
o AP -2+ AX)+ 1 - (X2 —2x+ 1)
61. lim
Ax—0 Ax
3_ .3
62 lim & TAYD -2
Ax—>0 Ax

[=]

o
IEIH:.EI'g

Finding a Limit of a Trigonometric

Function In Exercises 63-74, find the limit of

the trigonometric function.

Using the Squeeze Theorem In Exercises 91 and 92, use
the Squeeze Theorem to find lim f(x).

91. ¢ =0
4—x2<flx) <4+
92. c=a

b—|x—a|l sfx)sb+|x—d

F’p Using the Squeeze Theorem In Exercises 93-96, use a
graphing utility to graph the given function and the equations
y = |x| and y = — |x| in the same viewing window. Using the
graphs to observe the Squeeze Theorem visually, find lll)l‘l) f).

93. f(x) = |x| sinx

95. f(x) ==x sin%

94. f(x) = |x| cosx

96. f(x) = xcos%

EXPLORING CONCEPTS

sin x

lim 3(1 — cos x)

97. Functions That Agree at All but One Point

63. lim —— 64.
x—0 S5x x—0 X
65. lim (sin x)(1 2— oS x) 66. Tim % 0 tan 0
x—0 X 60 0
12 2
67. lim 22X 68. lim 2%
x—0 X x—0 X
. (1 — cos h)? .
69. ’lll_I}?) i 70. qlsl_rg ¢ sec ¢
7. limé—6cosx 7. limcosx—smx— 1
x—0 3 x—0 2x
73, lim S0
—0 2t
74, 1im S22 [Hint: Find lim (2 S 2")( 3x )]
x—0 sin 3x x—0 2x 3 sin 3x

[=1%4) =]
=
w157

Graphical, Numerical, and Analytic
Analysis In Exercises 75-82, use a graphing
utility to graph the function and estimate the limit.
Use a table to reinforce your conclusion. Then find
the limit by analytic methods.

75, lim XX T2~ V2 76. lim *— NE:
x—0 X x—16 X — 16
_ 5 _
77, tim (/@D = (/D) g 20 =32
x—0 X x—2 X — 2
79. 1im S5 80, lim S5X — 1
—»0 t x—0 2x2
. sinx? . sinx
81. lim = 82. lim v

83. f(x) =3x—2
85. f(x) = x> — 4x
87. f(x) = 2x

89. f(x) =

1
x+3

Finding a Limit In Exercises 83-90, find

L e AY) — )
Ax—0 Ax

84. f(x) = —6x+ 3
86. f(x) =3x>+ 1
88. f(x) = Vx—5

90. f(x) =é

98. Writing Functions Write a function of each

(a) In the context of finding limits, discuss what is meant
by two functions that agree at all but one point.

(b) Give an example of two functions that agree at all
but one point.

specified type that has a limit of 4 as x approaches 8.
(a) linear (b) polynomial of degree 2
(d) radical

(f) sine

(c) rational

(e) cosine

Pp 99. Writing Use a graphing utility to graph

f(x) =x, gx) =sinx, and h(x) = %
in the same viewing window. Compare the magnitudes of
f(x) and g(x) when x is close to 0. Use the comparison to

write a short paragraph explaining why

lim h(x) = 1.
x—0

HOW DO YOU SEE IT? Would you use
the dividing out technique or the rationalizing
technique to find the limit of the function?
Explain your reasoning.
PEHEr=2

m, %2 ®lim

vx+t4-2
X
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In Exercises 101 and 102, use the position function

s(t) = —16¢*> + 500, which gives the height (in feet) of
an object that has fallen for ¢ seconds from a height of
500 feet. The velocity at time £ = a seconds is given by

lim si(a) — s(t).

t—a a—t

101. A construction worker drops a full paint can from a
height of 500 feet. How fast will the paint can be
falling after 2 seconds?

102. A construction
worker drops a
full paint can
from a height of
500 feet. When
will the paint can
hit the ground?
At what velocity
will the paint can
impact the ground?

Free-Falling Object In Exercises 103 and 104, use the
position function s(f) = —4.9¢2 + 200, which gives the height
(in meters) of an object that has fallen for ¢ seconds from a
height of 200 meters. The velocity at time ¢ = a seconds is
given by

tim 5@ =50,

t>a a—1

103. Find the velocity of the object when ¢ = 3.

104. At what velocity will the object impact the ground?

105. Finding Functions Find two functions f and g such that
liII(l) f(x) and liII(l) g(x) do not exist, but
lim [£() + 5()]
does exist.

106. Proof Prove that if lim f(x) exists and lim [f(x) + g(x)]

does not exist, then lim g(x) does not exist.

xX—c

107. Proof Prove Property 1 of Theorem 1.1.

108. Proof Prove Property 3 of Theorem 1.1. (You may use
Property 3 of Theorem 1.2.)

109. Proof Prove Property 1 of Theorem 1.2.

110. Proof Prove that if )l(i_)rrlf(x) = 0, then )l(l_r)r} |f)| = 0.
111. Proof Prove that if )lci_r)r}f(x) =0 and |g(x)| = M for a
fixed number M and all x # c, then )1(1_)rr3 [f(x)egx)] = 0.

112. Proof
(a) Prove that if )1612(1 |f(x)| = 0, then )l(llrll fx) = 0.
(Note: This is the converse of Exercise 110.)
(b) Prove that if )l(i_)rrlf(x) = L, then )]CLIIE || = |L]
[Hint: Use the inequality || f(x)| — |L|| = |f(x) — L|.]

Kevin Fleming/Documentary Value/Corbis

°
°
°
°
°
°
°
L]
L]
L]
°
°
°
°
°
°
*

P’p 123. Graphical Reasoning Consider f(x) =

1.3 Evaluating Limits Analytically 73

113. Think About It Find a function f to show that the
converse of Exercise 112(b) is not true. [Hint: Find a function f
such that lim | f(x)| = |L| but lim f(x) does not exist.]

X—cC X—c

114. Think About It When using a graphing utility to generate
a table to approximate

a student concluded that the limit was 0.01745 rather than 1.
Determine the probable cause of the error.

True or False? In Exercises 115-120, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

X .
15, 1im 2 116. lim > =

x—0 X x—1 X

1

117. If f(x) = g(x) for all real numbers other than x = 0 and
lil‘% fx) = L, then lin}) glx) = L.
18. If lim f(x) = L, then f(c) = L.
3, x=<2
0, x>2
120. If f(x) < g(x) for all x # a, then lim f(x) < lim g(x).
Xx—a x—a

119, lim £(x) = 3, where /(x) = {

121. Proof Prove the second part of Theorem 1.9.

I —cosx

lim 0
x—0 X

122. Piecewise Functions Let

fx) = {0, if x is rational
8 1, ifxis irrational

and
(x) = {0, if x is rational
g x, if xis irrational’
Find (if possible) lim f(x) and lim g(x).
x—0 x—0

secx — 1
x2
(a) Find the domain of f.

(b) Use a graphing utility to graph f. Is the domain of f
obvious from the graph? If not, explain.

(c) Use the graph of f to approximate lirr(l) fx).

(d) Confirm your answer to part (c) analytically.
124. Approximation

1 —cosx

(a) Find lim ——

(b) Use your answer to part (a) to derive the approximation
cos x = 1 — 5x2 for x near 0.
(c) Use your answer to part (b) to approximate cos(0.1).

(d) Use a calculator to approximate cos(0.1) to four decimal
places. Compare the result with part (c).
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Chapter 1

Limits and Their Properties

1.4 Continuity and One-Sided Limits

Exploration

Informally, you might say
that a function is continuous
on an open interval when
its graph can be drawn with
a pencil without lifting the
pencil from the paper. Use
a graphing utility to graph
each function on the given
interval. From the graphs,
which functions would

you say are continuous on
the interval? Do you think
you can trust the results
you obtained graphically?
Explain your reasoning.

Function Interval
ay=x2+1 (=33
b.y=xi2 (=3, 3)
c.y= % (=, m)
d.y:’f;; (-3,3)

@ Determine continuity at a point and continuity on an open interval.
@ Determine one-sided limits and continuity on a closed interval.

@ Use properties of continuity.

@ Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval

In mathematics, the term continuous has much the same meaning as it has in everyday
usage. Informally, to say that a function f is continuous at x = ¢ means that there is no
interruption in the graph of f at c. That is, its graph is unbroken at ¢, and there are no
holes, jumps, or gaps. Figure 1.26 identifies three values of x at which the graph of f is
not continuous. At all other points in the interval (a, b), the graph of f is uninterrupted
and continuous.

y y y

lim f(x)

X—C .
does not exist.

Q\_//@

not defined. lim f(x) # f(c)
X—¢

/\

1
1
1

L]

fle)is

{ ‘
\ I
a Cc

a ¢ b

\ [ \
) x { T ] x
b a b

Three conditions exist for which the graph of f is not continuous at x = c.
Figure 1.26

In Figure 1.26, it appears that continuity at x = ¢ can be destroyed by any one of
three conditions.
1. The function is not defined at x = c.
2. The limit of f(x) does not exist at x = c.
3. The limit of f(x) exists at x = ¢, but it is not equal to f(c).

If none of the three conditions is true, then the function f is called continuous at c, as
indicated in the important definition below.

Definition of Continuity

Continuity at a Point

@ FOR FURTHER INFORMATION
For more information on the
concept of continuity, see the
article “Leibniz and the Spell of 2.
the Continuous” by Hardy Grant : -

3. lim f(x) = f(c)

in The College Mathematics

Journal. To view this article, Continuity on an Open Interval

go to MathArticles.com. A function is continuous on an open interval (a, b) when the function is
continuous at each point in the interval. A function that is continuous on the
entire real number line (— 00, o) is everywhere continuous.

A function f is continuous at ¢ when these three conditions are met.

1. f(c) is defined.

lim f(x) exists.
X—cC
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(c) Removable discontinuity

Figure 1.27

Some people may
refer to the function in Example
1(a) as “discontinuous,” but this
terminology can be confusing.
Rather than saying that the
function is discontinuous, it
is more precise to say that the
function has a discontinuity
atx = 0.

1.4 Continuity and One-Sided Limits 75

Consider an open interval / that contains a real number c. If a function f is
defined on I (except possibly at ¢), and f is not continuous at c, then f is said to
have a discontinuity at c. Discontinuities fall into two categories: removable and
nonremovable. A discontinuity at c¢ is called removable when f can be made
continuous by appropriately defining (or redefining) f(c). For instance, the functions
shown in Figures 1.27(a) and (c) have removable discontinuities at ¢ and the function
shown in Figure 1.27(b) has a nonremovable discontinuity at c.

EXAMPLE 1 Continuity of a Function

Discuss the continuity of each function.
x+1, x=<0
x>+1, x>0

x2—1

a. f(x) = i b. g(x) = c. hx) = { d. y =sinx

x—1

Solution

a. The domain of f is all nonzero real numbers. From Theorem 1.3, you can conclude
that f is continuous at every x-value in its domain. At x = 0, f has a nonremovable

discontinuity, as shown in Figure 1.28(a). In other words, there is no way to define
£(0) so as to make the function continuous at x = 0.

b. The domain of g is all real numbers except x = 1. From Theorem 1.3, you can
conclude that g is continuous at every x-value in its domain. At x = 1, the function
has a removable discontinuity, as shown in Figure 1.28(b). By defining g(1) as 2,
the “redefined” function is continuous for all real numbers.

c. The domain of # is all real numbers. The function % is continuous on (—oo, 0) and
(0, o0), and because

lim A(x) = 1
x—0
h is continuous on the entire real number line, as shown in Figure 1.28(c).

d. The domain of y is all real numbers. From Theorem 1.6, you can conclude that the
function is continuous on its entire domain, (— 00, ©0), as shown in Figure 1.28(d).

y y

3+ 3+
(1,2)
2+ 2+
T 4 -
| | | X
-1 1 2 3 /1 i ﬁ é
\71—— -1+

(a) Nonremovable discontinuity at x = 0

(¢) Continuous on entire real number line (d) Continuous on entire real number line

Figure 1.28 i |
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:

1

1

1

1

1

c X
c<X

(a) Limit as x approaches c from the right.

c>Xx

(b) Limit as x approaches ¢ from the left.

Figure 1.29

The limit of f(x) as x approaches —2
from the right is 0.
Figure 1.30

Limits and Their Properties

One-Sided Limits and Continuity on a Closed Interval

To understand continuity on a closed interval, you first need to look at a different type
of limit called a one-sided limit. For instance, the limit from the right (or right-hand
limit) means that x approaches ¢ from values greater than c [see Figure 1.29(a)]. This
limit is denoted as

Limit from the right

lim f(x) = L.

Similarly, the limit from the left (or left-hand limit) means that x approaches ¢ from
values less than c [see Figure 1.29(b)]. This limit is denoted as

Limit from the left

lim f(x) = L.

One-sided limits are useful in taking limits of functions involving radicals. For instance,
if n is an even integer, then

lim 2/x = 0.

x—0*

A One-Sided Limit

Find the limit of f(x) = /4 — x? as x approaches —2 from the right.

Solution As shown in Figure 1.30, the limit as x approaches —2 from the right is

lim /4 —x*=0. |
x—>—2"
One-sided limits can be used to investigate the behavior of step functions. One

common type of step function is the greatest integer function [x[, defined as

[x] = greatest integer # such thatn < x. Greatest integer function

For instance, [2.5] = 2 and [—2.5] = —3.

EXAMPLE 3 The Greatest Integer Function

Find the limit of the greatest integer function f(x) = [x] as x approaches 0 from the left

and from the right.
Solution As shown in Figure 1.31, the limit

} q
as x approaches 0 from the left is 5

lim [x] = —1

0~ 1+  e—0

and the limit as x approaches O from the right is

-

lim [x] = 0. -2 A 23
x—0*
—
So, f has a discontinuity at zero because the
left- and right-hand limits at zero are different. ——o0 -2
By similar reasoning, you can see that the
greatest integer function has a discontinuity at  Greatest integer function
any integer n. Figure 1.31 |
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Continuous function on a closed interval

Figure 1.32

1

f is continuous on [—1, 1].
Figure 1.33

— 4
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When the limit from the left is not equal to the limit from the right, the (two-sided)
limit does not exist. The next theorem makes this more explicit. The proof of this
theorem follows directly from the definition of a one-sided limit.

The Existence of a Limit

Let f be a function, and let ¢ and L be real numbers. The limit of f(x) as x
approaches c is L if and only if

lim f(x) =L and lim f(x) = L.

The concept of a one-sided limit allows you to extend the definition of continuity
to closed intervals. Basically, a function is continuous on a closed interval when it
is continuous in the interior of the interval and exhibits one-sided continuity at the
endpoints. This is stated formally in the next definition.

Definition of Continuity on a Closed Interval

A function f is continuous on the closed interval [a, b] when f is continuous
on the open interval (a, b) and

lim f(x) = f(a)
and
lim f(x) = f(b).

The function f is continuous from the right at a and continuous from the
left at b (see Figure 1.32).

Similar definitions can be made to cover continuity on intervals of the form (a, b]
and [a, b) that are neither open nor closed, or on infinite intervals. For example,

fl) = Vx
is continuous on the infinite interval [0, ©0), and the function
gx) = /2 —x

is continuous on the infinite interval (—oo, 2].

m Continuity on a Closed Interval

Discuss the continuity of
flx) = V1 —x2

Solution The domain of f is the closed interval [—1, 1]. At all points in the open
interval (—1, 1), the continuity of f follows from Theorems 1.4 and 1.5. Moreover,
because

]im1 J1I=x*=0= f(— 1) Continuous from the right
x—>—1"
and

lim /1 —x*=0-= f(l) Continuous from the left

x—1"

you can conclude that f is continuous on the closed interval [—1, 1], as shown in
Figure 1.33. [
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oo Charles’s Law
for gases (assuming constant
pressure) can be stated as

V =kT

where V is volume, k is a
constant, and 7 is temperature.

Liquid helium is used to cool
superconducting magnets,
such as those used in magnetic
resonance imaging (MRI)
machines or in the Large
Hadron Collider (see above).
The magnets are made with
materials that only superconduct
at temperatures a few degrees
above absolute zero. These
temperatures are possible with
liguid helium because helium
becomes a liquid at —269°C, or
4.15 K.

Limits and Their Properties

The next example shows how a one-sided limit can be used to determine the value
of absolute zero on the Kelvin scale.

EXAMPLE 5 Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very
close to 0 K have been produced in laboratories, absolute zero has never been attained.
In fact, evidence suggests that absolute zero cannot be attained. How did scientists
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French
physicist Jacques Charles (1746—1823). Charles discovered that the volume of gas at a
constant pressure increases linearly with the temperature of the gas. The table illustrates
this relationship between volume and temperature. To generate the values in the table,
one mole of hydrogen is held at a constant pressure of one atmosphere. The volume V
is approximated and is measured in liters, and the temperature 7 is measured in degrees
Celsius.

T —40 —20 0 20 40 60 80
19.1482 | 20.7908 | 22.4334 | 24.0760 | 25.7186 | 27.3612 | 29.0038
The points represented by the table are shown v

in the figure at the right. Moreover, by using the
points in the table, you can determine that 7" and
V are related by the linear equation 25

V =0.082137 + 22.4334
V = 0.08213T + 22.4334. I

30+

Solving for 7, you get an equation for the

temperature of the gas. 10+
V= 22433 21310 5+
0.08213 } } } I
-300 -200 100 100

By reasoning that the volume of the gas
can approach O (but can never equal or
go below 0), you can determine that the
“least possible temperature” is

The volume of hydrogen gas depends
on its temperature.

lim T = lim V —22.4334
V—0+ v—o+  0.08213
= w Use direct substitution.
0.08213
~ —273.15.

So, absolute zero on the Kelvin scale (0 K) is approximately —273.15° on the Celsius
scale. |

The table below shows the temperatures in Example 5 converted to the Fahrenheit
scale. Try repeating the solution shown in Example 5 using these temperatures and
volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

T —40 —4 32 68 104 140 176
V | 19.1482 | 20.7908 | 22.4334 | 24.0760 | 25.7186 | 27.3612 | 29.0038

FABRICE COFFRINI/AFP/Getty Images
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AUGUSTIN-LOUIS CAUCHY
(1789-1857)

The concept of a continuous
function was first introduced
by Augustin-Louis Cauchy in
1821. The definition given in
his text Cours d’Analyse stated
that indefinite small changes in
y were the result of indefinite
small changes in x. “... f(x) will
be called a continuous function
if ... the numerical values of
the difference f(x + a) — f(x)
decrease indefinitely with those
of a....”

See LarsonCalculus.com to read
more of this biography.

One consequence
of Theorem 1.12 is that when
f and g satisfy the given
conditions, you can determine
the limit of f(g(x)) as x
approaches c to be

lim f(g(x)) = f(g(c)-

1.4 Continuity and One-Sided Limits 79

Properties of Continuity

In Section 1.3, you studied several properties of limits. Each of those properties yields
a corresponding property pertaining to the continuity of a function. For instance,
Theorem 1.11 follows directly from Theorem 1.2.

THEOREM 1.11 Properties of Continuity

If b is a real number and f and g are continuous at x = ¢, then the functions
listed below are also continuous at c.

1. Scalar multiple: bf 2. Sum or difference: f*+ g

3. Product: fg 4. Quotient: g, glc) #0 EI&%E
F:"s.;ﬁa

A proof of this theorem is given in Appendix A. [=]L

It is important for you to be able to recognize functions that are continuous at every
point in their domains. The list below summarizes the functions you have studied so far
that are continuous at every point in their domains.

1. Polynomial:  p(x) = ax" +a, x" '+ +ax+ a,
2. Rational: r(x) = M, glx) # 0

q(x)
3. Radical: flx) = /x

4. Trigonometric: sin x, cos x, tan x, cot x, sec X, cSC X

By combining Theorem 1.11 with this list, you can conclude that a wide variety of
elementary functions are continuous at every point in their domains.

Applying Properties of Continuity

e > See LarsonCalculus.com for an interactive version of this type of example.

By Theorem 1.11, it follows that each of the functions below is continuous at every
point in its domain.
241
f(x) =x +sinx, f(x) =3tanx, f(x)= g ad

COS x

The next theorem, which is a consequence of Theorem 1.5, allows you to determine
the continuity of composite functions such as

f(x) =sin3x, f(x) = x>+ 1, and f(x) = tan %

THEOREM 1.12 Continuity of a Composite Function E%E
If g is continuous at ¢ and f is continuous at g(c), then the fi:

composite function given by (f g)(x) = f(g(x)) is continuous at c. E-I‘F_?‘ﬁ

Proof By the definition of continuity, lim g(x) = g(c) and liII(l) fx) = f(g(o).
x—c x—gle

Apply Theorem 1.5 with L = g(c) to obtain liﬁm‘f(g(x)) =f<li£n g(x)> = f(g(c)). So,
(f-g)(x) = f(g(x)) is continuous at c. =

AS400 DB/Bettmann/Corbis
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Limits and Their Properties

SR  Testing for Continuity

Describe the interval(s) on which each function is continuous.

1 1
in — xsin—, x#0
smx, x#0 e hx) = S

0, x=0 0,

a. f(x) = tanx b. glx) =

x=20
Solution

a. The tangent function f(x) = tan x is undefined at

(a) f is continuous on each open interval in

its domain.

Figure 1.34

S
B T T A

.

i3 . .
x = 5 + nm, nisan integer.

At all other points, f is continuous. So, f(x) = tanx is continuous on the open
intervals

<_3l _E) (_z E) <z 31)
i 27 2) 2°2)0\22 2 )"

as shown in Figure 1.34(a).

. Because y = 1/x is continuous except at x = 0 and the sine function is continuous

for all real values of x, it follows from Theorem 1.12 that
= gin 1
Y X
is continuous at all real values except x = 0. At x = 0, the limit of g(x) does not

exist (see Example 5, Section 1.2). So, g is continuous on the intervals (— oo, 0) and
(0, o), as shown in Figure 1.34(b).

. This function is similar to the function in part (b) except that the oscillations are

damped by the factor x. Using the Squeeze Theorem, you obtain

, x#0

—|x| = xsini < |x

and you can conclude that
lim h(x) = 0.
x—0

So, & is continuous on the entire real number line, as shown in Figure 1.34(c).

1+

hx) = {x sin % x#0
0, x=0

(¢) h is continuous on the entire real number line.

(b) g is continuous on (—0, 0) and (0, o©).
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The Intermediate Value Theorem

Theorem 1.13 is an important theorem concerning the behavior of functions that are
continuous on a closed interval.

Intermediate Value Theorem

If f is continuous on the closed interval [a, b], f(a) # f(b), and k is any
number between f(a) and f(b), then there is at least one number c in [a, b]
such that

flc) = k.

The Intermediate Value Theorem tells you that at least one number ¢
exists, but it does not provide a method for finding c. Such theorems are called
existence theorems. By referring to a text on advanced calculus, you will find that a
proof of this theorem is based on a property of real numbers called completeness. The
Intermediate Value Theorem states that for a continuous function f, if x takes on all
values between a and b, then f(x) must take on all values between f(a) and f(b).

As an example of the application of the Intermediate Value Theorem, consider a
person’s height. A girl is 5 feet tall on her thirteenth birthday and 5 feet 2 inches tall
on her fourteenth birthday. Then, for any height / between 5 feet and 5 feet 2 inches,
there must have been a time ¢t when her height was exactly 4. This seems reasonable
because human growth is continuous and a person’s height does not abruptly change
from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number ¢
in the closed interval [a, b]. There may, of course, be more than one number c such that

fle) =k

as shown in Figure 1.35. A function that is not continuous does not necessarily exhibit
the intermediate value property. For example, the graph of the function shown in
Figure 1.36 jumps over the horizontal line

y=k

and for this function there is no value of ¢ in [a, b] such that f(c) = k.

y y
fla) =
7
S@) p--mmmmo x&”/
[ -
a b
£ is continuous on [a, b]. f is not continuous on [a, b].
[There exist three ¢’s such that f(c) = k.] [There are no c’s such that f(c) = k.]
Figure 1.35 Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a function
that is continuous on a closed interval. Specifically, if f is continuous on [a, b] and f(a)
and f(b) differ in sign, then the Intermediate Value Theorem guarantees the existence
of at least one zero of f in the closed interval [a, b].
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An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function
f)=x*+2x—-1

has a zero in the interval [0, 1].

Solution Note that f is continuous on the closed interval [0, 1]. Because
f0)=03420)—1=-1 and f()=13+2(1)—-1=2

it follows that f(0) < 0 and f(1) > 0. You can therefore apply the Intermediate Value
Theorem to conclude that there must be some ¢ in [0, 1] such that

fle)=0 £ has a zero in the closed interval [0, 1].

as shown in Figure 1.37.

y
2+ (1,2)
],,
1 ] x
_1 (c.0) 4
“/(o,—l)

£ is continuous on [0, 1] with £(0) < 0 and f(1) > 0.
Figure 1.37 |

The bisection method for approximating the real zeros of a continuous function is
similar to the method used in Example 8. If you know that a zero exists in the closed
interval [a, b], then the zero must lie in the interval [a, (a + b)/2] or [(a + b)/2, b].
From the sign of f([a + b]/2), you can determine which interval contains the zero. By
repeatedly bisecting the interval, you can “close in” on the zero of the function.

You can use the root or zero feature of a graphing utility to
approximate the real zeros of a continuous function. Using this feature, the zero of

the function in Example 8, f(x) = x> + 2x — 1, is approximately 0.453, as shown
in the figure.

2

|
.

Zero
X=.45339765 (Y=
-2

Zeroof f(x) =x* +2x — 1
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1 . 4 ExerCIseS see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
. X . \/); -2
CONCEPT CHECK 15 Im = 16. lim ~=—
1. Continuity In your own words, describe what it || lx — 10|
means for a function to be continuous at a point. 17. lim — 18. lim ———
x—=0" X x>10" x — 10
2. One-Sided Limits What is the value of ¢? 1 1
Jim 2% +1=0 19. fim TTAY X
i f a Limit Determine whether lim f(x) a0 Ax
3. E)flstence of a Limi etermine whether xlir;fx (et AP+ xt Ax— (2 + )
exists. Explain. 20. lim
Ax—0* Ax
i 0 =1 and i 9= 1 e
4. Inter.medlate Valye Theorem In your own words, 21. lim f(x), where f(x) = 2
explain the Intermediate Value Theorem. x=3” 12 — 2x >3
3
. . x> —4x+6, x<3
“4][®] Limits and Continuity In Exercises 5-10, use 22. lim f(x), where f(x) = {_xz dr—2 x=3
the graph to determine each limit, and discuss the
continuity of the function. 23. lim f(x), where f(x) = {x3 +1 x<l
x—1 ’ x+1, x=1

@ lim f(x) @) lim f(x) (0 lim f(x)

. _x xs1
24, ,}E{Lf(x)’ where f(x) = {1 kx> 1
5. y 6. y . .
25. lim cot x 26. lim secx
54 2 x—m x—>m/2
4-+ c=-2 27. lim (5[x] — 7) 28. lim (2x — [x])
5l (4’ 3) \ 1+ x—4 x—2
2+ ! \ x 29. lim ([[g]] + 3) 30. lin}(l - |[—X]D
1+ c=4 - X—=>= x—
_1 —
b s - )
4 1/2 345 22 o [=]¥%][=] Continuity of a Function In Exercises 31-34,

b "-'-'.-"H"':'l"-' discuss the continuity of the function.

Hok
7 y 8 ee3 y E |-l|.hE|'
5+ 1 X =1
4+ ~3,4 . = . =
OGN 30 = 51 2. ) =S
~e A y
[ 2+
% \% > x 1 51
2 \4 6 P
+ G.0) saao N 1 /
c=3 T
—+— —t—>x
9 y 10. y 2-1 123
2,3) 4
— it
2+ c=-1 -3+
1+ c=2 3
= 2+ X, x <1
4L 12345%6 (-1,2) _— 34. f(x) = {2, r=1
24 o _ _
O . -1, x>1
-3 Lol o1 y
[v] Finding a Limit In Exercises 11-30, find the 3T
. o ey repe . . . . 24 e
limit (if it exists). If it does not exist, explain why.
lak
—+— F—t—f—>x
. . 32 /1 123
1 iy 12, lin o
-3+
. x—5 . 4 -x
13 im 35 1. i 3
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[E):aX[®] Continuity on a Closed Interval In Exercises X2 — a* 4
Vit 35-38, discuss the continuity of the function on the 64. g(x) = x—a > X7a
'E_ closed interval. 8, xX=a

[

Function Interval [E] Continuity of a Composite Function In
35. gx) = V49 — x2 [-7,7] "1 Exercises 65-70, discuss the continuity of the
36 f) =3 J9— 7 [=3.3] ; composite function k(x) = f(g(x)).
37, flo) = 3—x, x<0 [~ 1.4] 65. f(x) = x? 66. f(x) =5x+1
’ 34+3x x>0 ’ gx) =x—-1 glx) = x3
1 1 1
38. glx) = 2 -4 [-1,2] 67. f(x) = s 68. f(x) = ﬁ
; P—— (x)=x2+5 )=x-1
[w]i#Cr[=] Removable and Nonremovable Discontinuities 8 8
T '3 In Exercises 39-58, find the x-values (if any) 69. f(x) = tan x 70. f(x) = sinx
E at which f is not continuous. Which of the x
: discontinuities are removable? glx) = 5 g(x) = &
6 4 - . L .
39. flx) = " 40. f(x) = P fl Finding Discontinuities Using Technology In Exercises
71-74, use a graphing utility to graph the function. Use the
41. f(x) = I 1 5 2. fx) = %] graph to determine any x-values at which the function is not
X X continuous.
43. f(x) = 3x — cos x 44. f(x) = sinx — 8x |
71. f(x) =[x] — x 72. h(x) = 5———
45. flx) = d 46. f(x) = o X2 +2x—15
x2—x x2—4
73. o0 {x2—3x,x>4
x+2 x+2 - 8W) =
= = =z = 2x— 5, x<4
47. fx) x2—3x—10 8. fx) x2—x—6 |
cos x —
2x — 3 2 x<0
49. f(x) = +7] 50. f(x) = 2= 31 74. flx) = x !
x+7 x—3 5y $=0
Ix+1, x<2
51 f(x) =4, Testing for Continuity In Exercises 75-82, describe the
3—x, x>2
5 5 interval(s) on which the function is continuous.
—2x x <
52. f(x) 2{ ,
x> —4x+1, x>2 . X x+ 1
A 750 = 5 76. f() ==
tan—/, |x| <1
53. flx) = 4 77. fx) =3 — Jx 78. f(x) = xJ/x + 3
X, |x| = 1
X 1
esc TE =3 <2 79. f(x) = sec - 80. f(x) = cos
54. f(x) = 6’ B ,
2, lx =3 >2 i 2x—4, x#3
nx 8L f() = {x— 1 82. 100 = |
55. f(x) = csc2x 56. f(x) = tan — - ) x=3
2 2, x=1
57. f(x) =[x — 8] 58. f(x) =5~ [] Existence of a Zero In Exercises 83-86, explain why the
function has at least one zero in the given interval.
E [a] Making a Function Continuous In Exercises
‘3¢ 59-64, find the constant a, or the constants a and b, Function Interval
such that the function is continuous on the entire 83. f(x) = Hx* — X3 + 4 [1,2]
real number line. 12 ’
- 84. fx) =x*+5x—3 [0, 1]
x =1 x =1
85. =x>-2- 0,
59. f(x) = { RN 60. f(x) = { bsox> fx) =x cos X [0, 7]
5
e <> 4 sin x £ <0 86. f(x) = T + tanﬁ [1, 4]
61. flx) = {ax,z ; ) 62. g(x) = x
' a—2x xz0 Existence of Multiple Zeros In Exercises 87 and 88,
2, x< —1 explain why the function has at least two zeros in the interval
63. f() ={ax+b, —1<x<3 (1, 5].
-2, x=z3 87. f(x) = (x — 3)2 — 2 88. f(x) = 2 cosx
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Flc* Using the Intermediate Value Theorem In Exercises

89-94, use the Intermediate Value Theorem and a graphing
utility to approximate the zero of the function in the interval
[0, 1]. Repeatedly “zoom in” on the graph of the function to
approximate the zero accurate to two decimal places. Use the
zero or root feature of the graphing utility to approximate the
zero accurate to four decimal places.

89. fw)=x*+x—-1

90. f(x) =x*—x2+3x—1

91. f(x) = VX2 +17x+19 -6

92. flx) = V/x*+39%x+ 13-4

93. g(t) = 2cost — 3t

94. h(f) =tan 0 + 30 — 4
Eg;@ Using the Intermediate Value Theorem In
'F_T" Exercises 95-100, verify that the Intermediate

O < H Value Theorem applies to the indicated interval
- and find the value of ¢ guaranteed by the theorem.

95. f(x) =x*+x—1, [0,5], f(c)=11
96. f(x) =x*—6x+8, [0,3], flc)=0
97. fx) = Vx+7-2, [0,5], flc)=1
98. f(x) = Jx+8, [-9,—6], flc)=6

99. f(x) = ’;__f, (1,3, flc)=3
100. f(x) = i _Jrlx, B 4], fle)=6

EXPLORING CONCEPTS

101. Writing a Function Write a function that is
continuous on (a, b) but not continuous on [a, b].

102. Sketching a Graph Sketch the graph of any
function f such that

lin% f(x) =1 and lirgﬁ fx) = 0.

Is the function continuous at x = 3? Explain.

103. Continuity of Combinations of Functions If
the functions f and g are continuous for all real x, is
f+ g always continuous for all real x? Is f/g always
continuous for all real x? If either is not continuous,
give an example to verify your conclusion.

104. Removable and Nonremovable
Discontinuities Describe the difference between a
discontinuity that is removable and a discontinuity that
is nonremovable. Then give an example of a function
that satisfies each description.

(a) A function with a nonremovable discontinuity at
x=4

(b) A function with a removable discontinuity at
x=-4

(c) A function that has both of the characteristics
described in parts (a) and (b)

1.4 Continuity and One-Sided Limits 85

True or False? In Exercises 105-110, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

105. If lim f(x) = L and f(c) = L, then f is continuous at c.

106. If f(x) = g(x) for x # c and f(c) # g(c), then either f or g
is not continuous at c.

107. The Intermediate Value Theorem guarantees that f(a) and
£(b) differ in sign when a continuous function f has at least
one zero on [a, b].

108. The limit of the greatest integer function as x approaches 0
from the left is — 1.

109. A rational function can have infinitely many x-values at
which it is not continuous.

x—1
110. The function f(x) = |x — 1|

is continuous on (— 0, co).

111. Think About It Describe how the functions

J&) =3 +[x] and g(x) =3 —[—x]
differ.

Sima
112. HOW DO YOU SEE IT? Every day you

dissolve 28 ounces of chlorine in a swimming
pool. The graph shows the amount of chlorine
£(?) in the pool after ¢ days. Estimate and
interpret lim f(z) and lim f(z).

1—4- 1—4+

y
140 -
112 +
84+
56 +

* ‘\0\0\0\0\0\0 ‘
T T T T T T T t

1 2 3 4 5 6 7

113. Data Plan A cell phone service charges $10 for the first
gigabyte (GB) of data used per month and $7.50 for each
additional gigabyte or fraction thereof. The cost of the data
plan is given by

Ct)=10—75[1—+¢, t>0
where ¢ is the amount of data used (in GB). Sketch the graph
of this function and discuss its continuity.

114. Inventory Management The number of units in
inventory in a small company is given by

N(H = 25(2[[%]] - l>

where ¢ is the time in months. Sketch the graph of this
function and discuss its continuity. How often must this
company replenish its inventory?
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115. Déja Vu At 8:00 a.M. on Saturday, a man begins running

116.

117.

118.

119.

120.

121.

up the side of a mountain to his weekend campsite (see
figure). On Sunday morning at 8:00 A.M., he runs back down
the mountain. It takes him 20 minutes to run up but only
10 minutes to run down. At some point on the way down,
he realizes that he passed the same place at exactly the same
time on Saturday. Prove that he is correct. [Hint: Let s(t)
and r(7) be the position functions for the runs up and down,
and apply the Intermediate Value Theorem to the function

f) = s(t) — r(n).]

Not drawn to scale

Saturday 8:00 AM. Sunday 8:00 AM.

Volume Use the Intermediate Value Theorem to show
that for all spheres with radii in the interval [5, 8], there is
one with a volume of 1500 cubic centimeters.

Proof Prove that if f is continuous and has no zeros on
[a, b], then either

f(x)>0forall xin[a,b] or f(x)<O forall xin [a, b].
Dirichlet Function Show that the Dirichlet function

0, if x is rational
flx) = e
1, if xis irrational
is not continuous at any real number.
Continuity of a Function Show that the function

) = {0, if x is rational
kx, if x is irrational

is continuous only at x = 0. (Assume that k is any nonzero
real number.)

Signum Function The signum function is defined by

-1, x< O
sgn(x) =40, x=0.
1, x>0

Sketch a graph of sgn(x) and find the following (if possible).

(a) liI(I)l_ sgn(x) (b) lirg+ sgn(x) (c) lirr(l) sgn(x)
Modeling Data The table lists the frequency F (in Hertz)

of a musical note at various times ¢ (in seconds).

t 0 1 2 3 4 5

F | 436 | 444 | 434 | 446 | 433 | 444

(a) Plot the data and connect the points with a curve.

(b) Does there appear to be a limiting frequency of the note?
Explain.

122. Creating Models A swimmer crosses a pool of width b
by swimming in a straight line from (0, 0) to (2b, b). (See

figure.)

(2b, b)

(a) Let f be a function defined as the y-coordinate of the
point on the long side of the pool that is nearest the
swimmer at any given time during the swimmer’s
crossing of the pool. Determine the function f and sketch

its graph. Is f continuous? Explain.

(b) Let g be the minimum distance between the swimmer
and the long sides of the pool. Determine the function g

and sketch its graph. Is g continuous? Explain.

123. Making a Function Continuous Find all values of ¢

such that f is continuous on (— oo, c0).

1-x% x<c
X, X >c

=1

124. Proof Prove that for any real number y there exists x in

(=m/2, m/2) such that tan x = y.
125. Making a Function Continuous Let

fx) = 7‘/]54'02_‘”

X

c > 0.

What is the domain of f? How can you define f at x = 0 in

order for f to be continuous there?
126. Proof Prove that if

dim e + Ax) = flc)

then f is continuous at c.

127. Continuity of a Function Discuss the continuity of the

function A(x) = x[x].
128. Proof

(a) Let f,(x) and f,(x) be continuous on the closed interval
la, b].If fi(a) < f)(a) and f,(b) > f,(b), prove that there

exists ¢ between a and b such that f,(c) = f(c).

(b) Show that there exists ¢ in | 0, z such that cos x = x.
F >

Use a graphing utility to approximate c to three decimal

places.

PUTNAM EXAM CHALLENGE

129. Prove or disprove: If x and y are real numbers with
y=0and y(y + 1) < (x + 1)2, then y(y — 1) < x2

130. Determine all polynomials P(x) such that
P(x* + 1) = (P(x))? + 1 and P(0) = 0.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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lim f(x) = o

Infinite limits
Figure 1.39

@ Determine infinite limits from the left and from the right.
@ Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits

Consider the function f(x) = 3/(x — 2). From Figure 1.38 and the table, you can see
that f(x) decreases without bound as x approaches 2 from the left, and f(x) increases
without bound as x approaches 2 from the right.

x approaches 2 from the left. > < x approaches 2 from the right.

X 15| 19 1.99 1.999 | 2| 2001 | 201 | 2.1 | 2.5
fx)| —6 | =30 | —300 | —3000 | ? | 3000 | 300 | 30 | 6

f(x) decreases without bound. > < f(x) increases without bound.

This behavior is denoted as

lim = —00 f(x) decreases without bound as x approaches 2 from the left.

= 0o0. f(x) increases without bound as x approaches 2 from the right.

The symbols o0 and — oo refer to positive infinity and negative infinity, respectively.
These symbols do not represent real numbers. They are convenient symbols used to
describe unbounded conditions more concisely. A limit in which f(x) increases or
decreases without bound as x approaches c is called an infinite limit.

Definition of Infinite Limits

Let f be a function that is defined at every real number in some open interval
containing c¢ (except possibly at c itself). The statement

hinf(x) =

means that for each M > 0 there exists a § > 0 such that f(x) > M whenever
0 < |x — ¢| < & (see Figure 1.39). Similarly, the statement

lim f(x) = —o0
X—cC

means that for each N < 0 there exists a 8 > 0 such that f(x) < N whenever
0<|x—c|<é.

To define the infinite limit from the left, replace 0 < |x — ¢| < & by
¢ — & < x < c. To define the infinite limit from the right, replace
0< |x—c| <dbyc<x<c+é.

Be sure you see that the equal sign in the statement lim f(x) = ©© does not mean
that the limit exists! On the contrary, it tells you how the limit fails to exist by denoting
the unbounded behavior of f(x) as x approaches c.
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Exploration

Use a graphing utility to
graph each function. For
each function, analytically
find the single real number
c that is not in the domain.
Then graphically find the
limit (if it exists) of f(x) as
x approaches ¢ from the left
and from the right.

a. fl) = ——
b f() = 51—
e 10 = g
d ) = 1 3m

Limits and Their Properties

EXAMPLE 1 Determining Infinite Limits from a Graph

Determine the limit of each function shown in Figure 1.40 as x approaches 1 from the

left and from the right.

(@ (b)
Each graph has an asymptote at x = 1.
Figure 1.40

Solution

a. When x approaches 1 from the left or the right, (x — 1) is a small positive number.

Thus, the quotient 1/(x — 1)? is a large positive number, and f(x) approaches
infinity from each side of x = 1. So, you can conclude that
1

lim ————= = oo.

Limit from each side is infinity.
x—1 (x - 1)2

Figure 1.40(a) confirms this analysis.

. When x approaches 1 from the left, x — 1 is a small negative number. Thus, the

quotient —1/(x — 1) is a large positive number, and f(x) approaches infinity from
the left of x = 1. So, you can conclude that

lim
x—=17 X —

= o0. Limit from the left side is infinity.
When x approaches 1 from the right, x — 1 is a small positive number. Thus, the
quotient —1/(x — 1) is a large negative number, and f(x) approaches negative
infinity from the right of x = 1. So, you can conclude that

lim = —o0,
=1t x — 1

Limit from the right side is negative infinity.

Figure 1.40(b) confirms this analysis. =

Remember that you can use a numerical approach to analyze
a limit. For instance, you can use a graphing utility to create a table of values to
analyze the limit in Example 1(a), as shown in the figure below.

Enter x-values using ask mode.

X Y1

-9 100 - As x approaches 1 from the left, f(x)

) 339 12200// increases without bound.
ERROR

1.001 | 1E6 —_|

1.01 10000 | —— | X o

1.1 100 I~ As x approaches 1 from the right, f(x)
X=1 increases without bound.

Use a graphing utility to make a table of values to analyze the limit in Example 1(b).



If the graph of
a function f has a vertical
asymptote at x = c, then f is
not continuous at c.

(a)

(c)
Functions with vertical asymptotes
Figure 1.41
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Vertical Asymptotes

If it were possible to extend the graphs in Figure 1.40 toward positive and negative
infinity, you would see that each graph becomes arbitrarily close to the vertical line
x = 1. This line is a vertical asymptote of the graph of f. (You will study other types
of asymptotes in Sections 3.5 and 3.6.)

Definition of Vertical Asymptote

If f(x) approaches infinity (or negative infinity) as x approaches ¢ from the right
or the left, then the line x = c is a vertical asymptote of the graph of f.

In Example 1, note that each of the functions is a quotient and that the vertical
asymptote occurs at a number at which the denominator is 0 (and the numerator is not
0). The next theorem generalizes this observation.

Vertical Asymptotes
Let f and g be continuous on an open interval containing c. If f(c) # 0,
g(c) = 0, and there exists an open interval containing c such that g(x) # 0 for
all x # c in the interval, then the graph of the function

X
: [=]p3: (=]
has a vertical asymptote at x = c. Fi}'d K
A proof of this theorem is given in Appendix A. E]l,__

Finding Vertical Asymptotes

e > See LarsonCalculus.com for an interactive version of this type of example.

a. When x = — 1, the denominator of
1
ho) =505
is 0 and the numerator is not 0. So, by Theorem 1.14, you can conclude that x = —1

is a vertical asymptote, as shown in Figure 1.41(a).

b. By factoring the denominator as

h(x)=x2+1= x2+1
2=-1 x-Dx+1
you can see that the denominator is 0 at x = —1 and x = 1. Also, because the

numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude that
the graph of f has two vertical asymptotes, as shown in Figure 1.41(b).

c. By writing the cotangent function in the form

COos X

h(x) = cotx = =
sin x

you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all values
of x such that sin x = 0 and cos x # 0, as shown in Figure 1.41(c). So, the graph
of this function has infinitely many vertical asymptotes. These asymptotes occur at
x = nm, where n is an integer. - |
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h(x) increases and decreases without
bound as x approaches —2.
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6
—4 | / 6
6
The graph of 4 has a vertical asymptote
atx = 1.
Figure 1.43

Limits and Their Properties

Theorem 1.14 requires that the value of the numerator at x = ¢ be nonzero. When
both the numerator and the denominator are 0 at x = ¢, you obtain the indeterminate
form 0/0, and you cannot determine the limit behavior at x = ¢ without further
investigation, as illustrated in Example 3.

EXAMPLE 3 A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

x2+2x— 8

hix) = x> —4

Solution Begin by simplifying the expression, as shown.
x2+2x— 8

x2—4
_ e+ H—72]

(& +2)—2)

x+4
T x+2

hx) =

X+ 2

At all x-values other than x = 2, the graph of A coincides with the graph of
k(x) = (x + 4)/(x + 2). So, you can apply Theorem 1.14 to k to conclude that there

is a vertical asymptote at x = —2, as shown in Figure 1.42. From the graph, you can
see that
. x4+ 2x—8 . ox2+2x—8
lim ———= -0 and Ilim ——5——— =™
x——2" xz — 4 x——2" x2 — 4

Note that x = 2 is not a vertical asymptote.

EXAMPLE 4 Determining Infinite Limits

Find each limit.

x2 — 3x . ox2—3x
and lim
x>t X —

lim
x—=1" X —

Solution Because the denominator is 0 when x = 1 (and the numerator is not 0),
you know that the graph of
_oxr— 3

x—1

h(x)

has a vertical asymptote at x = 1. This means that each of the given limits is either o0
or —o0. You can determine the result by analyzing A at values of x close to 1 or by
using a graphing utility. From the graph of 4 shown in Figure 1.43, you can see that
the graph approaches c© from the left of x = 1 and approaches — o0 from the right of
x = 1. So, you can conclude that

_x? — 3x
lim = The limit from the left is infinity.
x—1- x — 1
and
X = 3x -
lim = —00 The limit from the right is negative infinity. -
=1t x — 1

When using a graphing utility, be careful to
interpret correctly the graph of a function with a vertical asymptote—some graphing
utilities have difficulty drawing this type of graph.



o Be sure you

understand that Property 2 of
Theorem 1.15 is not valid when
lim g(x) = 0.

° Note that the

solution to Example 5(d) uses

Property 1 from Theorem 1.15
for which the limit of f(x) as x
approaches c is — 0.
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THEOREM 1.15 Properties of Infinite Limits

Let ¢ and L be real numbers, and let f and g be functions such that
limf(x) = 0 and limg(x) = L.
xc x—c

L. Sum or difference: lim [f(x) = g(x)] = o0

2. Product: ll_)nz [fx)glx)] =00, L >0

lim [f(x)g(x)] = —o0, L <0

. gl
3. Quotient: Iim=—=20
x—c f(x)
Similar properties hold for one-sided limits and for functions !Eq'_";‘:'.!ilE
for which the limit of f(x) as x approaches c is —o0 [see E
Example 5(d)]. [w] e

Proof Here is a proof of the sum property. (The proofs of the remaining properties
are left as an exercise [see Exercise 70].) To show that the limit of f(x) + g(x) is
infinite, choose M > 0. You then need to find & > 0 such that [f(x) + gx)] > M
whenever 0 < |x — ¢| < é. For simplicity’s sake, you can assume L is positive. Let
M, = M + 1. Because the limit of f(x) is infinite, there exists &, such that f(x) > M,
whenever 0 < |x — ¢| < §,. Also, because the limit of g(x) is L, there exists 8, such
that |g(x) — L| < 1 whenever 0 < |x — ¢| < §,. By letting & be the smaller of &, and
J,, you can conclude that 0 < |x — ¢| < &implies f(x) > M + 1 and |g(x) — L| < 1.
The second of these two inequalities implies that g(x) > L — 1, and adding this to the
first inequality, you can write

fO) +g)>M+1)+(L-1)=M+L>M.
So, you can conclude that

lim [f(x) + g(x)] = oe. i

EXAMPLE 5 Determining Limits

. .1 .
a. Because lim 1 = 1 and lim — = 00, you can write
x—0 x—0 X

. 1
lim <1 + = = 0. Property 1, Theorem 1.15
x—0 X
b. Because lim (x> + 1) = 2 and lim (cot mx) = —00, you can write
x—1- x—1-
.ox2+1
lim =0. Property 3, Theorem 1.15

x—1- cotmx

c. Because lim+ 3 =3 and lim+ cotx = OO, you can write

x—0 x—0
lim 3 cotx = oo, Property 2, Theorem 1.15
x—0*
. > 1 .
d. Because lim x* = 0 and lim — = — 00, you can write

x—0~ x—=0" X

. 1
lim <x2 + —|] = —o0. Property 1, Theorem 1.15 |
x—0" X
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Limits and Their Properties

1.5 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Infinite Limit 1In your own words, describe the
meaning of an infinite limit. What does oo represent?

2. Vertical Asymptote In your own words, describe
what is meant by a vertical asymptote of a graph.

[s] Determining Infinite Limits from a
'# Graph In Exercises 3-6, determine whether
f(x) approaches co or —co as x approaches —2
from the left and from the right.

[

|
3. £ =25 ~ 4 f0) = —

6. f(x) = sec =X

[=]f#=[=] Finding Vertical Asymptotes In Exercises
17-32, find the vertical asymptotes (if any) of the

Off? graph of the function.
17. f) = -5 18, fl0) = ——
<=3 . flx =3P
X 3x
9. f) = 5 2. f() = 57
-1 3s + 4
21. (1) = t2 — 22 h(s) = 5=
3 X2 —5x+25
B0 =0 28 =5 s
4x%2 + 4x — 24
25. fx) = x> — 9x2 + 18x
x>2—=9
26. h(x)_x3+3x2—x—3
x> —2x— 15
27. f(x)_x3—5x2+x—5
t* — 2t
28. () = ¢
29. f(x) = cscx 30. f(x) = tan nx
31. s(r) = E 32. g(0) = o
'[a] Vertical Asymptote or Removable

i Discontinuity In Exercises 33-36, determine

whether the graph of the function has a vertical
asymptote or a removable discontinuity at x = —1.
Graph the function using a graphing utility to
confirm your answer.

J UL
nn

j|[m] Determining Infinite Limits In Exercises

the right.

9. flx) = G- ap

7-10, determine whether f(x) approaches oo
or —oo as x approaches 4 from the left and from

B fW =
10. f(x) = (x:14)2

Numerical and Graphical Analysis In Exercises 11-16,
create a table of values for the function and use the result to
determine whether f(x) approaches co or — co as x approaches
—3 from the left and from the right. Use a graphing utility to
graph the function to confirm your answer.

1. f(x) =
¥2
x2—=9

13. f(x) =

15. f(x) = cot%

12. f(x) = z’ig
14. f(x) = —3}”
16. f(x) = tan?

2 1 —
3. f() = cos)gx—i_ 1 1) 36. f(x) = sm(x_i_-i-1 1)

=

37.
39.
41.
43.
45.

47. lim

49.

'[a] Finding a One-Sided Limit In Exercises

-

lim
x—2tx — 2

lim X *t3
x—>3x2+x—6

lim (1 + l)
x—0" X
2
o 2
xl}I—r}V <X + )
lim <s1nx + )
x—0*

¥

x—n*t CSC X

lim xsecmx
x—(1/2)"

¥ 37-50, find the one-sided limit (if it exists).

x2

38. lim

40.

x—27 x2 + 4
lim 6x2+ x— 1
xo(—1/2)* 4x%2 — 4x — 3

42. lim (6 - %)

x—0* X
. 1

44. lim (x - —+ 3>
x—0" X

46. lim 2
X—)(ﬂ/2)+ COS x

48, lim X2
x—0~ COot x

50. lim x?tanmx
x(1/2)*
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PpFinding a One-Sided Limit Using Technology In
Exercises 51 and 52, use a graphing utility to graph the
function and determine the one-sided limit.

x> +x+1

it -1 xl>1 2+x+1

Determining Limits In Exercises 53 and 54,
use the information to determine the limits.

EJJ

53. lim f(x) = 54. lim f(x) = —

x—=c

lim g(x) = 3

x—=c

@ lim[/() + g(0)]
(b) lim [£()2(0)]

gx)
© lim 55

lim g(x) = —

x—=c

@) lim /() + g(0)]
(b) lim [£()2(0)]

gx)
© lim 55

EXPLORING CONCEPTS

55. Writing a Rational Function Write a rational
function with vertical asymptotes at x = 6 and x = —2,
and with a zero at x = 3.

56. Rational Function Does the graph of every rational
function have a vertical asymptote? Explain.

57. Sketching a Graph Use the graph of the function
f (see figure) to sketch the graph of g(x) = 1/f(x) on the
interval [—2, 3]. To print an enlarged copy of the graph,
go to MathGraphs.com.

58. Relativity According to the theory of relativity, the
mass m of a particle depends on its velocity v. That is,
My
V1= 02/
at rest and c is the speed of light. Find the limit of the mass as
v approaches ¢ from the left.

m= where my, is the mass when the particle is

f 59.

Numerical and Graphical Reasoning Use a graphing
utility to complete the table for each function and graph each
function to estimate the limit. What is the value of the limit
when the power of x in the denominator is greater than 3?

X 11051]02](011] 001 [ 0.001 | 0.0001
fx)
— sin x . x—sinx
@ g SR o g
. x—sinx — sin x
© I @ Jim =

iStockphoto.com/WendellandCarolyn
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JHOW DO YOU SEE IT? For a quantity of gas
at a constant temperature, the pressure P is inversely
proportional to the volume V. What is the limit of P
as V approaches 0 from the right? Explain what this
means in the context of the problem.

P

Pressure

Volume

61. Rate of Change A 25-foot ladder is leaning against a
house (see figure). If the base of the ladder is pulled away from
the house at a rate of 2 feet per second, then the top will move
down the wall at a rate of

- 2

625 — x?
where x is the distance between the base of the ladder and the
house, and r is the rate in feet per second.

ft/sec

A 1’\
E M 25 ft %g

|<— X —>1

(a) Find the rate r when x is 7 feet.
(b) Find the rate » when x is 15 feet.
(c) Find the limit of r as x approaches 25 from the left.

¢ 62. Average Speed
On a trip of d miles to another city, a truck driver’s average
speed was x miles per hour. On the return trip,
the average speed was y miles per hour. The average
speed for the round trip was 50 miles per hour.

(a) Verify that

. 25x
x =25

‘What is the domain?
(b) Complete the table.

x | 30]40 50|60

y

Are the values of y different than you expected? Explain.

(c) Find the limit of y as x approaches 25 from the right
and interpret its meaning.
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63. Numerical and Graphical Analysis Consider the
shaded region outside the sector of a circle of radius 10 meters
and inside a right triangle (see figure).

10 m

(a) Write the area A = f(6) of the region as a function of 6.
Determine the domain of the function.

Fla— (b) Use a graphing utility to complete the table and graph the
function over the appropriate domain.

0 03 | 06 | 09 | 12 | 15
f(6)

(c) Find the limit of A as 6 approaches 7/2 from the left.

HU‘ 64. Numerical and Graphical Reasoning A crossed belt

connects a 20-centimeter pulley (10-cm radius) on an electric
motor with a 40-centimeter pulley (20-cm radius) on a saw
arbor (see figure). The electric motor runs at 1700 revolutions
per minute.

(a) Determine the number of revolutions per minute of the saw.

(b) How does crossing the belt affect the saw in relation to the
motor?

(c) Let L be the total length of the belt. Write L as a function
of ¢, where ¢ is measured in radians. What is the domain of
the function? (Hint: Add the lengths of the straight sections
of the belt and the length of the belt around each pulley.)

(d) Use a graphing utility to complete the table.

0.3 0.6 0.9 1.2 1.5

L

(e) Use a graphing utility to graph the function over the
appropriate domain.

(f) Find lim L.
$—(m/2)
(g) Use a geometric argument as the basis of a second method
of finding the limit in part (f).
(h) Find lim L.
¢—0"

True or False? In Exercises 65-68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65. The graph of a function cannot cross a vertical asymptote.

66. The graphs of polynomial functions have no vertical
asymptotes.

67. The graphs of trigonometric functions have no vertical
asymptotes.

68. If f has a vertical asymptote at x = 0, then f is undefined at
x=0.

69. Finding Functions Find functions f and g such that
lim f(x) = oo and lim g(x) = oo, but lim [ f(x) — g(x)] # 0.
x—c x—c x—c

70. Proof Prove the difference, product, and quotient properties
in Theorem 1.15.

71. Proof Prove that if lim f(x) = oo, then lim L 0.
x—c x—mf()C)
72. Proof Prove that if

1
lim—— =0

TN

then lim f(x) does not exist.

x—c

Infinite Limits In Exercises 73-76, use the -4 definition of
infinite limits to prove the statement.

73. lim =00 74. lim ! = —00
=3 x — 3 =5 x — 5

75. lim ———— = —o00 76. lim ——— = o©
x—8*+ 8§ — X—0— _

SECTIONPHNECT e e 0006060000000

Graphs and Limits of Trigonometric Functions
Recall from Theorem 1.9 that the limit of

__sinx

fo) ==

X

as x approaches 0 is 1.

(a) Use a graphing utility to graph the function f on the interval
—m < x < m.Explain how the graph helps confirm this theorem.

(b) Explain how you could use a table of values to confirm the
value of this limit numerically.

(c) Graph g(x) = sin x by hand. Sketch a tangent line at the point
(0, 0) and visually estimate the slope of this tangent line.

(d) Let (x, sin x) be a point on the graph of g near (0, 0), and write
a formula for the slope of the secant line joining (x, sin x) and
(0, 0). Evaluate this formula at x = 0.1 and x = 0.01. Then
find the exact slope of the tangent line to g at the point (0, 0).

(e) Sketch the graph of the cosine function A(x) = cos x. What is
the slope of the tangent line at the point (0, 1)? Use limits to
find this slope analytically.

(f) Find the slope of the tangent line to k(x) = tan x at (0, 0).



Review Exercises

Review Exercises 95

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Precalculus or Calculus In Exercises 1 and 2, decide
whether the problem can be solved using precalculus or
whether calculus is required. If the problem can be solved using
precalculus, solve it. If the problem seems to require calculus,
explain your reasoning and use a graphical or numerical
approach to estimate the solution.

1. Find the distance between the points (1, 1) and (3, 9) along the
curve y = x2.

2. Find the distance between the points (1, 1) and (3, 9) along the
liney = 4x — 3.

Estimating a Limit Numerically In Exercises 3 and 4,
complete the table and use the result to estimate the limit. Use
a graphing utility to graph the function to confirm your result.

. x—3
3 T 12

X 29 1299 | 2999 | 3 | 3.001 | 3.01 | 3.1

f) ?
4. lim 7VX+4_2
x—=0 X
X —-0.1 | —0.01 | —0.001 | O | 0.001 |0.01] 0.1
fx) ?

13. linz}\/t +2 14. lin% I +1
t— x—

15. lim (3x—-1) 16. lim (x — 4)°
. 4 .

17. lim 18. lim ———
x—4 X — —2x>+ 1

2%+ 1lx + 15 . t2—16

o, lim TN

21, fim XX =31 2. fim Y4 Fx—=2
x4 x—4 x—0 x

53, qigg L/ DI =1 R NS
x—0 X 5s—0 S

25, lim LS8 X 26. lim
x—0 sin x x—m/4 tan x

27. lim sin[(/6) + Ax] — (1/2)
Ax—0 Ax

[Hint: sin(f + ¢) = sin 0 cos ¢ + cos 0 sin ¢]

28, lim SOS(T +AY) + 1
Ax—0 Ax

[Hint: cos(6 + ¢) = cos 0 cos ¢ — sin 0 sin ¢]

Evaluating a Limit In Exercises 29-32, evaluate the limit

Finding a Limit Graphically In Exercises 5 and 6, use the

given lim f(x) = —6 and lim g(x) = 3.
. . f)
29. 1 30. lim —=
lim [ f(x)g(x)] e gx)
31.

lim [£(0) + 2g(0)]

32. lim [f(x)?

graph to find the limit (if it exists). If the limit does not exist, i Graphical, Numerical, and Analytic Analysis In

explain why.

—2x
6 g(x)=x_3
9+ |
o |
3/
F ottt x
-3 | 3 6
6L
—9 -+ :

(a) 1i_>n% h(x)

(b) lim h(x) (a) lim gx) (b lim gx)
Using the &-0 Definition of a Limit In Exercises 7-10,
find the limit L. Then use the &-8 definition to prove that the
limit is L.
7. lim (x + 4) 8. lim /x
x—1 x—9

10. lim 9

: _ 2
% )1(14)11% (1 * ) x—=5
Finding a Limit In Exercises 11-28, find the limit.

11. lim x? 12. lim (5x — 3)
x—0

x——6

Exercises 33-36, use a graphing utility to graph the function
and estimate the limit. Use a table to reinforce your conclusion.
Then find the limit by analytic methods.

J2x+9-3 lim [1/(x + 4)]— (1/4)

33. lim 34.
x—0 X x—0 X
3 _
35. lim 1% 36. lim S5X — 1
—-9 x+9 x—0 X

Free-Falling Object In Exercises 37 and 38, use the position
function s(f) = —4.9¢2 + 250, which gives the height (in
meters) of an object that has fallen for ¢ seconds from a height
of 250 meters. The velocity at time ¢ = a seconds is given by

lim 2@ =50,
t—a a —t
37. Find the velocity of the object when ¢t = 4.

38. When will the object hit the ground? At what velocity will the
object impact the ground?

Finding a Limit In Exercises 39-50, find the limit (if it
exists). If it does not exist, explain why.

. 1 . x—6
3. xligl* x+3 40. xli{lﬁ’l’ x2 — 36
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Jx -5

im
x—25" x — 25

Limits and Their Properties

lx — 3l
42. lim

x=3~ x — 3

(x—2)? x<2

41.

43. 1i_)rr; f(x), where f(x) = {

2 —x, x> 2
JI—x, x<=<1
44. lim g(x), where g(x) =
x—>17 x + 1, x> 1
3+ 1, t<1

45. }1_r)r11 h(t), where h(t) = [;(t T, rs1

—s2—45 -2, s=< -2
52+ 4s + 6, s> =2
48. lim [x — 1]

\

46. 21112 £f(s), where f(s) = {

47. lim (2] + 1)

2 _
49, lim =% 50. lim Vx(x — 1)

x—2" |x - 2| x—1

Continuity on a Closed Interval In Exercises 51 and 52,
discuss the continuity of the function on the closed interval.

51 o) = V8= [-2.2] 52 h(x) = 5% [0. 5

Removable and Nonremovable Discontinuities In

Exercises 53-58, find the x-values (if any) at which f is not

continuous. Which of the discontinuities are removable?

53. f(x) = x* — 8lx
4

54. flx) =x2—x+20

55. f(x) = m 56. f(x) = x2 —9
57 fl) = 57— 58. f(x) = %

59. Making a Function Continuous Find the value of ¢
such that the function is continuous on the entire real number
line.

x+3 x=2
cx+6, x>2

1w =1

60. VMiaking a Function Continuous Find the values of b
and ¢ such that the function is continuous on the entire real
number line.

x+ 1, 1<x<3
X2+bxte |x—2z1

7w =1

Testing for Continuity In Exercises 61-66, describe the
intervals on which the function is continuous.

61. f(x) = —3x2+7

4x2 4+ Tx — 2

2. =

62. f(x) x+2

63. f(x) = /x + cosx

64. f(x) =[x+ 3]

3x2 —x—2

65. fy =1 x-1 > *71
0, x=1
5-x, x=2

66 f(x):{zx—3 x>2

67. Using the Intermediate Value Theorem Use the
Intermediate Value Theorem to show that
f) =200 =3
has a zero in the interval [1, 2].

68. Using the Intermediate Value Theorem Use the
Intermediate Value Theorem to show that
f=x>+x-2

has at least two zeros in the interval [—3, 3].

Using the Intermediate Value Theorem In Exercises
69 and 70, verify that the Intermediate Value Theorem applies
to the indicated interval and find the value of ¢ guaranteed by
the theorem.

69. f(x) =x>+5x—4, [-1,2], flc)=2
70. f(x) = (x—6)*+4, [47], flc)=3
Determining Infinite Limits In Exercises 71 and 72,

determine whether f(x) approaches co or — co as x approaches
6 from the left and from the right.

1 —1

71. f(x) = ﬁ 72. f(x) = (x — 6)2

Finding Vertical Asymptotes In Exercises 73-78, find
the vertical asymptotes (if any) of the graph of the function.

73. f(x) = % 74. f(x) = ﬁ

x3 6x
29 76.h()c)—36_x2

75. f(x) =

77. f(x) = sec i

> 78. f(x) = cscmx

Finding a One-Sided Limit In Exercises 79-88, find the
one-sided limit (if it exists).

2
79, lim 221 80. lim
x—1- x—1 x—(1/2)* 2x — 1
. x+1 . x+1
81. )cl}[nlJr x3 + 1 82. xl}l;nl’ x4 -1
. 1 . 1
83. lim |x — = 84. lim ———
x—0" X x—2- 3 x2 — 4
. sindx . secx®
s Jip %5, s Jiy 5
2
87, lim SO 88. lim —> %
x—0* X x—0~ X

89. Environment A utility company burns coal to generate
electricity. The cost C in dollars of removing p% of the air
pollutants in the stack emissions is

_ 80,000p
100 — p’

0<p < 100.

(a) Find the cost of removing 50% of the pollutants.
(b) Find the cost of removing 90% of the pollutants.

(c) Find the limit of C as p approaches 100 from the left and
interpret its meaning.
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see CalcChat.com for tutorial help and
worked-out solutions to odd-numbered exercises.

P.S. Problem Solving

1. Perimeter Let P(x, y) be a point on the parabola y = x2 in
the first quadrant. Consider the triangle APAO formed by P,
A(0, 1), and the origin O(0, 0), and the triangle APBO formed
by P, B(1, 0), and the origin (see figure).

(a) Write the perimeter of each triangle in terms of x.

(b) Let r(x) be the ratio of the perimeters of the two triangles,

_ Perimeter APAO

() = Perimeter APBO’

Complete the table. Calculate liI})l+ r(x).
X—>

X 4121101 001

Perimeter A PAO

Perimeter APBO
r(x)

2. Area Let P(x, y) be a point on the parabola y = x2 in the first
quadrant. Consider the triangle APAO formed by P, A(0, 1),
and the origin 0(0, 0), and the triangle APBO formed by P,
B(1, 0), and the origin (see figure).

(a) Write the area of each triangle in terms of x.

(b) Let a(x) be the ratio of the areas of the two triangles,

_ Area APBO

alx) = Area APAO’

Complete the table. Calculate liI})l+ a(x).

X 4121|1101 ] 0.01

Area APAO

Area APBO
a(x)

3. Area of a Circle

(a) Find the area of a regular hexagon inscribed in a circle of
radius 1 (see figure). How close is this area to that of the circle?

(b) Find the area A, of an n-sided regular polygon inscribed in
a circle of radius 1. Write your answer as a function of n.

(c) Complete the table. What number does A, approach as n
gets larger and larger?

n 6 | 12 | 24 | 48 | 96

A

n

. Tangent Line Let P(3,4) be a point on the circle

x% + y? = 25 (see figure).
(a) What is the slope of the line joining P and O(0, 0)?
(b) Find an equation of the tangent line to the circle at P.

(c) Let O(x,y) be another point on the circle in the first
quadrant. Find the slope m, of the line joining P and Q in
terms of x.

(d) Calculate lin% m,. How does this number relate to your
X1

answer in part (b)?

Figure for 4

Figure for 5

. Tangent Line Let P(5, —12) be a point on the circle

x2 + y? = 169 (see figure).
(a) What is the slope of the line joining P and O(0, 0)?
(b) Find an equation of the tangent line to the circle at P.

(c) Let Q(x,y) be another point on the circle in the fourth
quadrant. Find the slope m, of the line joining P and Q in
terms of x.

(d) Calculate lin; m,. How does this number relate to your
X—>

answer in part (b)?
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Chapter 1 Limits and Their Properties
6. Finding Values Find the values of the constants a and b
such that
i —W _ /i
x—

. Finding Limits Consider the function

J3+x13 =2

x— 1

flx) =

(a) Find the domain of f.

PI.;« (b) Use a graphing utility to graph the function.

8.

9.

10.

(c) Find »i@w f).
() Find lim f(x).

Making a Function Continuous Find all values of the
constant a such that f is continuous for all real numbers.

ax

2 x=0
f(x) = {tanx
a2 -2, x<0
Choosing Graphs Consider the graphs of the four
functions g, g,, g3, and g,.
y y
3+ 3+ .

81

| 1 1 x 1 1 1 x
1 2 3 1 2 3
¥ ¥
3 ——e 3 ~+————
84
2+ 2+ .
83
1+ o— 1+
; ; ; x | 1 1 x
1 2 3 1 2 3

For each given condition of the function f, which of the graphs
could be the graph of f?

(@) lim f(x) = 3
(b) f is continuous at 2.
© lim /() =3

Limits and Continuity Sketch the graph of the function

-]

(a) Evaluate f(}), £(3), and f(1).
(b) Evaluate the limits lim f(x), lim f(x), lim f(x), and
l]I})’l‘f f(x) x—1 x—1 x—0

(c) Discuss the continuity of the function.

11.

12.

13.

14.

Limits and Continuity Sketch the graph of the function
) =[x + [l

(a) Evaluate f(1), £(0), f(3), and f(—2.7).

(b) Evaluate the limits xliHnI{ fx), XILI{L f(), and XEI;I}Z f).

(c) Discuss the continuity of the function.

Escape Velocity To escape Earth’s gravitational field,
a rocket must be launched with an initial velocity called the
escape velocity. A rocket launched from the surface of Earth
has velocity v (in miles per second) given by

b \/ZGrM o 2iM _ \/192;000 b as

where v, is the initial velocity, r is the distance from the rocket
to the center of Earth, G is the gravitational constant, M is the
mass of Earth, and R is the radius of Earth (approximately
4000 miles).

(a) Find the value of v, for which you obtain an infinite limit
for r as v approaches zero. This value of v, is the escape
velocity for Earth.

(b) A rocket launched from the surface of the moon has
velocity v (in miles per second) given by

Find the escape velocity for the moon.

(c) A rocket launched from the surface of a planet has velocity
v (in miles per second) given by

b= SO g

Find the escape velocity for this planet. Is the mass of
this planet larger or smaller than that of Earth? (Assume
that the mean density of this planet is the same as that of
Earth.)

Pulse Function For positive numbers a < b, the pulse
function is defined as

0, x<a
P, (x) =H(x—a) —Hx—b) =41, a<x<b
0, x=b

1, x=0. .. .
where H(x) = is the Heaviside function.
0, x<0
(a) Sketch the graph of the pulse function.
(b) Find the following limits:
@ lim P, (x) (i) lim P, ,(x)
x—a ’ x—a~ ’
(iii) xlgil+ Pa’b(x) (@iv) xli>ril’ Pa,b(x)

(c) Discuss the continuity of the pulse function.

1
(d) Whyis U(x) = EP“’ ,(x) called the unit pulse function?

Proof Letabeanonzero constant. Prove that if lir% flx) =L,
X
then liH(l) f(ax) = L. Show by means of an example that @ must
X

be nonzero.



2 Differentiation

= ™ T B I I N I I

2.1 The Derivative and the Tangent Line Problem
it 2.2 Basic Differentiation Rules and Rates of Change
ceeeeees 2.3 Product and Quotient Rules and Higher-Order Derivatives
2.4 The Chain Rule
2.5 Implicit Differentiation
2.6 Related Rates

Rate of Change
(Example 2, p. 153)

Velocity of a Falling Object
(Example 9, p. 116)

Stopping Distance (Exercise 103, p.121)

29
Clockwise from top left, Kateryna Kon/Shutterstock.com; Russ Bishop/Alamy Stock Photo;
Richard Megna/Fundamental Photographs; Tumar/Shutterstock.com; NASA
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100 Chapter 2 Differentiation

2.1 The Derivative and the Tangent Line Problem

ISAAC NEWTON (1642-1727)

In addition to his work in
calculus, Newton made
revolutionary contributions to
physics, including the Law of
Universal Gravitation and his
three laws of motion.

See LarsonCalculus.com to read
more of this biography.

Exploration

Use a graphing utility to graph
f) = 223 — 402 + 3x — 5.
On the same screen, graph
y=x—5,y=2x—15,and
y = 3x — 5. Which of these
lines, if any, appears to be
tangent to the graph of f at
the point (0, —5)? Explain
your reasoning.

@ Find the slope of the tangent line to a curve at a point.
@ Use the limit definition to find the derivative of a function.
@ Understand the relationship between differentiability and continuity.

The Tangent Line Problem

Calculus grew out of four major problems that European mathematicians were working
on during the seventeenth century.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2.3)
3. The minimum and maximum problem (Section 3.1)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any
of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although
partial solutions to this problem were given by Pierre de Fermat (1601-1665),
René Descartes (1596-1650), Christian Huygens (1629-1695), and Isaac Barrow
(1630-1677), credit for the first general solution is usually given to Isaac Newton
(1642-1727) and Gottfried Leibniz (1646—1716). Newton’s work on this problem
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is
tangent to a curve at a point? For a circle, the
tangent line at a point P is the line that is
perpendicular to the radial line at point P, as
shown in Figure 2.1.

For a general curve, however, the problem
is more difficult. For instance, how would you
define the tangent lines shown in Figure 2.2?

You might say that a line is tangent to a curve

at a point P when it touches, but does not cross, x
the curve at point P. This definition would work \\/

for the first curve shown in Figure 2.2 but not
for the second. Or you might say that a line is
tangent to a curve when the line touches or
intersects the curve at exactly one point. This
definition would work for a circle but not for
more general curves, as the third curve in
Figure 2.2 shows.

~

Tangent line to a circle
Figure 2.1

y y

/ \~* x x

Tangent line to a curve at a point
Figure 2.2

Mary Evans Picture Library/Alamy Stock Photo
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2.1 The Derivative and the Tangent Line Problem 101

Essentially, the problem of finding the tangent line at a point P boils down to the
problem of finding the slope of the tangent line at point P. You can approximate this
slope using a secant line* through the point of tangency and a second point on the
(c+Ax, fc+Ax)  curve, as shown in Figure 2.3. If (c, f(c)) is the point of tangency and

(c + Ax, f(c + Ax))

bfe+ A0 —flo=Ay . ,
! is a second point on the graph of f, then the slope of the secant line through the two

fffff points is given by substitution into the slope formula

—T
X _ Yo =W
X T X
The secant line through (c, f(c)) and _ fle + Ax) — f(o) Change in y
(c + Ax, f(c + Ax)) Myec = (c + Ax) — ¢ Change in x

Figure 2.3
_fle+ A9 — f©)

e Ax Slope of secant line

The right-hand side of this equation is a difference quotient. The denominator Ax is
the change in x, and the numerator

Ay = flc + Ax) = f(c)

is the change in y.

The beauty of this procedure is that you can obtain more and more accurate
approximations of the slope of the tangent line by choosing points closer and closer to
the point of tangency, as shown in Figure 2.4.

THE TANGENT LINE PROBLEM l
(© f(©) / | Ar=0
In 1637, mathematician René . Ay
@ f(c)) 1

Descartes stated this about the 3 Ay
tangent line problem: | = --- 4 -4 ‘
8 P A (e fre) A
“And | dare say that this is A ( f(c)) A
not only the most useful and 4./J Y v
general problem in geometry Ax @ f(©)
that | know, but even that | @ f(c)) ‘Ay

ever desire to know.” //x /
@ f(c) (C ()
Ax—0 /
Tangent line Tdngent line

Tangent line approximations
Figure 2.4

Definition of Tangent Line with Slope m
If f is defined on an open interval containing c, and if the limit

fim &Y =y [T A0 20
Ax—0 Ax A0 Ax
exists, then the line passing through (c, f(c)) with slope m is the tangent line to

the graph of f at the point (c, f(c)).

The slope of the tangent line to the graph of f at the point (c, f(c)) is also called
the slope of the graph of f at x = c.

* This use of the word secant comes from the Latin secare, meaning to cut, and is not a
reference to the trigonometric function of the same name.
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The slope of f at (2, 1) is m = 2.

Figure 2.5

Tangent 2
line at -~
=12

Tangent line

/" at(0, 1)

The slope of f at any point (c, f(c)) is

m = 2c.
Figure 2.6
y Vertical
tangent
line

(e, f(e))

c

The graph of f has a vertical tangent

line at (c, f(c)).
Figure 2.7

The Slope of the Graph of a Linear Function

To find the slope of the graph of f(x) = 2x — 3 when ¢ = 2, you can apply the
definition of the slope of a tangent line, as shown.

2 + Ax) — f(2 2(2 + Ax) — 3] — [2(2) —
e+ AY —f@) 202+ A0 - 3] - [20) - 3]

li
Ax—0 Ax Ax—0 Ax

. 4 +2Ax—3—-4+3
= lim
Ax—0 Ax

Il
g
|

= lim 2
=2
The slope of f at (c, f(c)) = (2, 1) is m = 2, as shown in Figure 2.5. Notice that the

limit definition of the slope of f agrees with the definition of the slope of a line as
discussed in Section P.2. |

The graph of a linear function has the same slope at any point. This is not true of
nonlinear functions, as shown in the next example.

Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of f(x) = x> + 1 at the points (0, 1)
and (—1, 2), as shown in Figure 2.6.

Solution Let (c, f(c)) represent an arbitrary point on the graph of f. Then the slope
of the tangent line at (c, f(c)) can be found as shown below. [Note in the limit process
that ¢ is held constant (as Ax approaches 0).]

fim flc + Ax) — f(c) ~ lim [(c+Ax)2+1]—(2+ 1)

Ax—0 Ax Ax—0 Ax
2 2 _ 2 _
— fim € + 2c¢(Ax) + (Ax)? +1 —¢ 1
Ax—0 Ax
2
~ lim 2¢(Ax) + (Ax)
Ax—0 Ax
= lim (2c + Ax)
Ax—0
=2c

So, the slope at any point (c, f(c)) on the graph of f is m = 2c. At the point (0, 1), the
slope is m = 2(0) = 0, and at (— 1, 2), the slope is m = 2(—1) = —2. B |

The definition of a tangent line to a curve does not cover the possibility of a
vertical tangent line. For vertical tangent lines, you can use the following definition. If
f is continuous at ¢ and

o €80 =70 L fle+ A = f(0)

)
Ax—0 Ax Ax—0 Ax

then the vertical line x = ¢ passing through (c, f(c)) is a vertical tangent line to the
graph of f. For example, the function shown in Figure 2.7 has a vertical tangent line
at (c,f(c)). When the domain of f is the closed interval [a, b], you can extend the
definition of a vertical tangent line to include the endpoints by considering continuity
and limits from the right (for x = a) and from the left (for x = b).



The notation f'(x)
is read as “f prime of x.”

& FOR FURTHER INFORMATION
For more information on the
crediting of mathematical discoveries
to the first “discoverers,” see the
article “Mathematical Firsts—
Who Done It?” by Richard H.
Williams and Roy D. Mazzagatti in
Mathematics Teacher. To view this
article, go to MathArticles.com.

When using the
definition to find a derivative of
a function, the key is to rewrite
the difference quotient so that
Ax does not occur as a factor
of the denominator.
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The Derivative of a Function

You have now arrived at a crucial point in the study of calculus. The limit used to
define the slope of a tangent line is also used to define one of the two fundamental
operations of calculus—differentiation.

Definition of the Derivative of a Function
The derivative of f at x is

oy e fle+ Ax) — f(x)
f&) = Aliglo Ax

provided the limit exists. For all x for which this limit exists, f” is a function of x.

Be sure you see that the derivative of a function of x is also a function of x. This
“new” function gives the slope of the tangent line to the graph of f at the point (x, f(x)),
provided that the graph has a tangent line at this point. The derivative can also be used
to determine the instantaneous rate of change (or simply the rate of change) of one
variable with respect to another.

The process of finding the derivative of a function is called differentiation. A
function is differentiable at x when its derivative exists at x and is differentiable on
an open interval (a, b) when it is differentiable at every point in the interval.

In addition to f’(x), other notations are used to denote the derivative of y = f(x).
The most common are

f'(x), le, y’, %[f(x)], Dx[y]. Notations for derivatives

The notation dy/dx is read as “the derivative of y with respect to x” or simply “dy,
dx.” Using limit notation, you can write

dx Ax>0Ax  Ax—0

m Finding the Derivative by the Limit Process

ceee > See LarsonCalculus.com for an interactive version of this type of example.

Y oy B gy &+ A9 — f) AA)C))C —I® _ oy,

To find the derivative of f(x) = x> + 2x, use the definition of the derivative as shown.

i £+ A9 = £

f,(x) = A Ax Definition of derivative
. cF AP+ 200+ Ax) — (B + 2x)
= lim
Ax—0 Ax
~ x>+ 3x2Ax + 3x(Ax)? + (Ax)? + 2x + 2Ax — x> — 2x
N AXITO Ax
. 3x2Ax + 3x(Ax)? + (Ax)? + 2Ax
= lim
Ax—0 Ax
. AX[3x% + 3xAx + (Ax)? + 2]
= lim
Ax—0 M

= lim [3x% + 3xAx + (Ax)? + 2]
Ax—0

=3x2+2 L
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S LRI Using the Derivative to Find the Slope at a Point

Find f'(x) for f(x) = /x. Then find the slopes of the graph of f at the points (1, 1) and
(4, 2). Discuss the behavior of f at (0, 0).

Remember that
the derivative of a function f is
itself a function, which can be
used to find the slope of the Solution Use the procedure for rationalizing numerators, as discussed in Section 1.3.

tangent line at the point f(x + Ax) — f(%)

(x, f(x)) on the graph of f. f’(x) = A _)0 Ax Definition of derivative
_ Jx+ Ax A= Ux
N Ax%O
— lim Jx—i—Ax—f Jx + Ax + Ux
¥ Ax—0 Ax Jx + Ax + Ux
. ~ lim (x + Ax) — x
3+ At (4, 2),m=z. = Ay Ax(\/xT Ar + f)

z——At(l,l),m=%. =

AanM(\/x?_{_ f)

\ |
I g m

! ! ! ! x — 1
©0,0) 1 > 3 4 N
For x > 0, the slope of f at (v, f(x)) is At the point (1, 1), the slope is f'(1) = 3. At the point (4, 2), the slope is f'(4) = 1.
m = 1/(2\/}). See Figure 2.8. The domain of f’ is all x > 0, so the slope of f is undefined at (0, 0).
Figure 2.8 Moreover, the graph of f has a vertical tangent line at (0, 0).
2 N8R Finding the Derivative of a Function
In many ««« <> See LarsonCalculus.com for an interactive version of this type of example.
applications, it is convenient ) o ) i
to use a variable other than x Find the derivative with respect to ¢ for the function y = 2/z.
as the independent variable, Solution Considering y = f(¢), you obtain
as shown in Example 5.
dy _ i T4 A) = f() o
= lm Definition of derivative
dt A0 At
22
..ttt Ar ¢t , 2 :
= A1[11;1’10 T flt+ A = A7 and f(1) =~
2t — 2(t + Ar)
. it + Ar) o
= lm ————— Combine fractions in numerator.
Ar—0 At
— 244 Divid t factor of A
= _— N - ac At.
At_>() M(t)(t + At) 1v1ide out common ractor o
= AI}LHO m Simplify.
2
\(1:2) = _?2. Evaluate limit as Az — 0. - |
0 ] ) ) ) 6 A graphing utility can be used to reinforce the result given
0 (y=—2r+4) in Example 5. For instance, using the formula dy/dr = —2/2, you know that the
slope of the graph of y = 2/t at the point (1, 2) is m = —2. Using the point-slope
At the point (1, 2), the line form, you can find that the equation of the tangent line to the graph at (1, 2) is
y = —2t + 4 is tangent to the graph _ _ )
of y = 2/1. y—2=-2(t—1) or y=—2t+4 See Figure 2.9.

Figure 2.9 You can also verify the result using the tangent feature of the graphing utility.



A proof of the
equivalence of the alternative
form of the derivative is
given in Appendix A.
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The greatest integer function is not
differentiable at x = 0 because it is
not continuous at x = 0.

Figure 2.11
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Differentiability and Continuity

The alternative limit form of the derivative shown below is useful in investigating the
relationship between differentiability and continuity. The derivative of f at c is

f(c) = llmf(x) — ( ) Alternative form of derivative
x—c - C

provided this limit exists (see Figure 2.10).

y
(. f(x))

(¢, f(©))

As x approaches c, the secant line
approaches the tangent line.
Figure 2.10

Note that the existence of the limit in this alternative form requires that the one-sided
limits

L) £
x—c” X —C
and
o f&) = fl)
x—)c* X —cC

exist and are equal. These one-sided limits are called the derivatives from the left and
from the right, respectively. It follows that f is differentiable on the closed interval
[a, b] when it is differentiable on (a, b) and when the derivative from the right at a and
the derivative from the left at b both exist.

When a function is not continuous at x = ¢, it is also not differentiable at x = c.
For instance, the greatest integer function

&) =1

is not continuous at x = 0, and so it is not differentiable at x = 0 (see Figure 2.11). You
can verify this by observing that

f&) = f(0) (0) L Bl =0

lim lim =——— = o0 Derivative from the left
x—0~ X — x—0~ X
and
. flx 0 . x| —0
lim ( ) ( ) lim L =0. Derivative from the right
0t x—0  xs0t  x

Although it is true that differentiability implies continuity (as shown in Theorem 2.1
on the next page), the converse is not true. That is, it is possible for a function to be
continuous at x = ¢ and not differentiable at x = c. Examples 6 and 7 illustrate this
possibility.
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f is not differentiable at x = 2 because
the derivatives from the left and from
the right are not equal.

Figure 2.12

f is not differentiable at x = 0 because
f has a vertical tangent line at x = 0.
Figure 2.13

Some
graphing utilities, such as
Maple, Mathematica, and the
TI-Nspire, perform symbolic
differentiation. Some have a
derivative feature that performs
numerical differentiation by
finding values of derivatives
using the formula

, ~f(x + Ax) — flx — Ax)
fx) = A

where Ax is a small number
such as 0.001. Can you see any
problems with this definition?
For instance, using this
definition, what is the value

of the derivative of f(x) = |x|
when x = 0?

A Graph with a Sharp Turn

« > See LarsonCalculus.com for an interactive version of this type of example.

The function f(x) = |x — 2|, shown in Figure 2.12, is continuous at x = 2. The
one-sided limits, however,

x—2—-0
f(X) f(Z) = lim Q = -1 Derivative from the left
x%2’ X — x—2" x—2
and
2 x—2—0
f(X) f( ) lim Q =1 Derivative from the right
x—>24r x—2 x—>24r x—2

are not equal. So, f is not differentiable at x = 2 and the graph of f does not have a
tangent line at the point (2, 0).

A Graph with a Vertical Tangent Line

The function f(x) = x!/3 is continuous at x = 0, as shown in Figure 2.13. However,
because the limit
f(x) f0) .. x/3-0 1

lim =lim —; =
x—>0 x—0 x=0 X X0 x2/3

is infinite, you can conclude that the tangent line is vertical at x = 0. So, f is not
differentiable at x = 0. |

From Examples 6 and 7, you can see that a function is not differentiable at a point
at which its graph has a sharp turn or a vertical tangent line.

Differentiability Implies Continuity LAl
If f is differentiable at x = c, then f is continuous at x = c. &-FE
i

Proof You can prove that f is continuous at x = ¢ by showing that f(x) approaches
f(c) as x—c. To do this, use the differentiability of f at x = ¢ and consider the
following limit.

tim 709 — (6] = tim | = = o L =L9)|

X —C

= [lim (x — c)][limfi(x) _f(c)]

xX—c x—c X —C
= (0)Lf' ()]
=0
Because the difference f(x) — f(c) approaches zero as x—c¢, you can conclude that
lim f(x) = f(c). So, f is continuous at x = c.
X—cC

The relationship between continuity and differentiability is summarized below.
1. If a function is differentiable at x = ¢, then it is continuous at x = c¢. So,
differentiability implies continuity.
2. It is possible for a function to be continuous at x = ¢ and not be differentiable at
x = c. So, continuity does not imply differentiability (see Examples 6 and 7).
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2 " 1 ExerCIseS see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

[w]%¥[E] Finding the Derivative by the Limit
CONCEPT CHECK ¥ '3 Process In Exercises 15-28, find the derivative
1. Tangent Line Describe how to find the slope of the "E 1 of the function by the limit process.
tangent. line to the graph of a function at a point. 15. f(x) = 7 16. g(x) = -3
2. Notation List four notation alternatives to f(x). 17. £(x) = —5x 18. f(x) = 7x — 3
3. Derlyatlvg Descfrll.)e how to find the derivative of a 19. h(s) = 3 + %s 20. f(x) =5 — %x
function using the limit process.
L . L 21. =x>+x-3 22. =x2-5
4. Continuity and Differentiability Describe the fO) = 0 = x
relationship between continuity and differentiability. 23. f(x) = %% — 12x 24. g()) =1 + 4
25. flx) = — 1 26. f(x) =
Estimating Slope In Exercises 5 and 6, estimate the slope .
of the graph at the points (x,y,) and (x,, y,). 27. flx) = Jx + 4 28. h(s) = —2/s
S. Y 6. Y PP’ [=]¥3'[m] Finding an Equation of a Tangent Line In
,' } ﬂ Exercises 29-36, (a) find an equation of the tangent
Cep yy) | ﬁ line to the graph of f at the given point, (b) use
| L () . * a graphing utility to graph the function and its
| (X, ¥,) . () Yy S tangent line at the point, and (c) use the fangent
II / N feature of a graphing utility to confirm your results.
29, f(x) =x*>+3, (=1,4) 30. fx) =x>+2x—-1, (1,2)
31. f(x) = %%, (2,8) 32 fx)=x+1, (—1,0)
33 f(0) = Vx (1L1) M. f)=Vx—1, (52

Slopes of Secant Lines In Exercises 7 and 8, use the
graph shown in the figure. To print an enlarged copy of the 35. f(x) = x + i (—4,-5) 36. f(x) =x — l, (1,0)
graph, go to MathGraphs.com. X X

y [w] Finding an Equation of a Tangent Line In

Exercises 37-42, find an equation of the line that is

6A
5- tangent to the graph of f and parallel to the given
[4 .
4+ line.
3 -
2 Function Line
1 -
x 37. flx) = —ixz x+y=0
) -
7. Identify or sketch each of the quantities on the figure. 38. flx) = 2 dty+3=0
39. =y 3x—y+1=0
(a) f(1) and f(4) (®) f4) - f(1) / E"; g Y
40. f(x) = x>+ 2 3x—y—4=0
4 1
©4-1 @ y-2=TOW ) X
41. f(x) = — x+2y—6=0
8. Insert the proper inequality symbol (< or >) between the given Vx
quantities. 2. f(x) = 1 x+2y+7=0
(@ W =S @) = O) vr-l
4-1 4-3 Sketching a Derivative In Exercises 43-48, sketch the
f@) —f ’ graph of f'. Explain how you found your answer.
o BRI )
43. y 4. Y
[m]ZF}[E] Finding the Slope of a Tangent Line In 3 T
L= "1 Exercises 9-14, find the slope of the tangent line to 2 J _j‘ %_; % 1 % ; % j‘ *
O the graph of the function at the given point. 1 ok
t
9. f() =3 —5x, (~1.8) 10. g(x) =3x + 1, (=2, -2) A !
11. f(x) = 2x> =3, (2,5) 12. fx) =5-x% (3,—-4) _6:

13. f(r) =3t — 2, (0,0) 14. h(t) = 2 + 41, (1,5)
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45.

Finding an Equation of a Tangent Line In Exercises 61
and 62, find equations of the two tangent lines to the graph of
f that pass through the indicated point.

61. f(x) = 4x — x2 62. f(x) = 2
y Y
Ny T 2,5)
111234567 1123456738 4+
3,,
47. y 48. y Pan
6 4 -+ 1
4 Y 3T / N
4 f 1 2 3 5
2+ 1+
us - - \ e x F‘p 63. Graphical Reasoning Use a graphing utility to graph
——+— ————>x -3-2-1 1 2 3 each function and its tangent lines at x = —1, x = 0, and
-8 4 > 1 4 8 ol x = 1. Based on the results, determine whether the slopes of

EXPLORING CONCEPTS

49. Sketching a Graph Sketch a graph of a function
whose derivative is always negative. Explain how you
found the answer.

50. Sketching a Graph Sketch a graph of a function
whose derivative is zero at exactly two points. Explain
how you found the answer.

51. Domain of the Derivative Do f and f' always
have the same domain? Explain.

52. Symmetry of a Graph A function f is symmetric
with respect to the origin. Is f’ necessarily symmetric
with respect to the origin? Explain.

53. Using a Tangent Line The tangent line to the graph of
y = g(x) at the point (4, 5) passes through the point (7, 0).

Find g(4) and g'(4).

54. Using a Tangent Line The tangent line to the graph of
y = h(x) at the point (—1, 4) passes through the point (3, 6).

Find h(—1) and h'(—1).

O Fﬁ number c. Find f and c.

[5-30+Ax)] -2

S5. Aliglo Ax
— 3

s6. lim 2T AV +S

Ax—0 Ax

42

57. lim X136

=6 Xx— 6
58. lim 2/x-6

=9 x—9

Writing a Function Using Derivatives In Exercises 59
and 60, identify a function f that has the given characteristics.

Then sketch the function.

59. f(0) = 2; f'(x) = =3 for —00 < x < 0O

60. f(0) = 4; f'(0) = 0; fi(x) < Oforx < 0; f(x) > O0forx >0

[=y7 -'E Working Backwards In Exercises 55-58, the
I limit represents f'(c) for a function f and a

tangent lines to the graph of a function at different values of x
are always distinct.

@ f)=x  (b) gl) =

HOW DO YOU SEE IT? The figure shows
the graph of g'.

—4 1
—6 +

@ g'0) = (b) g(3) =

(c) What can you conclude about the graph of g
knowing that g'(1) = —%?

(d) What can you conclude about the graph of g
knowing that g'(—4) = %?

(e) Is g(6) — g(4) positive or negative? Explain.

(f) Is it possible to find g(2) from the graph? Explain.

p'jp 65. Graphical Reasoning Consider the function f(x) = 2x2.

(a) Use a graphing utility to graph the function and estimate
the values of f'(0), f’(%), f/(1), and f'(2).

(b) Use your results from part (a) to determine the values of
£(=3), £(=1), and f(-2).
(c) Sketch a possible graph of f'.
(d) Use the definition of derivative to find f(x).
j'jp 66. Graphical Reasoning Consider the function f(x) = 3.

(a) Use a graphing utility to graph the function and estimate
the values of f'(0), f/(%), f/(1), £(2), and f'(3).

(b) Use your results from part (a) to determine the values of
F(=3). F(=1), £(=2), and f(=3).

(c) Sketch a possible graph of f".

(d) Use the definition of derivative to find f(x).
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Approximating a Derivative In Exercises 67 and 68,
evaluate f(2) and f(2.1) and use the results to approximate f'(2).

67. f(x) = x(4 — x) 68. f(x) = 113

[=]%§j[w] Using the Alternative Form of the
P ""'t':il"' Derivative In Exercises 69-76, use the
L. alternative form of the derivative to find the
derivative at x = c, if it exists.

69. f) =x*+2x2+ 1,c=—2
70. g(x) = x> —x,c=1

7. gx) = V|x[, e =0 72. f(x) =3/x,c =4
73. fx) =(x—6)*3c=6 T4 g(x) =(x+3)3 c=-3
75. h(x) = ,c=—=T7 176. f(x) = ,c=6

[w]¥4][=] Determining Differentiability In Exercises
: 77-80, describe the x-values at which f is
differentiable.

77. f(x) = (x + 4)2/3 78. f(x) = 1
" y
4+
‘_é ‘_j‘ ‘_2" t T x
2+

fx)=Vx+1+1

y

4+

ral

|
T
21 | 1 23 —2

HG’ Graphical Analysis In Exercises 81-84, use a graphing

utility to graph the function and find the x-values at which f is
differentiable.

81. f(x) = |x — 5| 82. f(x) = — 3
83. f(x) = x*/°

¥ —=3x24+3x, x=1
84. f(x) = {xz o

Determining Differentiability In Exercises
85-88, find the derivatives from the left and from

differentiable at x = 1?

86. f(x) = V1 —x?

88. f(x) = (1 — x>

85. f(x) = |x — 1]

(=13 x=1
87‘f(x)_{(x—1)2, x> 1

The Derivative and the Tangent Line Problem 109

Determining Differentiability In Exercises 89 and 90,
determine whether the function is differentiable at x = 2.

2+1, x=2 Cix+2, x<2

89'f(x):{4x—3, x> 2 90. flx) = ﬁ, x =2

91. Graphical Reasoning A line with slope m passes through
the point (0, 4) and has the equation y = mx + 4.

(a) Write the distance d between the line and the point (3, 1)
as a function of m.
PIU’ (b) Use a graphing utility to graph the function d in part (a).
Based on the graph, is the function differentiable at every
value of m? If not, where is it not differentiable?

92. Conjecture Consider the functions f(x) =x> and
glx) = 2.
(a) Graph f and f’ on the same set of axes.
(b) Graph g and g’ on the same set of axes.

(c) Identify a pattern between f and g and their respective
derivatives. Use the pattern to make a conjecture about
h'(x) if h(x) = x", where n is an integer and n = 2.

(d) Find f'(x) if f(x) = x*. Compare the result with the
conjecture in part (c). Is this a proof of your conjecture?
Explain.

True or False? In Exercises 93-96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

93. The slope of the tangent line to the differentiable function f at
the point (2, £(2)) is

f2+Ax) - f(2)
Ax ’
94. If a function is continuous at a point, then it is differentiable at
that point.

95. If a function has derivatives from both the right and the left at
a point, then it is differentiable at that point.

96. If a function is differentiable at a point, then it is continuous at
that point.

97. Differentiability and Continuity Let

1
xsin—, x#0
X

flx) =
0, x=0
and
2 o1 l
x?sin—, x#0
glx) =

0, x=0

Show that f is continuous, but not differentiable, at x = 0.
Show that g is differentiable at 0 and find g'(0).

the right at x = 1 (if they exist). Is the function Hc* 98. Writing Use a graphing utility to graph the two functions

f@)=x>+1 and g(x) = |x| + 1 in the same viewing
window. Use the zoom and trace features to analyze the graphs
near the point (0, 1). What do you observe? Which function is
differentiable at this point? Write a short paragraph describing
the geometric significance of differentiability at a point.
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2.2 Basic Differentiation Rules and Rates of Change

The Constant Rule

In Section 2.1, you used the limit definition to find derivatives. In this and the next two
sections, you will be introduced to several “differentiation rules” that allow you to find
derivatives without the direct use of the limit definition.

Find the derivative of a function using the Constant Rule.

Find the derivative of a function using the Power Rule.

Find the derivative of a function using the Constant Multiple Rule.
Find the derivative of a function using the Sum and Difference Rules.
Find the derivatives of the sine function and of the cosine function.
Use derivatives to find rates of change.

THEOREM 2.2 The Constant Rule

The derivative of a constant function is 0. That is, if ¢ is a real
The slope of a
horizontal line number, then E,l" E
is 0. d e 3
157
—lc] = 0. See Figure 2.14. _'-'F

e b -
The derivative of a
constant function

is 0. Proof Let f(x) = c. Then, by the limit definition of the derivative,

[

d )

a[c] = f'(x)

Notice that the Constant Rule is

i £+ AY) — £)

equivalent to saying that the slope of a

horizontal line is 0. This demonstrates Ax—0 Ax
the relationship between slope and e —c¢
derivative. = Al;go Ax
Figure 2.14 .
= lim 0
Ax—0
= 0. [ |
EXAMPLE 1 Using the Constant Rule
Function Derivative
a.y=7 dy/dx =0
b. f(x) =0 fx) =0
c. s()=-3 s'H=0
d. y = kn?, k is constant dy/dx =0 |
Exploration

Writing a Conjecture Use the definition of the derivative given in Section 2.1
to find the derivative of each function. What patterns do you see? Use your
results to write a conjecture about the derivative of f(x) = x".

a. f(x) = x! b. f(x) = x? c flx)=x
d. flx) = x* e. f(x) = x!/2 f. f(x) =x7!
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The Power Rule

Before proving the next rule, it is important to review the procedure for expanding a
binomial.

(x + Ax)? = x2 + 2xAx + (Ax)?

(x + Ax)?® = x + 3x2Ax + 3x(Ax)?2 + (Ax)?

(x + Ax)* = x* + 43Ax + 6x%(Ax)? + 4x(Ax)® + (Ax)*

(x + Ax)®> = x° + 5x*Ax + 10x3(Ax)? + 10x%(Ax)? + 5x(Ax)* + (Ax)°

The general binomial expansion for a positive integer n is

— n—2
(x + Ax)y* = x" + nx"~'(Ax) + %(Ax)2 + - -+ (Ax)m

(Ax)? is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

The Power Rule

If n is a rational number, then the function f(x) = x" is differentiable and

d n—1
T [x"] = nx"—1.
DAL
For f to be differentiable at x = 0, n must be a number such that hjﬁiﬁi
From Example 7 x"~!is defined on an interval containing 0. =]
in Section 2.1, you know that

the function f(x) = x!/3 is

defined at x = 0 but is not Proof If n is a positive integer greater than 1, then the binomial expansion produces
fiifferentiablf at)F = 0. Th'is d O (x+ Ax)y — x
is because x~2/3 is not defined —[x"] = lim —————

dx Ax—0 Ax

on an interval containing 0.
- nn — 1)x" 2
X"+ nx"(Ax) + S e—
= lim

Ax—0 Ax

(Ax)> + - - -+ (Ax)" — x"

= lim [nx”_l + M(Ax) +o ot (Ax)n_l]

Ax—0
=m"'+0+---4+0
= nx"" L,
This proves the case for which 7 is a positive integer greater than 1. It is left to you to prove
the case for n = 1. Example 7 in Section 2.3 proves the case for which n is a negative

integer. In Exercise 73 in Section 2.5, you are asked to prove the case for which n is
rational. (In Section 5.5, the Power Rule will be extended to cover irrational values of n.)

4 ad
3T When using the Power Rule, the case for which n = 1 is best thought of as a
.l separate differentiation rule. That is,
LT d
- [x] = 1. Power Rule when n = 1
> dx
1 2 3 4
The slope of the line y = x is 1. This rule is consistent with the fact that the slope of the line y = x is 1, as shown in

Figure 2.15 Figure 2.15.
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EXAMPLE 2 Using the Power Rule

Function Derivative
a. flx) =x3 f(x) = 3x2
b. g) = ¥x g0 = L[] = T2 =
dx 3 3x2/3
_1 dy _dr o _ (s 2
¢ y=5 il [x2] = (=2)x 2 o

In Example 2(c), note that before differentiating, 1/x> was rewritten as x 2.
Rewriting is the first step in many differentiation problems.

Given: Rewrite: Differentiate: Simplify:

1 = L, = dy = dy 2

y y == y=x —:(_2)x73 - - _ =

q x2 dx dx b
2,,
Finding the Slope of a Graph

cees [> See LarsonCalculus.com for an interactive version of this type of example.

14
LD O3 Find the slope of the graph of f(x) = x* for each value of x.

ax=-1 b.x=0 cx=1

| 1 x  Solution The slope of a graph at a point is the value of the derivative at that point.

- 0,0 . .
! ! The derivative of fis f'(x) = 4x°.
Note that the slope of the graph is a. When x = — 1, the slope is f'(* l) = 4(* 1)3 = —4. Slope is negative.
negative at the point (— 1, 1), the b. When x = 0, the slope is f'(0) = 4(0)* = 0. Slope is zero.
slope is zero at the point (0, 0), and Wh -1 N 3 _ s
. = 1, the sl 1) =4(1)° = 4. Slope is positive.
the slope is positive at the point (1, 1). ¢ enx » the slope is f'(1) (1) 0pe 18 positive
Figure 2.16 See Figure 2.16.
EXAMPLE 4 Finding an Equation of a Tangent Line
N > See LarsonCalculus.com for an interactive version of this type of example.
Find an equation of the tangent line to the graph of f(x) = x> when x = —2.
Solution To find the point on the graph of f, evaluate the original function at
x = -2
(— Z,f(— 2)) = (—2, 4) Point on graph
5 To find the slope of the graph when x = —2, evaluate the derivative, f'(x) = 2x, at
[ ) x= -2
m=f(-2) = —4 Slope of graph at (=2, 4)
h Now, using the point-slope form of the equation of a line, you can write
—4.5 | yop— Mr——— Y y—y = m(x - xl) Point-slope form
Y=—4X+ =4 L y—4=—4x—(—2)] Substitute for y,, m, and x,.

-1
. . y=—4x — 4. Simplify.
The line y = —4x — 4 is tangent to the

graph of f(x) = x? at the point (—2,4).  You can check this result using the fangent feature of a graphing utility, as shown in
Figure 2.17 Figure 2.17. i



Before
differentiating functions
involving radicals, rewrite
the function with rational
exponents.
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The Constant Multiple Rule

The Constant Multiple Rule
If f is a differentiable function and c is a real number, then cf is also

differentiable and [ﬂﬂ A0]]
d E% H
L (o) = e ), e
Proof
ddix [Cf(x)] = Aligo Cf(x ki AAXJ)C — Cf(X) Definition of derivative

_ g [ f At AY) — f(x)
- Aliglo C[ Ax ]
=c [Aligof(x + AAx))c — f(x)} Apply Theorem 1.2.
= cf'(x) |

Informally, the Constant Multiple Rule states that constants can be factored out of
the differentiation process, even when the constants appear in the denominator.

’

W] = e 4[] = o ()
—

£11)-£]h] - ()~

2 CUULRR  Using the Constant Multiple Rule

Function Derivative
a. y = 5x° % = %[5)@] = 5%[}63] = 5(3)x2 = 15x2
by =2 D L) =2 ) =2t = -
c. f(t)=4gt2 f’(t)=%[%t2} =§%[t2]=%(2t)=§t
d. y=2/x % = %[le/z] = 2(%)(_1/2) =x"12= %

The Constant Multiple Rule and the Power Rule can be combined into one rule.
The combination rule is

- n| — n—1
dx[cx] cnx" 1,
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. In Example 7(c),
note that before differentiating,

32 —x+1
X

was rewritten as

1
3x—1+ -
X

Using Parentheses When Differentiating

Original Function Rewrite Differentiate Simplify
a. y:2ix3 y=%(x—3) y':%(—3x—4) y = _21754
b. y = (2;3 y= %(X*’) Y = %(—Sx*“) Yy = —81754
cy= 3:,2 y= %(xz) y' = %(Zx) y' = 1;’3
d. y= (3x7)‘2 y = 63(x?) y' = 63(2x) y = 126x wd

The Sum and Difference Rules

THEOREM 2.5 The Sum and Difference Rules

The sum (or difference) of two differentiable functions f and g is itself
differentiable. Moreover, the derivative of f + g (or f — g) is the sum (or
difference) of the derivatives of f and g.

%[f(x) 4 g(x)] :f’(x) + g'(x) Sum Rule

AL
%[f(x) —g0)] =, — gk Difference Rule éﬂjﬁ

Proof A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule can
be proved in a similar way.)

i DG+ A0 + gle + 9] = [F) + 0]

L) + gl0)] =

Ax—0 Ax
= i LAY gl AY) — f() — g)
Ax—0 Ax
_ o [ f+ Ax) - fx) |, gl + Ax) — g(x)
B Aligo [ Ax * Ax }
o PG A ) g+ A — gl)
Ax—0 Ax Ax—0 Ax
=fx) + g'(x) ™

The Sum and Difference Rules can be extended to any finite number of functions.
For instance, if F(x) = f(x) + g(x) — h(x), then F'(x) = f'(x) + g'(x) — h'(x).

S CUIJRAY Using the Sum and Difference Rules

Function Derivative
a fx)=x*—4x+5 flx) =3x*—4
4
b. g(x) = _x? + 3% — 2x g)= -2+ 9> -2
32 —x+ 1 1 1 3x? — 1
Ly = T 4 r=3——=
c.y . 3x . y =3 o 2 " |



@ FOR FURTHER INFORMATION
For the outline of a geometric
proof of the derivatives of the

sine and cosine functions, see the
article “The Spider’s Spacewalk
Derivation of sin” and cos’” by
Tim Hesterberg in The College
Mathematics Journal. To view this
article, go to MathArticles.com.
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Derivatives of the Sine and Cosine Functions
In Section 1.3, you studied the limits

. sinAx .1 —cosAx
lim =1 and lim ——(— =
Av—0  Ax Ax—0 Ax

0.

These two limits can be used to prove differentiation rules for the sine and cosine
functions. (The derivatives of the other four trigonometric functions are discussed in
Section 2.3.)

Derivatives of Sine and Cosine Functions

d.. 1 d .
T [sin x] = cos x T [cosx] = —sinx

OE0
i

Proof Here is a proof of the first rule. (The proof of the second rule is left as an
exercise [see Exercise 114].) In the proof, note the use of the trigonometric identity
sin(x + Ax) = sin x cos Ax + cos x sin Ax.

d . . sin(x + Ax) — sinx S
a [sm x] = lim Definition of derivative

Ax—0 Ax

sin x cos Ax + cos x sin Ax — sin x

= lim
Ax—0 Ax
lim S98% sin Ax — (sin x)(1 — cos Ax)
= lim
v’ positive vy’ negative y’ positive Ax—0 Ax
I

y

N

The derivative of the sine function is
the cosine function.
Figure 2.18

Alxig10 [(cos x)(%) — (sin x)(%ﬂ
) = s gim, == 2)
(cos x)(1) — (sin x)(0)

= COS x

in A
(cos x)< lim 252X
Aax—0  Ax

This differentiation rule is shown graphically in Figure 2.18. Note that for each x, the
slope of the sine curve is equal to the value of the cosine. |

S LIRS  Derivatives Involving Sines and Cosines

« « « «> See LarsonCalculus.com for an interactive version of this type of example.

Function Derivative

a. y =2sinx y' =2cosx

d .
—[asinx] = acos x
dx

Figure 2.19

y = asinx

b —Sinx—lsinx ’—lcosx—cosx
' 2 2 M) 2
c. y=x+cosx y'=1—sinx
T . 7
d. y = cosx — Zsinx y’=—smx—§cosx |

A graphing utility can provide insight into the interpretation
of a derivative. For instance, Figure 2.19 shows the graphs of

fora = % 1, %, and 2. Estimate the slope of each graph at the point (0, 0). Then verify
your estimates analytically by evaluating the derivative of each function when x = 0.
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Rates of Change

You have seen how the derivative is used to determine slope. The derivative can also
be used to determine the rate of change of one variable with respect to another.
Applications involving rates of change, sometimes referred to as instantaneous rates of
change, occur in a wide variety of fields. A few examples are population growth rates,
production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving in
a straight line. In such problems, it is customary to use either a horizontal or a vertical
line with a designated origin to represent the line of motion. On such lines, movement
to the right (or upward) is considered to be in the positive direction, and movement to
the left (or downward) is considered to be in the negative direction.

The function s that gives the position (relative to the origin) of an object as a
function of time ¢ is called a position function. If, over a period of time At, the object
changes its position by the amount

As = s(t + At) — s(¢)
then, by the familiar formula

_ distance

Rate :
time

the average velocity is

Change in distance _ As
Change in time At

m Finding Average Velocity of a Falling Object

A billiard ball is dropped from a height of 100 feet. The ball’s height s at time 7 is the
position function

Average velocity

s = —16/2+ 100 Position function

where s is measured in feet and ¢ is measured in seconds. Find the average velocity
over each time interval.

a. [1,2] b.[1,1.5] e [1,1.1]
Solution

a. For the interval [1, 2], the object falls from a height of s(1) = —16(1)> + 100 = 84
feet to a height of s(2) = —16(2)> + 100 = 36 feet. The average velocity is
As 36 — 84 —48

~N- a1 -1 s —48 feet per second.

b. For the interval [1, 1.5], the object falls from a height of 84 feet to a height of
s(1.5) = —16(1.5)?> + 100 = 64 feet. The average velocity is

Time-lapse photograph of a

free-falling billiard ball As 64 -84 —20

AN-1s—1- 05 - —40 feet per second.

c. For the interval [1, 1.1], the object falls from a height of 84 feet to a height of
s(1.1) = —16(1.1)% + 100 = 80.64 feet. The average velocity is
As 80.64 — 84 —336

~N- 111 " o1 - —33.6 feet per second.

Note that the average velocities are negative, indicating that the object is moving
downward. i |

Richard Megna/Fundamental Photographs



P Tangent line

/

Secant line

1 f t
=1 tz\

The average velocity between ¢, and ¢,
is the slope of the secant line, and the
instantaneous velocity at ¢, is the slope
of the tangent line.

Figure 2.20

32 ft

Velocity is positive when an object

is rising and is negative when an
object is falling. Notice that the diver
moves upward for the first half-second
because the velocity is positive for
0<t< % When the velocity is 0, the
diver has reached the maximum height
of the dive.

Figure 2.21
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Suppose that in Example 9, you wanted to find the instantaneous velocity (or
simply the velocity) of the object when ¢t = 1. Just as you can approximate the slope
of the tangent line by calculating the slope of the secant line, you can approximate the
velocity at t = 1 by calculating the average velocity over a small interval [1, 1 + Af]
(see Figure 2.20). By taking the limit as Ar approaches zero, you obtain the velocity
when ¢ = 1. Try doing this—you will find that the velocity when r = 1 is —32 feet
per second.

In general, if s = s(¢) is the position function for an object moving along a straight
line, then the velocity of the object at time ¢ is

W@ = Tim st + A1) — (1) _

! . -~ .
s(7). Velocity function
At—0 At ( ) Y

In other words, the velocity function is the derivative of the position function. Velocity
can be negative, zero, or positive. The speed of an object is the absolute value of its
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence
of gravity can be represented by the equation

__L e
s() = _Egl‘ + vt + 5 Position function

where s, is the initial height of the object, v, is the initial velocity of the object, and g
is the acceleration due to gravity. On Earth, the value of g is approximately 32 feet per
second per second or 9.8 meters per second per second.

Using the Derivative to Find Velocity

At time ¢t = 0 seconds, a diver jumps from a platform diving board that is 32 feet above
the water (see Figure 2.21). The initial velocity of the diver is 16 feet per second. When
does the diver hit the water? What is the diver’s velocity at impact?

Solution

Begin by writing an equation to represent the position of the diver. Using the position
function given above with g = 32 feet per second per second, v, = 16 feet per second,
and s, = 32 feet, you can write

s(6) = —%(32):2 + 161 + 32

= —16£2 + 16t + 32. Position function

To find the time ¢ when the diver hits the water, let s = O and solve for ¢.

—162 + 16t + 32 =0 Set position function equal to 0.
—16(t+ 1)t—2)=0 Factor.
t=—1lor2 Solve for £.

Because ¢ = 0, choose the positive value to conclude that the diver hits the water at
t = 2 seconds. The velocity at time ¢ is given by the derivative

s'(r) = —32t + 16. Velocity function
So, the velocity at time r = 2 is
s'(2) = —32(2) + 16 = —48 feet per second.

Notice that the unit for s(¢) is the unit for s (feet) divided by the unit for ¢ (seconds). In
general, the unit for f'(x) is the unit for f divided by the unit for x. B |
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2.2 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Constant Rule What is the derivative of a constant
function?

2. Finding a Derivative Explain how to find the
derivative of the function f(x) = cx”.

3. Derivatives of Trigonometric Functions What
are the derivatives of the sine and cosine functions?

4. Average Velocity and Velocity Describe the
difference between average velocity and velocity.

Estimating Slope In Exercises 5 and 6, use
the graph to estimate the slope of the tangent line
to y = x" at the point (1, 1). Verify your answer
analytically. To print an enlarged copy of the
graph, go to MathGraphs.com.

5. (a) y = x'/2 (b) y=x°
y y

(1,1) (1, 1)

1,1 (1,1

1 2 3 1 2

[s]gs=[m] Finding a Derivative In Exercises 7-26, use
K the rules of differentiation to find the derivative of

O f? the function.

7.y=12 8. f(x)=-9

9. y=x’ 10. y = x!'2

11. y = % 12. y= %

13. f(0) = Yx 14. glx) = ¥x

15. f(x) =x + 11 16. g(x) = 6x + 3

17. f(t) = =32+ 2t — 4 18. y=r—-3t+1
19. g(x) = x* + 4x° 20. y = 4x — 3x°

2l s() =P + 52 —-3t+8 22. y=23+6x2—1
23. y = %sin 0 24. g(t) = mcost

25. y =2 — Scosx 26. y = 7x* + 2sinx

Ok:xd0] Rewriting a Function Before Differentiating
P In Exercises 27-30, complete the table to find the

a2 Py derivative of the function.
[=]:z343:
Original Function  Rewrite  Differentiate = Simplify
2
27. y = 7
8
28. y=—
8.y S5x73
6
BRAENY
3
30. y= W

F[E] Finding the Slope of a Graph In Exercises

"3 31-38, find the slope of the graph of the function
at the given point. Use the derivative feature of a
graphing utility to confirm your results.

[

Function Point
30 =5 (2.2)
32. /() =2— % 4 1)
3. fl) = =5+ (0. -3)
M. y=2x*-3 (1, -1
35. y = (4x + 1)? 0, 1)
36. f(x) = 2(x — 4)? (2,8)
37. £(0) = 4sinf — 6 (0, 0)
38. g(f) = —2cost+ 5 (m,7)

=] Finding a Derivative In Exercises 39-54, find
the derivative of the function.

oL
39. f) =22+ 5-3x2 40, f(x) =3 — 2x + 3x73
4 3
4l g) =7 — 3 42. f(x) = 8x + 5
T3t 34+ 2x +
43. f(x) = # 44. h(x) = A’ +2x+ 5
X X
3+ 4 — 8 S +25+6
45. g(t) = —an 46. h(s) = —
47. y = x(x> + 1) 48. y = (22 — 3x)
49. f(x) = \/; - 63/); 50. f(t) =23 — /3 44
2
51 f(x) = 6/x + 5cosx  52. fx) = 7t 3eosx
1
3. y= Go2 5cosx
5. y= 3 + 2 sinx
T @
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PF"EIF -'E Finding an Equation of a Tangent Line In 75. Sketching a Graph Sketch the graph of a function f

line to the graph of the function at the given point, is decreasing.
(b) use a graphing utility to graph the function and —
its tangent line at the point, and (c) use the fangent )
feature of a graphing utility to confirm your results.

Forrh, ﬁ Exercises 55-58, (a) find an equation of the tangent such that f' > 0 for all x and the rate of change of the function

)| HOW DO YOU SEE IT? Use the graph of

f to answer each question. To print an enlarged

Function Point copy of the graph, go to MathGraphs.com.
55. fx) = —2x* +5x2 -3 (1,0) b
56. y = x> — 3x 2,2)

2 f
57. flx) = s (1,2)
B C
58. y = (x — 2)(x> + 3x) (1, —4) A N
-'E Horizontal Tangent Line In Exercises 59-64, '
i_-'::_ determine the point(s) (if any) at which the graph . . o
LG of the function has a horizontal tangent line. (a) Between which two consecutive points is the
[=] Qv average rate of change of the function greatest?
59. y=x'—-2"+3 60. y =x* +x (b) Is the average rate of change of the function
6. y = 1 62. y= 2 +9 Petween A and B greater than or less than the
x2 instantaneous rate of change at B?
63. y=x+sinx, 0=<x<2m (c) Sketch a tangent line to the graph between C and
64. y = S3x +2cosx, 0<x<2n D such that the slope of the tangent line is the .
same as the average rate of change of the function

[s]#}[®] Finding a Value In Exercises 65-68, find k between C and D.

: % such that the line is tangent to the graph of the
Eéﬁ function. 77. Finding Equations of Tangent Lines Sketch the

Function Line graphs of y = x> and y = —x?> + 6x — 5, and sketch the two
65. fl) = k ) 6 + 1 lines that are tangent to both graphs. Find equations of these

S =T y= o lines.
— 2 = — -
66. f(x) = kx y=-2x+3 78. Tangent Lines Show that the graphs of the two equations
67. f(x)ZIE y=—§x+3 1
X 4 y=x and y= T

68. f(x) = k/x y=x+4

have tangent lines that are perpendicular to each other at their
point of intersection.

EXPLORING CONCEPTS

. . . 79. Horizontal Tangent Line Show that th h of th
Exploring a Relationship In Exercises 69-72, the ne 9 : ow that the graph of the

. . N . function
relationship between f and g is given. Explain the
relationship between f' and g'. flx) =3x + sinx + 2
69. g(x) = f(x) + 6 70. g(x) = 2f(x) does not have a horizontal tangent line.
71. g(x) = =5f(x) 72. glx) = 3f(x) — 1 80. Tangent Line Show that the graph of the function
A Function and lts Derivative In Exercises 73 flx) =2 + 3% + 5x

and 74, the graphs of a function f and its derivative f’
are shown on the same set of coordinate axes. Label the
graphs as f or f' and write a short paragraph stating the Finding an Equation of a Tangent Line In Exercises 81
criteria you used in making your selection. To print an and 82, find an equation of the tangent line to the graph of the
enlarged copy of the graph, go to MathGraphs.com. function f through the point (x,, y,) not on the graph. To find

does not have a tangent line with a slope of 3.

73. y 4. y the point of tangency (x, y) on the graph of f, solve the equation
S $ oty
1——/ 1 o f(x)_xo—x'
——+ > x —‘2—1 1\ 2 :"a “t 2
321 /I 23 81. f(x) = Jx 82. f(y) =~
/- (130 = (=4.0) (x30) = (5.0)

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203
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Approximation Consider the function
f(x) = x3/2 with the solution point (4, 8).

(a) Use a graphing utility to graph f. Use the zoom feature
to obtain successive magnifications of the graph in the
neighborhood of the point (4, 8). After zooming in a few
times, the graph should appear nearly linear. Use the trace
feature to determine the coordinates of a point near (4, 8).
Find an equation of the secant line S(x) through the two
points.

(b) Find the equation of the line T(x) = f'(4)(x — 4) + f(4)
tangent to the graph of f passing through the given point.
Why are the linear functions S and 7 nearly the same?

(c

~

Use a graphing utility to graph f and T on the same set of
coordinate axes. Note that 7 is a good approximation of f
when x is close to 4. What happens to the accuracy of the
approximation as you move farther away from the point of
tangency?

(d) Demonstrate the conclusion in part (c) by completing the
table.

Ax -3 | -2 -1] —-05 | —0.1 0

f(4 + Ax)

T4 + Ax)

Ax 0.1 | 05 1 2 3

f(4 + Ax)

T(4 + Ax)

P|5«84. Linear Approximation Repeat Exercise 83 for the

function f(x) = x3, where T(x) is the line tangent to the graph
at the point (1, 1). Explain why the accuracy of the linear
approximation decreases more rapidly than in Exercise 83.

True or False? In Exercises 85-90, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

85. If f'(x) = g'(x), then f(x) = g(x).

86. If y = x"2 + bx, then dy/dx = (a + 2)x**! + b.
87. If y = n?, then dy/dx = 2m.

88. If f(x) = —g(x) + b, then f'(x) = —g'(x).

89. If f(x) = 0, then f'(x) is undefined.

90. If f(x) = xi then f'(x) = ﬁ

[w]E==[m] Finding Rates of Change In Exercises 91-94,
: find the average rate of change of the function over
the given interval. Compare this average rate of
change with the instantaneous rates of change at
the endpoints of the interval.

I

[=]&#

91. f() =3t+5, [1,2] 92. f) =2 -1, [3,3.1]

94. £(x) = sinx, [0, %]

93. f(x) = _xl, [1,2]

Vertical Motion In Exercises 95 and 96, use the position
function s(f) = —16£% + vyt + s, for free-falling objects.

95. A silver dollar is dropped from the top of a building that is
1362 feet tall.

(a) Determine the position and velocity functions for the
coin.

(b) Determine the average velocity on the interval [1, 2].
(c) Find the instantaneous velocities when ¢t = 1 and t = 2.
(d) Find the time required for the coin to reach ground level.
(e) Find the velocity of the coin at impact.

96. A ball is thrown straight down from the top of a 220-foot
building with an initial velocity of —22 feet per second.
What is its velocity after 3 seconds? What is its velocity after
falling 108 feet?

Vertical Motion In Exercises 97 and 98, use the position
function s(f) = —4.92 + vt + s, for free-falling objects.

97. A projectile is shot upward from the surface of Earth with an
initial velocity of 120 meters per second. What is its velocity
after 5 seconds? After 10 seconds?

98. A rock is dropped from the edge of a cliff that is 214 meters
above water.

(a) Determine the position and velocity functions for the
rock.

(b) Determine the average velocity on the interval [2, 5].
(c) Find the instantaneous velocities when ¢t = 2 and t = 5.

(d) Find the time required for the rock to reach the surface of
the water.

(e) Find the velocity of the rock at impact.

99. Think About It The graph of the position function
(see figure) represents the distance in miles that a person
drives during a 10-minute trip to work. Make a sketch of the
corresponding velocity function.

60+ —
50+
40+
30 +——
20+ !

10+ I

Distance (in miles)
Velocity (in mi/h)

t
2 46 810

Time (in minutes)

0,002 46 810
Time (in minutes)

Figure for 99 Figure for 100

100. Think About It The graph of the velocity function (see
figure) represents the velocity in miles per hour during a
10-minute trip to work. Make a sketch of the corresponding
position function.

101. Volume The volume of a cube with sides of length s is
given by V = s3. Find the rate of change of the volume with
respect to s when s = 6 centimeters.

102. Area The area of a square with sides of length s is given
by A = s2. Find the rate of change of the area with respect to
s when s = 6 meters.
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e 103. ModelingData o e e e ¢ e e 0o 00000 e 105. Velocity Verify that the average velocity over the time
interval [#, — At,t, + Af] is the same as the instantaneous

The stopping distance of an automobile, on dry, level A i i
velocity at t = ¢, for the position function

pavement, traveling at a speed v (in kilometers per hour)
is the distance R (in meters) the car travels during the
reaction time of the driver plus the distance B (in meters)
the car travels after the brakes are applied (see figure).
The table shows the results of an experiment.

1
s(t) = —Eat2 + c.

106. Inventory Management The annual inventory cost C

) ) for a manufacturer is
Reaction Braking
time distance

_ 1,008,000
Q

where Q is the order size when the inventory is replenished.
Find the change in annual cost when Q is increased from

C

p J{ \ + 6.30
- | s
t R & B %

Driver sees  Driver applies Car 350 to 351 and compare this with the instantaneous rate of
obstacle brakes stops change when Q = 350.
107. Finding an Equation of a Parabola Find an equation
Speed, v 20 | 40 60 80 | 100 of the parabola y = ax?> + bx + c that passes through (0, 1)

Reaction Time and is tangent to the line y = x — 1 at (1, 0).

83 | 16.7 | 25.0 | 333 | 41.7

Distance, R 108. Proof Let (a, b) be an arbitrary point on the graph of
Brakine Ti y = 1/x,x > 0. Prove that the area of the triangle formed by
raking ‘lime the tangent line through (a, b) and the coordinate axes is 2.

Distance, B | 23 | 90 | 202 | 358 | 559

109. Tangent Line Find the equation(s) of the tangent line(s)
to the graph of the curve y = x* — 9x through the point
(1, —9) not on the graph.

(a) Use the regression
capabilities of a
graphing utility to
find a linear model
for reaction time
distance R.

110. Tangent Line Find the equation(s) of the tangent line(s)
to the graph of the parabola y = x? through the given point
not on the graph.

@ (0,a)  (b) (a,0)

(b) Use the regression Are there any restrictions on the constant a?
capabilities of a

graphing utility to

Making a Function Differentiable In Exercises 111 and

L]
find a quadratic model . 112, find @ and b such that f is differentiable everywhere.
. . . L]
for braking time distance B. . i (ar, c<2
(c) Determine the polynomial giving the total stopping : ) = 24+b, x>2
distance T. o
. . . . COS X, x<0
(d) Use a graphing utility to graph the functions R, B, and ~ * 112. f(x) = b x20
T in the same viewing window. . ’ -
(e) Find the derivative of T and the rates of change of the : 113. Determining Differentiability Where are the
total stopping distance for v = 40, v = 80, and v = 100. e functions f,(x) = |sin x| and f,(x) = sin |x| differentiable?
(f) Use the results of this exercise to draw conclusions : 114. Proof P h d .
about the total stopping distance as speed increases. d - Froo rove that dx [eos x] = —sin.x.
L]
Tttt EEEEENtttttTY " M FOR FURTHER INFORMATION For a geometric
104. Fuel Cost A car is driven 15,000 miles a year and gets interpretation of the derivatives of trigonometric functions, see the
x miles per gallon. Assume that the average fuel cost is article “Sines and Cosines of the Times” by Victor J. Katz in Math
$3.48 per gallon. Find the annual cost of fuel C as a function Horizons. To view this article, go to MathArticles.com.
of x and use this function to complete the table.
. 10115120 125130 | 35 | 40 PUTNAM EXAM CHALLENGE
c 115. Find all differentiable functions f: R — R such that
(o = o+ n) = f)
dC/dx f') = .
‘Who would benefit more from a one-mile-per-gallon increase in for all real numbers x and all positive integers .
fuel efficiency—the driver of a car that gets 15 miles per gallon This problem was composeEi l?y the Comn?jnee on Fhe Putnam Prize Competition.
or the driver of a car that gets 35 miles per g allon? Explajn. © The Mathematical Association of America. All rights reserved.

Tumar/Shutterstock.com
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2.3 Product and Quotient Rules and Higher-Order Derivatives

# Find the derivative of a function using the Product Rule.
@ Find the derivative of a function using the Quotient Rule.
@ Find the derivative of a trigonometric function.

@ Find a higher-order derivative of a function.

The Product Rule

In Section 2.2, you learned that the derivative of the sum of two functions is simply the
sum of their derivatives. The rules for the derivatives of the product and quotient of two
functions are not as simple.

THEOREM 2.7 The Product Rule

X A version of the The product of two differentiable functions f and g is itself differentiable.
Product Rule that some people Moreover, the derivative of fg is the first function times the derivative of the
prefer is second, plus the second function times the derivative of the first.

d ! ! d

L We)] = f)glx) + f(x)g'(). L/ Wg0] = (g’ x) + g(0f (x)

The advantage of this form
is that it generalizes easily

Proof Some mathematical proofs, such as the proof of the Sum Rule, are straight-
to products of three or more

forward. Others involve clever steps that may appear unmotivated to a reader. This

factors. proof involves such a step—subtracting and adding the same quantity—which is shown
in color.
d _ i [+ Ax)glr + Ax) — fx)g(x)
dx[f(x)g(x)] B Aliglo Ax
_ i S0 Al + A — fx + A0)gl) + flx + A0l — fRe)
Ax—0 Ax
o (86 + Ax) — gx) [+ Ax) —f(x)}
Al)%go [f(x + A% Ax + &) Ax
_ (80 + Ax) — gx) : [+ Ax) = f(x)
Aliglo [f(x + Ax) Ax * Aligo s) Ax
o Lo 8le+ Ax) — g(v) . L f+ AY) — fx)
B Al;fof(x + Ax) A];EO Ax * Aligo g(x) Alig]o Ax
= f(x)g'(x) + glx)f'(x)
Note that AI;m0 f(x + Ax) = f(x) because f is given to be differentiable and therefore
is continuous. = |
cecoccccocc s The Product Rule can be extended to cover products involving more than two
: . The proof of the factors. For example, if f, g, and & are differentiable functions of x, then

Product Rule for products of d , , ,
more than two factors is left as a[f (x)g()h(x)] = f'()g()h(x) + fx)g'x)h(x) + f(x)g(x)h'(x).

an exercise (see Exercise 137). o ) )
So, the derivative of y = x? sin x cos x is

d . . .
D = 2y sin x cos x + x2 cos x cos x + x2(sin x)(—sin x)

dx

= 2x sin x cos x + x%(cos? x — sin? x).
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THE PRODUCT RULE

When Leibniz originally wrote
a formula for the Product
Rule, he was motivated by the
expression

(x + dx)(y + dy) — xy

from which he subtracted

dx dy (as being negligible) and
obtained the differential form
x dy + y dx. This derivation
resulted in the traditional form
of the Product Rule. (Source:
The History of Mathematics by
David M. Burton)

In Example 3,
notice that you use the Product
Rule when both factors of the
product are variable, and you
use the Constant Multiple Rule
when one of the factors is a
constant.
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The derivative of a product of two functions is not (in general) given by the product
of the derivatives of the two functions. To see this, try comparing the product of the
derivatives of

flx) = 3x — 2«2
and
glx) =5+ 4x

with the derivative in Example 1.

EXAMPLE 1 Using the Product Rule

Find the derivative of h(x) = (3x — 2x3)(5 + 4x).
Solution

Derivative
Second of first
(—H (—/%

Derivative of
First second

r N N

W) = (3x — 222) %[5 +ax] + (5 + 40) %[3)6 —22]  Apply Product Rule.

= (Bx — 2x3)4) + (5 + 4x)(3 — 4x)
= (12x — 8x%) + (15 — 8x — 16x?)
= —24x* + 4x + 15 |

In Example 1, you have the option of finding the derivative with or without the
Product Rule. To find the derivative without the Product Rule, you can write

D [(3x — 2x*)(5 + 4x)] = D [—8x> + 2x* + 15x]
= —24x% + 4x + 15.

In the next example, you must use the Product Rule.

EXAMPLE 2 Using the Product Rule

Find the derivative of y = 3x? sin x.

Solution
d., . ,d . d.,
o [3x2 sin x] = 3x T [sin x] + sin x o [3x2] Apply Product Rule.

= 3x2 cos x + (sin x)(6x)
= 3x?cos x + 6xsinx

= 3x(x cos x + 2 sin x)

Using the Product Rule

Find the derivative of y = 2x cos x — 2 sin x.
Solution

Product Rule Constant Multiple Rule

r a) s N

b _ (zx)% [cos x]> + (cos x)<d% [2x]> - 2% [sin ]

= (2x)(—sinx) + (cos x)(2) — 2(cos x)
—2x sin x - |
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From the Quotient
Rule, you can see that the
derivative of a quotient is not
(in general) the quotient of
the derivatives.

A graphing
utility can be used to compare
the graph of a function with
the graph of its derivative. For
instance, in Figure 2.22, the
graph of the function in
Example 4 appears to have
two points that have horizontal
tangent lines. What are the
values of y' at these two points?

L, =5x2+4x+5

Graphical comparison of a
function and its derivative
Figure 2.22

Chapter 2 Differentiation

The Quotient Rule

THEOREM 2.8 The Quotient Rule

The quotient f/g of two differentiable functions f and g is itself differentiable
at all values of x for which g(x) # 0. Moreover, the derivative of f/g is given
by the denominator times the derivative of the numerator minus the numerator
times the derivative of the denominator, all divided by the square of the

denominator. IEI_L ?}E
d [fW)] _ g)f'(x) = f(0g'(x) a
dx [@] = £ [c £ ) #0 Elﬁ

Proof As with the proof of Theorem 2.7, the key to this proof is subtracting and
adding the same quantity—which is shown in color.

fx+Ax)  flx)

%[}2}3} PN {6 B { )

Definition of derivative

) Ax—0 Ax
— lim g)f(x + Ax) — F(x)g(x + Ax)
Ax—0 Axg(x)g(x + Ax)
iy 806 A — F(g0) + /(g — fxgle + Ax)
A0 Axg()glr + Ax)
lim S0 +AAx) —f@] sl +AAx) )

dim [g(0)g(x + Ax)]

g(x)[ lim flx + Ax) —f(x)} —f(x)[ lim glx + Ax) — g(x)}

Ax—0 Ax Ax—0 Ax
Jim [g(x)g(x + Ax)]

_ 8W)f'(x) — fx)g'(x)
[s(x) P

Note that Alim0 glx + Ax) = g(x) because g is given to be differentiable and therefore
x—

is continuous. ad
S CISREN  Using the Quotient Rule
i ivati _x—2
Find the derivative of y = 251
Solution
@+ 1) Lse—2]— G- 2) L2+ 1]
d|5x—2 dx dx )
a JER = (x2 T 1)2 Apply Quotient Rule.
_ 2+ DG) — (5x = 2)(2x)
o2+ 1)
_ (5x2 +5) — (10x%2 — 4x)
(x% + 1)?
_ =5x2+4x+ 5

@+ 1) -



y

The line y = 1 is tangent to the graph
of f at the point (—1, 1).
Figure 2.23

To see the benefit
of using the Constant Multiple
Rule for some quotients, try
using the Quotient Rule to
differentiate the functions in
Example 6. You should
obtain the same results but
with more work.
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Note the use of parentheses in Example 4. A liberal use of parentheses is
recommended for all types of differentiation problems. For instance, with the Quotient
Rule, it is a good idea to enclose all factors and derivatives in parentheses and to pay
special attention to the subtraction required in the numerator.

When differentiation rules were introduced in the preceding section, the need for
rewriting before differentiating was emphasized. The next example illustrates this point
with the Quotient Rule.

EXAMPLE 5 Rewriting Before Differentiating

Find an equation of the tangent line to the graph of f(x) = %(15/)6) at (—1,1).

Solution Begin by rewriting the function.

flx) = 3)6%(15/)6) Write original function.
x<3 - l)
X . .
= m Multiply numerator and denominator by x.
3x — 1 ‘
= 2+ 5¢ Rewrite.

Next, apply the Quotient Rule.

PO = (x2+5x)(3) — Bx — 1)(2x + 5)

Quotient Rule

(x2 + 5x)2
_ (3x2 + 15x) — (6x2 + 13x — 5)
(x2 + 5x)2
=32+ 2x+5 o
= W Simplify.
To find the slope at (—1, 1), evaluate f'(—1).
f(-1)=0 Slope of graph at (—1, 1)
Then, using the point-slope form of the equation of a line, you can determine that the
equation of the tangent line at (—1, 1) is y = 1. See Figure 2.23. |

Not every quotient needs to be differentiated by the Quotient Rule. For instance,
each quotient in the next example can be considered as the product of a constant times
a function of x. In such cases, it is more convenient to use the Constant Multiple Rule.

Using the Constant Multiple Rule

Original Function Rewrite Differentiate Simplify

a.y:x2-16—3x y=é(x2+3x) y’=é(2x+3) y’=2x;3
b. y= %4 y= %x“ y = %(4x3) y = %x3
cy= _3(3);; 2y —2B-29 Y= —%(—2) Y =g
d.y=% y =26 y'=%(—2x*3) y"‘%
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In Section 2.2, the Power Rule was proved only for the case in which the exponent
n is a positive integer greater than 1. The next example extends the proof to include
negative integer exponents.

EXAMPLE 7 Power Rule: Negative Integer Exponents

If n is a negative integer, then there exists a positive integer k such that n = —k. So, by
the Quotient Rule, you can write

- 4]

xH0) — (D(kx*~")

= ( k)2 Quotient Rule and Power Rule
X
0 = kxt!
- 2k
- _ kx—k— 1
= nx* 1. n=—k
So, the Power Rule
d -1
I [x"] = nx" Power Rule
X

is valid for any integer n. In Exercise 73 in Section 2.5, you are asked to prove the case
for which » is any rational number. e |

Derivatives of Trigonometric Functions

Knowing the derivatives of the sine and cosine functions, you can use the Quotient Rule
to find the derivatives of the four remaining trigonometric functions.

Derivatives of Trigonometric Functions

d d

— [tan x] = sec? x —[cotx] = —csc? x .

dx dx [w] 'J'!le]
J y it
a[secx] = sec x tan x a[oscx] = —cscxcotx E:l.'.r..- i

Proof Considering tan x = (sin x)/(cos x) and applying the Quotient Rule, you

In the proof of obtain
Theorem 2.9, note the use of d _ d [sinx
the trigonometric identities dx [tan x] = dx | cos x

sin2x + cos?x =1

_ (cos x)(cos x) — (sin x)(—sin x)

Apply Quotient Rule.

2
cos? x
and
_cos?x + sin?x
sec x = : cos®x
coS x
1
These trigonometric identities ~ cos?x
and others are listed in Section = sec? x.

P.4 and on the formula cards

for this text. .
Exercise 87).

The proofs of the other three parts of the theorem are left as an exercise (see
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EXAMPLE 8 Differentiating Trigonometric Functions

e« « o[> See LarsonCalculus.com for an interactive version of this type of example.

Function Derivative
d
a.y=x—tanx D~ sec?x
dx
b. y = xsecx y' = x(sec x tan x) + (sec x)(1)

= (sec x)(1 + xtan x)

Different Forms of a Derivative

Because of . .
. . " Differentiate both forms of

trigonometric identities, the
derivative of a trigonometric 1 —cosx

. y=——— =c¢cscx — cotux.
function can take many forms. sin x
This presents a challenge when .

P g Solution

you are trying to match your

answers to those given in the ) o _ 1 —cosx
back of the text. First form: 'y = sin x

_ (sinx)(sinx) — (1 — cos x)(cos x)
B sin? x

!

sin? x — cos x + cos? x

sin? x

1 — cosx . .
= 72 sin“x + cosx =1
sin? x

Second form: y = cscx — cotx

y' = —cscxcotx + csc?x

To show that the two derivatives are equal, you can write

I—cosx 1  cosx
sinx  sin?x  sin?x
_ 1 < 1 )(cos x)
 sin?x sin x/\ sin x
= ¢sc? x — csc x cot x. i |

The summary below shows that much of the work in obtaining a simplified form
of a derivative occurs after differentiating. Note that two characteristics of a simplified
form are the absence of negative exponents and the combining of like terms.

f'(x) After Differentiating f'(x) After Simplifying
Example 1 | (3x — 2x?)(4) + (5 + 4x)(3 — 4x) —24x% + 4x + 15
Example 3 | (2x)(—sinx) + (cos x)(2) — 2(cos x) —2x sin x
2+ 1)(5) — (5x — 2)(2x) —5x2+4x+5

Example4 (xz + 1)2 (.XZ + 1)2

(x* + 5x)(3) — (3x — 1)(2x + 5) —3x2+2x+5
Example 5 (2 + 5x)2 (x% + 5x)2

(sin x)(sin x) — (I — cos x)(cos x) 1 — cosx
Example 9 sin® x sin® x
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oo The second
derivative of a function is the
derivative of the first derivative
of the function.

The moon’s mass is 7.349 x 1022
kilograms, and Earth’s mass

is 5.976 x 10% kilograms.

The moon’s radius is 1737
kilometers, and Earth’s radius
is 6378 kilometers. Because

the gravitational force on the
surface of a planet is directly
proportional to its mass and
inversely proportional to the
square of its radius, the ratio of
the gravitational force on Earth
to the gravitational force on the
moon is

(5.976 x 10%4)/6378% _
(7.349 x 1022)/17372

6.0.

Higher-Order Derivatives

Just as you can obtain a velocity function by differentiating a position function, you
can obtain an acceleration function by differentiating a velocity function. Another way
of looking at this is that you can obtain an acceleration function by differentiating a
position function twice.

S(t) Position function
v(t) = s'(r)
a(t) = v'(H) = 5"(r)

The function a(#) is the second derivative of s(z) and is denoted by s"(¢).

The second derivative is an example of a higher-order derivative. You can
define derivatives of any positive integer order. For instance, the third derivative is
the derivative of the second derivative. Higher-order derivatives are denoted as shown
below.

Velocity function

Acceleration function

. . . ! ! @ i
First derivative: ', F(x), = I Lf()], D.[y]
Second derivative: ', (). 92 Lpw) pipy)
econd derivative: )", f"(x), ey AL Ly
. . . m " d3y d3 3
Third derivative: ", " (x), 73 i [f(x)], DJ[y]
Fourth derivative: y* %) dy ﬂ[f )] D[y]
SV x) dx4’ dx4 X1, xLY
o d"y d"
. (n) (n) “
nth derivative: yo, o f(x), o e [f&)]., DMyl
FNLARRIN  Finding the Acceleration Due to Gravity
Because the moon has no atmosphere, a falling R
object on the moon encounters no air resistance.
In 1971, astronaut David Scott demonstrated that 37T

a feather and a hammer fall at the same rate on
the moon. The position function for each of these
falling objects is

s(f) = —0.812 + 2

where s(?) is the height in meters and ¢ is the
time in seconds, as shown in the figure at the ‘ ‘ ‘
right. What is the ratio of Earth’s gravitational ! 2 3
force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

s(H) = —0.812 + 2

Position function

S’(l‘) = —1.62¢ Velocity function
s'(f) = —1.62 Acceleration function
Because s”(f) = — g, the acceleration due to gravity on the moon is g = 1.62 meters per

second per second. The acceleration due to gravity on Earth is 9.8 meters per second
per second, so the ratio of Earth’s gravitational force to the moon’s is

Earth’s gravitational force 9.8
Moon’s gravitational force  1.62

~ 6.0. ™

NASA
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2.3 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Product Rule Describe the Product Rule in your
own words.

2. Quotient Rule Describe the Quotient Rule in your
own words.

3. Trigonometric Functions What are the derivatives
of tan x, cot x, sec x, and csc x?

4. Higher-Order Derivative What is a higher-order
derivative?

afF40] Using the Product Rule In Exercises 5-10,
: use the Product Rule to find the derivative of the
. function.
[=]
5. glx) = 2x — 3)(1 — 5x)
7. k(@) = Ji(1 — P)

9. f(x) = x*cos x

6. y=0Bx—4)(*+5)

8. g(s) = /s(s? + 8)

10. g(x) = xsinx

[=]7T¥[®] Using the Quotient Rule In Exercises 11-16,

use the Quotient Rule to find the derivative of the
function.

X 32— 1
x-5 12. 60 = 575
2
3‘/’7‘ 4. f(x) = —>——
x+1 2/x + 1
sin x cos ¢
15. glx) = —5- 16. f(1) = —
x t
[E]73}[E] Finding and Evaluating a Derivative In
; '3 Exercises 17-22, find f'(x) and f'(c).
[=]%543:2
Function Value of ¢
17. f(x) = (¥ + 4x)(3x2 + 2x — 5) c=0
18. f(x) = (2% — 3x)(9x + 4) c=-—1
x> —4
19.f()c)—x_3 c=1
x—4
20.f(x)—x+4 c=3
i1
21. f(x) = xcosx c=7
sin x s
22. f(x) = X c = 6

@-ﬁ-‘

[] Using the Constant Multiple Rule In

derivative of the function without using the

£ Quotient Rule.

Function Rewrite Differentiate ~ Simplify
3 +
3.y = X ! 6x

Function Rewrite Differentiate Simplify
2.y = 5x24— 3
25.y = %
26. y = %
3/2
27y = 4’;
28.y = x%

Finding a Derivative InExercises 29-40, find the derivative
of the algebraic function.

3x — x?

4 — X +5x+6
29. f(x) = e —

30. f(x) = 24

31 f(x)=x<1—i> 3. f(x)=x4<1— 2 )

x+3 x+ 1
3. fl) = 21 34. 100 = Yol Vx +3)
Jx
2—% x%-l—Sx
35. /00 = 36. b = T
37. g(s) = s3<5 - j_ 2) 38. glx) = xz(% - x_"l_ 1)

39. f(x) = (2% + 5x)(x — 3)(x + 2)
40. f(x) = (¥ — D)2 +2)*+x— 1)

[E]%X[=] Finding a Derivative of a Trigonometric
:j."" Function In Exercises 41-56, find the derivative
Ol 1 of the trigonometric function.
41. f(r) = £sint 42. f(0) = (0 + 1)cos 6

cos t sin x
43. f(t) = T 44, f(x) = ?
45. f(x) = —x + tanx 46. y = x + cotx

1
47. g() = ¥t + 6 esct 48. h(x) = i 12 sec x
49,y — 3(1 — sinx) 50, y = SeCX
- 2 cos x -y x

51. y = —cscx — sinx 52. y = xsinx + cosx
53. f(x) = x?tan x 54. f(x) = sinxcos x

55. y = 2xsinx + x% cos x 56. h(0) = 50 sec 6 + O tan O

Exercises 23-28, complete the table to find the idp' Finding a Derivative Using Technology In Exercises 57

and 58, use a computer algebra system to find the derivative
of the function.

COS x

x+ 1
57. g(x) = (m)(zx - 5) 58. f(x) = m
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Finding the Slope of a Graph In Exercises 59-62, find
the slope of the graph of the function at the given point. Use the
derivative feature of a graphing utility to confirm your results.

Function Point
1+ cscx T
59, y=—— -, =
9.y 1 —cscx (6 3)
60. f(x) = tanx cot x (1,1)
61 n(p) = =1 (71, —l>
t T

62. f(x) = (sinx)(sin x + cos x) (%, 1)

Plv Finding an Equation of a Tangent Line In Exercises

63-68, (a) find an equation of the tangent line to the graph
of f at the given point, (b) use a graphing utility to graph
the function and its tangent line at the point, and (c) use the
tangent feature of a graphing utility to confirm your results.

63. f(x) = +4x— 1Dx—2), (1,-4)
64. f(x) = (x —2)(x2 +4), (1,-5)

X x+3
prar (=5,5)  66. f(x) = P

65. f(x) = 4,7)

67. f(x) = tanx, (% 1) 68. f(x) = sec x, (g 2)

Famous Curves In Exercises 69-72, find an equation of
the tangent line to the graph at the given point. (The graphs in
Exercises 69 and 70 are called Witches of Agnesi. The graphs
in Exercises 71 and 72 are called serpentines.)

69 y 70. y
6+ 6
4+ 4+
€ 3
(-3.3) ~T
INGGED 1
——— ———>=x ——— ——t—>=x
-4 -2 4L 2 4 -4 -2 1 2 4
—2 + .
71. y 72. y
4,,
8+ Ml
T 4 4
4+ T (2.5)
L Ly ——— ———>x
T T T T gl T é\t T é 1 1 2 3 4
8 | 1
=
—8 -+ T

[¥] Horizontal Tangent Line In Exercises 73-76,
"1 determine the point(s) at which the graph of the
function has a horizontal tangent line.

[

73. f() = 2x — 1 X2

4. () = 5

1
x—4
76. f(x):)cz_7

x2
2

75 flx) = =

77. Tangent Lines Find equations of the tangent lines to the
graph of f(x) = (x + 1)/(x — 1) that are parallel to the line
2y + x = 6. Then graph the function and the tangent lines.

78. Tangent Lines Find equations of the tangent lines to the
graph of f(x) = x/(x — 1) that pass through the point (—1, 5).
Then graph the function and the tangent lines.

Exploring a Relationship In Exercises 79 and 80, verify
that f'(x) = g'(x) and explain the relationship between f and g.

3x S5x + 4

- f(x)_x+2’ g(x) = x+2
sin x — 3x sinx + 2x
80. f(x) = T, gl = T

Finding Derivatives In Exercises 81 and 82, use the graphs
of f and g. Let p(x) = f(x)g(x) and q(x) = f(x)/g(x).
81. (a) Find p'(1). 82. (a) Find p'(4).

(b) Find ¢'(4). (b) Find ¢'(7).

y y
10 10
3 1 8 1,
\
6 \
4\ g
2 & 2
} - x | x
- 2+ 44 65 810 - 2 4 Gk 84410

83. Area The length of a rectangle is given by 67 + 5 and its
height is /7, where 7 is time in seconds and the dimensions are
in centimeters. Find the rate of change of the area with respect
to time.

84. Volume The radius of a right circular cylinder is given by
m and its height is %ﬁ, where ¢ is time in seconds and
the dimensions are in inches. Find the rate of change of the
volume with respect to time.

85. Inventory Replenishment The ordering and
transportation cost C for the components used in manufacturing
a product is

200 X
= == 4 >
C 100( 2 o 30>, x =1

where C is measured in thousands of dollars and x is the order
size in hundreds. Find the rate of change of C with respect to
x when (a) x = 10, (b) x = 15, and (c) x = 20. What do these
rates of change imply about increasing order size?

86. Population Growth A population of 500 bacteria is

introduced into a culture and grows in number according to the
equation

4t
P(t) = 500<1 * 501 t2)

where ¢ is measured in hours. Find the rate at which the
population is growing when ¢ = 2.
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87. Proof Prove each differentiation rule.

Product and Quotient Rules and Higher-Order Derivatives
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88.

90.

d

(a) T [sec x] = sec x tan x
d

(b) —[csc x] = —csc x cot x
dx

(c) % [cotx] = —csc?x

Rate of Change Determine whether there exist any
values of x in the interval [0, 27) such that the rate of change
of f(x) = secx and the rate of change of g(x) = csc x are
equal.

. Modeling Data The table shows the national health care

expenditures /4 (in billions of dollars) in the United States and
the population p (in millions) of the United States for the years
2008 through 2013. The year is represented by 7, with t = 8
corresponding to 2008. (Source: U.S. Centers for Medicare
& Medicaid Services and U.S. Census Bureau)

Year, t 8 9 10 11 12 13
h 2414 | 2506 | 2604 | 2705 | 2817 | 2919
p 304 307 309 311 313 315

(a) Use a graphing utility to find linear models for the health
care expenditures /(f) and the population p().

(b) Use a graphing utility to graph A(7) and p(z).

(c) Find A = h(#)/p(?), then graph A using a graphing utility.
What does this function represent?

(d) Find and interpret A’(f) in the context of the problem.

Satellites When satellites observe Earth, they can scan
only part of Earth’s surface. Some satellites have sensors that
can measure the angle 6 shown in the figure. Let & represent
the satellite’s distance from Earth’s surface, and let r represent

Earth’s radius.

h

(a) Show that h = r(csc 6 — 1).

(b) Find the rate at which /4 is changing with respect to 8 when
0 = 30°. (Assume r = 4000 miles.)

[§] Finding a Second Derivative In Exercises
T 91-100, find the second derivative of the function.

[

[v] Finding a Higher-Order Derivative In
% Exercises 101-104, find the given higher-order

derivative.
&

101. f'(x) = x3 — x¥/5, fO(x)
102. fO0) = I, f9)
103. f"(x) = —sinx, f®(x)
104, f@() =tcost, fO(r)

Using Relationships In Exercises 105-108, use the given

information to find f'(2).
g2)=3 and g'2Q) =-2
h(2Q)=—1 and HK'(2) =4
105. f(x) = 2g(x) + h(x)
106. f(x) = 4 — h(x)

107. f(x) = %

108. £(x) = g(x)h(x)

EXPLORING CONCEPTS

109. Higher-Order Deriv
degree satisfy f® = 0?

110.

exist.

atives Polynomials of what
Explain your reasoning.

Differentiation of Piecewise Functions
Describe how you would differentiate a piecewise
function. Use your approach to find the first and second
derivatives of f(x) = x|x|. Explain why f”(0) does not

Identifying Graphs In Exercises 111 and 112, the
graphs of f, f’, and f" are shown on the same set
of coordinate axes. Identify each graph. Explain your
reasoning. To print an enlarged copy of the graph, go to

MathGraphs.com.
111. y

112. Y

Sketching Graphs InExercises 113 and 114, the graph
of f is shown. Sketch the graphs of f’ and f". To print an
enlarged copy of the graph, go to MathGraphs.com.

91. flx) =x>+7Tx — 4 92. f(x) = 4x> — 2x3 + 542

93. f(x) = 4x3/2 94. f(x) = x*+ 3x73
X X2+ 3x

95. f() = 9. ) =",

97. f(x) = xsinx 98. f(x) = xcosx

99. f(x) = cscx 100. f(x) = secx
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115.

116.

117.

118.

119.

12

Chapter 2 Differentiation

Sketching a Graph Sketch the graph of a differentiable
function f such that f(2) = 0, f' < O for —c0 < x < 2, and
f' > 0for2 < x < oo. Explain how you found your answer.

Sketching a Graph Sketch the graph of a differentiable
function f such that f > 0 and f’ < O for all real numbers x.
Explain how you found your answer.

Acceleration The velocity of an object is

vi)=36—17 0<t=<6

where v is measured in meters per second and ¢ is the time
in seconds. Find the velocity and acceleration of the object
when ¢t = 3. What can be said about the speed of the object
when the velocity and acceleration have opposite signs?

Acceleration The velocity of an automobile starting
from rest is

(1) = 100z
Wt 1s

where v is measured in feet per second and ¢ is the
time in seconds. Find the acceleration at (a) 5 seconds,
(b) 10 seconds, and (c) 20 seconds.

Stopping Distance A car is traveling at a rate of 66 feet
per second (45 miles per hour) when the brakes are applied.
The position function for the car is s(f) = —8.25/> + 66¢,
where s is measured in feet and 7 is measured in seconds.
Use this function to complete the table and find the average
velocity during each time interval.

t 0Oj1]2|3]4
(1)
v()
alt)

0. HOW DO YOU SEE IT? The figure shows

the graphs of the position, velocity, and
acceleration functions of a particle.

y

(a) Copy the graphs of the functions shown. Identify
each graph. Explain your reasoning. To print an
enlarged copy of the graph, go to MathGraphs.com.

(b) On your sketch, identify when the particle speeds up
and when it slows down. Explain your reasoning.

Finding a Pattern In Exercises 121 and 122, develop a
general rule for f®(x) given f(x).

1

121. f(x) = x" 122 f(x) =

123. Finding aPattern Considerthe function f(x) = g(x)h(x).

(a) Use the Product Rule to generate rules for finding £”(x),
f"(x), and f@(x).

(b) Use the results of part (a) to write a general rule for £ (x).

124. Finding a Pattern Develop a general rule for the nth
derivative of xf(x), where f is a differentiable function of x.

Finding a Pattern In Exercises 125 and 126, find the
derivatives of the function f for n = 1, 2, 3, and 4. Use the
results to write a general rule for f'(x) in terms of n.

COS X
B

125. f(x) = x"sinx 126. f(x) =

Differential Equations In Exercises 127-130, verify that
the function satisfies the differential equation. (A differential
equation in x and y is an equation that involves x, y, and
derivatives of y.)

Function Differential Equation

127. y = %,x >0 X3y + 2% =0

128. y = 22 — 6x + 10
129. y = 2sinx + 3

_yw _ xyu _ 2y! — _24x2
y'ty=3

130. y = 3 cosx + sinx Yy +y=0

True or False? In Exercises 131-136, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

131. 1f y = £(x)g(x), then % — Fog').

5
132. Ify = (x + D)(x + 2)(x + 3)(x + 4), then % = 0.

133. If f'(c) and g'(c) are zero and h(x) = f(x)g(x), then h'(c) = 0.

134. If the position function of an object is linear, then its
acceleration is zero.

135. The second derivative represents the rate of change of the
first derivative.

136. The function f(x) = sin x + ¢ satisfies £ = f**4 for all
integers n = 1.

137. Proof Use the Product Rule twice to prove that if f, g, and
h are differentiable functions of x, then

% [f®)g@h(x)] = f'(x)gx)h(x) + f(x)g' (x)h(x) + f(x)g(x)h'(x).

138. Think About It Let f and g be functions whose first
and second derivatives exist on an interval /. Which of the
following formulas is (are) true?

(@ fg" —f'g=(fg' —f8) (b f&"+f'g=(f3)"
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2.4 The Chain Rule

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute
Axle 3: x revolutions per minute
Figure 2.24

@ Find the derivative of a composite function using the Chain Rule.

@ Find the derivative of a function using the General Power Rule.

@ Simplify the derivative of a function using algebra.

@ Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule

This text has yet to discuss one of the most powerful differentiation rules—the Chain
Rule. This rule deals with composite functions and adds a surprising versatility to the
rules discussed in the two previous sections. For example, compare the functions shown
below. Those on the left can be differentiated without the Chain Rule, and those on the
right are best differentiated with the Chain Rule.

Without the Chain Rule With the Chain Rule

y=x>+1 y=Jx*+1
y = sinx y = sin 6x
y=3x+2 y=(Bx+2)

y =x + tanx y = x + tan x?

Basically, the Chain Rule states that if y changes dy/du times as fast as u, and u changes
du/dx times as fast as x, then y changes (dy/du)(du/dx) times as fast as x.

EXAMPLE 1 The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.24, such that the second and third
gears are on the same axle. As the first axle revolves, it drives the second axle, which
in turn drives the third axle. Let y, u, and x represent the numbers of revolutions per
minute of the first, second, and third axles, respectively. Find dy/du, du/dx, and dy/dx,
and show that

dy _dy du
dx du dx

Solution Because the circumference of the second gear is three times that of the
first, the first axle must make three revolutions to turn the second axle once. Similarly,
the second axle must make two revolutions to turn the third axle once, and you can
write

dy du

— =3 and —=2.

du dx
Combining these two results, you know that the first axle must make six revolutions to
turn the third axle once. So, you can write

dy _ Rate of change of first axle
dx  with respect to second axle

_dy du
du dx
=3.2
=6

Rate of change of second axle
with respect to third axle

Rate of change of first axle
with respect to third axle -

In other words, the rate of change of y with respect to x is the product of the rate of
change of y with respect to u and the rate of change of u with respect to x. |
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Exploration

Using the Chain Rule Each
of the following functions
can be differentiated using
rules that you studied in
Sections 2.2 and 2.3. For
each function, find the
derivative using those rules.
Then find the derivative
using the Chain Rule.
Compare your results.
Which method is simpler?

W2
SR
b y = (x + 2)°

c. y = sin 2x

The alternative
limit form of the derivative was
given at the end of Section 2.1.

Chapter 2 Differentiation

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated
in the next theorem.

The Chain Rule

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable
function of x, then y = f(g(x)) is a differentiable function of x and

dy _dy du
dx du dx

or, equivalently,

L7 = F()g ().

Proof Let/h(x) = f(g(x)). Then, using the alternative form of the derivative, you need
to show that, for x = ¢,

h'(c) = f(g(c))g'(c).

An important consideration in this proof is the behavior of g as x approaches c. A
problem occurs when there are values of x, other than ¢, such that

g(x) = glo).
Appendix A shows how to use the differentiability of f and g to overcome this problem.
For now, assume that g(x) # g(c) for values of x other than c. In the proofs of the
Product Rule and the Quotient Rule, the same quantity was added and subtracted to
obtain the desired form. This proof uses a similar technique—multiplying and dividing
by the same (nonzero) quantity. Note that because g is differentiable, it is also continuous,
and it follows that g(x) approaches g(c) as x approaches c.

) — f(g(0))

h’(c) = )1(1_1)1} —c Alternative form of derivative
i | £ — fe(e) | gl) — gle)] .
= tim | A 2L ] 0 # st
- i [ /150 )~ st

el glx) = gle) x—c

T flel) = f)T . gl — g(o)
‘bﬂgm—W)mm }
= f'(g(c))g'(c) ™|

xX—c X —C

When applying the Chain Rule, it is helpful to think of the composite function f° g
as having two parts—an inner part and an outer part.

Outer function

/\

y = flglx) = fu)

\/

Inner function

The derivative of y = f(u) is the derivative of the outer function (at the inner function u)
times the derivative of the inner function.

Y =) -



You could also
solve the problem in Example 3
without using the Chain Rule by
observing that

y=x04+3x*+32+1
and
v = 6x + 12x3 + 6x.

Verify that this is the same as
the derivative in Example 3.
Which method would you use
to find

L +

2.4 The Chain Rule 135

SR Decomposition of a Composite Function

y =f(g) u = g(x) y=f@
a = ! =x+1 = 1
s x+ 1 w=x Y u
b. y = sin 2x u = 2x y = sinu
c.y=V3x*—x+1 u=32%—-x+1 y=Ju
d. y = tan’x u = tan x y = u?

SN IJRIE  Using the Chain Rule
Find dy/dx for

y =%+ 1)>.

Solution For this function, you can consider the inside function to be u = x*> + 1
and the outer function to be y = u3. By the Chain Rule, you obtain

Zl =32 + 1)2(2x) = 6x(x2 + 1)2
N
dy du
du dx -

The General Power Rule

The function in Example 3 is an example of one of the most common types of
composite functions, y = [u(x)]". The rule for differentiating such functions is called
the General Power Rule, and it is a special case of the Chain Rule.

THEOREM 2.11 The General Power Rule

If y = [u(x)]", where u is a differentiable function of x and n is a rational
number, then

or, equivalently, E3YE
. S
il = e i

Proof Because y = [u(x)]* = u", you apply the Chain Rule to obtain

(o)

dx du/\dx

d du
=l

By the (Simple) Power Rule in Section 2.2, you have D [u"] = nu"~!, and it follows
that

— =g —
dx dx -
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Applying the General Power Rule

Find the derivative of f(x) = (3x — 2x2)3.
Solution Letu = 3x — 2x2. Then

fl) = GBx = 22 =
and, by the General Power Rule, the derivative is

n w ! u'

| . .

f’(x) = 3(3x - 2x2)2 ddix [3)6 - 2x2] Apply General Power Rule.

= 3(3x — 2x2)2(3 — 4x). Differentiate 3x — 2x2.

Differentiating Functions Involving Radicals
Y Find all points on the graph of
| f) = Y@= 1
for which f'(x) = 0 and those for which f'(x) does not exist.
Solution Begin by rewriting the function as
C W= e P
Then, applying the General Power Rule (with u = x> — 1) produces

n ! u'

| —————

2

f’(x) = g (x2 - 1)71/ 3(2)6) Apply General Power Rule.
4x Write i dical fi
= rite 1n radical torm.
33/x2 -1
The derivative of fis 0 at x = 0 and is
undefined at x = *1. So, f'(x) =0 when x = 0, and f(x) does not exist when x = *1, as shown in

Figure 2.25 Figure 2.25.

S NLRNN  Differentiating Quotients: Constant Numerators

I I R IR Differentiate the function
e Try differentiating -7
the function in Example 6 using gl) = (21 — 3%
the Quotient Rule. You should
obtain the same result, but Solution Begin by rewriting the function as
using the Quotient Rule is g() = —7(2t — 3)2.
less efficient than using the
General Power Rule. Then, applying the General Power Rule (with u = 2¢ — 3) produces
n u ! u'
AN
gl(l‘) = (- 7)(— 2)(22‘ - 3)_3(2) Apply General Power Rule.
——
Constant
Multiple Rule
= 28(2t — 3)73 Simplify.
28

Write with positive exponent. - |

- (2t — 3)*



Symbolic
differentiation utilities are
capable of differentiating very
complicated functions. Often,
however, the result is given in
unsimplified form. If you have
access to such a utility, use it
to find the derivatives of the
functions given in Examples
7, 8, and 9. Then compare the
results with those given in
these examples.

Simplifying Derivatives

2.4 The Chain Rule 137

The next three examples demonstrate techniques for simplifying the “raw derivatives”

of functions involving products, quotients, and composites.

Simplifying by Factoring Out the Least Powers

Find the derivative of f(x) = x2/1 — x%

Solution

fx) =221 — 2

= (1 — )12

fx) =

=x(1 — )~V =x2(1) + 2(1 — x?)]

» d — 2)1/2 _212i 2
2= )2+ (1= )2 ]

e B(l - x2)71/2(—2x)] L (1 — 2)12(2)

— (1 = x2) V2 + 2x(1 — )12

x(2 — 3x?)
J1 = x?

Write original function.

Rewrite.

Product Rule

General Power Rule

Simplify.

Factor.

Simplify.

Simplifying the Derivative of a Quotient

) =

X

X

(2443

fx)

_ 2+ 4)YB(1) — x(1/3)( + 4)"3(2x)

Lo o

(@ + 473

3(x2 + 4) — (2x3)(1)

(x2 + 4)2/3
X2+ 12

T 32 + 4)*3

Simplifying the Derivative of a Power

cee > See LarsonCalculus.com for an interactive version of this type of example.

_ <3x— 1)2
Y X2+ 3

n

w ! u'

| —~— ———

y’=2<

3x — 1

)il F 5]
xX2+3)dx|x*+3

_ [2(3x - 1)][(x2 +3)(3) — (3x — 1)(2x)

x*+3

(x% + 3)2

_ 2(3x — 1)(3x2 + 9 — 6x% + 2x)

(x2 + 3)3

_ 2(3x — 1)(—3x2 + 2x + 9)

(x2 + 3)°

Original function

Rewrite.

Quotient Rule

Factor.

Simplify.

Original function

General Power Rule

Quotient Rule

Multiply.

Simplify. i |
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Trigonometric Functions and the Chain Rule

The “Chain Rule versions” of the derivatives of the six trigonometric functions are
shown below.

d . _ , d . ,

T [sin u] = (cos u)u o [cos u] = —(sin u)u

d > N d 2 N

— [tan u] = (sec? u)u — [cot u] = —(csc® uu

dx dx
4 [sec u] = (sec u tan u)u’ 4 [csc u] = —(csc u cot u)u’
dx dx

FHNJARON The Chain Rule and Trigonometric Functions

u cos u u'

~ —
a. y = sin 2x y' = cos Zx%[Zx] = (cos 2x)(2) = 2 cos 2x
u —(sin u) u'
— r N N
b. y = cos(x — 1) y' = —sin(x — l)d%[x — 1] = —sin(x — 1)
u (sec? u) u'
N —
c. y = tan 3x y' = sec? 3xd%[3x] = (sec? 3x)(3) = 3 sec?(3x) s

Be sure you understand the mathematical conventions regarding parentheses and
trigonometric functions. For instance, in Example 10(a), sin 2x is written to mean sin(2x).

S CUIJRBEN Parentheses and Trigonometric Functions

a. y = cos 3x2 = cos(3x?) y' = (—sin 3x2)(6x) = —6x sin 3x2
b. y = (cos 3)x? y' = (cos 3)(2x) = 2x cos 3
c. y = cos(3x)? = cos(9x2) y' = (—sin 9x2)(18x) = — 18x sin 9x2
d. y = cos®x = (cos x)? y' = 2(cos x)(—sinx) = —2 cos x sin x
1 sin x
e. y= J/cosx = (cosx)'/2 "= —(cosx)"VA—sinx) = ————
y (cos x) Y= 5 (cos x)~ 1/ ) > Joons ™|

To find the derivative of a function of the form k(x) = f(g(h(x))), you need to
apply the Chain Rule twice, as shown in Example 12.

Repeated Application of the Chain Rule

f(l‘) = sin® 41 Original function
= (sin 41)° Rewrite.
f/(l‘) = 3(sin 4[)2 % [sin 4t] Apply Chain Rule once.
. d : :
= 3(5111 4t)2(C0S 4l‘) E [4[] Apply Chain Rule a second time.
= 3(sin 41)*(cos 4t)(4)

= 12 sin? 4t cos 4t Simplify. |



y | f(x)=2sinx+ cos 2x

Figure 2.26
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FVNLAAREN Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of f(x) = 2 sin x + cos 2x at the point
(7, 1), as shown in Figure 2.26. Then determine all values of x in the interval (0, 27) at
which the graph of f has a horizontal tangent.

Solution Begin by finding f'(x).
f(x) = 2sinx + cos 2x
f'(x) = 2 cos x + (—sin 2x)(2)

= 2cosx — 2sin 2x

Write original function.

Apply Chain Rule to cos 2x.

Simplify.

To find the slope of the tangent line at (i, 1), evaluate f'(rr).
f'(r) = 2cos m — 2sin 27

= -2 Slope of tangent line at (7, 1)

Substitute.

Now, using the point-slope form of the equation of a line, you can write

y =y = mx — xl) Point-slope form
y—1=-2(x—n)

y=—2x+1+2nm.

Substitute for y,, m, and x,.

Equation of tangent line at (7, 1)

You can then determine that f'(x) = 0 when x = %, g, %T, and 3771 So, f has horizontal
T S 3
tangents at x = 62 6 and > |

This section concludes with a summary of the differentiation rules studied so far.
To become skilled at differentiation, you should memorize each rule in words, not
symbols. As an aid to memorization, note that the cofunctions (cosine, cotangent, and
cosecant) require a negative sign as part of their derivatives.

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules

Derivatives of Trigonometric
Functions

Let ¢ be a real number, let n be a rational number, let u and v be differentiable
functions of x, and let f be a differentiable function of u.

Constant Rule: (Simple) Power Rule:

d d d

- — —[+n] = n—1 = —
el =0 L) = o1, L =
Constant Multiple Rule: Sum or Difference Rule:

d d

— = ! — |y + =y +
dx[cu] cu dx[u +y]l=u*v
Product Rule: Quotient Rule:

d
L] =w' + v’
o [uv] = uwv' + vu

Chain Rule:
L] =
d%[sin x] = cosx

%[cos x] = —sinx

i[tan x] = sec?x
dx

4 [cotx] =

i[g} v —w'
dx| v v2
General Power Rule:

n—1,,’

d
dx[u]—nu u

—csc? x

d
—[sec x] = sec x tan x
dx

d
—/[csc x] = —csc x cot x
dx
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2 . 4 ExerCIseS see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

[s] Finding a Derivative of a Trigonometric
% Function In Exercises 35-54, find the derivative
of the trigonometric function.

CONCEPT CHECK
1. Chain Rule Describe the Chain Rule for the

composition of two differentiable functions in your own :

words. 35. y = cos 4x 36. y = sin mx
2. General Power Rule What is the difference between 37. g(x) = 5 tan 3x 38. hlx) = sec bx
the (Simple) Power Rule and the General Power Rule? 39. y = sin(nx)? 40. y = csc(l — 2x)?
41. h(x) = sin 2x cos 2x 42. g(6) = sec(16) tan(}6)
jI[f] Decomposition of a Composite Function 13. f(x) = cot x 44, gy) = SV
In Exercises 3—8, complete the table. : sin x 8 csc v
L 45. y = 4 sec®x 46. g(t) = 5 cos? nt
y =f(gx)) u = g(x) y=f(u) 47. f(0) = +sin226 48. h(t) = 2 cot®(mt + 2)
3. y=(6x — 5)* 49. f(r) = 3sec(mt — 1)? 50. y = 5 cos(mx)?
4. y=3Yd4x +3 51. y = sin(3x% + cos x) 52. y = cos(5x + cscx)
5. y= 1 53. y = sin/cot 37x 54. y = cos./sin(tan 7x)
: 3x+5
) idP’ Finding a Derivative Using Technology In Exercises
6. y= 55-60, use a computer algebra system to find the derivative
/2 ’
x3 + 10 of the function. Then use the utility to graph the function and
7.y =cscix its derivative on the same set of coordinate axes. Describe the
. 5x behavior of the function that corresponds to any zeros of the
8.y =sin ) graph of the derivative.
[ElJ=[E] Finding a Derivative In Exercises 9-34, find 55, y = \/3: 11 56. y = %
the derivative of the function. X X
" +
= s7.y= ) 58 g(0) = Vo — 1+ Jx+1
9. y=(2x—17) 10. y = 5(2 — X3)* X
11 g(x) = 3(4 — 9x)*/° 12. (1) = (9 + 27 59. y = % 60. y = 2 tani
13. i(s) = =258 + 3 14. g(x) = V4 - 32
15. y = Y62 + 1 16. y =249 — &2 Slope of a Tangent Line In Exercises 61 and 62, find
| 1 the slope of the tangent line to the sine function at the origin.
17. y = 3 18. s(7) = R re— Compare this value with the number of complete cycles in the
r- Tt interval [0, 27].
6 3
19. o(s) = 2. y= -0y
8(s) (3 — 23 0.y (t— 2 61. 62.
21. y = S 22, g(t) = B
N NS
23. f(x) = x2(x — 2)7 24. f(x) = x(2x — 5)3
25. y =xJ1 — X2 26. y = x2/16 — x?
X x
27,y = —— 28.
Y x>+ 1 RV Lo
c 45\ FERV! Finding the Slope of a Graph In Exercises 63-70, find
29. g(x) = ( E 2> 30. hr) = ( R ) the slope of the graph of the function at the given point. Use the
* derivative feature of a graphing utility to confirm your results.
1+ 1\
3L s(0) = (t n 3> 63.y= /2 +8x, (L3) 64 y=330+4r, (2.2
32 — 2\ 2 65. f(x) =5(3 —2)7, (—2, —15)
32, g(x) = ( >
2x + 3 66. £ 1 (4 1 )
. X)) =S, —
33, f(x) = (x> + 3)° + x)? (x® — 3x)2 16
3. g(x) = 2+ (2 + 1) . v=—2 (01 68 v=— % (1 _a
. y (x + 2)2’ ( b ) . y (x2 _ 2x)39 ( b )
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1 T2
.y =26—sec*4x, (0,25 70.y=-+ : <—,—)
69. y 6 —sec’4x, (0,25) 70.y . cosx, |5

Exercises 71-78, (a) find an equation of the tangent
line to the graph of the function at the given point,
(b) use a graphing utility to graph the function and
its tangent line at the point, and (c) use the fangent
feature of a graphing utility to confirm your results.

. () = V2% — 7, (4,5) T2 f(x) = 2 a? ¥ 5, (2,2)

73,y = (4 + 3% (-1, 1) 74. f(x) = (9 — x2)2/3, (1, 4)
75. f(x) = sin 8x, (7, 0) 76. y = cos 3x, (% 7%)

77. f(x) = tan®x, (%, 1) 78. y = 2 tan’ x, (%, 2)

Hc* Famous Curves In Exercises 79 and 80, find an equation

of the tangent line to the graph at the given point. Then use a
graphing utility to graph the function and its tangent line at the
point in the same viewing window.

79. Semicircle 80. Bullet-nose curve

y y
8 4+
6+ 3+
G4 2L
2+ 1+ AL
HA N> x
-6-4-2 | 2 4 6 -3-2-1 | 1 2 3
—4+ -2+

81. Horizontal Tangent Line Determine the point(s) in the
interval (0, 27) at which the graph of f(x) = 2 cos x + sin 2x
has a horizontal tangent.

82. Horizontal Tangent Line Determine the point(s) at
which the graph of

f&) =
has a horizontal tangent.

Finding a Second Derivative In Exercises 83-88, find the
second derivative of the function.

83. f(x) =52 — Tx)* 84. f(x) = 6(x> + 4)°

85. f(x) = 33 1_ 6 86. f(x) = (x_’;z)z

87. f(x) = sin x2 88. f(x) =

sec? mx

Evaluating a Second Derivative In Exercises 89-92,
evaluate the second derivative of the function at the given
point. Use a computer algebra system to verify your result.

89. h(x) = é(3x + (1 %4) 90. f(x) =

A 03)
2. g(#) = tan 2t, (%, \/§>

91. f(x) = cosx? (0,1)
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EXPLORING CONCEPTS

Identifying Graphs In Exercises 93 and 94, the graphs
of a function f and its derivative f' are shown. Label the
graphs as f or f’ and write a short paragraph stating the
criteria you used in making your selection. To print an
enlarged copy of the graph, go to MathGraphs.com.

93. y 9. y

4 -
3
2

=5

95. Describing Relationships The relationship
between f and g is given. Describe the relationship
between f” and g'.

(a) glx) = f(3x) (b) gx) = f(x*)
96. Comparing Methods Consider the function

1234

-5
) = (3 e

(a) In general, how do you find the derivative of

o =29

composite function?
(b) Find r'(x) using the Product Rule.
(c) Find r'(x) using the Quotient Rule.

using the Product Rule, where g is a

(d) Which method do you prefer? Explain.

97. Think About It The table shows some values of the
derivative of an unknown function f. Complete the table by
finding the derivative of each transformation of f, if possible.

@ g) =fx) =2 (b) hx) =2f(x)
(©) r(x) = f(=3x) (d) s(x) = flx +2)

X -2 —1 0 1 2 3

F@| 4 | 5| -5|-1]-2|-4
g'(x)
()
r(x)
5'(x)

98. Using Relationships Given that g(5) = —3, g'(5) = 6,
h(5) = 3,and h'(5) = —2, find f'(5) for each of the following,
if possible. Ifitis not possible, state what additional information
is required.

(@) fx) = g(r)h(x)

_ 8w
(C) f(x) - h(x)

(b) f(x) = g(h(x))
@ f(x) = [sW)P
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Finding Derivatives In Exercises 99 and 100, the graphs
of f and g are shown. Let k(x) = f(g(x)) and s(x) = g(f(x)).
Find each derivative, if it exists. If the derivative does not exist,

explain why.
99. (a) Find 2'(1).
(b) Find s5'(5).

100. (a) Find #'(3).
(b) Find s'(9).

y y
10 10
8 1 f,
6
\
X g

2 g 2

} X X

2 4 678 10 2 47 6 8110

101. Doppler Effect The frequency F of a fire truck siren
heard by a stationary observer is

_ 132,400
331 £v

where *v represents the velocity of the accelerating fire
truck in meters per second (see figure). Find the rate of
change of F' with respect to v when

(a) the fire truck is approaching at a velocity of 30 meters per
second (use —v).

(b) the fire truck is moving away at a velocity of 30 meters
per second (use + v).

_ 132,400
T 3314y

_ 132,400
T 331-vy

7 IIIJ&

102. Harmonic Motion The displacement from equilibrium
of an object in harmonic motion on the end of a spring is

1 1
y = gcos 12t — Zsin 12t
where y is measured in feet and 7 is the time in seconds.
Determine the position and velocity of the object when
t=m/8.

103. Pendulum A 15-centimeter pendulum moves according
to the equation € = 0.2 cos 8¢, where 6 is the angular
displacement from the vertical in radians and ¢ is the time in
seconds. Determine the maximum angular displacement and
the rate of change of 6 when ¢ = 3 seconds.

104. Wave Motion A buoy oscillates in simple harmonic
motion y = A cos wt as waves move past it. The buoy moves
a total of 3.5 feet (vertically) from its low point to its high
point. It returns to its high point every 10 seconds.

(a) Write an equation describing the motion of the buoy if it
is at its high point at = 0.

(b) Determine the velocity of the buoy as a function of ¢.

Hv 105. Modeling Data The normal daily maximum temperatures

T (in degrees Fahrenheit) for Chicago, Illinois, are shown
in the table. (Source: National Oceanic and Atmospheric
Administration)

Month Jan Feb | Mar | Apr
Temperature | 31.0 | 353 | 46.6 | 59.0
Month May | Jun Jul Aug

Temperature | 70.0 | 79.7 | 84.1 | 81.9

Month Sep Oct | Nov | Dec

Temperature | 74.8 | 62.3 | 48.2 | 34.8

(a) Use a graphing utility to plot the data and find a model
for the data of the form

T(1) = a + bsin(ct — d)

where T is the temperature and ¢ is the time in months,
with ¢t = 1 corresponding to January.

(b) Use a graphing utility to graph the model. How well does
the model fit the data?

(c) Find T’ and use a graphing utility to graph 7.

(d) Based on the graph of 7’, during what times does the
temperature change most rapidly? Most slowly? Do your
answers agree with your observations of the temperature
changes? Explain.

% HOW DO YOU SEE IT? The cost C (in

dollars) of producing x units of a product is

C = 60x + 1350. For one week, management
determined that the number of units produced x
at the end of ¢ hours can be modeled by

x = —1.68 + 1972 — 0.5¢ — 1. The graph
shows the cost C in terms of the time .

Cost of Producing a Product

25,000
20,000 /_
15,000 /
10,000 /

5,000 /

Cost (in dollars)

Time (in hours)

(a) Using the graph, which is greater, the rate of
change of the cost after 1 hour or the rate of
change of the cost after 4 hours?

(b) Explain why the cost function is not increasing at
a constant rate during the eight-hour shift.




00107.Bi0|ogy-cooo-coo.-coo.-ooo.

The number N of bacteria in a culture after 7 days is
modeled by

3
N = 400[1 @+ 2)2].
Find the rate of
change of N with
respect to ¢ when
@t=0,Mb)yt=1,
©)t=2,(d)t=3,
and (e) t = 4. (f) What
can you conclude?

108. Depreciation The value V of a machine f years after it

2.4 The Chain Rule 143

113. Even and Odd Functions

(a) Show that the derivative of an odd function is even. That
is, if f(—x) = —f(x), then f'(—x) = f'(x).

(b) Show that the derivative of an even function is odd. That
is, if f(—x) = f(x), then f'(—x) = —f'(x).

Proof Let u be a differentiable function of x. Use the fact

that |u| = /u to prove that

114.

d )
dx[|u|] U |ul

u, u #* 0.

Using Absolute Value In Exercises 115-118, use the
result of Exercise 114 to find the derivative of the function.

115. g(x) = |3x — 5]
117. h(x) = |x| cos x

116. f(x) = |x>* — 9|
118. f(x) = |sin x|

is purchased is inversely proportional to the square root of PF" Linear and Quadratic Approximations The linear and

t + 1. The initial value of the machine is $10,000.
(a) Write V as a function of t.

(b) Find the rate of depreciation when ¢ = 1.

(c) Find the rate of depreciation when ¢t = 3.

109. Finding a Pattern Consider the function f(x) = sin Bx,

where f3 is a constant.

(a) Find the first-, second-, third-, and fourth-order derivatives
of the function.

(b) Verify that the function and its second derivative satisfy
the equation f"(x) + f*f(x) = 0.

(c) Use the results of part (a) to write general rules for the
even- and odd-order derivatives f@%(x) and £~ (x).

[Hint: (—1)* is positive if k is even and negative if k is
odd.]

110. Conjecture Let f be a differentiable function of period p.

(a) Is the function f' periodic? Verify your answer.
(b) Consider the function g(x) = f(2x). Is the function g'(x)
periodic? Verify your answer.

Think About It Let r(x) = f(g(x)) and s(x) = g(f(x)),
where f and g are shown in the figure. Find (a) 7(1) and

(b) s'(4).

111.

y

7 (6, 6)

6

5 8

4 /\

s @4 /65

2 /!

1 ’/

} X
112345617

112. Using Trigonometric Functions

(a) Find the derivative of the function g(x) = sin? x + cos? x
in two ways.

(b) For f(x) = sec®x and g(x) = tan® x, show that
f(x) = g'(x).

Kateryna Kon/Shutterstock.com

quadratic approximations of a function f at x = a are

P,(x) = f'@)(x — a) + f(a) and
P,(x) = 3f"(@)x — a)? + f@)(x — a) + f(a).

In Exercises 119 and 120, (a) find the specified linear and
quadratic approximations of f, (b) use a graphing utility to
graph f and the approximations, (c) determine whether P, or
P, is the better approximation, and (d) state how the accuracy
changes as you move farther from x = a.

a= a=

119. f(x) = tanx; 120. f(x) = secx;

i T
4 6

True or False? 1In Exercises 121-124, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

121.
122.
123.

The slope of the function f(x) = sin ax at the origin is a.
The slope of the function f(x) = cos bx at the origin is —b.

If y is a differentiable function of u, and u is a differentiable
function of x, then y is a differentiable function of x.

124. If y is a differentiable function of u, u is a differentiable

function of v, and v is a differentiable function of x, then
dy _ dydudv
dx  dudvdx

PUTNAM EXAM CHALLENGE

125. Let f(x) = a, sinx + a,sin2x + - - - + g, sin nx,
where a,, a,, . . ., a, are real numbers and where 7 is a
positive integer. Given that |f(x)| < |sin x| for all real x,
prove that |a, + 2a, + - - - + na,| < 1.

126. Let k be a fixed positive integer. The nth derivative

1 P, (x)
of 1 has the form ok = 1

polynomial. Find P,(1).

where P, (x) is a

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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2.5 Implicit Differentiation

@ Distinguish between functions written in implicit form and explicit form.
8 Use implicit differentiation to find the derivative of a function.

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in explicit form. For
example, in the equation y = 3x?> — 5, the variable y is explicitly written as a function
of x. Some functions, however, are only implied by an equation. For instance, the
function y = 1/x is defined implicitly by the equation

xy = 1. Implicit form
To find dy/dx for this equation, you can write y explicitly as a function of x and then
differentiate.
Implicit Form Explicit Form Derivative
1 dy 1
=1 === 4! & 2=
v YT dx * x?

This strategy works whenever you can solve for the function explicitly. You cannot,
however, use this procedure when you are unable to solve for y as a function of x. For
instance, how would you find dy/dx for the equation

X2 =293+ 4y =27

For this equation, it is difficult to express y as a function of x explicitly. To find dy/dx,
you can use implicit differentiation.

To understand how to find dy/dx implicitly, you must realize that the differentiation
is taking place with respect to x. This means that when you differentiate terms involving
x alone, you can differentiate as usual. However, when you differentiate terms involving
y, you must apply the Chain Rule, because you are assuming that y is defined implicitly
as a differentiable function of x.

EXAMPLE 1 Differentiating with Respect to x

d
a. di [x3] = 3x? Variables agree: use Simple Power Rule.
X

Variables agree
u" oo
e e Nt
b. i [)’3] = 3y2 @ Variables disagree: use Chain Rule.
dx dx

N

Variables disagree

c. d%[x +3y]=1+ 3% Chain Rule: %[3)-] =3y
d. %[xyz] = x%[yz] + 32 %[x] Product Rule
= x<2y%> +y2(1) Chain Rule
= 2xy le +y2 Simplify. |
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Implicit Differentiation

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to x.

2. Collect all terms involving dy/dx on the left side of the equation and move
all other terms to the right side of the equation.

3. Factor dy/dx out of the left side of the equation.
4. Solve for dy/dx.

In Example 2, note that implicit differentiation can produce an expression for
dy/dx that contains both x and y.

IECIIFY impiicit Differentiation

Find dy/dx given that y3 + y> — 5y — x> = —4.
Solution

1. Differentiate both sides of the equation with respect to x.

d ., d
- 3 4+ 2 — 2 = =[—
[y* +y* — 5y — ¥?] dx[ 4]

dx
desqy, drog_ dyrcy dpy_de
L)+ LR - L [5y] - ] = 4 [-4]
dy dy dy
27_’_ -~ _ ] _ =
3ydx 2ydx de 2x=0

2. Collect the dy/dx terms on the left side of the equation and move all other terms to
the right side of the equation.
dy dy . dy

" 32—+ 2y——35

dx dx dx =2

3. Factor dy/dx out of the left side of the equation.

%(3))2 +2y—5) =2

4. Solve for dy/dx by dividing by (3y?> + 2y — 5).

d 2x
2o = ™

4 [_\~3+_\~2—5_\»x2=74 dx 32 +2y—5

Point on Graph Slope of Graph . .
P P P To see how you can use an implicit derivative, consider the graph shown in

(2.0 BE Figure 2.27. From the graph, you can see that y is not a function of x. Even so, the
(1,-3) 3 derivative found in Example 2 gives a formula for the slope of the tangent line at a point
x=0 0 on this graph. The slopes at several points on the graph are shown below the graph.
(1,1) Undefined

With most graphing utilities, it is easy to graph an equation

that explicitly represents y as a function of x. Graphing other equations, however,

Yy =Sy -x=—4 can require some ingenuity. For instance, to graph the equation given in Example 2,

has the derivative use a graphing utility, set in parametric mode, to graph the parametric representations

P+ —=5+4, y=t and x=—-J/P+P~P—-5t+4, y=1 for

dy _ 227)( —5 =t = 5. How does the result compare with the graph shown in Figure 2.27?

dx I+ 2y-S (You will learn more about this type of representation when you study parametric
Figure 2.27 equations in Section 10.2.)

The implicit equation
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(a)

(b)

(c)

Some graph segments can be
represented by differentiable functions.

Figure 2.28

Figure 2.29

Differentiation

It is meaningless to solve for dy/dx in an equation that has no solution points. (For
example, x> + y?> = —4 has no solution points.) If, however, a segment of a graph can
be represented by a differentiable function, then dy/dx will have meaning as the slope
at each point on the segment. Recall that a function is not differentiable at (a) points
with vertical tangents and (b) points at which the function is not continuous.

Graphs and Differentiable Functions

If possible, represent y as a differentiable function of x.
a x> +3y>=0 b. x>+ y> =1 c.x+y?=1
Solution

a. The graph of this equation is a single point. So, it does not define y as a differentiable
function of x. See Figure 2.28(a).

b. The graph of this equation is the unit circle centered at (0, 0). The upper semicircle
is given by the differentiable function

y=J1—-x —-1<x<1
and the lower semicircle is given by the differentiable function
y=—-—J1l—-x} —-1<x<L

At the points (=1, 0) and (1, 0), the slope of the graph is undefined. See Figure
2.28(b).

c. The upper half of this parabola is given by the differentiable function
y = m, x <1
and the lower half of this parabola is given by the differentiable function
y=—-J1l—x, x<I1.

At the point (1, 0), the slope of the graph is undefined. See Figure 2.28(c).

Finding the Slope of a Graph Implicitly

s+« «> See LarsonCalculus.com for an interactive version of this type of example.

Determine the slope of the tangent line to the graph of x? + 4y? = 4 at the point
(V/2, —1/4/2). See Figure 2.29.

Solution
X2+ 4y =4 Write original equation.
dy e
2x + 8y z =0 Differentiate with respect to x.
X
d —2x :
&_ "2 Solve for d7\
dx 8y dx
=— Simplify.
4y plity

So, at (ﬁ, — l/ﬁ), the slope is
dy _ —V2 _1
dx  —4//2 2

ly ~ 1
Evaluate % whenx = /2 and y = *ﬁ. |

To see the benefit of implicit differentiation, try doing Example 4 using
the explicit function y = —3./4 — x%.
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Finding the Slope of a Graph Implicitly

Determine the slope of the graph of
3(x2 + y2)2 = 100xy

at the point (3, 1).

Solution

d-.. , d
e + 2\21 —= —
dx[3(x y?)?] dx[100xy]

3(2)(x + y2)<2x + 2y%> = 100[)(% + y(l)}

dy dy
2 4 2D @y _ _ 2 42
y 12y(x* + vy )dx lOOxdx 100y — 12x(x2 + y?)
4t dy
3L [12y(x% + y?) — lOOx]a = 100y — 12x(x* + y?)

. 5.1) dy _ 100y — 12x(x? + y?)
oy dx  —100x + 12y(x2 + y?)
25y — 3x(x* + y?)
—25x + 3y(x? + y?)

3(x2 +y%)?2 = 100xy

At the point (3, 1), the slope of the graph is
—65 13

dy _ 25(1) —33)3+1>) _ 25-90 _ _13
dc —253)+3(1)(3+ 1)) -754+30 —45 9

Lemniscate
Figure 2.30 as shown in Figure 2.30. This graph is called a lemniscate.

EXAMPLE 6 Determining a Differentiable Function

Find dy/dx implicitly for the equation sin y = x. Then find the largest interval of the
T form —a < y < a on which y is a differentiable function of x (see Figure 2.31).

il (1’ g) Solution

de. . _d
+ 1 siny] = S1]

s |

(_1’_2) ’ cos dl =1
ya’x

3| dy 1

2 = =
dx cosy

The derivative is dy = !
dx

The largest interval about the origin for which y is a differentiable function of x is
—m/2 <y < m/2. To see this, note that cos y is positive for all y in this interval and
is 0 at the endpoints. When you restrict y to the interval —7/2 < y < /2, you should
be able to write dy/dx explicitly as a function of x. To do this, you can use

cosy = /1 —sin?y
=\/l—x2,—l<y<%

2

1—x2

Figure 2.31

and conclude that
dy _ 1
dx  J1 — %

You will study this example further when inverse trigonometric functions are defined
in Section 5.7. [
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With implicit differentiation, the form of the derivative often can be simplified (as
in Example 6) by an appropriate use of the original equation. A similar technique can
be used to find and simplify higher-order derivatives obtained implicitly.

S A8 Finding the Second Derivative Implicitly

. ., d?y
Given x> + y?> = 25, find L

Solution Differentiating each term with respect to x produces

2x+2y%=0

ISAAC BARROW (1630-1677) @ oy
The graph in Figure 2.32 dx
is called the kappa curve dy —2x
because it resembles the Greek de 2y
letter kappa, k. The general
solution for the tangent line _ _x
to this curve was discovered v
by the English mathematician
Isaac Barrow. Newton was Differentiating a second time with respect to x yields
Barrow’s student, and they )
corresponded frequently d’y _ _(y)(l) — (x)(dy/dx) Quotient Rule
regarding their work in the dx? y?
early development of calculus. — W)(=x/y)
See LarsonCalculus.com to read =_2 > ) Substitute —= for ‘L‘
more of this biography. y y oo dx

2 4 )C2
= - 3 Simplify.
y
25 . N
= 3 Substitute 25 for x> + y2.
y
EXAMPLE 8 Finding a Tangent Line to a Graph
y Find the tangent line to the graph of x*(x? + y?) = y? at the point (ﬁ/ 2,2/ 2), as

shown in Figure 2.32.
Solution By rewriting and differentiating implicitly, you obtain
a2 -2 =0

4x3 + x2<2y %) + 2xy? — 2y Z—i =0

2y(x> — 1) % = —2x(2x* + ¥?)

dy _ x(2x* + %)
The kappa curve dx (1 —x2) "

Figure 2.32 At the point (ﬁ/ 2,2/ 2), the slope is
dy _ (v2/2)201/2) + (1/2] _3/2 _

e (21 120
and the equation of the tangent line at this point is
V2 < ﬁ)
y———=3lx——"——

2 2
y=3x— 2. =

The Granger Collection, NYC
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Explicit and Implicit Functions Describe the
difference between the explicit form of a function and an
implicit equation. Give an example of each.

2. Implicit Differentiation In your own words, state
the guidelines for implicit differentiation.

3. Implicit Differentiation Explain when you have to
use implicit differentiation to find a derivative.

4. Chain Rule How is the Chain Rule applied when
finding dy/dx implicitly?

[w]¥#i[s] Finding a Derivative In Exercises 5-20, find
dy/dx by implicit differentiation.

[=]

5.x224+3y2=9 6. x> —y>*=25

7. +y =16 8. 23 + 3y’ =64

9. 3 —xy+y>=7 10. x%y + y>x = =2

11. ¥y —y=x 12. Jxy=xy+1

13. ¥* — 3x%y + 2% = 12 14. x*y — 8xy + 3xy? =

15. sinx + 2cos 2y = 1 16. (sin mx + cos y)?> = 2

17. cscx = x(1 + tany) 18. coty =x—y

1

19. y = sinxy 20. x = sec;
[m]&=¥[=] Finding Derivatives Implicitly and
:I:EE. "¢ Explicitly In Exercises 21-24, (a) find two
E'—. explicit functions by solving the equation for y in

.:

terms of x, (b) sketch the graph of the equation and
label the parts given by the corresponding explicit
functions, (c) differentiate the explicit functions,
and (d) find dy/dx implicitly and show that the
result is equivalent to that of part (c).

21. x> +y> =64
23. 162 — 2 = 16

22. 25x% + 36y* = 300
24. >+ —4x+6y+9=0

[w] Finding the Slope of a Graph In Exercises
25-32, find dy/dx by implicit differentiation. Then

40

O] 3 find the slope of the graph at the given point.
25. xy =6, (—6,—1) 26. 3%y =6, (1,2)
2 2
a4 5 _ X2 —36
27. y 21 a0 (7,0) 28. 4y 5136 (6,0)

29. (x+yP=x+y, (-1,1)
30. +y=6xy—1, (2,3)
31. tan(x + y) = x, (0,0)

32. xcosy = 1, (2, g)

[a] Famous Curves In Exercises 33-36, find the
slope of the tangent line to the graph at the given
point.

OLE
33. Witch of Agnesi:
(2 +4)y =38

34. Cissoid:
4 — x)y?* =x°

35. Bifolium:
(2 + y2)2 = 4x%y

36. Folium of Descartes:
XBH+EY—6xy=0

1D

[=]%fj=] Famous Curves In Exercises 37-42, find an

: equation of the tangent line to the graph at the

O] given point. To print an enlarged copy of the
graph, go to MathGraphs.com.

37. Parabola 38. Circle

(x+27+(y-3)2=37
y

10 +
8-
6 -
4
2
—+
—2
—4 -+
—6 -+

39. Cruciform

o :

(-4,2v3)+ @, 1

l l l
T T T
-6 —4 -2
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41. Lemniscate 42. Kappa curve

3(x% + y2)? = 100(x? - yz)}

y
6,,
N
2,,
—— F———>x X
-6 | 6
_4,,
—6-+

EXPLORING CONCEPTS

43. Implicit and Explicit Forms Write two different
equations in implicit form that you can write in explicit
form. Then write two different equations in implicit form
that you cannot write in explicit form.

44. Think About It Explain why the derivative of
x> + y? + 2 = 1 does not mean anything.

45, Ellipse

(a) Use implicit differentiation to find an equation of the

tangent line to the elhpse = + =1lat(l1,2).

(b) Show that the equation of the tangent line to the ellipse

Yoy _ =1

2 2
7_1_7 lat(xo,y0)1S7+ 1

bz
46. Hyperbola

(a) Use implicit differentiation to find an equation of the

2§
tangent line to the hyperbola — — =~ = 1 at (3, —2).

6 8
(b) Show that the equation of the tangent line to the hyperbola
¥y XX VoY
;*ﬁ lat(xo,yo)isf*ﬁ—l.

[m]=j3][=] Determining a Differentiable Function In

'E.J Exercises 47 and 48, find dy/dx implicitly and find

@ the largest interval of the form —a <y < a or
0 < y < a such that y is a differentiable function
of x. Write dy/dx as a function of x.

47. tany = x 48. cosy = x

q|[m] Finding a Second Derivative In Exercises
49-54, find d?y/dx? implicitly in terms of x and y.

Fra

[=]

49. x> +y> =4 50. x?y —4x =15

51. x>y —2=5x+y 52, xy — 1 =2x +y?
53. 7xy + sinx = 2 54. 3xy —4cosx = —6

PIG’ Finding an Equation of a Tangent Line In Exercises 55

and 56, use a graphing utility to graph the equation. Find an
equation of the tangent line to the graph at the given point and
graph the tangent line in the same viewing window.

x—1 ( ﬁ )

e+r \>27s5

55. Jx+ Uy=5 (9.4 56y =

Hc* Tangent Lines and Normal Lines In Exercises 57 and 58,
find equations for the tangent line and normal line to the circle
at each given point. (The normal line at a point is perpendicular
to the tangent line at the point.) Use a graphing utility to graph
the circle, the tangent lines, and the normal lines.

57. %2 432 =25 58. %2 + 32 = 36
(4,3), (—=3,4) (6.0), (5. V/11)

59. Normal Lines Show that the normal line at any point on
the circle x> + y? = r? passes through the origin.

60. Circles Two circles of radius 4 are tangent to the graph of
¥? = 4x at the point (1, 2). Find equations of these two circles.

Vertical and Horizontal Tangent Lines In Exercises 61
and 62, find the points at which the graph of the equation has
a vertical or horizontal tangent line.

61. 25x> + 16y? + 200x — 160y + 400 = 0
62. 4x> +y* —8x+4y+4=0

Hc- Orthogonal Trajectories In Exercises 63-66, use a
graphing utility to sketch the intersecting graphs of the
equations and show that they are orthogonal. [Two graphs are
orthogonal if at their point(s) of intersection, their tangent lines
are perpendicular to each other.]

63. 2x> +y2 =6 64. y? = x*
y? = 4x 2x* + 3y =5
65. x+y=0 66. x> =3(y — 1)
x =siny x(3y —29) =3

HG— Orthogonal Trajectories In Exercises 67 and 68, verify
that the two families of curves are orthogonal, where C and
K are real numbers. Use a graphing utility to graph the two
families for two values of C and two values of K.

67. xy=C, x>*—y’=K
68. X2 +3y>=C? y=Kx

69. Orthogonal Trajectories The figure below shows the
topographic map carried by a group of hikers. The hikers are
in a wooded area on top of the hill shown on the map, and
they decide to follow the path of steepest descent (orthogonal
trajectories to the contours on the map). Draw their routes if
they start from point A and if they start from point B. Their
goal is to reach the road along the top of the map. Which
starting point should they use? To print an enlarged copy of
the map, go to MathGraphs.com.




HOW DO YOU SEE IT? Use the graph to

answer the questions.

[ ¥ = 9y? + 27y + 5x* =47

(a) Which is greater, the slope of the tangent line
at x = —3 or the slope of the tangent line at
x=—17

(b) Estimate the point(s) where the graph has a
vertical tangent line.

(c) Estimate the point(s) where the graph has a
horizontal tangent line.

e 7.

72.

Finding Equations of Tangent Lines Consider the
equation x* = 4(4x> — y?).

(a) Use a graphing utility to graph the equation.

(b) Find and graph the four tangent lines to the curve for
y = 3.

(c) Find the exact coordinates of the point of intersection of
the two tangent lines in the first quadrant.

Tangent Lines and Intercepts Let L be any tangent
line to the curve

it = e

Show that the sum of the x- and y-intercepts of L is c.

73.

74.

75.

76.
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Proof Prove (Theorem 2.3) that
d
o [x"] = nxn—1!

for the case in which n is a rational number. (Hint: Write
y = xP/4 in the form y? = x” and differentiate implicitly.
Assume that p and g are integers, where g > 0.)

Slope Find all points on the circle x> + y?> = 100 where the
slope is %.

Tangent Lines Find equations of both tangent lines to the
2y
=+

4 9
(4, 0) not on the graph.

graph of the ellipse = 1 that pass through the point

Normals to a Parabola The graph shows the normal
lines from the point (2, 0) to the graph of the parabola x = y2.
How many normal lines are there from the point (x,, 0) to the
graph of the parabola if (a) x, = 31, b) x,= %, and
(c) x, = 1?7 (d) For what value of x,, are two of the normal lines
perpendicular to each other?

y

(2,0)

=

. Normal Lines (a) Find an equation of the normal line to

2

X
he ellipse —= +
the e ipse o5 +°¢

utility to graph the ellipse and the normal line. (c) At what
other point does the normal line intersect the ellipse?

¥

= 1 at the point (4, 2). (b) Use a graphing

SECTIONFHDJECT ® © &6 06 06 06 06 0 0 06 06 0 0 0 0 O 0 0 0 O O O 0 0 0 O 0 0O 0 O 0 O 0 O 0 0 0 0 0 0 00

Optical lllusions

In each graph below, an optical illusion is created by having lines
intersect a family of curves. In each case, the lines appear to be
curved. Find the value of dy/dx for the given values.

(a) Circles: x2 + y* = C?

(b) Hyperbolas: xy = C
x=3,y=4C=5 x=1y=4C=4
y y

(c) Lines: ax = by

(d) Cosine curves: y = C cos x

= = 1 2
x=3y=3 x=Ty=te-2
a= ﬁ,b=l

3
y y

\l/ §
»/\@x :

@ FOR FURTHER INFORMATION  For more information on
the mathematics of optical illusions, see the article “Descriptive
Models for Perception of Optical Illusions” by David A. Smith in
The UMAP Journal.



152 Chapter 2 Differentiation

2.6 Related Rates

|—— ] —|

—— > ———1

Volume is related to radius and height.
Figure 2.33

@ Find a related rate.
@ Use related rates to solve real-life problems.

Finding Related Rates

You have seen how the Chain Rule can be used to find dy/dx implicitly. Another
important use of the Chain Rule is to find the rates of change of two or more related
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the
volume V, the radius r, and the height & of the water level are all functions of time 7.
Knowing that these variables are related by the equation

m
V= 3 r?h Original equation

you can differentiate implicitly with respect to 7 to obtain the related-rate equation

den_dlm,
dt[v] - dt[3r h}

ﬂ/zl[2@+h<2 @ﬂ Differenti ith
dt 3 r dt r dt ifferentiate with respect to z.
n( ,dh dr>
= — — + -
3 <r r 2rh 57

From this equation, you can see that the rate of change of V is related to the rates of
change of both 4 and r.

Exploration

Finding a Related Rate In the conical tank shown in Figure 2.33, the height
of the water level is changing at a rate of —0.2 foot per minute and the radius
is changing at a rate of —0.1 foot per minute. What is the rate of change of the
volume when the radius is » = 1 foot and the height is 7 = 2 feet? Does the
rate of change of the volume depend on the values of r and 4#? Explain.

Two Rates That Are Related

The variables x and y are both differentiable functions of ¢ and are related by the
equation y = x> + 3. Find dy/dt when x = 1, given that dx/dt = 2 when x = 1.

Solution Using the Chain Rule, you can differentiate both sides of the equation with
respect to t.

y = x2+3 Write original equation.
d d, e
E[y] = E[x + 3] Differentiate with respect to .
% =2 % Chain Rule
When x = 1 and dx/dt = 2, you have
dy _ _
i 2(1)(2) = 4. |
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Total area increases as the outer radius
increases.
Figure 2.34

When using
these guidelines, be sure you
perform Step 3 before Step 4.
Substituting the known
values of the variables before
differentiating will produce an
inappropriate derivative.

2.6 Related Rates 153

Problem Solving with Related Rates

In Example 1, you were given an equation that related the variables x and y and were
asked to find the rate of change of y when x = 1.

Equation: y=x*+3

Given rate: dx =2 when x=1
dt

Find: 4y when x =1
dt

In each of the remaining examples in this section, you must create a mathematical
model from a verbal description.

Ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric circles,
as shown in Figure 2.34. The radius r of the outer ripple is increasing at a constant rate
of 1 foot per second. When the radius is 4 feet, at what rate is the total area A of the
disturbed water changing?

Solution The variables r and A are related by A = mr2. The rate of change of the
radius r is dr/dt = 1.

Equation: A = nr?

d
Given rate: aT: = 1 foot per second

Find: % when r = 4 feet

With this information, you can proceed as in Example 1.

%[A] = %[7‘[}’2] Differentiate with respect to .
a_ 2mr dr Chain Rule
dt dt
= 271’(4)(1) Substitute 4 for r and 1 for %
= 8 square feet per second Simplify.

When the radius is 4 feet, the area is changing at a rate of 87 square feet per second.

GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS
1. Identify all given quantities and quantities to be determined. Make a sketch
and label the quantities.

2. Write an equation involving the variables whose rates of change either are
given or are to be determined.

3. Using the Chain Rule, implicitly differentiate both sides of the equation
with respect to time t.

4. After completing Step 3, substitute into the resulting equation all known
values for the variables and their rates of change. Then solve for the
required rate of change.

Russ Bishop/Alamy Stock Photo
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@ FOR FURTHER INFORMATION
To learn more about the history of
related-rate problems, see the article
“The Lengthening Shadow: The
Story of Related Rates” by Bill Austin,
Don Barry, and David Berman in
Mathematics Magazine. To view this
article, go to MathArticles.com.

The formula for
the volume of a sphere and
other formulas from geometry
are listed on the formula cards
for this text.

The table below lists examples of mathematical models involving rates of change.
For instance, the rate of change in the first example is the velocity of a car.

Verbal Statement Mathematical Model
The velocity of a car after traveling for x = distance traveled
1 hour is 50 miles per hour. dx
— = 50 mi/h when ¢ = 1
dt
Water is being pumped into a swimming V = volume of water in pool
pool at a rate of 10 cubic meters per hour. dv
— = 10m’/h
dt
A gear is revolving at a rate of 25 revolutions | 8 = angle of revolution
per minute (1 revolution = 27 rad). 46
— = 25(2n) rad/min
dt
A population of bacteria is increasing at a X = number in population
rate of 2000 per hour. dx
o 2000 bacteria per hour

m An Inflating Balloon

Air is being pumped into a spherical balloon at a rate of 4.5 cubic feet per minute. Find
the rate of change of the radius when the radius is 2 feet.

Solution Let V be the volume of the balloon, and let r be its radius. Because the
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time ¢ the
rate of change of the volume is dV/dt = % So, the problem can be stated as shown.

av. 9 . .
Given rate: ar = 3 cubic feet per minute (constant rate)
Find: % when r = 2 feet

To find the rate of change of the radius, you must find an equation that relates the radius
r to the volume V.

. 4
Equation: V= g r’ Volume of a sphere

Differentiating both sides of the equation with respect to ¢ produces

av , dr

dr =4 nr E Differentiate with respect to .
ﬂ _ 1 div . dr
dr = a2 \ar ) Solve for ar
Finally, when r = 2, the rate of change of the radius is
d 1
d% = W<%> =~ (.09 foot per minute. |

In Example 3, note that the volume is increasing at a constant rate, but the radius is
increasing at a variable rate. Just because two rates are related does not mean that they
are proportional. In this particular case, the radius is growing more and more slowly as
t increases. Do you see why?
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The Speed of an Airplane Tracked by Radar

cees > See LarsonCalculus.com for an interactive version of this type of example.

An airplane is flying on a flight path that will take it directly over a radar tracking
7 station, as shown in Figure 2.35. The distance s is decreasing at a rate of 400 miles per
hour when s = 10 miles. What is the speed of the plane?

Solution Let x be the horizontal distance from the station, as shown in Figure 2.35.
Notice that when s = 10, x = /10?2 — 62 = 8.

Given rate: ds/dt = —400 miles per hour when s = 10 miles
“1&5‘*;&* Find: dx/dr when s = 10miles and x = 8 miles

You can find the velocity of the plane as shown.

Not drawn to scale

. e . Equation: x*+ 6> = s° Pythagorean Th
An airplane is flying at an altitude of 1 vihagorean Theorem
i i i dx ds
6 miles, s miles from the station. 2x— = 25 — Differentiate with respect to 7.
Figure 2.35 dt dt
dx s (ds) Sove dx
- — |\ Solve Tor ——.
dt x\dt dt
10 . . ds
= 3 ( 400) Substitute for s, x, and i
= —500 miles per hour Simplify.
oo Because the velocity is —500 miles per hour, the speed is 500 miles per hour. |
cecencne The velocity in Example 4 is negative because x represents a distance

that is decreasing.

VL8 A Changing Angle of Elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 2.36 at
10 seconds after lift-off.

Solution Let 6 be the angle of elevation, as shown in Figure 2.36. When ¢t = 10, the
height s of the rocket is s = 502 = 50(10)? = 5000 feet.

Given rate: ds/dt = 100t = velocity of rocket (in feet per second)
Find: df/dt when t = 10seconds and s = 5000 feet

P 2000 ft ———— B Using Figure 2.36, you can relate s and 0 by the equation tan 8 = s/2000.

Not drawn to scale

A television camera at ground level Equation: tan 0 = S See Figure 2.36.
is filming the lift-off of a rocket that 2000

is rising vertically according to the o d0 1 (ds ) ) )
position equation s = 50£2, where s is (sec 9) E = m E Differentiate with respect to z.
measured in feet and ¢ is measured in
seconds. The camera is 2000 feet from 9 = cos2 0 100z Substitute 100¢ for &.
the launch pad. dr 2000 dt
Figure 2.36 _ ( 2000 )2 100¢ 2000

/2 + 20002/ 2000 T/ 20002

When ¢ = 10 and s = 5000, you have

d6 _ 2000(100)(10) 2 .
30002 + 20002~ 29 radian per second.

So, when ¢ = 10, 6 is changing at a rate of % radian per second. |
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The Velocity of a Piston

In the engine shown in Figure 2.37, a 7-inch connecting rod is fastened to a crank of radius
3 inches. The crankshaft rotates counterclockwise at a constant rate of 200 revolutions per
minute. Find the velocity of the piston when 6 = /3.

The velocity of a piston is related to the angle of the crankshaft.
Figure 2.37

Solution Label the distances as shown in Figure 2.37. Because a complete revolution
corresponds to 27 radians, it follows that d6/dt = 200(27) = 4007 radians per minute.

a b
do . .
0 Given rate: ar = 4007 radians per minute (constant rate)
C
, dx 1
Law of Cosines: Find: ” when 6 = 3
b? = a*> + ¢* — 2ac cos 0
Figure 2.38 You can use the Law of Cosines (see Figure 2.38) to find an equation that relates x and 6.
Equation: 7% =32+ x2 — 2(3)(x) cos 0
dx ., do dx
= —_—— —_ R + —_—
0=2x r 6( xsin 0 g T cos 0 dt)
dx do
6 0—2 = 6xsin 0 —
(6 cos X) ” v sin 6

dt
dx __ 6xsing (ﬁ)
dt 6cos8 — 2x \dt

When 6 = 7/3, you can solve for x as shown.

7 =32+ x2 —2(3)(x) cosg

1
- 2 _ gyl =
49 =9 + x 6x(2>

0=x2—3x—40
0=(—8)(x+5)

x = 8 inches Choose positive solution.

So, when x = 8 and 6 = 7/3, the velocity of the piston is

dx _ 6(8)(/3/2)
&~ 6(1/2) — 16100
960073

13

—4018 inches per minute. |

U

The velocity in Example 6 is negative because x represents a distance
that is decreasing.
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Related-Rate Equation What is a related-rate
equation?

2. Related Rates Inyour own words, state the guidelines
for solving related-rate problems.

=2 = Using Related Rates InExercises 3—6, assume
I ‘2 that x and y are both differentiable functions of ¢

:E and find the required values of dy/dt and dx/dt.
: .:
Equation Find Given
3.y=\/} (a)%whenx=4 %23
(b)%whenx=25 %=2
4. y =3x* — 5x (a)%whenx=3 %=2
(b)%whenx=2 %24
d d
S.xy=4 (a)z};whenx=8 d%f=lO
(b)%whenx=l %=—6
6. x>+ y> =25 (a)%whenx=3,y:4 %28
d d
(b)ﬁwhenx=4,y=3 d—f=—2

=125 =] Moving Point In Exercises 7-10, a point is
moving along the graph of the given function at
the rate dx/dt. Find dy/dt for the given values of x.

o @

dx .
Ly =22+ 1, o 2 centimeters per second

(@ x=-1 b)) x=0 © x=1
1 dx .
8. y= T dr 6 inches per second
(@ x=-2 b)) x=0 (©)x=2
9. y = tan x; % = 3 feet per second
7 3
(a)x——g (b)x——z c)x=0

dx .
10. y = cos x; o 4 centimeters per second

(a)x=ﬂ

g (b)x=% (c)x=%

11. Area The radius r of a circle is increasing at a rate of

when r = 37 centimeters

12. Area The length s of each side of an equilateral triangle is
increasing at a rate of 13 feet per hour. Find the rate of change
of the area when s = 41 feet. (Hint: The formula for the area
of an equilateral triangle is

Szf-)

A=

13. Volume The radius r of a sphere is increasing at a rate of
3 inches per minute.

(a) Find the rates of change of the volume when r = 9 inches
and r = 36 inches.

(b) Explain why the rate of change of the volume of the sphere
is not constant even though dr/dt is constant.

14. Radius A spherical balloon is inflated with gas at the rate
of 800 cubic centimeters per minute.

(a) Find therates of change of the radius when » = 30 centimeters
and r = 85 centimeters.

(b) Explain why the rate of change of the radius of the sphere is
not constant even though dV/dt is constant.

15. Volume All edges of a cube are expanding at a rate of
6 centimeters per second. How fast is the volume changing
when each edge is (a) 2 centimeters and (b) 10 centimeters?

16. Surface Area All edges of a cube are expanding at a
rate of 6 centimeters per second. How fast is the surface
area changing when each edge is (a) 2 centimeters and
(b) 10 centimeters?

17. Height At a sand and gravel plant, sand is falling off a
conveyor and onto a conical pile at a rate of 10 cubic feet per
minute. The diameter of the base of the cone is approximately
three times the altitude. At what rate is the height of the pile
changing when the pile is 15 feet high? (Hint: The formula for
the volume of a cone is V = %nrzh.)

18. Height The volume of oil in a cylindrical container is
increasing at a rate of 150 cubic inches per second. The height
of the cylinder is approximately ten times the radius. At what
rate is the height of the oil changing when the oil is 35 inches
high? (Hint: The formula for the volume of a cylinder is
V = nr?h.)

19. Depth A swimming pool is 12 meters long, 6 meters wide,
1 meter deep at the shallow end, and 3 meters deep at the
deep end (see figure). Water is being pumped into the pool at
J; cubic meter per minute, and there is 1 meter of water at the
deep end.

1m?
min
/lm
6m
3m1
12m

(a) What percent of the pool is filled?

(b) At what rate is the water level rising?
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20.

21.

Chapter 2 Differentiation

Depth A trough is 12 feet long and 3 feet across the top (see
figure). Its ends are isosceles triangles with altitudes of 3 feet.

o ft3
min .

(a) Water is being pumped into the trough at 2 cubic feet per
minute. How fast is the water level rising when the depth
his 1 foot?

(b) The water is rising at a rate of % inch per minute when
h = 2 feet. Determine the rate at which water is being
pumped into the trough.

Moving Ladder A ladder 25 feet long is leaning against
the wall of a house (see figure). The base of the ladder is
pulled away from the wall at a rate of 2 feet per second.

(a) How fast is the top of the ladder moving down the wall
when its base is 7 feet, 15 feet, and 24 feet from the wall?

(b) Consider the triangle formed by the side of the house, the
ladder, and the ground. Find the rate at which the area
of the triangle is changing when the base of the ladder is
7 feet from the wall.

(c) Find the rate at which the angle between the ladder and the
wall of the house is changing when the base of the ladder
is 7 feet from the wall.

Figure for 21

Figure for 22

@ FOR FURTHER INFORMATION For more information
on the mathematics of moving ladders, see the article “The Falling
Ladder Paradox” by Paul Scholten and Andrew Simoson in

The
Mat

22.

College Mathematics Journal. To view this article, go to
hArticles.com.

Construction A construction worker pulls a five-meter
plank up the side of a building under construction by means
of a rope tied to one end of the plank (see figure). Assume the
opposite end of the plank follows a path perpendicular to the
wall of the building and the worker pulls the rope at a rate of
0.15 meter per second. How fast is the end of the plank sliding
along the ground when it is 2.5 meters from the wall of the
building?

23.

Figure for 23

24,

25.

Construction A winch at the top of a 12-meter building
pulls a pipe of the same length to a vertical position, as shown
in the figure. The winch pulls in rope at a rate of —0.2 meter
per second. Find the rate of vertical change and the rate of
horizontal change at the end of the pipe when y = 6 meters.

Not drawn to scale

Figure for 24

Boating A boat is pulled into a dock by means of a winch
12 feet above the deck of the boat (see figure).

(a) The winch pulls in rope at a rate of 4 feet per second.
Determine the speed of the boat when there is 13 feet of
rope out. What happens to the speed of the boat as it gets
closer to the dock?

(b) Suppose the boat is moving at a constant rate of 4 feet
per second. Determine the speed at which the winch pulls
in rope when there is a total of 13 feet of rope out. What
happens to the speed at which the winch pulls in rope as
the boat gets closer to the dock?

Air Traffic Control An air traffic controller spots two
planes at the same altitude converging on a point as they fly at
right angles to each other (see figure). One plane is 225 miles
from the point, moving at 450 miles per hour. The other plane
is 300 miles from the point, moving at 600 miles per hour.

(a) Atwhatrate is the distance s between the planes decreasing?

(b) How much time does the air traffic controller have to get
one of the planes on a different flight path?

y y
2 400 TS
E
= 300
F
2 200
S
o2
A 100
X
x Not drawn to scale
100 200 400
Distance (in miles)
Figure for 25 Figure for 26
26. Air Traffic Control An airplane is flying at an altitude of

5 miles and passes directly over a radar antenna (see figure).
When the plane is 10 miles away (s = 10), the radar detects
that the distance s is changing at a rate of 240 miles per hour.
What is the speed of the plane?
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3rd 1st
5 <&

Figure for 27 and 28

28.

29.

30.

Figure for 30
31.

Sports A baseball diamond has the shape of a square with
sides 90 feet long (see figure). A player running from second
base to third base at a speed of 25 feet per second is 20 feet
from third base. At what rate is the player’s distance from
home plate changing?

2nd
o

90 ft

Q.
» Home

Figure for 29

Sports For the baseball diamond in Exercise 27, suppose
the player is running from first base to second base at a speed
of 25 feet per second. Find the rate at which the distance from
home plate is changing when the player is 20 feet from second
base.

Shadow Length A man 6 feet tall walks at a rate of 5 feet

per second away from a light that is 15 feet above the ground

(see figure).

(a) When he is 10 feet from the base of the light, at what rate
is the tip of his shadow moving?

(b) When he is 10 feet from the base of the light, at what rate
is the length of his shadow changing?

Shadow Length Repeat Exercise 29 for a man 6 feet tall
walking at a rate of 5 feet per second toward a light that is
20 feet above the ground (see figure).

H/

Figure for 31

Machine Design The endpoints of a movable rod of
length 1 meter have coordinates (x, 0) and (0, y) (see figure).
The position of the end on the x-axis is

x(t) = —;-sin %t

where ¢ is the time in seconds.
(a) Find the time of one complete cycle of the rod.

(b) What is the lowest point reached by the end of the rod on
the y-axis?

(c) Find the speed of the y-axis endpoint when the x-axis
endpoint is %, 0).

32.

33.
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Machine Design Repeat Exercise 31 for a position function
of x(1) = ¥ sin 7z. Use the point (3, 0) for part ().

Evaporation As a spherical raindrop falls, it reaches
a layer of dry air and begins to evaporate at a rate that is
proportional to its surface area (S = 477?). Show that the
radius of the raindrop decreases at a constant rate.

JHOW DO YOU SEE IT? Using the graph
of f, (a) determine whether dy/dr is positive or
negative given that dx/dr is negative, and (b)
determine whether dx/dt is positive or negative
given that dy/dt is positive. Explain.

@ (i) y

EXPLORING CONCEPTS

35. Think About It Describe the relationship between
the rate of change of y and the rate of change of x in
each expression. Assume all variables and derivatives
are positive.

dy _ dx 0%

@ % =3 HL = 25
36. Volume Let V be the volume of a cube of side
length s that is changing with respect to time. If ds/dt is

constant, is dV/dt constant? Explain.

d—y— < <
(b)dt 0sx=sL

37.

38.

39.

40.

Electricity The combined electrical resistance R of two
resistors R, and R,, connected in parallel, is given by
1_1, 1
R R, R,

where R, R, and R, are measured in ohms. R, and R, are
increasing at rates of 1 and 1.5 ohms per second, respectively. At
what rate is R changing when R, = 50 ohms and R, = 75 ohms?

Electrical Circuit The voltage V in volts of an electrical
circuit is V = IR, where R is the resistance in ohms and [ is
the current in amperes. R is increasing at a rate of 2 ohms per
second, and V is increasing at a rate of 3 volts per second. At
what rate is / changing when V = 12 volts and R = 4 ohms?

Flight Control An airplane is flying in still air with an
airspeed of 275 miles per hour. The plane is climbing at
an angle of 18°. Find the rate at which the plane is gaining
altitude.

Angle of Elevation A balloon rises at a rate of 4 meters
per second from a point on the ground 50 meters from an
observer. Find the rate of change of the angle of elevation of

the baltoon from the observer when the baltoon is SO meters

1 +In 3
apove UIC ground.
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160 Chapter 2 Differentiation

41. Angle of Elevation A fish is reeled in at a rate of 1 foot
per second from a point 10 feet above the water (see figure).
At what rate is the angle 6 between the line and the water
changing when there is a total of 25 feet of line from the end
of the rod to the water?

Figure for 42

Figure for 41

42. Angle of Elevation An airplane flies at an altitude of
5 miles toward a point directly over an observer (see figure).
The speed of the plane is 600 miles per hour. Find the rates at
which the angle of elevation 6 is changing when the angle is
(a) 8 = 30° (b) 8 = 60° and (c) 8 = 75°

43. Linear vs. Angular Speed A patrol car is parked 50 feet
from a long warehouse (see figure). The revolving light on top
of the car turns at a rate of 30 revolutions per minute. How fast
is the light beam moving along the wall when the beam makes
angles of (a) 6 = 30°, (b) 6 = 60°, and (c) 8 = 70° with the
perpendicular line from the light to the wall?

Figure for 43 Figure for 44

44. Linear vs. Angular Speed A wheel of radius
30 centimeters revolves at a rate of 10 revolutions per second. A
dot is painted at a point P on the rim of the wheel (see figure).

(a) Find dx/dt as a function of 6.
jdp (b) Use a graphing utility to graph the function in part (a).

(c) When is the absolute value of the rate of change of x
greatest? When is it least?

(d) Find dx/dt when 6 = 30° and 6 = 60°.

45. Area The included angle of the two sides of constant equal
length s of an isosceles triangle is 6.

(a) Show that the area of the triangle is givenby A = %sz sin 6.

(b) The angle 6 is increasing at the rate of% radian per minute.
Find the rates of change of the area when 6 = 7/6 and
0 = n/3.

46. Security Camera A security camera is centered 50 feet
above a 100-foot hallway (see figure). It is easiest to design the
camera with a constant angular rate of rotation, but this results
in recording the images of the surveillance area at a variable
rate. So, it is desirable to design a system with a variable rate

ong-the h J ind-a model fo

rotation when |dx/dt| = 2 feet per second

y
} 0,50
o 10 "N T
. .
100 ft
Figure for 46

47. Modeling Data The table shows the numbers (in millions)
of participants in the free lunch program f and the reduced
price lunch program r in the United States for the years 2007
through 2014. (Source: U.S. Department of Agriculture)

Year | 2007 | 2008 | 2009 | 2010

f 150 | 154 | 163 | 17.6

r 3.1 3.1 32 3.0

Year | 2011 | 2012 | 2013 | 2014

f 184 | 18.7 | 189 | 19.2

r 2.7 2.7 2.6 25

jdp (a) Use the regression capabilities of a graphing utility to find
a model of the form

r(f) =af* + bf>+cf+d

for the data, where ¢ is the time in years, with t = 7
corresponding to 2007.

(b) Find dr/dt. Then use the model to estimate dr/dt fort = 9
when it is predicted that the number of participants in the
free lunch program will increase at the rate of 1.25 million
participants per year.

48. Moving Shadow A ball is dropped from a height
of 20 meters, 12 meters away from the top of a 20-meter
lamppost (see figure). The ball’s shadow, caused by the light
at the top of the lamppost, is moving along the level ground.
How fast is the shadow moving 1 second after the ball is
released? (Submitted by Dennis Gittinger, St. Philips College,
San Antonio, TX)

Acceleration InExercises 49 and 50, find the acceleration of
the specified object. (Hint: Recall that if a variable is changing
at a constant rate, then its acceleration is zero.)

49. Find the acceleration of the top of the ladder described in
Exercise 21 when the base of the ladder is 7 feet from the wall.
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Review Exercises 161

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Derivative by the Limit Process In
Exercises 1-4, find the derivative of the function by the limit
process.

1. f(x) =12 2. f(x) =5x—4
4. [ =2

X

3.f)=x—-2x+1

Using the Alternative Form of the Derivative In
Exercises 5 and 6, use the alternative form of the derivative to
find the derivative at x = c, if it exists.

6. flx) = ! c=3

= 252 — =
5. gx)=2x2—-3x, ¢c=2 s

Determining Differentiability In Exercises 7 and 8,
describe the x-values at which f is differentiable.

3x
7. f(x) = (x — 3)?/5 8. flx) =
W= 3) = 2
y y
I
5+ s
4T 6
3+ l
LA
2+ |
—2]
]AV :2¢
I
l | l l X
R —— —
-1 23 4 s Szl 2
I

Finding a Derivative In Exercises 9-20, use the rules of
differentiation to find the derivative of the function.

9.y =25 10. f() = 7/6
11. f(x) = x° — 1122 12. g(s) = 355 — 25
13. h(x) = 6/x + 33/ 14. f(x) = x1/2 — x=5/6
2 8
15. g([) = ? 16. h(x) = ?
17. f(6) = 46 — 5sin 6 18. g(a) =4cosa + 6
ino .
19. £(8) = 3 cos 6 — S“; 20. gla) =2 313“ & 2a

Finding the Slope of a Graph In Exercises 21-24, find
the slope of the graph of the function at the given point.

2. () = i—z 3.1) 2. f() =3¢ —4x, (1, -1)

23, f(x) = 4x> + 3x — sinx, (0,0)
24. f(x) =5cosx — 9x, (0,5)

25. Vibrating String When a guitar string is plucked,
it vibrates with a frequency of F = 200/T, where F
is measured in vibrations per second and the tension T
is measured in pounds. Find the rates of change of the
frequency when (a) T = 4 pounds and (b) 7 = 9 pounds.

26. Surface Area The surface area of a cube with sides of
length x is given by § = 6x2. Find the rate of change of the
surface area with respect to x when x = 4 inches.

Vertical Motion In Exercises 27 and 28, use the position
function s(f) = —16£> + vyt + s, for free-falling objects.

27. A ball is thrown straight down from the top of a 600-foot
building with an initial velocity of — 30 feet per second.
(a) Determine the position and velocity functions for the ball.
(b) Determine the average velocity on the interval [1, 3].
(c) Find the instantaneous velocities when r = 1 and ¢t = 3.
(d) Find the time required for the ball to reach ground level.
(e) Find the velocity of the ball at impact.

28. A block is dropped from the top of a 450-foot platform. What
is its velocity after 2 seconds? After 5 seconds?

Finding a Derivative In Exercises 29—40, use the Product
Rule or the Quotient Rule to find the derivative of the function.
29. f(x) = (5x2 + 8)(x2 — 4x — 6)

30. g(x) = (2x* + 5x)(3x — 4)

31. f(x) = 9x — 1)sinx 32. f(r) = 2t°cos t

2+x—1 2x + 7
33, f(x) = -1 3. flx) = 214
x4 sin x
35.y= cos x 36. y = o

37. y = 3x*secx 38. y = —x’tanx
39. y =xcosx — sinx

40. g(x) = x*cotx + 3x cos x

Finding an Equation of a Tangent Line In Exercises
41-44, find an equation of the tangent line to the graph of f at
the given point.

41. fx) = x +2)xx+5), (—1,6)

2. fx) =x—4*+6x—1), (0,4)

_x+1

1
Tx-1 (E’_3)

1 + cosx T
M. fx) = 1 —cosx’ <5’ 1)

43. f(x)

Finding a Second Derivative In Exercises 45-52, find the
second derivative of the function.

45. g(1) = -8 — 5t + 12
47. f(x) = 15x5/2

49. f(6) =3tan 6

51. g(x) = 4 cotx

52. h(t) = —12csct

46. h(x) = 6x72 + Tx2
48. f(x) = 203/x
50. h(f) = 10cost — 15sin¢
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162 Chapter 2 Differentiation

53. Acceleration The velocity of an object is v(z) = 20 — 3,
0 <t = 6, where v is measured in meters per second and ¢ is
the time in seconds. Find the velocity and acceleration of the
object when t = 3.

54. Acceleration The velocity of an automobile starting from
rest is

_ 90¢
4t + 10

V()

where v is measured in feet per second and ¢ is the time in
seconds. Find the acceleration at (a) 1 second, (b) 5 seconds,
and (c) 10 seconds.

Finding a Derivative InExercises 55-66, find the derivative
of the function.

55. y = (7x + 3)* 56. y = (x> — 6)°
1 1
5.y = (x® + 5)3 58. 1) = (5x + 1)2
59. y = 5cos(9x + 1) 60. y = —6sin 3x*
x  sin2x sec’x  sec’x
61y =7 — = 62 y =5 - ¥S
63. y = x(6x + 1)° 64. f(s) = (s2 — 1)%%(s? + 5)
X 3 x+5)\?2
65. f(x) = (\/m) 66. h(x) = (x2 n 3>

Finding the Slope of a Graph In Exercises 67-72, find
the slope of the graph of the function at the given point.

67. f(x) = VT — %, (=2,3) 68. f(x) = 2 — 1, (3,2)

69. f(x) = % 0,8)  70. f(x) = %, (1,4)

1 w1
71. y = 2csc2x, <4, 2)

Finding a Second Derivative In Exercises 73-76, find the
second derivative of the function.

72. y = csc 3x + cot 3x, <%, l>

_ 1
S5x + 1

73. y = (8x + 5)3 74. y

75. f(x) = cotx 76. y = xsin®x

77. Refrigeration The temperature 7 (in degrees Fahrenheit)
of food in a freezer is

7= 700
2+ 4+ 10

where ¢ is the time in hours. Find the rate of change of T with
respect to ¢ at each of the following times.
@t=1 ®1t=3 (@©t=5 @r=10

78. Harmonic Motion The displacement from equilibrium of
an object in harmonic motion on the end of a spring is

1 1.
y = gcos 8t — ZsmSz

where y is measured in feet and 7 is the time in seconds. Determine
the position and velocity of the object when ¢t = /4.

Finding a Derivative In Exercises 79-84, find dy/dx by
implicit differentiation.
79. x> +y*> = 64 80. x> +4xy —y3 =6
82. Vxy=x—4y

84. cos(x +y) =x

81. X’y —x® =4

83. xsiny = ycosx

Plv Tangent Lines and Normal Lines In Exercises 85 and

86, find equations for the tangent line and the normal line to
the graph of the equation at the given point. (The normal line
at a point is perpendicular to the tangent line at the point.) Use
a graphing utility to graph the equation, the tangent line, and
the normal line.

85. 2 +3y2=10, (3,1) 86. x> — 2 =20, (6,4)

87. Rate of Change A point moves along the curve y = /x
in such a way that the y-component of the position of the point
is increasing at a rate of 2 units per second. At what rate is the
x-component changing for each of the following values?

@x=% M x=1 (c)x=4

88. Surface Area All edges of a cube are expanding at a rate
of 8 centimeters per second. How fast is the surface area
changing when each edge is 6.5 centimeters?

89. Linear vs. Angular Speed A rotating beacon is located
1 kilometer off a straight shoreline (see figure). The beacon
rotates at a rate of 3 revolutions per minute. How fast (in
kilometers per hour) does the beam of light appear to be
moving to a viewer who is % kilometer down the shoreline?

1 km G

|<—%km—>|

Not drawn to scale

90. Moving Shadow A sandbag is dropped from a balloon at
a height of 60 meters when the angle of elevation to the sun is
30° (see figure). The position of the sandbag is

s(f) = 60 — 4.9¢2.

Find the rate at which the shadow of the sandbag is traveling
along the ground when the sandbag is at a height of 35 meters.

Rays

Position: -
s(f) = 60 — 4.91%

Shadow’s path
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see CalcChat.com for tutorial help and
worked-out solutions to odd-numbered exercises.

P.S. Problem Solving

p‘jp 1. Finding Equations of Circles Consider the graph of the
parabola y = x2.

6. Finding Polynomials

(a) Find the polynomial P,(x) = a, + a,x whose value and
slope agree with the value and slope of f(x) = cos x at the
point x = 0.

(a) Find the radius r of the largest possible circle centered
on the y-axis that is tangent to the parabola at the origin,
as shown in the figure. This circle is called the circle of
curvature (see Section 12.5). Find the equation of this
circle. Use a graphing utility to graph the circle and parabola
in the same viewing window to verify your answer.

(b) Find the polynomial P,(x) = a, + a,x + a,x*> whose value
and first two derivatives agree with the value and first
two derivatives of f(x) = cos x at the point x = 0. This
polynomial is called the second-degree Taylor polynomial

(b) Find the center (0, b) of the circle of radius 1 centered on of f(x) = cosxat x = 0.

the y-axis that is tangent to the parabola at two points, as

shown in the figure. Find the equation of this circle. Use a

graphing utility to graph the circle and parabola in the same

viewing window to verify your answer.

(c) Complete the table comparing the values of f(x) = cos x
and P,(x). What do you observe?

X -10 | —0.1 | —0.001 | 0 | 0.001 | 0.1 | 1.0

y y
COS X

Pz(x)

(d) Find the third-degree Taylor polynomial of f(x) = sin x at
x = 0.

7. Famous Curve The graph of the eight curve

*=adx*—y), a#0
Figure for 1(b)

Figure for 1(a)

is shown below.
2. Finding Equations of Tangent Lines Graph the two

(a) Explain how you could use a graphing utility to graph this
parabolas

curve.

y=x* and y=-x>+2x—-5 ,‘jp-(b) Use a graphing utility to graph the curve for various values
of the constant a. Describe how a affects the shape of the

in the same coordinate plane. Find equations of the two lines curve

that are simultaneously tangent to both parabolas.
(c) Determine the points on the curve at which the tangent line

3. Finding a Polynomial Find a third-degree polynomial is horizontal.

p(x) that is tangent to the line y = 14x — 13 at the point (1, 1),
and tangent to the line y = —2x — 5 at the point (—1, —3). y y

4. Finding a Function Find a function of the form
f(x) = a + bcos cx that is tangent to the line y = 1 at the
point (0, 1), and tangent to the line

MW
N

y=x+

at the point <E é)
POt 2

Figure for 7 Figure for 8

5. Tangent Lines and Normal Lines

(a) Find an equation of the tangent line to the parabola y = x? 8. Famous Curve The graph of the pear-shaped quartic

at the point (2, 4).

(b) Find an equation of the normal line to y = x? at the point
(2, 4). (The normal line at a point is perpendicular to the
tangent line at the point.) Where does this line intersect the
parabola a second time?

(c) Find equations of the tangent line and normal line to y = x?

at the point (0, 0).

(d) Prove that for any point (a, b) # (0,0) on the parabola
y = x%, the normal line intersects the graph a second time.

b2 =x¥a —x), a,b>0
is shown above.

(a) Explain how you could use a graphing utility to graph this
curve.

il'jp (b) Use a graphing utility to graph the curve for various values

of the constants a and b. Describe how a and b affect the
shape of the curve.

(c) Determine the points on the curve at which the tangent line
is horizontal.
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9.

Figure for 9
10.

11.

12.

Not drawn to scale

Chapter 2 Differentiation

Shadow Length A man 6 feet tall walks at a rate of 5 feet
per second toward a streetlight that is 30 feet high (see figure).
The man’s 3-foot-tall child follows at the same speed but
10 feet behind the man. The shadow behind the child is caused
by the man at some times and by the child at other times.

(a) Suppose the man is 90 feet from the streetlight. Show that
the man’s shadow extends beyond the child’s shadow.

(b) Suppose the man is 60 feet from the streetlight. Show that
the child’s shadow extends beyond the man’s shadow.

(c) Determine the distance d from the man to the streetlight
at which the tips of the two shadows are exactly the same
distance from the streetlight.

(d) Determine how fast the tip of the man’s shadow is moving
as a function of x, the distance between the man and the
streetlight. Discuss the continuity of this shadow speed
function.

3 ftIi;

<—10 ft—~

Figure for 10

Moving Point A particle is moving along the graph of
y= é/;c (see figure). When x = 8, the y-component of the
position of the particle is increasing at the rate of 1 centimeter
per second.

(a) How fast is the x-component changing at this moment?

(b) How fast is the distance from the origin changing at this
moment?

(c) How fast is the angle of inclination 8 changing at this
moment?

Projectile Motion An astronaut standing on the moon
throws a rock upward. The height of the rock is

27,
= -2 427 +
s IOt 27t + 6

where s is measured in feet and ¢ is measured in seconds.

(a) Find expressions for the velocity and acceleration of the
rock.

(b) Find the time when the rock is at its highest point by
finding the time when the velocity is zero. What is the
height of the rock at this time?

(c) How does the acceleration of the rock compare with the
acceleration due to gravity on Earth?

Proof Let E be a function satisfying E(0) = E'(0) = 1.
Prove that if E(a + b) = E(a)E(b) for all a and b, then E is
differentiable and E'(x) = E(x) for all x. Find an example of a
function satisfying E(a + b) = E(a)E(D).

13.

14.

15.

Proof Let L be a differentiable function for all x. Prove that
if L(a + b) = L(a) + L(b) for all a and b, then L'(x) = L'(0)
for all x. What does the graph of L look like?

Radians and Degrees The fundamental limit

. sinx
lim =
x—=0 X

assumes that x is measured in radians. Suppose you assume
that x is measured in degrees instead of radians.

(a) Set your calculator to degree mode and complete the table.

z (in degrees) | 0.1 | 0.01 | 0.0001

sin z
b4

(b) Use the table to estimate

. sing
lim —
z—>0 Z

for z in degrees. What is the exact value of this limit?
(Hint: 180° = & radians)

(¢) Use the limit definition of the derivative to find
d%[sin ]

for z in degrees.

(d) Define the new functions

=

S(z) =sincz and C(z) = coscz

where ¢ = 7/180. Find S(90) and C(180). Use the Chain
Rule to calculate

d
P [SG)].

(e) Explain why calculus is made easier by using radians
instead of degrees.

Acceleration and Jerk If a is the acceleration of an
object, then the jerk j is defined by j = a'(z).
(a) Use this definition to give a physical interpretation of j.

(b) Find j for the slowing vehicle in Exercise 119 in Section
2.3 and interpret the result.

(c) The figure shows the graphs of the position, velocity,
acceleration, and jerk functions of a vehicle. Identify each
graph and explain your reasoning.
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166 Chapter 3 Applications of Differentiation

3.1 Extrema on an Interval

B Understand the definition of extrema of a function on an interval.
@ Understand the definition of relative extrema of a function on an open interval.
B Find extrema on a closed interval.

Extrema of a Function

In calculus, much effort is devoted to determining the behavior of a function f on an
interval /. Does f have a maximum value on /? Does it have a minimum value? Where
is the function increasing? Where is it decreasing? In this chapter, you will learn
how derivatives can be used to answer these questions. You will also see why these
questions are important in real-life applications.

(2. 5) 9 Maximum Definition of Extrema

Let f be defined on an interval / containing c.

1. f(c) is the minimum of f on I when f(c) < f(x) for all x in I.
2. f(c) is the maximum of f on I when f(c) = f(x) for all x in L.

The minimum and maximum of a function on an interval are the extreme
values, or extrema (the singular form of extrema is extremum), of the function
on the interval. The minimum and maximum of a function on an interval are
also called the absolute minimum and absolute maximum, or the global
minimum and global maximum, on the interval. Extrema can occur at interior
points or endpoints of an interval (see Figure 3.1). Extrema that occur at the

y endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in
Figures 3.1(a) and (b), you can see that the function f(x) = x> + 1 has both a minimum
and a maximum on the closed interval [—1, 2] but does not have a maximum on the
open interval (—1, 2). Moreover, in Figure 3.1(c), you can see that continuity (or the
lack of it) can affect the existence of an extremum on the interval. This suggests the
theorem below. (Although the Extreme Value Theorem is intuitively plausible, a proof
of this theorem is not within the scope of this text.)

(b) f is continuous, (—1, 2) is open.
THEOREM 3.1 The Extreme Value Theorem
If f is continuous on a closed interval [a, b], then f has both a minimum and a

@, 5) p— Maximum maximum on the interval.

2() = 2241, x#0
2, x=0

Exploration

2-e
\ Finding Minimum and Maximum Values The Extreme Value Theorem (like
e Nota the Intermediate Value Theorem) is an existence theorem because it tells of the
[ | ] ml;mmugl existence of minimum and maximum values but does not show how to find
-1 1 2 3 these values. Use the minimum and maximum features of a graphing utility to

find the extrema of each function. In each case, do you think the x-values are

(¢) g is not continuous, [— 1, 2] is closed. i - -
exact or approximate? Explain your reasoning.

Figure 3.1
a. f(x) = x> — 4x + 5 on the closed interval [— 1, 3]
b. f(x) = x> — 2x2 — 3x — 2 on the closed interval [— 1, 3]
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f has a relative maximum at (0, 0) and

Valley
/-4

a relative minimum at (2, —4).

Figure 3.2
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Figure 3.3
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Relative Extrema and Critical Numbers

In Figure 3.2, the graph of f(x) = x> — 3x? has a relative maximum at the point (0, 0)
and a relative minimum at the point (2, —4). Informally, for a continuous function,
you can think of a relative maximum as occurring on a “hill” on the graph, and a
relative minimum as occurring in a “valley” on the graph. Such a hill and valley can
occur in two ways. When the hill (or valley) is smooth and rounded, the graph has a
horizontal tangent line at the high point (or low point). When the hill (or valley) is sharp
and peaked, the graph represents a function that is not differentiable at the high point
(or low point).

Definition of Relative Extrema

1. If there is an open interval containing ¢ on which f(c) is a maximum, then
f(c) is called a relative maximum of f, or you can say that f has a relative
maximum at (c, f(c)).

2. If there is an open interval containing ¢ on which f(c) is a minimum, then
f(c) is called a relative minimum of £, or you can say that f has a relative
minimum at (c, f(c)).

The plural of relative maximum is relative maxima, and the plural of relative
minimum is relative minima. Relative maximum and relative minimum are
sometimes called local maximum and local minimum, respectively.

Example 1 examines the derivatives of functions at given relative extrema. (Much
more is said about finding the relative extrema of a function in Section 3.3.)

EXAMPLE 1 The Value of the Derivative at Relative Extrema

Find the value of the derivative at each relative extremum shown in Figure 3.3.
Solution

9(x% — 3) .

o2 —3) .

a. The derivative of f(x) = 3

3 _ 2 _ 2
f’(x) X (18)6) ((9)33(; 3)(3x ) Differentiate using Quotient Rule.

_ 909 - x2)
—
At the point (3, 2), the value of the derivative is f'(3) = 0. [See Figure 3.3(a).]

b. At x = 0, the derivative of f(x) = |x| does not exist because the following
one-sided limits differ. [See Figure 3.3(b).]

Simplify.

0
f(X) f( ) = lim M = -1 Limit from the left
x—)O’ x—0 x>0~ X
0 .
f () — f © _ = lim M =1 Limit from the right
x—)OJr X — x—0" X

¢. The derivative of f(x) = sin x is
f'(x) = cos x.

At the point (7r/2, 1), the value of the derivative is f'(m/2) = cos(7/2) = 0. At the
point (37/2, —1), the value of the derivative is f'(3m/2) = cos(3m/2) = 0. [See
Figure 3.3(c).] ol
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Note in Example 1 that at each relative extremum, the derivative either is zero or
does not exist. The x-values at these special points are called critical numbers. Figure
3.4 illustrates the two types of critical numbers. Notice in the definition that the critical
number ¢ has to be in the domain of f, but ¢ does not have to be in the domain of f'.

Definition of a Critical Number

Let f be defined at c. If f'(c) = 0 or if f is not differentiable at c, then c is a
critical number of f.

f’(c) does not exist.

. f (i: 0 Horizontal
! / tangent

; /

¢

[

/

c is a critical number of f.
Figure 3.4

THEOREM 3.2 Relative Extrema Occur Only
at Critical Numbers

If f has a relative minimum or relative maximum at x = ¢, then
c is a critical number of f.

Proof

Case 1: If f is not differentiable at x = c, then, by definition, c is a critical number of
f and the theorem is valid.

Case 2: If f is differentiable at x = c, then f’(c) must be positive, negative, or 0.
Suppose f'(c) is positive. Then

PIERRE DE FERMAT (1601-1665) f(c) = i F®) = fle) | 0

For Fermat, who was trained e X T

as a lawyer, mathematics which implies that there exists an interval (a, b) containing ¢ such that

was more of a hobby than

a profession. Nevertheless, x) — flc i

FeFl"mat made many % > 0, for all x # cin (a, b). See Exercise 84(b), Section 1.2.

contributions to analytic
geometry, number theory, Because this quotient is positive, the signs of the denominator and numerator must

calculus, and probability. In agree. This produces the following inequalities for x-values in the interval (a, b).
letters to friends, he wrote of

many of the fundamental ideas Leftofc:  x<c and f(x) < f(c) => f(c)is not a relative minimum.

of calculus, long before Newton . . . .
or Leibniz. For instance, Rightofc: x> c¢ and f(x) > f(c) => f(c)is not a relative maximum.

Theorem 3.2 is sometimes . , . . . .
attributed to Fermat. So, the assumption that f’(c) > O contradicts the hypothesis that f(c) is a relative

See LarsonCalculus.com to read extremum. Assuming that f'(¢) < O produces a similar contradiction, you are left
more of this biography. with only one possibility—namely, f'(c) = 0. So, by definition, c is a critical number
of f and the theorem is valid.

The Print Collector/Alamy Stock Photo
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16 (2, 16)
Maximum

(L-1
Minimum

On the closed interval [—1, 2], f has a
minimum at (1, —1) and a maximum
at (2, 16).

Figure 3.5
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Finding Extrema on a Closed Interval

Theorem 3.2 states that the relative extrema of a function can occur only at the critical
numbers of the function. Knowing this, you can use these guidelines to find extrema
on a closed interval.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f on a closed interval [a, b], use
these steps.

1. Find the critical numbers of f in (a, b).
2. Evaluate f at each critical number in (a, b).
3. Evaluate f at each endpoint of [a, b].

4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that
finding the critical numbers of the function is only part of the procedure. Evaluating the
function at the critical numbers and the endpoints is the other part.

m Finding Extrema on a Closed Interval

Find the extrema of
f(x) = 3x* — 443

on the interval [—1, 2].

Solution Begin by differentiating the function.
flx) = 3x* — 4%° Write original function.
) =12% — 12x2 Differentiate.

To find the critical numbers of f in the interval (— 1, 2), you must find all x-values for
which f'(x) = 0 and all x-values for which f'(x) does not exist.

1233 = 122 =0 Set f'(x) equal to 0.
12x2(x - 1) =0 Factor.
x=0,1 Critical numbers

Because f” is defined for all x, you can conclude that these are the only critical numbers
of f. By evaluating f at these two critical numbers and at the endpoints of [—1, 2],
you can determine that the maximum is f(2) = 16 and the minimum is f(1) = —1, as
shown in the table. The graph of f is shown in Figure 3.5.

Left Critical Critical Right
Endpoint | Number Number Endpoint

=1 =7 f0) =0 LD =—1]f2) =16

Minimum | Maximum ™

In Figure 3.5, note that the critical number x = 0 does not yield a relative minimum
or a relative maximum. This tells you that the converse of Theorem 3.2 is not true. In
other words, the critical numbers of a function need not produce relative extrema.
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‘ ‘(0, 0) Maxipum ‘ ‘
I I I I |
-2 -1 1 2
-
+  (3.6-399)
—4+
Minimum
(=1,-5) 8 \-5 +

On the closed interval [—1, 3], f has a
minimum at (—1, —5) and a maximum

at (0, 0).
Figure 3.6

4+ _
(5’ 3) Maximum

f(x) =2 sin x — cos 2x

0,-1

I
PN
\
N
RS
=
0
&
L
_
Ao

NG iU
Minima

On the closed interval [0, 2], f has

two minima at (77/6, —3/2) and
(117/6, —3/2) and a maximum at
(/2,3).

Figure 3.7

EXAMPLE 3 Finding Extrema on a Closed Interval

Find the extrema of f(x) = 2x — 3x2/3 on the interval [— 1, 3].

Solution Begin by differentiating the function.

flx) = 2x — 3x?/3 Write original function.
2
fl) =2- 73 Differentiate.
173 — 1
-xA . .
= 2< a7 ) Simplify.

From this derivative, you can see that the function has two critical numbers in the
interval (—1, 3). The number 1 is a critical number because f'(1) = 0, and the number
0 is a critical number because f’(0) does not exist. By evaluating f at these two
numbers and at the endpoints of the interval, you can conclude that the minimum is
f(—1) = —5 and the maximum is f(0) = 0, as shown in the table. The graph of f is
shown in Figure 3.6.

Left Critical Critical Right
Endpoint Number Number Endpoint
f(=1)==5| f(0)=0 - — 6 —33/9~ —
Minimum | Maximum f) = =1 f(3) =639 0.24

FNZ8 N  Finding Extrema on a Closed Interval

s+« D> See LarsonCalculus.com for an interactive version of this type of example.
Find the extrema of

f(x) = 2sinx — cos 2x
on the interval [0, 27].

Solution Begin by differentiating the function.

f(x) = 2sinx — cos 2x Write original function.
f'(x) = 2cosx + 2sin 2x Differentiate.
= 2cosx + 4 cos xsinx sin 2x = 2 cos x sin x
= 2(cos x)(1 + 2 sinx) Factor.

Because f is differentiable for all real x, you can find all critical numbers of f by
finding the zeros of its derivative. Considering 2(cos x)(1 + 2 sin x) = 0 in the interval
(0, 2m), the factor cosx is zero when x = m/2 and when x = 37/2. The factor
(1 + 2 sin x) is zero when x = 77/6 and when x = 117/6. By evaluating f at these
four critical numbers and at the endpoints of the interval, you can conclude that the
maximum is f(r/2) = 3 and the minimum occurs at two points, f(77/6) = —3/2 and
f(11m/6) = —3/2, as shown in the table. The graph is shown in Figure 3.7.

Left Critical Critical Critical Critical Right
Endpoint Number Number Number Number Endpoint
s Tn 3 117 3
Z) =3 L 37 _ 22y 2
o --1|5)=3 | %)= -3 (%)= €)= 3| s = -1

Maximum Minimum Minimum




3.1 Exercises
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see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Minimum What does it mean to say that f(c) is the
minimum of f on an interval /?

2. Extreme Value Theorem In your own words,
describe the Extreme Value Theorem.

3. Maximum What is the difference between a relative
maximum and an absolute maximum on an interval /?

4. Critical Numbers What is a critical number?

5. Critical Numbers
numbers of a function.

Explain how to find the critical

6. Extrema on a Closed Interval Explain how to find
the extrema of a continuous function on a closed interval
[a, b].

[s] The Value of the Derivative at Relative
¥ Extrema In Exercises 7-12, find the value of the
derivative (if it exists) at each indicated extremum.

X2 X

7. f(x) = 244 8. flx) = cos =
Y y
2+ )

-2+ ol
4
9. glx) =x + 2z 10. f(x) = —3x/x+ 1
y ¥
ot (220)7
5+ 33
Al 1
3Ak H—»x
@23 -3 -2 (-1,0) 1
1+ T
> 2t
1 2 3 4 5 6

1L f() = (v + 2P 12. f(9) = 4~ |

y y

2+ 6T

0, 4)
(-2,0) 1+ 4
e G x 2T
-4 -3 -2 -1

1 } } X
£y 2 AN

24 -2

Approximating Critical Numbers In Exercises 13-16,
approximate the critical numbers of the function shown in
the graph. Determine whether the function has a relative
maximum, a relative minimum, an absolute maximum, an
absolute minimum, or none of these at each critical number on
the interval shown.

13. Y 14. Y
SAV
4t 1T
3Ak
24 % > x
N -1 1
} f—t—t—0—t>x
-1 |1 23 45 -l
15. y 16. Y
5+ 8
4+ 6
3+ i
2Ak
2Ak
1A
R % o
-1 | 1 2 3 45 _2_2* 2408

[w]z2¥[w] Finding Critical Numbers In Exercises 17-22,
= "% find the critical numbers of the function.

17. f(x) = 4x> — 6x 18. g(x) = x — Jx

19. o) =t/ — 1,1 < 3 20. f(y) = =2

X2+ 1

21. h(x) = sin?x + cosx, 0 < x <27
22. f(0) =2sec +tanf, 0< 6 <2m
[v] Finding Extrema on a Closed Interval In

Exercises 23—40, find the absolute extrema of the
function on the closed interval.

[

B f)=3—x [-1,2] 24 f()= %x +2, [0, 4]

25. h(x) =5 — 222, [-3,1]  26. f(x) =72+ 1, [-1,2]

27 f) = & — %xz, [~1.2] 28. f(x) = 22 — 6x, [0.3]

29, y=3x23 —2x, [-1,1] 30. g(x) = ¥x, [-8,8]

6x2 t
31. g(x) = —— [-2,1] 32. (1) = [—1,6]
3B.y=3—-1|t=3|, [-1,5] 34 glx) = |x+4|, [-7,1]

35. f(x) =[x], [—2,2] 36. h(x) =2 — «], [—2,2]
. Sn 1lnm _ TR
37. f(x) = sinx, [6’ 6 ] 38. g(x) = secx, [ o 3]
nx
39. y = 3cosx, [0, 27] 40. y = tan e [0, 2]
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[=]3:¥[=] Finding Extrema on an Interval In Exercises
b1 : 1 41-44, find the absolute extrema of the function (if HOW DO YOU SEE IT? Determine
s

whether each labeled point is an absolute
maximum or minimum, a relative maximum or

any exist) on each interval.

4L f() = 2x = 3 4. f()=5-x minimum, or none of these.

(a) [0,2] (b) [0,2) (a) [1,4] () [1,4) y

() (0,2] (d) (0,2) (c) (1,4] (@ (1,4) G
43, f(x) = x> — 2x 4. f(x) = J4—x B E

(@ [-1,2] () (1,3] (@ [-2,2] (b) [-2,0) c

() (0,2) (d [1,4) (© (-2,2) @ [1,2) F *

BB Finding Absolute Extrema Using Technology In D
Exercises 45-48, use a graphing utility to graph the function A
and find the absolute extrema of the function on the given
interval.
3
45. f(x) = — (1,4] EXPLORING CONCEPTS
Using Graphs In Exercises 57 and 58, determine
46. f(x) = L, [0,2) from the graph whether f has a minimum in the open
2-x interval (a, ). Explain your reasoning.
47. f(x) = Jx + 512 =, [0,7] 57. (a) (b)
¥y y

48. f(x) = —x + cos 3mx, [O, %]

f f
Al Finding Extrema Using Technology In Exercises 49 \f/ \;/

and 50, (a) use a computer algebra system to graph the
function and approximate any absolute extrema on the given
interval. (b) Use the utility to find any critical numbers, and
use them to find any absolute extrema not located at the P "
endpoints. Compare the results with those in part (a).

58. (a) (b)
49. f(x) =3.2x° + 5x* — 3.5x, [0,1] y y
50. f(x) = %x\/3 —x, [0,3]
f f

B8 Finding Maximum Values Using Technology In .

Exercises 51 and 52, use a computer algebra system to find '

the maximum value of |f"(x)| on the closed interval. (This T

value is used in the error estimate for the Trapezoidal Rule, as . .

discussed in Section 8.6.) a b a b

51, f(x) = V1 + 2, [0,2]

59. Critical Numbers Consider the function

1 1

52. = , | _

f(x) x2 +1 |:2 3:| f(x) _ X 4

x+2
A8 Finding Maximum Values Using Technology In .
= - ? 9

Exercises 53 and 54, use a computer algebra system to find the Is x 2 a critical number of f? Why or why not?
maximum value of |f@(x)| on the closed interval. (This value 60. Creating the Graph of a Function Grapha
is used in the error estimate for Simpson’s Rule, as discussed function on the interval [—2, 5] having the given
in Section 8.6.) characteristics.
53. f(x) = (x + 1)¥3, [0,2] Relative minimum at x = —1

Critical number (but no extremum) at x = 0

54. f(x) = 217 [-1,1] Absolute maximum at x = 2
Absolute minimum at x = 5

55. Writing Write a short paragraph explaining why a continuous
function on an open interval may not have a maximum or
minimum. Illustrate your explanation with a sketch of the
graph of such a function.
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61.

62.

Power The formula for the power output P of a battery is

P = VI — RI?

where V is the electromotive force in volts, R is the resistance
in ohms, and [ is the current in amperes. Find the current that
corresponds to a maximum value of P in a battery for which
V = 12 volts and R = 0.5 ohm. Assume that a 15-ampere fuse
bounds the output in the interval 0 = I < 15. Could the power
output be increased by replacing the 15-ampere fuse with a
20-ampere fuse? Explain.

Lawn Sprinkler A lawn sprinkler is constructed in such
a way that df/dt is constant, where 0 ranges between 45° and
135° (see figure). The distance the water travels horizontally is

v2 sin 20
x=—

45° < < 135°
o 5 0 35

where v is the speed of the water. Find dx/dr and explain why
this lawn sprinkler does not water evenly. What part of the
lawn receives the most water?

9=105° 7 =75

’ A Y N
’ \ ’ \
’ \ ’ \
9 =135° V| g =450
s [ V! o
- ¥ I~ Allo - \ ~
a"‘fi{“.?.;{?;!!‘;!f#?m 1 ~ \,’X’O \ .
I L - \ oy x
f 1 f T
v _v it v V2
&2 64 64 32

Water sprinkler: 45° < 0 < 135°

@ FOR FURTHER INFORMATION For more information
on the “calculus of lawn sprinklers,” see the article “Design of an
Oscillating Sprinkler” by Bart Braden in Mathematics Magazine.
To view this article, go to MathArticles.com.

63.

Honeycomb The surface area of a cell in a honeycomb is

2 _
S = 6hs + 31(—‘/5 _C0s 6)

2 sin 0
where & and s are positive constants and 6 is the angle at which
the upper faces meet the altitude of the cell (see figure). Find the
angle 0 (/6 < 0 < m/2) that minimizes the surface area S.

[

@ FOR FURTHER INFORMATION For more information
on the geometric structure of a honeycomb cell, see the article
“The Design of Honeycombs™ by Anthony L. Peressini in UMAP
Module 502, published by COMAP, Inc., Suite 210, 57 Bedford
Street, Lexington, MA.

64.
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Highway Design 1In order to build a highway, it is
necessary to fill a section of a valley where the grades (slopes)
of the sides are 9% and 6% (see figure). The top of the filled
region will have the shape of a parabolic arc that is tangent to
the two slopes at the points A and B. The horizontal distances

from A to the y-axis and from B to the y-axis are both 500 feet.

y

<— 500 ft —>{<=— 500 ft ==

: Highway

\A 1
<. B .
g --- '@de/‘*
L grade HEe s = 6o
ﬁ» X
(a) Find the coordinates of A and B.
(b) Find a quadratic function y = ax?>+ bx + ¢ for

—500 = x = 500 that describes the top of the filled
region.

Not drawn to scale

(c) Construct a table giving the depths d of the fill for
x = —500, —400, —300, —200, —100, 0, 100, 200, 300,
400, and 500.

d

=

What will be the lowest point on the completed highway?
Will it be directly over the point where the two hillsides
come together?

True or False? In Exercises 65-68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65.
66.

67.

68.

69.

70.

The maximum of y = x2 on the open interval (—3, 3) is 9.

If a function is continuous on a closed interval, then it must
have a minimum on the interval.

If x = c is a critical number of the function f, then it is also a
critical number of the function g(x) = f(x) + k, where k is a
constant.

If x = c is a critical number of the function f, then it is also a
critical number of the function g(x) = f(x — k), where k is a
constant.

Functions Let the function f be differentiable on an
interval / containing c¢. If f has a maximum value at x = c,
show that —f has a minimum value at x = c.

Critical Numbers Consider the cubic function
f&@) = ax® + bx* + cx + d, where a # 0. Show that f can
have zero, one, or two critical numbers and give an example
of each case.

PUTNAM EXAM CHALLENGE

71. Determine all real numbers a > 0 for which there exists
a nonnegative continuous function f(x) defined on [0, a]
with the property that the region R = {(x,); 0 < x < a,
0 <y < f(x)} has perimeter k units and area k square
units for some real number £.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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3.2 Rolle’s Theorem and the Mean Value Theorem

Exploration

Extreme Values in a

Closed Interval Sketch a
rectangular coordinate plane
on a piece of paper. Label
the points (1, 3) and (5, 3).
Using a pencil or pen, draw
the graph of a differentiable
function f that starts at (1, 3)
and ends at (5, 3). Is there at
least one point on the graph
for which the derivative is
zero? Would it be possible to
draw the graph so that there
is not a point for which the
derivative is zero? Explain
your reasoning.

ROLLE’S THEOREM

French mathematician Michel
Rolle first published the
theorem that bears his name
in 1691. Before this time,
however, Rolle was one of the
most vocal critics of calculus,
stating that it gave erroneous
results and was based on
unsound reasoning. Later in
life, Rolle came to see the
usefulness of calculus.

B Understand and use Rolle’s Theorem.
B Understand and use the Mean Value Theorem.

Rolle’s Theorem

The Extreme Value Theorem (see Section 3.1) states that a continuous function on a
closed interval [a, b] must have both a minimum and a maximum on the interval. Both
of these values, however, can occur at the endpoints. Rolle’s Theorem, named after the
French mathematician Michel Rolle (1652-1719), gives conditions that guarantee the
existence of an extreme value in the interior of a closed interval.

THEOREM 3.3 Rolle’s Theorem

Let f be continuous on the closed interval [a, b] and differentiable E_;'JE
on the open interval (a, b). If f(a) = f(b), then there is at least one I_".:l ESd
number ¢ in (a, b) such that f'(c) = 0.

[=1;

=

Proof Let f(a) = d = f(b).

Case 1: If f(x) = d for all x in [a, b], then f is constant on the interval and, by
Theorem 2.2, f'(x) = 0 for all x in (a, b).

Case 2: Consider f(x) > d for some x in (a, b). By the Extreme Value Theorem, you
know that f has a maximum at some c in the interval. Moreover, because f(c) > d, this
maximum does not occur at either endpoint. So, f has a maximum in the open interval
(a, b). This implies that f(c) is a relative maximum and, by Theorem 3.2, ¢ is a critical
number of f. Finally, because f is differentiable at ¢, you can conclude that f'(c) = 0.

Case 3: When f(x) < d for some x in (a, b), you can use an argument similar to that
in Case 2 but involving the minimum instead of the maximum. |

From Rolle’s Theorem, you can see that if a function f is continuous on [a, b]
and differentiable on (a, b), and if f(a) = f(b), then there must be at least one x-value
between a and b at which the graph of f has a horizontal tangent [See Figure 3.8(a)].
When the differentiability requirement is dropped from Rolle’s Theorem, f will still
have a critical number in (a, b), but it may not yield a horizontal tangent. Such a case
is shown in Figure 3.8(b).

Relative
maximum

Relative
maximum

: : : : : .

a c b a c b

(b) f is continuous on [a, b] but not
differentiable on (a, b).

(a) fis continuous on [a, b] and
differentiable on (a, b).

Figure 3.8
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1,0 /2.0,
NS,

r=o

-1+ Horizontal
tangent

The x-value for which f'(x) = 0 is
between the two x-intercepts.
Figure 3.9

y
f=2)=8 *@
8 =38

D=0 5,1 f(1)=0

f'(x) = 0 for more than one x-value in
the interval (—2, 2).
Figure 3.10

3
Figure 3.11
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EXAMPLE 1 lllustrating Rolle’s Theorem

Find the two x-intercepts of
fx) =x*—3x+2
and show that f’(x) = 0 at some point between the two x-intercepts.

Solution Note that f is differentiable on the entire real number line. Setting £ (x)
equal to 0 produces

X —-3x+2=0 Set f(x) equal to 0.
(x - 1)(x - 2) =0 Factor.
x=1,2. Solve for x.

So, (1) = f(2) = 0, and from Rolle’s Theorem you know that there exists at least one
c in the interval (1, 2) such that f'(c) = 0. To find such a c, differentiate f to obtain

f'(x) =2x—3 Differentiate.

and then determine that f'(x) = 0 when x = % Note that this x-value lies in the open
interval (1, 2), as shown in Figure 3.9. o

Rolle’s Theorem states that when f satisfies the conditions of the theorem, there
must be at least one point between a and b at which the derivative is 0. There may, of
course, be more than one such point, as shown in the next example.

EXAMPLE 2 lllustrating Rolle’s Theorem

Let f(x) = x* — 2x% Find all values of ¢ in the interval (—2, 2) such that f'(c) = 0.

Solution To begin, note that the function satisfies the conditions of Rolle’s
Theorem. That is, f is continuous on the interval [—2, 2] and differentiable on the
interval (—2, 2). Moreover, because f(—2) = f(2) = 8, you can conclude that there
exists at least one ¢ in (—2, 2) such that f'(c) = 0. Because

fx) = 4x® — 4x Differentiate.

setting the derivative equal to O produces

453 —4x =0 Set f'(x) equal to 0.
dx(x — Dx+1)=0 Factor.
x=0,1,—1. x-values for which f'(x) = 0
So, in the interval (—2, 2), the derivative is zero when x = —1, 0, and 1, as shown in
Figure 3.10. |

A graphing utility can be used to indicate whether
the points on the graphs in Examples 1 and 2 are relative minima or relative maxima
of the functions. When using a graphing utility, however, you should keep in mind
that it can give misleading pictures of graphs. For example, use a graphing utility
to graph

1
1000(x — DV7 + 1

f&)=1- -1y

With most viewing windows, it appears that the function has a maximum of 1 when
x = 1, as shown in Figure 3.11. By evaluating the function at x = 1, however, you
can see that f(1) = 0. To determine the behavior of this function near x = 1, you
need to examine the graph analytically to get the complete picture.
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.

oo The “mean” in the
Mean Value Theorem refers to
the mean (or average) rate of

change of f on the interval [a, b].

Y Slope of tangent line = f’(c)

Tangent line

Secant line

(b, f(b))

Figure 3.12

JOSEPH-LOUIS LAGRANGE
(1736-1813)

The Mean Value Theorem

was first proved by the

famous mathematician Joseph-
Louis Lagrange. Born in Italy,
Lagrange held a position in the
court of Frederick the Great in
Berlin for 20 years.

See LarsonCalculus.com to read
more of this biography.

The Mean Value Theorem

Rolle’s Theorem can be used to prove another theorem—the Mean Value Theorem.

THEOREM 3.4 The Mean Value Theorem

If f is continuous on the closed interval [a, b] and differentiable on the open
interval (a, b), then there exists a number c in (a, b) such that

fb) — fla) (b) fla)

—a

fle) =

Proof Refer to Figure 3.12. The equation of the secant line that passes through the
points (a, f(a)) and (b, f(b)) is

- [P =L - )+ sta)

Let g(x) be the difference between f(x) and y. Then
gx) =fx) —y
=5 - [P o) - st

By evaluating g at a and b, you can see that

gla) = 0 = g(b).

Because f is continuous on [a, b], it follows that g is also continuous on [a, b].
Furthermore, because f is differentiable, g is also differentiable, and you can apply
Rolle’s Theorem to the function g. So, there exists a number ¢ in (a, b) such that
g'(c) = 0, which implies that

gc)=0
o) — (b) J;(a) _o

So, there exists a number c in (a, b) such that

rio =T =), ii
—a

Although the Mean Value Theorem can be used directly in problem solving, it is
used more often to prove other theorems. In fact, some people consider this to be the
most important theorem in calculus—it is closely related to the Fundamental Theorem
of Calculus discussed in Section 4.4. For now, you can get an idea of the versatility
of the Mean Value Theorem by looking at the results stated in Exercises 77-85 in this
section.

The Mean Value Theorem has implications for both basic interpretations of the
derivative. Geometrically, the theorem guarantees the existence of a tangent line that is
parallel to the secant line through the points

(a.f(a)) and (b, f(b)).

as shown in Figure 3.12. Example 3 illustrates this geometric interpretation of the
Mean Value Theorem. In terms of rates of change, the Mean Value Theorem implies
that there must be a point in the open interval (a, b) at which the instantaneous rate of
change is equal to the average rate of change over the interval [a, b]. This is illustrated in
Example 4.

Mary Evans Picture Library/The Image Works
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Tangent line
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2,3
3 23 Secant line
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The tangent line at (2, 3) is parallel
to the secant line through (1, 1) and
(4, 4).

Figure 3.13

5 miles

s © [
o = 4
(I

t = 4 minutes t=0
Not drawn to scale

At some time t, the instantaneous
velocity is equal to the average
velocity over 4 minutes.

Figure 3.14
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EXAMPLE 3 Finding a Tangent Line

S > See LarsonCalculus.com for an interactive version of this type of example.

For f(x) = 5 — (4/x), find all values of ¢ in the open interval (1, 4) such that

@ = f()
4-1

Solution The slope of the secant line through (1, f(1)) and (4, £(4)) is

f@—f) _4-1_
4 —1 4—1

flle) =

Slope of secant line

Note that the function satisfies the conditions of the Mean Value Theorem. That is, f is
continuous on the interval [1, 4] and differentiable on the interval (1, 4). So, there exists
at least one number ¢ in (1, 4) such that f'(c) = 1. Solving the equation f'(x) = 1 yields

=1 Set f'(x) equal to 1.

which implies that
x = *2.

So, in the interval (1, 4), you can conclude that ¢ = 2, as shown in Figure 3.13.

EXAMPLE 4 Finding an Instantaneous Rate of Change

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as
shown in Figure 3.14. As a truck passes the first patrol car, its speed is clocked at
55 miles per hour. Four minutes later, when the truck passes the second patrol car, its
speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the
speed limit (of 55 miles per hour) at some time during the 4 minutes.

Solution Let ¢ = 0 be the time (in hours) when the truck passes the first patrol car.
The time when the truck passes the second patrol car is

S
60 15 our.

By letting s(f) represent the distance (in miles) traveled by the truck, you have s(0) = 0

and s(%) = 5. So, the average velocity of the truck over the five-mile stretch of

highway is

s(1/15) — s(0) __5
(/15 -0 _ 1/15

Average velocity = = 75 miles per hour.

Assuming that the position function is differentiable, you can apply the Mean Value
Theorem to conclude that the truck must have been traveling at a rate of 75 miles per
hour sometime during the 4 minutes. |

A useful alternative form of the Mean Value Theorem is: If f is continuous on
[a, b] and differentiable on (a, b), then there exists a number c in (a, b) such that

f(b) = f(a) + (b - a)f'(c). Alternative form of Mean Value Theorem

When doing the exercises for this section, keep in mind that polynomial functions,
rational functions, and trigonometric functions are differentiable at all points in their
domains.
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3.2 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Rolle’s Theorem 1In your own words, describe
Rolle’s Theorem.

2. Mean Value Theorem 1In your own words, describe
the Mean Value Theorem.

Writing In Exercises 3-6, explain why Rolle’s Theorem does
not apply to the function even though there exist a and b such

that f(a) = f(b).
3 0 = i 1= 8. 79 = cot, [z, 37]

5 f(0)=1-|x—1|, 6. fx) = V(2 — X233,
[0, 2] [—1,1]

jI[=] Using Rolle’s Theorem In Exercises 7-10,
find the two x-intercepts of the function f and
show that f'(x) = 0 at some point between the two
x-intercepts.

7. fx) =x2—x—2 8. f(x) =x>+ 6x

9. flx) =xJ/x+4 10. f(x) = —3xJ/x + 1

[v] Using Rolle’s Theorem In Exercises 11-24,
"¢ determine whether Rolle’s Theorem can be
applied to f on the closed interval [a, b]. If Rolle’s
Theorem can be applied, find all values of ¢ in the
open interval (a, b) such that f'(c) = 0. If Rolle’s
Theorem cannot be applied, explain why not.

. f(x) = —x2 + 3%, [0,3]

12. f(x) =x>—8x + 5, [2,6]

13. f(x) = (x — D> —2)(x — 3), [1,3]

14. f(x) = (x — 4)(x + 2?2 [-2,4]

15. f(x) =x*3 -1, [-8,8]

16. f0) =3 — [x— 3|, [0,6]
—2x—3 x2—4

2
17. f(x) = 12 18. f(x) = P
[-1.3]

[-2,2]
19. f(x) = sinx, [0,2n] 20. f(x) =cosx, [m,3n]

. n Tn
22. f(x) = sin3x, [2, 6]

24. f(x) = secx, [m,2n]

[

21. f(x) = cosmx, [0,2]

23. f(x) =tanx, [0, 7]

P’Fr Using Rolle’s Theorem In Exercises 25-28, use a graphing

utility to graph the function on the closed interval [a,b].
Determine whether Rolle’s Theorem can be applied to f on the
interval and, if so, find all values of ¢ in the open interval (a, b)

such that f'(c) = 0.
25. f(x) = |x| = 1, [-1,1] 26. f(x) =x — x1/3, [0, 1]

27. fx) = ;ﬁ — sin % [—1,0] 28. f(x) = x — tan mx, [—1. ]

29. Vertical Motion The height of a ball ¢ seconds after it
is thrown upward from a height of 6 feet and with an initial
velocity of 48 feet per second is

f(t) = =162 + 48t + 6.

(a) Verify that f(1) = f(2).
(b) According to Rolle’s Theorem, what must the velocity be
at some time in the interval (1, 2)? Find that time.

30. Reorder Costs The ordering and transportation cost C
for components used in a manufacturing process is
approximated by

1 X
= 10{— +
k) (x x + 3>
where C is measured in thousands of dollars and x is the order
size in hundreds.

(a) Verify that C(3) = C(6).

(b) According to Rolle’s Theorem, the rate of change of the
cost must be 0 for some order size in the interval (3, 6).
Find that order size.

'[a] Mean Value Theorem 1In Exercises 31 and
ﬂ 32, copy the graph and sketch the secant line to

the graph through the points (a, f (a)) and (b, f (b)).
Then sketch any tangent lines to the graph for each
value of ¢ guaranteed by the Mean Value Theorem.
To print an enlarged copy of the graph, go to

O

MathGraphs.com.
31. Y 32. y
f
l L x h L x
a b a b

Writing In Exercises 33-36, explain why the Mean Value
Theorem does not apply to the function f on the interval [0, 6].

33. 7 34.

X

36. f(x) = |x — 3|
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37. Mean Value Theorem Consider the graph of the function
fx) = —x% + 5 (see figure).

(a) Find the equation of the secant line joining the points
(—1,4) and (2, 1).

(b) Use the Mean Value Theorem to determine a point ¢ in the
interval (— 1, 2) such that the tangent line at ¢ is parallel to
the secant line.

(c) Find the equation of the tangent line through c.

Flv (d) Use a graphing utility to graph f, the secant line, and the
tangent line.

Figure for 37

Figure for 38

38. Mean Value Theorem Consider the graph of the function
fx) = x2 — x — 12 (see figure).

(a) Find the equation of the secant line joining the points
(=2, —6) and (4, 0).

(b) Use the Mean Value Theorem to determine a point ¢ in the
interval (—2, 4) such that the tangent line at ¢ is parallel to
the secant line.

(c) Find the equation of the tangent line through c.

Plv (d) Use a graphing utility to graph f, the secant line, and the
tangent line.

E jJ[m] Using the Mean Value Theorem In
Exercises 39-48, determine whether the Mean
Value Theorem can be applied to f on the closed
interval [a, b]. If the Mean Value Theorem can be
applied, find all values of ¢ in the open interval
(a, b) such that

fio =10~ 1@

If the Mean Value Theorem cannot be applied,
explain why not.

39. f(x) = 6x3, [1,2] 40. f(x) =x° [—1,1]
41. fx) =x*+2x+4, [—1,0]

4. fx) =x* =32+ 9% +5, [0,1]

3. flo) =25 f [-3,3] 44 f0) = — [1.4]
45. f(x) = |2x + 1|, [-1,3]

46. f(x) = V2 —x, [-7,2]

47. f(x) =sinx, [0, 7]
48. f(x) = cosx + tanx, [0, 7]

Rolle’s Theorem and the Mean Value Theorem 179

fl4 Using the Mean Value Theorem In Exercises 49-52,

use a graphing utility to (a) graph the function f on the given
interval, (b) find and graph the secant line through points
on the graph of f at the endpoints of the given interval, and
(c) find and graph any tangent lines to the graph of f that are
parallel to the secant line.

49. 1) = x+1 [_%’2]

50. f(x) =x — 2sinx, [—m, 7]
51’ f(x) = \/;C’ [1’ 9]

52. f(x) =x* —2x3 + 2, [0,6]

53. Vertical Motion The height of an object ¢ seconds after it
is dropped from a height of 300 meters is

s(t) = —4.92 + 300.
(a) Find the average velocity of the object during the first
3 seconds.

(b) Use the Mean Value Theorem to verify that at some time
during the first 3 seconds of fall, the instantaneous velocity
equals the average velocity. Find that time.

54. Sales A company introduces a new product for which the
number of units sold S is

9
- 2 [ —
S = 00(5 T t)
where ¢ is the time in months.
(a) Find the average rate of change of S during the first year.

(b) During what month of the first year does S'(¢) equal the
average rate of change?

EXPLORING CONCEPTS

55. Converse of Rolle’s Theorem Let f be
continuous on [a, b] and differentiable on (a, b). If there
exists ¢ in (a, b) such that f'(c) = 0, does it follow that
f(a) = £(b)? Explain.

56. Rolle’s Theorem Let f be continuous on [a, ] and
differentiable on (a, b). Also, suppose that f(a) = f(b)
and that ¢ is a real number in the interval (a, b) such
that f'(c) = 0. Find an interval for the function g over
which Rolle’s Theorem can be applied, and find the
corresponding critical number of g, where k is a constant.

(@ gl) =fx) +k (b) glv) =fx — k)
() g(x) = f(kx)
57. Rolle’s Theorem The function

x=0
0<x=1

=

is differentiable on (0, 1) and satisfies f(0) = f(1).
However, its derivative is never zero on (0, 1). Does this
contradict Rolle’s Theorem? Explain.

58. Mean Value Theorem Can you find a function f
such that f(—=2) = =2, f(2) =6, and f'(x) < 1 for
all x? Why or why not?
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0-59.Speed ®© © 06 06 06 060606 060 0 0 0 0 0 0 0 0 0 0 0 o

A plane begins its takeoff
at 2:00 p.M. on a
2500-mile flight. After
5.5 hours, the plane
arrives at its destination.
Explain why there are

at least two times during
the flight when the

speed of the plane is

400 miles per hour.

60. Temperature When an object is removed from a furnace
and placed in an environment with a constant temperature of
90°F, its core temperature is 1500°F. Five hours later, the core
temperature is 390°F. Explain why there must exist a time in
the interval (0, 5) when the temperature is decreasing at a rate
of 222°F per hour.

61. Velocity Two bicyclists begin a race at 8:00 A.M. They
both finish the race 2 hours and 15 minutes later. Prove that
at some time during the race, the bicyclists are traveling at the
same velocity.

62. Acceleration At9:13 A.M., a sports car is traveling 35 miles
per hour. Two minutes later, the car is traveling 85 miles per
hour. Prove that at some time during this two-minute interval,
the car’s acceleration is exactly 1500 miles per hour squared.

63. Think About It Sketch the graph of an arbitrary function
f that satisfies the given condition but does not satisfy the
conditions of the Mean Value Theorem on the interval [— 5, 5].

(a) f is continuous. (b) f is not continuous.

% HOW DO YOU SEE IT? The figure shows

two parts of the graph of a continuous differentiable
function f on [— 10, 4]. The derivative f" is also
continuous. To print an enlarged copy of the graph,
go to MathGraphs.com.

/ 4~
I T T S T

T

]
8 -4 \4

—4 +

-8+

(a) Explain why f must have at least one zero in [— 10, 4].

(b) Explain why f’ must also have at least one zero in
the interval [ — 10, 4]. What are these zeros called?

(c) Make a possible sketch of the function, where f”
has one zero on the interval [— 10, 4].

Finding a Solution InExercises 65-68, use the Intermediate
Value Theorem and Rolle’s Theorem to prove that the equation
has exactly one real solution.

65. X +x+x+1=0 66. 2x°+7Tx —1=0

narvikk/E+/Getty Images

m——

67.3x+ 1 —sinx=0 68. 2x —2 —cosx =0

Using a Derivative In Exercises 69-72, find a function f
that has the derivative f'(x) and whose graph passes through
the given point. Explain your reasoning.

69. f'(x) =0,
71. f'(x) = 2x,

2.5
(1,0)

70. f'(x) =4, (0,1)

72. fllx) =6x—1, (2,7)
True or False? In Exercises 73-76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73. The Mean Value Theorem can be applied to
1
=1

74.

75.

76.

77.

79.

80.

81.

82.

83.
84.
. Using the Mean Value Theorem Let0 < a < b. Use

on the interval [—1, 1].

If the graph of a function has three x-intercepts, then it must
have at least two points at which its tangent line is horizontal.

If the graph of a polynomial function has three x-intercepts,
then it must have at least two points at which its tangent line is
horizontal.

The Mean Value Theorem can be applied to f(x) = tan x on
the interval [0, 7r/4].

Proof Prove thatif @ > 0 and n is any positive integer, then
the polynomial function p(x) = x***! 4+ ax + b cannot have
two real roots.

. Proof Prove that if f'(x) = 0 for all x in an interval (a, b),

then f is constant on (a, b).

Proof Let p(x) = Ax> + Bx + C. Prove that for any
interval [a, b], the value ¢ guaranteed by the Mean Value
Theorem is the midpoint of the interval.

Using Rolle’s Theorem

(a) Let f(x) =x* and g(x) = —x> + x> + 3x + 2. Then
f(=1) = g(—1) and f(2) = g(2). Show that there is at
least one value ¢ in the interval (— 1, 2) where the tangent
line to f at (c, f(c)) is parallel to the tangent line to g at
(c, g(c)). Identify c.

(b) Let f and g be differentiable functions on [a, b], where
f(a) = g(a) and f(b) = g(b). Show that there is at least
one value c in the interval (a, b) where the tangent line to
£ at (¢, f(c)) is parallel to the tangent line to g at (c, g(c)).

Proof Prove that if f is differentiable on (—o0, c0) and

f'(x) < 1 for all real numbers, then f has at most one fixed

point. [A fixed point of a function f is a real number ¢ such

that f(c) = c.]

Fixed Point Use the result of Exercise 81 to show that

flx) = 15 cos x has at most one fixed point.

Proof Prove that |cos a — cos b| < |a — b for all a and b.

Proof Prove that |sina — sinb| < |a — b| for all a and b.

the Mean Value Theorem to show that

b—a
f—\/E<2\/E.
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3.3 Increasing and Decreasing Functions and the First Derivative Test

The conclusions
in the first two cases of
Theorem 3.5 are valid even
when f'(x) = 0 at a finite
number of x-values in (a, b).

@ Determine intervals on which a function is increasing or decreasing.
@ Apply the First Derivative Test to find relative extrema of a function.

Increasing and Decreasing Functions

In this section, you will learn how derivatives can be used to classify relative extrema
as either relative minima or relative maxima. First, it is important to define increasing
and decreasing functions.

Definitions of Increasing and Decreasing Functions

A function f is increasing on an interval when, for any two numbers x;,
and x, in the interval, x, < x, implies f(x,) < f(x,).

A function f is decreasing on an interval when, for any two numbers x;
and x, in the interval, x; < x, implies f(x;) < f(x,).

A function is increasing when, as x
moves to the right, its graph moves up, and
is decreasing when its graph moves down.
For example, the function in Figure 3.15 is
decreasing on the interval (— o0, a), is
constant on the interval (a, b), and is
increasing on the interval (b, ©). As shown
in Theorem 3.5 below, a positive derivative

implies that the function is increasing, a ' Constant |
negative derivative implies that the function : : x
is decreasing, and a zero derivative on an F0)<0 | f0=0 ] f(x)>0
entire interval implies that the function is The derivative is related to the slope
constant on that interval. of a function.

Figure 3.15

THEOREM 3.5 Test for Increasing and Decreasing Functions
Let f be a function that is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b).

1. If f(x) > O for all x in (a, b), then f is increasing on [a, b]. El::_!!le
2. If f'(x) < O for all x in (a, b), then f is decreasing on [a, b]. F&Fpﬁ
3. If f'(x) = O for all x in (a, b), then f is constant on [a, b]. O

Proof To prove the first case, assume that f'(x) > 0 for all x in the interval (a, b) and
let x, < x, be any two points in the interval. By the Mean Value Theorem, you know
that there exists a number ¢ such that x;, < ¢ < x,, and

X - X
ey = 10 =1
X2 T X
Because f’(c) > 0 and x, — x; > 0, you know that f(x,) — f(x,) > 0, which implies
that f(x,) < f(x,). So, f is increasing on the interval. The second case has a similar proof
(see Exercise 97), and the third case is a consequence of Exercise 78 in Section 3.2. g
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Figure 3.16

(a) Strictly monotonic function

y

5
5
3
&
)

(b) Not strictly monotonic
Figure 3.17

EXAMPLE 1 Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which f(x) = x> — 5x? is increasing or decreasing.

Solution Note that f is differentiable on the entire real number line and the
derivative of f is

f(X) =53 - %xz Write original function.
f’(x) = 3x? — 3x. Differentiate.

To determine the critical numbers of f, set f'(x) equal to zero.

3x2—-3x=0 Set f'(x) equal to 0.
3(x)(x - 1) =0 Factor.
x=0,1 Critical numbers

Because there are no points for which f’ does not exist, you can conclude that x = 0
and x = 1 are the only critical numbers. The table summarizes the testing of the three
intervals determined by these two critical numbers.

Interval -0 <x<0 0<x<1 I <x< o
Test Value x=-1 xZ% x=2
Signof f/(x) | f(-1)=6>0| f})=-2<0| f@=6>0
Conclusion Increasing Decreasing Increasing

By Theorem 3.5, f is increasing on the intervals (—o0, 0) and (1, ©©) and decreasing
on the interval (0, 1), as shown in Figure 3.16. e |

Example 1 gives you one instance of how to find intervals on which a function is
increasing or decreasing. The guidelines below summarize the steps followed in that
example.

GUIDELINES FOR FINDING INTERVALS ON WHICH A
FUNCTION IS INCREASING OR DECREASING

Let f be continuous on the interval (a, b). To find the open intervals on which
f is increasing or decreasing, use the following steps.

1. Locate the critical numbers of f in (a, b), and use these numbers to
determine test intervals.

2. Determine the sign of f'(x) at one test value in each of the intervals.

3. Use Theorem 3.5 to determine whether f is increasing or decreasing on
each interval.

These guidelines are also valid when the interval (a, b) is replaced by an
interval of the form (— o0, b), (a, o©), or (— 00, o©).

A function is strictly monotonic on an interval when it is either increasing on the
entire interval or decreasing on the entire interval. For instance, the function f(x) = x°
is strictly monotonic on the entire real number line because it is increasing on the entire
real number line, as shown in Figure 3.17(a). The function shown in Figure 3.17(b)
is not strictly monotonic on the entire real number line because it is constant on the
interval [0, 1].
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The First Derivative Test

After you have determined the intervals y
on which a function is increasing or
decreasing, it is not difficult to locate the 2+
relative extrema of the function. For instance,
in Figure 3.18 (from Example 1), the function

l —_
Relative

3
f (x) = x> — 2x? maximum

2

has a relative maximum at the point (0, 0)
because f is increasing immediately to the
left of x = 0 and decreasing immediately to
the right of x = 0. Similarly, f has a relative
minimum at the point (1, —%) because f is
decreasing immediately to the left of x = 1
and increasing immediately to the right of

x = 1. The next theorem makes this more explicit.

T Relative
minimum

Relative extrema of f
Figure 3.18

The First Derivative Test

El;glil
Let ¢ be a critical number of a function f that is continuous h}..; '_3
on an open interval / containing c. If f is differentiable on the : 1;["
interval, except possibly at c, then f(c) can be classified as follows. '

1. If f'(x) changes from negative to positive at c, then f has a relative
minimum at (c, f(c)).

2. If f'(x) changes from positive to negative at c, then f has a relative
maximum at (c, f(c)).

3. If f'(x) is positive on both sides of ¢ or negative on both sides of c, then
f(c) is neither a relative minimum nor a relative maximum.

) e O
) ) |

Fx)<0

afb----

1
1
1
L
a

Relative minimum Relative maximum

F(x)>0 F(x)>0 L <0 f(<0

a c b a c b

Neither relative minimum nor relative maximum

Proof Assume that f'(x) changes from negative to positive at c. Then there exist a
and b in [ such that

f(x) < Oforall xin (a,c) and f'(x) > O for all x in (c, b).

By Theorem 3.5, f is decreasing on [a, c] and increasing on [c, b]. So, f(c) is a
minimum of f on the open interval (a, b) and, consequently, a relative minimum of f.
This proves the first case of the theorem. The second case can be proved in a similar
way (see Exercise 98). [
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Relative

4 )
m o~

Relative 3 3
| minimum

A relative minimum occurs where f
changes from decreasing to increasing,
and a relative maximum occurs where f
changes from increasing to decreasing.
Figure 3.19

Relative
maximum

(0,/16)

—4—3/—1 1 \34

(=2,0) (2,0)

Relative Relative

minimum minimum
Figure 3.20

Applying the First Derivative Test

Find the relative extrema of f(x) = 4x — sin x in the interval (0, 27).

Solution Note that f is continuous on the interval (0, 27). The derivative of f is
f'(x) = % — cos x. To determine the critical numbers of f in this interval, set f'(x)
equal to 0.

1

57 cosx =0 Set f(x) equal to 0.
1

COS X = —
2
m S Critical numb
X =, ritical numbers

3’3

Because there are no points for which f* does not exist, you can conclude that x = 7/3
and x = 57/3 are the only critical numbers. The table summarizes the testing of the
three intervals determined by these two critical numbers. By applying the First Derivative
Test, you can conclude that f has a relative minimum at the point where x = 7/3 and a
relative maximum at the point where x = 57/3, as shown in Figure 3.19.

no|n St | 5w
<x< = | =<x< =7 | =X

Interval 0<x 3 |37 3 3 x < 2m

s Tn
Test Value xX=7 xX=n x=7

3 ! ! n !, U 77-[

Sign of f'(x) f(Z) <0 () >0 f(7> <0
Conclusion | Decreasing Increasing Decreasing

SR Applying the First Derivative Test

Find the relative extrema of f(x) = (x2 — 4)2/3.

Solution Begin by noting that f is continuous on the entire real number line. The
derivative of f

2
f’(x) = g(xz - 4)71/ 3(2)6) General Power Rule
_ 4x o
= W Simplify.
is O when x = 0 and does not exist when x = *2. So, the critical numbers are x = —2,

x = 0, and x = 2. The table summarizes the testing of the four intervals determined by
these three critical numbers. By applying the First Derivative Test, you can conclude
that f has a relative minimum at the point (—2, 0), a relative maximum at the point
(O, E/E), and another relative minimum at the point (2, 0), as shown in Figure 3.20.

Interval —00<x< =2 | 2<x<0]|]0<x<2|2<x<0®
Test Value x=-3 x=—1 x=1 x=73

Signof f(x) | f(=3) <0 f(=n>0 | f(1)<0 | f3)>0
Conclusion Decreasing Increasing Decreasing | Increasing




2
-1,2) (1,2)

Relative || Relative

minimum minimum

1 1 1 1 1
-2 -1 1 2 3

x-values that are not in the domain
of f, as well as critical numbers,
determine test intervals for f'.
Figure 3.21
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Note that in Examples 1 and 2, the given functions are differentiable on the entire
real number line. For such functions, the only critical numbers are those for which
f(x) = 0. Example 3 concerns a function that has two types of critical numbers—those
for which f'(x) = 0 and those for which f is not differentiable.

When using the First Derivative Test, be sure to consider the domain of the
function. For instance, in the next example, the function

X+ 1
2

) =

is not defined when x = (. This x-value must be used with the critical numbers to
determine the test intervals.

F AN Applying the First Derivative Test

e ¢« « o[> See LarsonCalculus.com for an interactive version of this type of example.

xt+1
x2

Find the relative extrema of f(x) =

Solution Note that f is not defined when x = 0.

f(x) =x2+ x7? Rewrite original function.
f’(x) =2x — 2x3 Differentiate.
=2x — 3 Rewrite with positive exponent.
X
2 = 1) -
=3 Simplify.
X
202 + Dlx — D(x + 1)
= 3 Factor.

So, f'(x) is zero at x = *1. Moreover, because x = 0 is not in the domain of f, you
should use this x-value along with the critical numbers to determine the test intervals.

x= =1 Critical numbers, f(=1) = 0
x=20 0 is not in the domain of f.

The table summarizes the testing of the four intervals determined by these three
x-values. By applying the First Derivative Test, you can conclude that f has one relative
minimum at the point (— 1, 2) and another at the point (1, 2), as shown in Figure 3.21.

Interval —0<x< -1 | -1<x<0|0<x<1|1<x<00
Test Value x= -2 xz—% x=% x=72

Signof f(v) | f(=2)<0 | f(=3)>0 | fG) <o | f@>0
Conclusion Decreasing Increasing Decreasing | Increasing

The most difficult step in applying the First Derivative Test is
finding the values for which the derivative is equal to 0. For instance, the values of
x for which the derivative of

_xt+1
2 +1

f)

is equal to zero are x = 0 and x = =/ J2 - 1If you have access to technology
that can perform symbolic differentiation and solve equations, use it to apply the
First Derivative Test to this function.
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When a projectile is propelled
from ground level and air
resistance is neglected, the object
will travel farthest with an initial
angle of 45°. When, however,

the projectile is propelled from

a point above ground level, the
angle that yields a maximum
horizontal distance is not 45°

(see Example 5).

EXAMPLE 5 The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle 0 is

_ gsec?o m

y = —Tozxz-f—(tane)x—i-h, 0<86 SE

where y is the height, x is the horizontal distance, g is the acceleration due to gravity,

v, is the initial velocity, and 4 is the initial height. (This equation is derived in Section

12.3.) Let g = 32 feet per second per second, v, = 24 feet per second, and &z = 9 feet.
What value of 6 will produce a maximum horizontal distance?

Solution To find the distance the projectile travels, lety = 0, g = 32, v, = 24, and
h = 9. Then substitute these values in the given equation as shown.

2
_& sze::z ze + (tanO)x + h =y
0
2 2
—%ﬂ + (tanB)x + 9 =0
2
—Se§66x2 + (tan@)x +9 =0

Next, solve for x using the Quadratic Formula with a = (—sec? 8)/36, b = tan 6, and
c=09.

—-b *+ Jb* — 4ac

T 2a
_ —tan 0 = /(tan 0)> — 4[(—sec? 0)/36](9)
T 2[(—sec? 6)/36]
_ —tan @ =* Jtan? 6 + sec?
T (—sec20)/18
x = 18(cos 6)(sin6 + \/m), x=0

At this point, you need to find the value of 8 that produces a maximum value of x.
Applying the First Derivative Test by hand would be very tedious. Using technology
to solve the equation dx/df = 0, however, eliminates most of the messy computations.
The result is that the maximum value of x occurs when

0 = 0.61548 radian, or 35.3°.

This conclusion is reinforced by sketching the path of the projectile for different values
of 8, as shown in Figure 3.22. Of the three paths shown, note that the distance traveled
is greatest for 8 = 35°.

y

The path of a projectile with initial angle 6
Figure 3.22 5 |

Dotshock/Shutterstock.com
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3.3 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Increasing and Decreasing Functions Describe
the Test for Increasing and Decreasing Functions in your
own words.

2. First Derivative Test Describe the First Derivative
Test in your own words.

Using a Graph In Exercises 3 and 4, use the graph of f to
find (a) the largest open interval on which f is increasing and
(b) the largest open interval on which f is decreasing.

3. y 4. y

10+

6
L 4
) 7\ |
6+ N\, |
4 ) *
i u ,
— 24y
27 / -2 |

—
—

%)
P
—

graph to estimate the open intervals on which the
function is increasing or decreasing. Then find the
open intervals analytically.

6. f(x) =x2—6x+8

5.y=—(x+1)7?

Intervals on Which a Function Is Increasing
or Decreasing In Exercises 11-18, find the
open intervals on which the function is increasing
or decreasing.

11. glx) =22 —2x — 8 12. h(x) = 12x — %3

13. y = x /16 — x? 14.y=x+%
15. f(x) =sinx — 1, 0<x<2nm
16. f(x) =cos3i 0<x<2m

2
17. y=x —2cosx, 0<x<2nm
18. f(x) = sin?x + sinx, 0 <x <27

[=]¥4j[=] Applying the First Derivative Test In
Exercises 19-40, (a) find the critical numbers of
Ols [, if any, (b) find the open intervals on which the
- function is increasing or decreasing, (c) apply the
First Derivative Test to identify all relative extrema,
and (d) use a graphing utility to confirm your

results.

19. f(x) = x* — 8 20. f(x) = x2 + 6x + 10
21 f(x) = =2 +4x + 3 22. f(x) = —3x2 —4x — 2

23 f(x) = -7 +21x+3 24, f(x) = x> —6x2 + 15
25. f(x) = (x — 1)2(x + 3) 26. f(x) = (8 — x)(x + 1)?
X —5x —x8 + 6x
27. () = =5 28 f)=—1,
29. f(x) =x2+ 1 30. f(x) =x23—4
31, f(x) = (x +2)2/3 32, f(x) = (x — 3)'/3
33. f(x) =5— |x— 5] 3. fx)=|x+3] -1
35, f(x) = 2x + i 36. f(x) = — 3
X2 X2—2x+1
37. fx) = 29 38. flx) = v
4 —x2, x<0 C[2x+ 1, x= -1
3’9']0()():{—2)@ x>0 40'f(x)_{x2—2, x> —1

Applying the First Derivative Test In
Exercises 41-48, consider the function on the
interval (0,27). (a) Find the open intervals on
which the function is increasing or decreasing.
(b) Apply the First Derivative Test to identify
all relative extrema. (c) Use a graphing utility to
confirm your results.

41. f(x) = x — 2sinx 42. f(x) =sinxcosx + 5

43. f(x) = sinx + cosx 4. fx) == + coS X

45. f(x) = cos?(2x) 46. f(x) = sinx — /3 cos x
_oa . _ sin x

47. f(x) = sin®>x + sinx 48. f(x) T+ cos?x

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203
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FIc*Finding and Analyzing Derivatives Using

Technology In Exercises 49-54, (a) use a computer algebra
system to differentiate the function, (b) sketch the graphs of
f and f’ on the same set of coordinate axes over the given
interval, (c) find the critical numbers of f in the open interval,
and (d) find the interval(s) on which f’ is positive and the
interval(s) on which f’is negative. Compare the behavior of f
and the sign of .

49. f(x) = 2x/9 — x%, [-3,3]
50. f(x) = 10(5 — /&> = 3x + 16), [0,5]

51. f(1) = 2sint, [0, 27]

52. f(x) = % + cos %, [0, 47]

53. f(x) = —3sin g [0, 67]
54. f(x) = 2sin3x + 4 cos 3x, [0, 7]

Comparing Functions In Exercises 55 and 56, use
symmetry, extrema, and zeros to sketch the graph of f. How
do the functions f and g differ?

X — 4x3 + 3x
55. f(x) = ﬁ

g(x) = x(x* = 3)
56. f(f) = cos®>t — sin® ¢
gy =1—2sin%t
Think About It In Exercises 57-62, the graph of f is shown

in the figure. Sketch a graph of the derivative of f. To print an
enlarged copy of the graph, go to MathGraphs.com.

57. Y 58. M

59.

61.

EXPLORING CONCEPTS

Transformations of Functions In Exercises 63—66,
assume that f is differentiable for all x. The signs of f’
are as follows.

f'x) > 0o0on(—o0,—4)
f'(x) < 0on(—4,6)
f'x) > 0on (6, )

Supply the appropriate inequality sign for the indicated
value of c.

Function Sign of g'(c)
63. g(x) =f(x) +5 £'(0) 0
64. g(x) = 3f(x) — 3 g'(=5) 0
65. g(x) = —f(x) g(=6) 0
66. g(x) = f(x — 10) g'(0) 0

67. Sketching a Graph  Sketch the graph of the arbitrary
function f such that

>0, x< 4
f'(x){ undefined, x = 4.
<0, x> 4

68. Increasing Functions Is the sum of two increasing
functions always increasing? Explain.

69. Increasing Functions Is the product of two
increasing functions always increasing? Explain.

.{ ) HOW DO YOU SEE IT? Use the graph of
f' to (a) identify the critical numbers of f,

(b) identify the open intervals on which f is
increasing or decreasing, and (c) determine
whether f has a relative maximum, a relative
minimum, or neither at each critical number.

® Y (ii) Y

(iii)
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71. Analyzing a Critical Number A differentiable function
f has one critical number at x = 5. Identify the relative
extrema of f at the critical number when f'(4) = —2.5 and
f6) = 3.

72. Analyzing a Critical Number A differentiable function
f has one critical number at x = 2. Identify the relative
extrema of f at the critical number when f'(1) =2 and

f3) =6.

Think About It In Exercises 73 and 74, the function f is
differentiable on the indicated interval. The table shows f'(x) for
selected values of x. (a) Sketch the graph of f, (b) approximate
the critical numbers, and (c) identify the relative extrema.

73. f is differentiable on [—1, 1].

X -1 —0.75 | —0.50 | —0.25 0

fG| 10| =32 | —05 | 08 | 56

X 0.25 | 0.50 0.75 1

FG)| 36 | —02 | —67 | —20.1

74. f is differentiable on [0, 7].

X 0 /6 n/4 n/3 | m/2

f&x) | 3.14 | =023 | =245 | =3.11 | 0.69

x 2n/3 | 3mn/4 | 57/6 Vi

fx) | 3.00 137 | —1.14 | —2.84

75. Rolling a Ball Bearing A ball bearing is placed on an
inclined plane and begins to roll. The angle of elevation of the
plane is 0. The distance (in meters) the ball bearing rolls in ¢
seconds is s(f) = 4.9(sin 0)2.

(a) Determine the speed of the ball bearing after # seconds.

(b) Complete the table and use it to determine the value of 6
that produces the maximum speed at a particular time.

0 0| mn/4 | n/3 | n/2|2rn/3 | 3n/4 | n
s'(1)

Plv 76. Modeling Data The end-of-year assets of the Medicare

Hospital Insurance Trust Fund (in billions of dollars) for the
years 2006 through 2014 are shown.

2006: 305.4 2007: 326.0 2008: 321.3
2009: 304.2 2010: 271.9 2011: 2442
2012: 220.4 2013: 205.4 2014: 197.3

(Source: U.S. Centers for Medicare and Medicaid Services)

(a) Use the regression capabilities of a graphing utility to find
a model of the form M = ar* + br*> + ct + d for the data.
Let t = 6 represent 2006.

(b) Use a graphing utility to plot the data and graph the model.

(c) Find the maximum value of the model and compare the
result with the actual data.

77. Numerical, Graphical, and Analytic Analysis The
concentration C of a chemical in the bloodstream ¢ hours after
injection into muscle tissue is

3t

0=

t=0.

(a) Complete the table and use it to approximate the time
when the concentration is greatest.

t 0105|115 |2]25]|3

C(r)

Plv (b) Use a graphing utility to graph the concentration function
and use the graph to approximate the time when the
concentration is greatest.

(c) Use calculus to determine analytically the time when the
concentration is greatest.

78. Numerical, Graphical, and Analytic Analysis
Consider the functions f(x) = x and g(x) = sinx on the
interval (0, 7).

(a) Complete the table and make a conjecture about which is
the greater function on the interval (0, 7).

x 051 ]15]2]25]3
f&)

g(x)

Flv (b) Use a graphing utility to graph the functions and use the
graphs to make a conjecture about which is the greater
function on the interval (0, 7).

(c) Prove that f(x) > g(x) on the interval (0, 7). [Hint: Show
that 2'(x) > 0, where h = f — g.]

79. Trachea Contraction Coughing forces the trachea
(windpipe) to contract, which affects the velocity v of the air
passing through the trachea. The velocity of the air during
coughing is

v=kR—-rr*, 0<r<R

where k is a constant, R is the normal radius of the trachea, and
r is the radius during coughing. What radius will produce the
maximum air velocity?

Plv 80. Electrical Resistance The resistance R of a certain type

of resistor is

R = /0.001T* — 4T + 100

where R is measured in ohms and the temperature 7 is
measured in degrees Celsius.

(a) Use a computer algebra system to find dR/dT and the
critical number of the function. Determine the minimum
resistance for this type of resistor.

(b) Use a graphing utility to graph the function R and use the
graph to approximate the minimum resistance for this type
of resistor.
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Motion Along a Line In Exercises 81-84, the function s(¢)
describes the motion of a particle along a line. (a) Find the
velocity function of the particle at any time ¢ = 0. (b) Identify
the time interval(s) on which the particle is moving in a positive
direction. (c) Identify the time interval(s) on which the particle is
moving in a negative direction. (d) Identify the time(s) at which
the particle changes direction.

81. s(f) = 6t — A2

82. s(1) =2 — 10t + 29

83. 5(t) =3 — 52 + 4

84. s(1) = 3 — 2012 + 128+ — 280

Motion Along a Line In Exercises 85 and 86, the graph

shows the position of a particle moving along a line. Describe
how the position of the particle changes with respect to time.

8s. s 86. s

36 9 121518

Plv Creating Polynomial Functions In Exercises 87-90, find

a polynomial function
f&)=ax"+a,_x"" '+ +ax®+ax +a,

that has only the specified extrema. (a) Determine the minimum
degree of the function and give the criteria you used in
determining the degree. (b) Using the fact that the coordinates
of the extrema are solution points of the function, and that
the x-coordinates are critical numbers, determine a system of
linear equations whose solution yields the coefficients of the
required function. (c) Use a graphing utility to solve the system
of equations and determine the function. (d) Use a graphing
utility to confirm your result graphically.

87. Relative minimum: (0, 0); Relative maximum: (2, 2)

88. Relative minimum: (0, 0); Relative maximum: (4, 1000)

89. Relative minima: (0, 0), (4, 0); Relative maximum: (2, 4)
90. Relative minimum: (1, 2); Relative maxima: (—1, 4), (3, 4)
True or False? In Exercises 91-96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. There is no function with an infinite number of critical points.
92. The function f(x) = x has no extrema on any open interval.
93. Every nth-degree polynomial has (n — 1) critical numbers.
94. Annth-degree polynomial has at most (n — 1) critical numbers.
95. There is a relative extremum at each critical number.

96. The relative maxima of the function f are f(1) =4 and
f(3) = 10. Therefore, f has at least one minimum for some x
in the interval (1, 3).

97. Proof Prove the second case of Theorem 3.5.
98. Proof Prove the second case of Theorem 3.6.

99. Proof Use the definitions of increasing and decreasing
functions to prove that

9=
is increasing on (— 00, 00).

100. Proof Use the definitions of increasing and decreasing
functions to prove that

o =

is decreasing on (0, ©0).

PUTNAM EXAM CHALLENGE

101. Find the minimum value of
[sinx + cos x + tan x + cotx + sec x + csc x

for real numbers x.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

SECTION PROJECT IREEEEEREREE

Even Fourth-Degree Polynomials

(a) Graph each of the fourth-degree polynomials below. Then find
the critical numbers, the open intervals on which the function
is increasing or decreasing, and the relative extrema.

() flx) =x*+1
() flx) =x* +2x% + 1
Gii) flx) =x*— 22+ 1
(b) Consider the fourth-degree polynomial
f(x) = x* + ax®> + b.

(i) Show that there is one critical number when a = 0. Then
find the open intervals on which the function is increasing
or decreasing.

(ii) Show that there is one critical number when a > 0. Then
find the open intervals on which the function is increasing
or decreasing.

(iii) Show that there are three critical numbers when a < 0.
Then find the open intervals on which the function is
increasing or decreasing.

(iv) Show that there are no real zeros when
a? < 4b.

(v) Determine the possible number of zeros when
a? =z 4b.

Explain your reasoning.

® & 06 6 06 0 6 06 0 06 0 0 0 0 O 0 0 O 0 0 O 0 0 O 0 o0
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3.4 Concavity and the Second Derivative Test

@ Determine intervals on which a function is concave upward or concave downward.
@ Find any points of inflection of the graph of a function.
@ Apply the Second Derivative Test to find relative extrema of a function.

Concavity

You have already seen that locating the intervals on which a function f increases or
decreases helps to describe its graph. In this section, you will see how locating the
intervals on which f” increases or decreases can be used to determine where the graph
of fis curving upward or curving downward.

Definition of Concavity

[=]

Let f be differentiable on an open interval I. The graph of f L FJE
is concave upward on / when f’ is increasing on the interval [

and concave downward on / when f’ is decreasing on the interval. =5z

The following graphical interpretation of concavity is useful. (See Appendix A for
a proof of these results.)

1. Let f be differentiable on an open interval /. If the graph of f is concave upward on
I, then the graph of f lies above all of its tangent lines on /.
[See Figure 3.23(a).]

2. Let f be differentiable on an open interval /. If the graph of f is concave downward
on [, then the graph of f lies below all of its tangent lines on 1.
[See Figure 3.23(b).]

Figure 3.23

y Y
Concave ;=0 1T Concave upward,
downward Conca(\i/e [ is increasing. /_
[ upwar
| m=—
1 } 1 x
-2 -1 1
1 Concave downward,
} . m=0 [ is decreasing.
| * x
1 y
! (a) The graph of f lies above its tangent lines. (b) The graph of f lies below its tangent lines.

To find the open intervals on which the graph of a function f is concave upward
| Lo (40 x or concave downward, you need to find the intervals on which f’ is increasing or
-2 -1 ! decreasing. For instance, the graph of

‘é ©,-1) flx) = %x3 —x

is concave downward on the open interval (— o0, 0) because

fis decreasing. [ is increasing.
. . [ =x—1
The concavity of f is related to the
slope of the derivative. is decreasing there. (See Figure 3.24.) Similarly, the graph of f is concave upward on
Figure 3.24 the interval (0, 00) because f” is increasing on (0, c0).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203
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A third case of
Theorem 3.7 could be that if
f"(x) = 0 forall xin I, then f
is linear. Note, however, that
concavity is not defined for a
line. In other words, a straight
line is neither concave upward
nor concave downward.

f@>0 L >0
Concave . Concave
! upward

1+f"(x) <0
Concave

downward
|
I I

-2 -1 1 2

From the sign of f”(x), you can
determine the concavity of the graph
of f.

Figure 3.25

The next theorem shows how to use the second derivative of a function f to
determine intervals on which the graph of f is concave upward or concave downward.
A proof of this theorem follows directly from Theorem 3.5 and the definition of
concavity.

Test for Concavity
Let f be a function whose second derivative exists on an open interval /.

1. If f"(x) > O for all x in I, then the graph of f is concave upward on 1.

2. If f"(x) < O for all x in I, then the graph of f is concave ogz]|0]
downward on 1. h?}_-.il'-tﬂ
c=d !

A proof of this theorem is given in Appendix A. E]F'r.a_ |

To apply Theorem 3.7, locate the x-values at which f”(x) = 0 or f”(x) does not
exist. Use these x-values to determine test intervals. Finally, test the sign of f”(x) in
each of the test intervals.

EXAMPLE 1 Determining Concavity

Determine the open intervals on which the graph of

0= s

is concave upward or concave downward.

Solution Begin by observing that f is continuous on the entire real number line.
Next, find the second derivative of f.

flx) = 6(x* + 3)7! Rewrite original function.
f'x) = (=6)(x* + 3)"2(2x) Differentiate.

__—12x R

= (2 + 3) irst derivative

2 + 2(— — (= 2 +
f ”(X) = (X 3) ( 12) (xz( T 132;:)(2)()6 3)(ZX) Differentiate.
36(x2 — 1) o
= m Second derivative

Because f"(x) = 0 when x = =1 and f” is defined on the entire real number line, you
should test f” in the intervals (—oo, —1), (—1, 1), and (1, o0). The results are shown
in the table and in Figure 3.25.

Interval -0 <x< -1 -1 <x<1 I <x<x®
Test Value x= -2 x=20 x=72
Sign of f"(x) (=2)>0 7"0) <0 ') >0
Conclusion Concave upward | Concave downward | Concave upward

The function given in Example 1 is continuous on the entire real number line.
When there are x-values at which a function is not continuous, these values should be
used, along with the points at which f”(x) = 0 or f”(x) does not exist, to form the test
intervals.



Concave

Concave

Concave
downward
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The concavity of f changes at a point

of inflection. Note that the graph
crosses its tangent line at a point

of inflection.
Figure 3.27
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S ONR A  Determining Concavity

Determine the open intervals on which the graph of

x2+1
x2—4

f&) =

is concave upward or concave downward.

Solution Differentiating twice produces the following.

2 +
f(x) = iz — 411 Write original function.
2 — 2 +
f,(x) = G 4)(%;2 — 4(:;2 D) Differentiate.
—10x N A
= 7()(2 — 4)2 First derivative
2 2( — — (= 2 _
f ”()C) = (X 4) ( 10) (xz(_ 14(;:)(2)()( 4)(ZX) Differentiate.
_10(3x2 + 4) N
= (x2 — 4)3 econd derivative

There are no points at which f”(x) = 0, butat x = *2, the function £ is not continuous.
So, test for concavity in the intervals (— o0, —2), (—2, 2), and (2, ©°), as shown in the
table. The graph of f is shown in Figure 3.26.

Interval -0 <x< -2 —2<x<2 2<x<
Test Value x=-3 x=0 x=3
Sign of f"(x) f'(=3)>0 f'0) <0 f'3) >0
Conclusion Concave upward | Concave downward | Concave upward

Points of Inflection

The graph in Figure 3.25 has two points at which the concavity changes. If the tangent
line to the graph exists at such a point, then that point is a point of inflection. Three
types of points of inflection are shown in Figure 3.27.

Definition of Point of Inflection

Let f be a function that is continuous on an open interval, and let ¢ be a point
in the interval. If the graph of f has a tangent line at the point (c, f(c)), then
this point is a point of inflection of the graph of f when the concavity of f
changes from upward to downward (or downward to upward) at the point.

The definition of point of inflection requires that the tangent line exists at the point
of inflection. Some calculus texts do not require this. For instance, after applying the
definition above to the function

7w =1

X3, x<0
xX2+2x, x=0

you would conclude that f does not have a point of inflection at the origin, even though
the concavity of the graph changes from concave downward to concave upward.
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y

18 + E
9.l Points of
inflection
f f f f
-1 2 3
,9 4
— 18 —+
=27 -+
Concave | Concave Concave
upward downward upward

Points of inflection can occur where
f"(x) = 0 or f” does not exist.
Figure 3.28

Exploration

Consider a general cubic
function of the form

fx) =ax® + bx*> + cx + d.

You know that the value

of d has a bearing on the
location of the graph but has
no bearing on the value of
the first derivative at given
values of x. Graphically,
this is true because changes
in the value of d shift the
graph up or down but do not
change its basic shape. Use
a graphing utility to graph
several cubics with different
values of c¢. Then give a
graphical explanation of why
changes in ¢ do not affect
the values of the second
derivative.

To locate possible points of inflection, you can determine the values of x for which
f"(x) = 0 or f"(x) does not exist. This is similar to the procedure for locating relative
extrema of f.

Points of Inflection

If (c, f(c)) is a point of inflection of the graph of f, then either f"(c) = 0 or
f"(c) does not exist.

EXAMPLE 3 Finding Points of Inflection

Determine the points of inflection and discuss the concavity of the graph of
flx) = x* — 43

Solution Differentiating twice produces the following.

f(x) =x* — 453 Write original function.
f’(x) = 4x3 — 12x? Find first derivative.
Fx) = 12x% — 24x = 12x(x — 2) Find second derivative.

Setting f”(x) = 0, you can determine that the possible points of inflection occur at
x =0 and x = 2. By testing the intervals determined by these x-values, you can
conclude that they both yield points of inflection. A summary of this testing is shown
in the table, and the graph of f is shown in Figure 3.28.

Interval -0 <x<0 0<x<2 2<x<0o0
Test Value x=—1 x=1 x=3
Sign of f"(x) f'(=1)>0 (1) <0 f'(3) >0
Conclusion Concave upward | Concave downward | Concave upward

The converse of Theorem 3.8 is not generally true. That is, it is possible for the
second derivative to be 0 at a point that is not a point of inflection. For instance, the
graph of f(x) = x*is shown in Figure 3.29. The second derivative is 0 when x = 0, but
the point (0, 0) is not a point of inflection because the graph of f is concave upward on
the intervals —c0 < x < 0and 0 < x < ©o.

f"(x) = 0, but (0, 0) is not a point of inflection.
Figure 3.29
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Concave

If f'(c) = 0 and f"(c) > 0, then f(c) is
a relative minimum.

y

/

() <0

1
Concave
dowqward

:c \"

If f(c) = 0and f"(c) < 0, then f(c) is
a relative maximum.
Figure 3.30

Relative
maximum

1,2)

-1,-2)
Relative
minimum

(0, 0) is neither a relative minimum nor
a relative maximum.

Figure 3.31
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The Second Derivative Test

In addition to testing for concavity, the second derivative can be used to perform a
simple test for relative maxima and minima. The test is based on the fact that if the
graph of a function f is concave upward on an open interval containing c, and f'(c) = 0,
then f(c) must be a relative minimum of f. Similarly, if the graph of a function f is
concave downward on an open interval containing c, and f'(c) = 0, then f(c) must be
a relative maximum of f. (See Figure 3.30.)

Second Derivative Test
Let f be a function such that f'(c¢) = 0 and the second derivative of f exists on
an open interval containing c.
1. If f"(c) > 0, then f has a relative minimum at (c, f(c)).
2. If f"(c) < 0, then f has a relative maximum at (c, f(c)).
If f"(c) = 0, then the test fails. That is, f may have a relative [=]g ',E]

maximum, a relative minimum, or neither. In such cases, you can r.“",* i
use the First Derivative Test. L

i

L)

[=]

Proof If f'(c) = 0 and f”(c) > 0, then there exists an open interval / containing ¢
for which

fO =10 _ 1,

X —cC X —C

for all x# cin I. If x < ¢, then x — ¢ < 0 and f/(x) < 0. Also, if x > ¢, then
x —c > 0and f(x) > 0. So, f'(x) changes from negative to positive at ¢, and the First
Derivative Test implies that f(c) is a relative minimum. A proof of the second case is
left to you. |

S CUUZSEN  Using the Second Derivative Test

cee > See LarsonCalculus.com for an interactive version of this type of example.
Find the relative extrema of

f(x) = =3x° + 5x°.
Solution Begin by finding the first derivative of f.

fx) = —15x* + 15x% = 152%(1 — x?)

From this derivative, you can see that x = — 1, 0, and 1 are the only critical numbers
of f. By finding the second derivative

f"(x) = —60x* + 30x = 30x(1 — 2x?)

you can apply the Second Derivative Test as shown below.

Point (-1,—-2) (0,0) (1,2)
Sign of f"(x) f'(=1)>0 f'0)=0 (1) <0
Conclusion Relative minimum | Test fails | Relative maximum

Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test
and observe that f increases to the left and right of x = 0. So, (0, 0) is neither a relative
minimum nor a relative maximum (even though the graph has a horizontal tangent line
at this point). The graph of f is shown in Figure 3.31. |
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3.4 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1. Test for Concavity Describe the Test for Concavity
in your own words.

2. Second Derivative Test Describe the Second
Derivative Test in your own words.

Using a Graph 1In Exercises 3 and 4, the graph of f is
shown. State the signs of f' and f” on the interval (0, 2).

3. 4. ¥

N

]
T

: :
1 2 1 2

[=]!gi|[w] Determining Concavity In Exercises 5-16,
-":"'_-:-ll..- determine the open intervals on which the graph
:ﬁ » of the function is concave upward or concave

downward.

radk s

5 fx) =x* —4x + 8
7. f(x) = x* — 3x°

6. g(x) =3x2 — x°
8 hix) =x—5x+2

24 2%
% fW =51 1070 = 327
x—2 x+ 8

1. () =25 2. () ="
2 +1 =1

13. f(x) = 2o 14. h(x) = —

16. y = x + .2 , (=m,m)

15. y = 2x — tanx, ( rr ﬂ)
sin x

2
[
(=15

17. f(x) = x> —9x> + 24x — 18 18. f(x) = —x* + 6x> — 5

[a] Finding Points of Inflection In Exercises
17-32, find the points of inflection and discuss the
concavity of the graph of the function.

19. f(x) =2 — 7x* 20. f(x) =4 — x — 3x*
21. f(x) = x(x — 4)° 22. f(x) = (x—2P3x—1)
23. f(x) =xJ/x+3 24. f(x) = xJ/9 — x
6—x x+3
25. flx) = 26. f(x) =
() N f(x) N
27. f(x) = sinZ, [0, 47] 28, f(x) = 2cse 2. (0, 27)

2 2’
29. f(x) = sec(x - %), (0, 4m)

30. f(x) =sinx + cosx, [0,2n]

31. f(x) = 2sinx + sin2x, [0, 27]

32. f(x) =x+ 2cosx, [0,2n]

[E]%}[E] Using the Second Derivative Test In
.L ‘it Exercises 33-44, find all relative extrema of the
'E function. Use the Second Derivative Test where
‘ applicable.

33. f(x) = 6x — x2 34, fx) =x2+3x— 8
35 f(x) =x* —3x2+3 36. f(x) = —x3 + 7x> — 15x
37. fx) =x* —4x3 + 2 38. f(x) = —x* + 2x° + 8
39. flx) =x¥3-3 40. f(x) = V2 +1

4 9x — 1
41. f(x)—x-i—; 4. flx) = — 15

43. f(x) = cosx — x, [0,4n]
44. f(x) = 2sinx + cos 2x, [0, 2r]

F’P-Finding Extrema and Points of Inflection Using

Technology 1In Exercises 45-48, use a computer algebra
system to analyze the function over the given interval. (a) Find
the first and second derivatives of the function. (b) Find any
relative extrema and points of inflection. (¢) Graph f, f’, and
f" on the same set of coordinate axes and state the relationship
between the behavior of f and the signs of f' and f".

45. f(x) = 0.2x%(x — 3)3, [—1,4]

46. f(x) = 26 — 2, [~ /6. /6]

47. f(x) = sinx — 3sin3x + $sin5x, [0, 7]
48. f(x) = V2xsinx, [0,27]

EXPLORING CONCEPTS

49. Sketching a Graph Consider a function f such that
f' is increasing. Sketch graphs of f for (a) f' < 0 and
) f > 0.

50. Think About It § represents weekly sales of a
product. What can be said of S” and S” for each of the
following statements?

(a) The rate of change of sales is increasing.
(b) The rate of change of sales is constant.
(c) Sales are steady.

(d) Sales are declining but at a slower rate.

(e) Sales have bottomed out and have started to rise.

Sketching Graphs In Exercises 51 and 52, the graph of f is
shown. Graph f, f’, and f"” on the same set of coordinate axes.
To print an enlarged copy of the graph, go to MathGraphs.com.
51. Y 52. 7

3+ f 4+
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EE Think About It In Exercises 53-56, sketch
ﬁ’ the graph of a function f having the given

E'I i" characteristics.
| "l

53. f(0)=f(2)=0 54. f(0) =f2) =0
fx) > 0forx <1 fx) <O0forx <1
[ =0 f(=0
fx) <O0forx > 1 fx) > 0forx > 1
f'x) <0 f'x) >0

55. f2) =f(4) =0 56. (1) =f3) =0

fi(x) <O0forx <3
£'(3) does not exist.
f'(x) > 0forx >3
f'(x) <0, x#3

fx) > 0forx <2

£'(2) does not exist.

fx) < Oforx >2

') > 0,x #2

57. Think About It The figure shows the graph of f". Sketch

a graph of f. (The answer is not unique.) To print an enlarged
copy of the graph, go to MathGraphs.com.

05;0 HOW DO YOU SEE IT? Water is running

into the vase shown in the figure at a constant rate.

l— Q —>|

-

(a) Graph the depth d of water in the vase as a
function of time.

(b) Does the function have any extrema? Explain.

(c) Interpret the inflection points of the graph of d.

59. Conjecture Consider the function
f) = (=2

Hv (a) Use a graphing utility to graph f for n = 1, 2, 3, and 4.
Use the graphs to make a conjecture about the relationship
between n and any inflection points of the graph of f.

(b) Verify your conjecture in part (a).
60. Inflection Point Consider the function f(x) = 3/x.
(a) Graph the function and identify the inflection point.

(b) Does f" exist at the inflection point? Explain.
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Finding a Cubic Function In Exercises 61 and 62, find a,
b, ¢, and d such that the cubic function

f@)=ax®*+bx®+cx +d
satisfies the given conditions.
61. Relative maximum: (3, 3)
Relative minimum: (5, 1)
Inflection point: (4, 2)
62. Relative maximum: (2, 4)
Relative minimum: (4, 2)
Inflection point: (3, 3)
63. Aircraft Glide Path A small aircraft starts its descent from
an altitude of 1 mile, 4 miles west of the runway (see figure).

y

(a) Find the cubic function f(x) = ax® + bx*> + cx + d on
the interval [ —4, 0] that describes a smooth glide path for
the landing.

(b) The function in part (a) models the glide path of the plane.
When would the plane be descending at the greatest rate?

@ FOR FURTHER INFORMATION  For more information on
this type of modeling, see the article “How Not to Land at Lake
Tahoe!” by Richard Barshinger in The American Mathematical
Monthly. To view this article, go to MathArticles.com.

Flv 64. Highway Design A section of highway connecting two

hillsides with grades of 6% and 4% is to be built between
two points that are separated by a horizontal distance of 2000
feet (see figure). At the point where the two hillsides come
together, there is a 50-foot difference in elevation.

y

Y

- Highway B(1000,90) _

T~ A(=1000, 60)
g N 5% =
Slagy 50 ft

Not drawn to scale

(a) Find the cubic function

fx) =ax® + bx> + cx +d, —1000 < x < 1000

that describes the section of highway connecting the
hillsides. At points A and B, the slope of the model must
match the grade of the hillside.

(b) Use a graphing utility to graph the model.
(c) Use a graphing utility to graph the derivative of the model.

(d) Determine the grade at the steepest part of the transitional
section of the highway.
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65. Average Cost A manufacturer has determined that the Plv Linear and Quadratic Approximations In Exercises

total cost C of operating a factory is
C = 0.5x% + 15x + 5000

where x is the number of units produced. At what level of
production will the average cost per unit be minimized? (The
average cost per unit is C/x.)

Hv66. Specific Gravity A model for the specific gravity of

water S is

5755, 8521 . 6540
= 3— + +0. <T<
S==w 1= Tgs T+ s T +099987, 0 < T <25

where T is the water temperature in degrees Celsius.
(a) Use the second derivative to determine the concavity of S.

(b) Use a computer algebra system to find the coordinates of
the maximum value of the function.

(c) Useagraphing utility to graph the function over the specified
domain. (Use a setting in which 0.996 < S < 1.001.)

(d) Estimate the specific gravity of water when T = 20°.
67. Sales Growth The annual sales S of a new product are
given by

500072

S_8+12’

0<tr=<3

where 7 is time in years.

(a) Complete the table. Then use it to estimate when the
annual sales are increasing at the greatest rate.

t 0511512253

S

Hv (b) Use a graphing utility to graph the function S. Then use the
graph to estimate when the annual sales are increasing at
the greatest rate.

(c) Find the exact time when the annual sales are increasing at
the greatest rate.

68. Modeling Data The average typing speeds S (in words
per minute) of a typing student after ¢+ weeks of lessons are
shown in the table.

t | 5| 10| 15|20 |25 30

S |28 |56 |79 |9 | 93 | 94

A model for the data is

10022
= > 0.
5=+ 170

Hv (a) Use a graphing utility to plot the data and graph the model.

(b) Use the second derivative to determine the concavity of S.
Compare the result with the graph in part (a).

(c) What is the sign of the first derivative for ¢ > 0? By
combining this information with the concavity of the
model, what inferences can be made about the typing
speed as ¢ increases?

69-72, use a graphing utility to graph the function. Then graph
the linear and quadratic approximations

P(x) = f(a) + f'(@)(x — a)
and
Pyx) = f(a) + f(@)(x — a) + 3f"(@)x — a)?

in the same viewing window. Compare the values of f, P,,
and P, and their first derivatives at x = a. How do the
approximations change as you move farther away from x = a?

Function Value of a
69. f(x) = 2(sinx + cos x) a= %
70. f(x) = 2(sinx + cos x) a=0
71. f(x) = V1 —x a=0
72. f(x) = NE a=2

x—1

?QIV 73. Determining Concavity Use a graphing utility to graph

sin !
= xsin—.
Y x

Show that the graph is concave downward to the right of

1
x=—
/s

74. Point of Inflection and Extrema Show that the point
of inflection of

f&) = x(x - 6)?

lies midway between the relative extrema of f.

True or False? In Exercises 75-78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

75. The graph of every cubic polynomial has precisely one point
of inflection.

76. The graph of

) =+

X
is concave downward for x < 0 and concave upward for
x > 0, and thus it has a point of inflection at x = 0.

77. 1If f'(c) > 0, then f is concave upward at x = c.

78. If f"(2) = 0, then the graph of f must have a point of
inflection at x = 2.

Proof 1In Exercises 79 and 80, let f and g represent
differentiable functions such that f” # 0 and g" # 0.

79. Show that if f and g are concave upward on the interval (a, b),
then f + g is also concave upward on (a, b).

80. Prove that if f and g are positive, increasing, and concave
upward on the interval (a, b), then fg is also concave upward
on (a, b).
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3.5 Limits at Infinity

¥
4,,
2,,
f&x)—3 fx)—>3
as x — —oo [ as x — oo
—t—+— F—t—+—+—>x
-4 -3 -2 -1 1 2 3 4

The limit of f(x) as x approaches —co
or 0 is 3.
Figure 3.32

oo The statement
lim f(x) = Lor lim f(x) = L
X— — 00 X—00
means that the limit exists and
the limit is equal to L.

lim () = L

f(x) is within & units of L as x— 0.
Figure 3.33

@ Determine (finite) limits at infinity.
# Determine the horizontal asymptotes, if any, of the graph of a function.
i Determine infinite limits at infinity.

Limits at Infinity

This section discusses the “end behavior” of a function on an infinite interval. Consider
the graph of

3x2
x2+1

) =

as shown in Figure 3.32. Graphically, you can see that f(x) appears to approach 3 as
x increases without bound or decreases without bound. You can come to the same
conclusions numerically, as shown in the table.

< x decreases without bound. x increases without bound. >

X —0« | —100 —-10 | —-11]0 1 10 100 — 00
fx) 3¢« 29997 | 29703 | 1.5 | 0 | 1.5 | 29703 | 29997 | —3

< f(x) approaches 3. f(x) approaches 3. >

The table suggests that f(x) approaches 3 as x increases without bound (x—o0).
Similarly, f(x) approaches 3 as x decreases without bound (x — —o0). These limits at
infinity are denoted by

lim f(x) =3 Limit at negative infinity
X—>—00
and
lim f(x) = 3. Limit at positive infinity
x—00

To say that a statement is true as x increases without bound means that for some
(large) real number M, the statement is true for all x in the interval {x: x > M}. The
next definition uses this concept.

Definition of Limits at Infinity

Let L be a real number.

1. The statement lim f(x) = L means that for each £ > 0 there exists an
M > 0 such th;?r}(x) — L| < & whenever x > M.

2. The statement xgr_noo f(x) = L means that for each £ > 0 there exists an

N < 0 such that | f(x) — L| < & whenever x < N.

The definition of a limit at infinity is shown in Figure 3.33. In this figure, note that
for a given positive number &, there exists a positive number M such that, for x > M,
the graph of f will lie between the horizontal lines

y=L+e and y=L — e.
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Horizontal Asymptotes

Exploration
. e In Figure 3.33, the graph of f approaches the line y = L as x increases without bound.
Use a graphing utility to graph The line y = L is called a horizontal asymptote of the graph of f.
) = 2x> + 4x — 6
3x% + 2x — 16

Definition of a Horizontal Asymptote
Describe all the important

features of the graph. Can
you find a single viewing lim f(x) =L or lim f(x) = L.
window that shows all A e
of these features clearly?
Explain your reasoning.
What are the horizontal
asymptotes of the graph?
How far to the right do you
have to move on the graph
so that the graph is within lim [f(x) + g)] = lim f (x) + lim g(x)
0.001 unit of its horizontal
asymptote? Explain your

reasoning. lim [f(0)g(0] = lim f)][ lim g(x)]

Similar properties hold for limits at —co.
When evaluating limits at infinity, the next theorem is helpful.

The line y = L is a horizontal asymptote of the graph of f when

Note that from this definition, it follows that the graph of a function of x can have
at most two horizontal asymptotes—one to the right and one to the left.
Limits at infinity have many of the same properties of limits discussed in
Section 1.3. For example, if lim f(x) and lim g (x) both exist, then
X—>00 X—>00

and

Limits at Infinity

If r is a positive rational number and c is any real number, then

Furthermore, if x” is defined when x < 0, then

lim f = 0. El;':—'r%lil
x——00 =
A proof of this theorem is given in Appendix A. [m] G
EXAMPLE 1 Finding a Limit at Infinity
y . N 2
; Find the limit: lim <5 - 7).
X—00 X

Solution Using Theorem 3.10, you can write

2 2
lim (5 - 7) = lim 5 — lim ) Property of limits
X—00 X X—00 x—00 X
=5-0
= 5.
So, the line y = 5 is a horizontal asymptote to the right. By finding the limit
X
. 2
Iim (5 — ") Limit as x > — o0
X—>— 00 X
y = 5 is a horizontal asymptote. you can see that y = 5 is also a horizontal asymptote to the left. The graph of the

Figure 3.34 function f(x) = 5 — (2/x?) is shown in Figure 3.34. |



When you
encounter an indeterminate form
such as the one in Example 2,
you should divide the numerator
and denominator by the highest
power of x in the denominator.

y = 2 is a horizontal asymptote.

Figure 3.35
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Finding a Limit at Infinity

Find the limit: lim 2
X—>00 _x + 1

Solution Note that both the numerator and the denominator approach infinity as x
approaches infinity.

lim 2x — 1) >0
X—00

2x — 1

x—oo x + 1

lim (x + 1) > o0

X—00

This results in ©0/00, an indeterminate form. To resolve this problem, you can
divide both the numerator and the denominator by x. After dividing, the limit may be
evaluated as shown.

2x — 1
. 2x — . o )
lim = lim Divide numerator and denominator by x.
x—oo X + 1 x—oo x + 1
X
1
o J——
. X e
= lim —— Simplify.
x—>00 1
1 -
X

. o1
lim 2 — lim —
X—00 x—00 X

= —1 Take limits of numerator and denominator.

lim 1 + lim —
X—00 x—00 X

_2-0
1+0

=2

Apply Theorem 3.10.

So, the line y = 2 is a horizontal asymptote to the right. By taking the limit as x — — o0,
you can see that y = 2 is also a horizontal asymptote to the left. The graph of the
function is shown in Figure 3.35. =

You can test the reasonableness of the limit found in Example 2
by evaluating f(x) for a few large positive values of x. For instance,

£(100) = 1.9703, £(1000) =~ 1.9970, 3
and  £(10,000) =~ 1.9997.

Another way to test the reasonableness of the
limit is to use a graphing utility. For instance,
in Figure 3.36, the graph of

:Zx—l ol ._Jgo
x+1 0

f&)

is shown with the horizontal line y = 2. Note ~ As x increases, the graph of f moves
that as x increases, the graph of f moves closer le’ser and closer to the line y = 2.
and closer to its horizontal asymptote. Figure 3.36
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MARIA GAETANA AGNESI
(1718-1799)

Agnesi was one of a handful of
women to receive credit for
significant contributions to
mathematics before the
twentieth century. In her

early twenties, she wrote the
first text that included both
differential and integral calculus.
By age 30, she was an honorary
member of the faculty at the
University of Bologna.

See LarsonCalculus.com to read
more of this biography.

For more information on the
contributions of women to
mathematics, see the article
“Why Women Succeed in
Mathematics” by Mona Fabricant,
Sylvia Svitak, and Patricia Clark
Kenschaft in Mathematics
Teacher. To view this article,

go to MathArticles.com.

-2 -1 1

lim f(x)=0

x——c0

2
lim f(x)=0
X—>o0

f has a horizontal asymptote at y = 0.
Figure 3.37

Chapter 3 Applications of Differentiation

EXAMPLE 3 A Comparison of Three Rational Functions

e > See LarsonCalculus.com for an interactive version of this type of example.
Find each limit.

I 2x + 5 b. I 2x2 + 5
A e+ 1 R Y ¢

23+ 5
im ————
x>0 3x2 + 1
Solution 1In each case, attempting to evaluate the limit produces the indeterminate
form oo/c0.

a. Divide both the numerator and the denominator by x2.

o 2x+5 . 2/ +(5/x) _0+0_0 _
e 1~ 3 3+0 3 0

b. Divide both the numerator and the denominator by x2.

lim 22+ 5 _ lim2+(5/x2):2+0:g
x>0 3x2 + 1 x—o0 3 + (1/)62) 34+0 3

c. Divide both the numerator and the denominator by x2.
2x + (5/x%) oo

im 2 +5 _ im _ %
x>0 332 + 1 x50 3+ (1/x?) 3

You can conclude that the limit does not exist because the numerator increases
without bound while the denominator approaches 3. =

Example 3 suggests the guidelines below for finding limits at infinity of rational
functions. Use these guidelines to check the results in Example 3.

GUIDELINES FOR FINDING LIMITS AT oo OF RATIONAL
FUNCTIONS

1. If the degree of the numerator is less than the degree of the denominator, then
the limit of the rational function is O.

2. If the degree of the numerator is equal to the degree of the denominator, then
the limit of the rational function is the ratio of the leading coefficients.

3. If the degree of the numerator is greater than the degree of the denominator,
then the limit of the rational function does not exist.

The guidelines for finding limits at infinity of rational functions seem reasonable
when you consider that for large values of x, the highest-power term of the rational
function is the most “influential” in determining the limit. For instance,

lim ———
is 0 because the denominator overpowers the numerator as x increases or decreases
without bound, as shown in Figure 3.37.

The function shown in Figure 3.37 is a special case of a type of curve studied by
the Italian mathematician Maria Gaetana Agnesi. The general form of this function is

8a3
X2 + 442

f(x) = Witch of Agnesi

and, through a mistranslation of the Italian word vertéré, the curve has come to be
known as the Witch of Agnesi. Agnesi’s work with this curve first appeared in a
comprehensive text on calculus that was published in 1748.

The Granger Collection, NY
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y \/7 s
Horizontal
asymptote
to the right

-__3
ok 4l

Horizontal

asymptote
to the left

Functions that are not rational may
have different right and left horizontal
asymptotes.

Figure 3.38

The horizontal asymptote appears to
be the line y = 1, but it is actually the
line y = 2.

Figure 3.39
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In Figure 3.37, you can see that the function

0=

approaches the same horizontal asymptote to the right and to the left. This is always true
of rational functions. Functions that are not rational, however, may approach different
horizontal asymptotes to the right and to the left. This is demonstrated in Example 4.

A Function with Two Horizontal Asymptotes

Find each limit.

a. lim ﬂ b lim ﬂ
T oo /22 + 1 T s /232 + 1
Solution

a. For x > 0, you can write x = \/x%. So, dividing both the numerator and the
denominator by x produces

-2 2 2
3x 3_7 3_7

3x —2

V22 + 1 \/sz + 1 \/2x2 1 \/
2+—

and you can take the limit as follows.

2
x-2 Tk 3-0 3

= lim =
\/sz + 1 X—00 \/ \/2 +0 ﬁ

b. For x < 0, you can write x = — \/)? So, dividing both the numerator and the
denominator by x produces
3x —2 3 g g
3x —2 X

2+ 1 2x2+1_ 2x2+1
2+—

and you can take the limit as follows.

L2
. 3x—2 . X 3—-0 3
lim = lim = = —-——
= /232 + 1 Hoo_\/2 1 V240 V2
2
The graph of f(x) = (3x — 2)//2x*> + 1 is shown in Figure 3.38. e |

If you use a graphing utility to estimate a limit,
be sure that you also confirm the estimate analytically—the graphs shown by a
graphing utility can be misleading. For instance, Figure 3.39 shows one view of the
graph of

2x3 + 1000x2 + x
x> + 1000x% + x + 1000°

y:

From this view, one could be convinced that the graph has y = 1 as a horizontal
asymptote. An analytical approach shows that the horizontal asymptote is actually
y = 2. Confirm this by enlarging the viewing window on the graphing utility.
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lim $1X =0
x> X

7177

As x increases without bound, f(x)
approaches 0.
Figure 3.40

S

1.00

0.75

0.50

Oxygen level

0.25

Weeks

The level of oxygen in a pond
approaches the normal level of 1 as
t approaches oo.

Figure 3.41

In Section 1.4, Example 7(c), you used the Squeeze Theorem to evaluate a limit
involving a trigonometric function. The Squeeze Theorem is also valid for limits at
infinity.

EXAMPLE 5 Limits Involving Trigonometric Functions

Find each limit.

. . . sinx
a. lim sinx b. Iim —

X—>00 x—oo X
Solution

a. As x approaches infinity, the sine function oscillates between 1 and —1. So, this
limit does not exist.

b. Because —1 = sinx = 1, it follows that for x > 0,

sin x

=

<

==
= |-

X

where

lim (—l> =0 and Ilim 1 = 0.

xX—>00 X x—00 X
So, by the Squeeze Theorem, you obtain

sinx

lim 0
x—oo X

as shown in Figure 3.40.

Oxygen Level in a Pond

Let f(f) measure the level of oxygen in a pond, where f(f) = 1 is the normal
(unpolluted) level and the time ¢ is measured in weeks. When ¢ = 0, organic waste is
dumped into the pond, and as the waste material oxidizes, the level of oxygen in the
pond is

r—-r+1
2 +1

f@) =

What percent of the normal level of oxygen exists in the pond after 1 week? After
2 weeks? After 10 weeks? What is the limit as ¢ approaches infinity?

Solution When ¢t = 1, 2, and 10, the levels of oxygen are as shown.

f(l) =ﬁ—5—50% 1 week
22-2+1 3
f(z) = 22 11 = 5 = 60% 2 weeks
102—-10+1 91
] = = = . soke
f( 0) 102 + 1 101 90.1% 10 weeks

To find the limit as ¢ approaches infinity, you can use the guidelines on page 202, or
you can divide the numerator and the denominator by 2 to obtain

=t +1 1 -(1/g+0/F) 1-0+0
17 I R
See Figure 3.41. |



Determining

whether a function has an

infinite limit at infinity is useful
in analyzing the “end behavior”

of its graph. You will see

examples of this in Section 3.6

on curve sketching.

Figure 3.42

T
-12 -9 -6 -3

Figure 3.43
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Infinite Limits at Infinity

Many functions do not approach a finite limit as x increases (or decreases) without
bound. For instance, no polynomial function has a finite limit at infinity. The next
definition is used to describe the behavior of polynomial and other functions at infinity.

Definition of Infinite Limits at Infinity

Let f be a function defined on the interval (a, ©0).

1. The statement lim f(x) = ©© means that for each positive number M, there
isa correspondxi;go number N > 0 such that f(x) > M whenever x > N.

2. The statement lim f(x) = —©0 means that for each negative number M,
X—00

there is a corresponding number N > 0 such that f(x) < M whenever x > N.
Similar definitions can be given for the statements

lim f(x) =occ and lim f(x) = —oo.
X—>—00 X——00

EXAMPLE 7 Finding Infinite Limits at Infinity

Find each limit.

a. lim X3 b. lim »3
X—00 X——00
Solution

a. As x increases without bound, x? also increases without bound. So, you can write

lim x3 = oo,
X—00

b. As x decreases without bound, x> also decreases without bound. So, you can write

lim x3 = —oo.
X—— 00

The graph of f(x) = x* in Figure 3.42 illustrates these two results. These results agree
with the Leading Coefficient Test for polynomial functions as described in Section P.3.

Finding Infinite Limits at Infinity

Find each limit.

2x%2 — 4x
. lim —— .l —_—
 lim b tim =

Solution One way to evaluate each of these limits is to use long division to rewrite
the improper rational function as the sum of a polynomial and a rational function.

2 _
a. 1imu=hm<zx_6+L>:oo
x—oo X xX—00 x+1
2 _
b lim 22—~ im <2x—6+i)=—oo
x—»-oo x + 1 x——00 x+ 1

The statements above can be interpreted as saying that as x approaches oo, the
function f(x) = (2x> — 4x)/(x + 1) behaves like the function g(x) = 2x — 6. In
Section 3.6, you will see that this is graphically described by saying that the line
y = 2x — 6 is a slant asymptote of the graph of f, as shown in Figure 3.43. e |
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3 Ll 5 ExerCIseS see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

jI[/] Finding Limits at Infinity In Exercises 11 and
CONCEPT CHECK 12, find lim h(x), if it exists.
1. Writing Describe in your own words what each i
statement means.
® 11. f(x) =5x* -3 12, f(x) = —4x>+2x— 5
(@) lim f(x) = —
x—00 f(X) f(X)
(b) lLim f(x) =3 (a) hx) = (a) h(x) =
X——00
2. Horizontal Asymptote What does it mean for the (b) h(x) = f( ) (b) h(x) = (x)
graph of a function to have a horizontal asymptote?
3. Horizontal Asymptote A graph can have a © h(x) = f(x) (© hx) = f(x)
maximum of how many horizontal asymptotes? Explain.
4. Limit§ a.t InﬁnitY .In your own.W(.)r(.is, summ?rize [=]FX[=] Finding Limits at Infinity In Exercises 13-16,
the guidelines for finding limits at infinity of rational %I ‘% find each limit, if it exists.
functions. T
[=]:
. ox2+2 .3 -2
Matching In Exercises 5-10, match the function with its 13. @) xlggo Pl 14. @ xll>rgo 3x3 — 1
graph using horizontal asymptotes as an aid. [The graphs are o2 +2 3 — 2x
labeled (a), (b), (c), (d), (e), and (f).] (b) XILH(}O 21 () X1LH30 E—
y b 2 +2 -2
@ (b) (¢) lim ——— (¢) lim 3 22
5L x—oo0 x — 1 x—oo 3x — 1
— 943/2 3/2
— L 15. (2) x{‘{}o% 16. (a) hm 452x+ 1
1 -+
5 — 2232 5x3/2
— > x ® lim 35m 4 ) lim sy
-2 -1 1 2 A s
1+ — 2X 5x
c) lim ——— c¢) lim ————
()x—>oo 3x — 4 ()x—>oo4\/;c+1
© " (d " Lo oo
31 .1 [§] Finding a Limit In Exercises 17-36, find the
7777777 1 .1 ‘1 limit, if it exists.
1+ 1+ :
—— —t——>x s ————>x . 3 . 5 «x
. + = . -7
-3-2-1 T 1z3 -1+ 123 17 xligolo <4 .X) 18 xgl;noo (.X 3)
7777777 S 24 2
. Tx+6 . 4>+ 5
3 3 19. xll)rglo ox — 4 20. xl}r_noo 213
2x% + x 503 + 1
f y T x I
® A 21. xl} oo 613 + 2x% + x 22. xlggo 1023 — 3x%2 + 7
5x* X —4
31 . .
,,,,,, R 23. x—}l;noox+3 24. xgl;noox2+l
2 1+ i . X . X
25. lim —— 26. lim ——
X x——o0 2 _ x——00 /42
x 321 | 1 2 3 2x 1x 52)‘—;1
x + x- +
2+ 27. lim —— 28. lim —(———
x——00 /xz—_x X—00 /)C2+3
2—1 x—1
2x 29. lim Y . lim ———
6. f(x)=ﬁ 9 Jim 2x — 1 30. lim ¥ -1
2 x+1 . 2x
8 flx) =2+ P 31. }ggg @+ 1)/3 32. xl}’_noo (° — 1)1/
1 1
2x> = 3x + 5 - ; 2
10. f(x) = 2+ 1 33. xlimo 2x + sinx 34. xlggo cos
35, lim SO 36. lim %
X—00 X X—00 X
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Finding Horizontal Asymptotes Using Technology
In Exercises 37-40, use a graphing utility to graph the function
and identify any horizontal asymptotes.

I _[3x+ 2
37. f(x) = m 38. f(x) = j
39. f(x) = \/%
40. f(x) = 7V9xz_2

2x + 1

Finding a Limit In Exercises 41 and 42, find the limit.
(Hint: Let x = 1/t and find the limit as £ —0%.)

41. lim x sini 42.

. 1
lim xtan —
X—>00 X

X—00

Finding a Limit In Exercises 43-46, find the limit. Use
a graphing utility to verify your result. (Hint: Treat the
expression as a fraction whose denominator is 1, and rationalize
the numerator.)

43. lim_ (x+ /a2 +3)
45. lim_ (3x + Vo2 — )

4. lim (x — /2% +x)
46. lim (4x — /162> — )

Numerical, Graphical, and Analytic Analysis In
Exercises 47-50, use a graphing utility to complete the table
and estimate the limit as x approaches infinity. Then use a
graphing utility to graph the function and estimate the limit.
Finally, find the limit analytically and compare your results
with the estimates.

X 10° | 10" | 102 | 10° | 10* | 10° | 10°

f&)

47. f(x) =x — Jx(x — 1)

49. f(x) = xsin !

48. f(x) =x> —xJx(x — 1)

2x
x+ 1
50. =
f&) T
e 51. Engine Efficiencys o o o o o o o 0 0 0 0 00 0o

The efficiency (in percent) of an internal combustion engine is

- 1
Efficiency 100[1 o /vz)”]
where v, /v, is the ratio
of the uncompressed
gas to the compressed
gas and c is a positive
constant dependent on
the engine design. Find
the limit of the efficiency
as the compression ratio
approaches infinity.

Straight 8 Photography/Shutterstock.com
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52. Physics Newton’s First Law of Motion and Einstein’s
Special Theory of Relativity differ concerning the behavior
of a particle as its velocity approaches the speed of light c.
In the graph, functions N and E represent the velocity v, with
respect to time ¢, of a particle accelerated by a constant force
as predicted by Newton and Einstein, respectively. Write limit
statements that describe these two theories.

EXPLORING CONCEPTS

53. Limits Explain the differences between limits at
infinity and infinite limits.

54. Horizontal Asymptote Can the graph of a function
cross a horizontal asymptote? Explain.

55. Using Symmetry to Find Limits If f is a
continuous function such that lim f(x) = 35, find, if

possible, lim f(x) for each specified condition.
X—— 00
(a) The graph of f is symmetric with respect to the y-axis.

(b) The graph of f is symmetric with respect to the origin.

HOW DO YOU SEE IT? The graph shows
the temperature 7, in degrees Fahrenheit, of molten
glass ¢ seconds after it is removed from a kiln.

T
¢ (0, 1700)

72 .

F’p (a) Find lir(r)1+ T. What does this limit represent?
1—>

(b) Find lim 7. What does this limit represent?
—00

57. Modeling Data The average typing speeds S (in words
per minute) of a typing student after ¢+ weeks of lessons are
shown in the table.

t 5 |10 | 15]20 |25 30

S | 28 |56 | 79|90 | 93| 9%

10072
65 + 1%

A model for the datais § = > 0.

F’p (a) Use a graphing utility to plot the data and graph the model.
(b) Does there appear to be a limiting typing speed? Explain.
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Hv 58. Modeling Data A heat probe is attached to the heat

exchanger of a heating system. The temperature T (in degrees
Celsius) is recorded ¢ seconds after the furnace is started. The
results for the first 2 minutes are recorded in the table.

t 0 15 30 45 60

T | 252 | 369 | 455 | 514 | 56.0

t 75 90 105 120

T | 596 | 620 | 64.0 | 652

(a) Use the regression capabilities of a graphing utility to find
a model of the form T, = ar®> + bt + c for the data.

(b) Use a graphing utility to graph 7.
(c) A rational model for the data is
_ 1451 + 86¢
2 58 + ¢

Use a graphing utility to graph T,.

(d) Find lim 7.
1—0o0

(e) Interpret the result in part (d) in the context of the problem.

Is it possible to do this type of analysis using T',? Explain.

59. Using the Definition of Limits at Infinity The graph of

2x2
X2 +2

fl) =

is shown (see figure).
(a) Find L = lim f(x).
X—00
(b) Determine x, and x, in terms of €.

(c) Determine M, where M > 0, such that | f(x) — L| < & for

x> M.
(d) Determine N, where N < 0, such that | f(x) — L| < & for
x < N.
y y
7777777777777777777 {7
}E f |
1
_o4- | . .
| X X1 X
1 1 !
1 1 !
L 1 x /_
- D — Yoo
Not drawn to scale Not drawn to scale

Figure for 59 Figure for 60

60. Using the Definition of Limits at Infinity The graph of

_ 6x
fl) = Jeia

(a) Find L = lim f(x) and K = lim f(x).
(b) Determine x, and x, in terms of €.

(c) Determine M, where M > 0, such that | f(x) — L| < & for
x> M.

(d) Determine N, where N < 0, such that | f(x) — K| < & for
x < N.

is shown (see figure).

61. Using the Definition of Limits at Infinity Consider
lim X
x—oo [/x2 3 :
(a) Use the definition of limits at infinity to find the value of
M that corresponds to € = (.5.

(b) Use the definition of limits at infinity to find the value of
M that corresponds to € = 0.1.

62. Using the Definition of Limits at Infinity Consider
m X
x—>-o00 /x2 3

(a) Use the definition of limits at infinity to find the value of
N that corresponds to € = (.5.

(b) Use the definition of limits at infinity to find the value of
N that corresponds to € = 0.1.

Proof In Exercises 63-66, use the definition of limits at
infinity to prove the limit.

1 2
6. Jim =0 4. lim = =0
65. lim %=0

X——00 X~

66. lim L _ 0

67. Distance A line with slope m passes through the point
(0, 4).

(a) Write the distance d between the line and the point (3, 1)
as a function of m. (Hint: See Section P.2, Exercise 77.)

?DIV (b) Use a graphing utility to graph the equation in part (a).
(c) Find lim d(m) and lim d(m). Interpret the results
m—0o0 m——0oo
geometrically.

68. Distance A line with slope m passes through the point
0, —2).

(a) Write the distance d between the line and the point (4, 2)
as a function of m. (Hint: See Section P.2, Exercise 77.)

Flv (b) Use a graphing utility to graph the equation in part (a).
(c) Find lim d(m) and lim d(m). Interpret the results
geomer:r?(?ZIIy. e
69. Proof Prove that if

plx) =ax"+- - - +ax+a,
and
gx) =b,x" + - - -+ bx+ b,

where a, # 0 and b,, # 0, then

0, n<m
L) _
xhalgo q(x) bm’ =

70. Proof Use the definition of infinite limits at infinity to

prove that lim x* = oo,
X—00
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3.6 A Summary of Curve Sketching

40

-10

200

—1260
Different viewing windows for the
graph of f(x) = x3 — 25x2 + 74x — 20
Figure 3.44

@ Analyze and sketch the graph of a function.

Analyzing the Graph of a Function

It would be difficult to overstate the importance of using graphs in mathematics.
Descartes’s introduction of analytic geometry contributed significantly to the rapid
advances in calculus that began during the mid-seventeenth century. In the words of
Lagrange, “As long as algebra and geometry traveled separate paths their advance was
slow and their applications limited. But when these two sciences joined company, they
drew from each other fresh vitality and thenceforth marched on at a rapid pace toward
perfection.”

So far, you have studied several concepts that are useful in analyzing the graph of
a function.

* x-intercepts and y-intercepts (Section P.1)
e Symmetry (Section P.1)
* Domain and range (Section P.3)
 Continuity (Section 1.4)
* Vertical asymptotes (Section 1.5)
* Differentiability (Section 2.1)
¢ Relative extrema (Section 3.1)
* Increasing and decreasing functions (Section 3.3)
» Concavity (Section 3.4)
¢ Points of inflection (Section 3.4)
» Horizontal asymptotes (Section 3.5)
* Infinite limits at infinity (Section 3.5)

When you are sketching the graph of a function, either by hand or with a graphing
utility, remember that normally you cannot show the entire graph. The decision as to
which part of the graph you choose to show is often crucial. For instance, which of the
viewing windows in Figure 3.44 better represents the graph of

flx) = 23 — 25x% + 74x — 207

By seeing both views, it is clear that the second viewing window gives a more complete
representation of the graph. But would a third viewing window reveal other interesting
portions of the graph? To answer this, you need to use calculus to interpret the first
and second derivatives. To determine a good viewing window for a function, use these
guidelines to analyze its graph.

GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION

1. Determine the domain and range of the function.
2. Determine the intercepts, asymptotes, and symmetry of the graph.

3. Locate the x-values for which f’(x) and f”(x) either are zero or do not exist.
Use the results to determine relative extrema and points of inflection.

In these guidelines, note the importance of algebra (as well as calculus)
for solving the equations f(x) = 0, f'(x) = 0, and f"(x) = 0.
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Using calculus, you can be certain that
you have determined all characteristics
of the graph of f.

Figure 3.45

@ FOR FURTHER INFORMATION
For more information on the use

of technology to graph rational
functions, see the article “Graphs
of Rational Functions for Computer
Assisted Calculus” by Stan Byrd
and Terry Walters in The College
Mathematics Journal. To view this
article, go to MathArticles.com.

= T —

By not using calculus, you may
overlook important characteristics
of the graph of g.

Figure 3.46

Chapter 3 Applications of Differentiation

m Sketching the Graph of a Rational Function

Analyze and sketch the graph of

flx) = 725;2__49).

Solution

Domain:

Range:

x-intercepts:
y-intercept:

Vertical asymptotes:
Horizontal asymptote:

Symmetry:

First derivative:

Second derivative:

Critical number:
Possible points of inflection:
Test intervals:

All real numbers except x = *2
(—00.2) U3, o)

(—3,0),(3,0)
(0.3)
x=—-2,x=2
y=2
With respect to y-axis
oo 20x
f(x) - (x2 _ 4)2
v —2003x2 + 4)
f (x) - ()C2 _ 4)3
x=0
None

(—o0, =2),(—2,0),(0,2), (2,00)

The table shows how the test intervals are used to determine several characteristics of
the graph. The graph of f is shown in Figure 3.45.

fx) fx) f(x) Characteristic of Graph
—oo < x< =2 — Decreasing, concave downward
x=-2 Undef. | Undef. | Undef. Vertical asymptote
—2<x<0 + Decreasing, concave upward
x = % + Relative minimum
0<x<2 + Increasing, concave upward
x = Undef. | Undef. | Undef. Vertical asymptote
2 <x<o0 — Increasing, concave downward

Be sure you understand all of the implications of creating a table such as that
shown in Example 1. By using calculus, you can be sure that the graph has no relative
extrema or points of inflection other than those shown in Figure 3.45.

_ 2(x2 — 9)(x — 20)

gx)

(2 —4x—-21)°

Without using the type of analysis outlined in
Example 1, it is easy to obtain an incomplete view of the basic characteristics of a
graph. For instance, Figure 3.46 shows a view of the graph of

From this view, it appears that the graph of g is about the same as the graph of f shown
in Figure 3.45. The graphs of these two functions, however, differ significantly. Try
enlarging the viewing window to see the differences.
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Sketching the Graph of a Rational Function

2 x4 4
Analyze and sketch the graph of f(x) = %

Solution
Domain: All real numbers except x = 2

Range: (—o0, —2]uU[6, 0)
x-intercepts: None
y-intercept: (0, —2)
Vertical asymptote: x = 2
Horizontal asymptotes: None
Symmetry: None

End behavior: 1lim f(x) = —o0, lim f(x) = oo
X——00 X—00
First derivative:  f'(x) = H

Second derivative: f"(x) = ﬁ

Critical numbers: x =0,x = 4
Possible points of inflection: None
Test intervals: (—00,0), (0,2), (2, 4), (4, o0)

The analysis of the graph of f is shown in the table, and the graph is shown in
Figure 3.47.

fx) f(x) f(x) Characteristic of Graph
-0 <x<0 + - Increasing, concave downward
x=0 -2 0 - Relative maximum
0<x<?2 — — Decreasing, concave downward
x=2 Undef. | Undef. | Undef. Vertical asymptote
2<x<4 - + Decreasing, concave upward
x=4 6 0 + Relative minimum
4 <x< o0 + + Increasing, concave upward

Although the graph of the function in Example 2 has no horizontal asymptote,
it does have a slant asymptote. The graph of a rational function (having no common
factors and whose denominator is of degree 1 or greater) has a slant asymptote when
the degree of the numerator exceeds the degree of the denominator by exactly 1. To
find the slant asymptote, use long division to rewrite the rational function as the sum of
a first-degree polynomial (the slant asymptote) and another rational function.

xX2—2x+4

fo) ==

Write original equation.

=x+ Rewrite using long division.

x—2

In Figure 3.48, note that the graph of f approaches the slant asymptote y = x as x
approaches — 00 or 0.
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Sketching the Graph of a Radical Function

X

Analyze and sketch the graph of f(x) = ——.
NAZE )
Solution

N 2
f(x) - (X2 + 2)3/2

n 6
f'x) = _(x2+7xz)5/2

Find first derivative.

Find second derivative.

The graph has only one intercept, (0, 0). It has no vertical asymptotes, but it has two
horizontal asymptotes: y = 1 (to the right) and y = — 1 (to the left). The function has
no critical numbers and one possible point of inflection (at x = 0). The domain of the
function is all real numbers, and the graph is symmetric with respect to the origin. The
analysis of the graph of f is shown in the table, and the graph is shown in Figure 3.49.

) ) | fk) Characteristic of Graph
-0 <x<0 + + Increasing, concave upward
x=0 0 + 0 Point of inflection
0<x<o0 + — Increasing, concave downward

S CNUIJNEN  Sketching the Graph of a Radical Function
Analyze and sketch the graph of f(x) = 2x>/3 — 5x*/3,

Solution

Find first derivative.

F@) = S - 2)

20(x'/3 — 1)

f”(x) = 9x2/3

Find second derivative.

The function has two intercepts: (0, 0) and (%, O). There are no horizontal or vertical
asymptotes. The function has two critical numbers (x = 0 and x = 8) and two possible
points of inflection (x = 0 and x = 1). The domain is all real numbers. The analysis of
the graph of f is shown in the table, and the graph is shown in Figure 3.50.

f(x) fx) F(x) Characteristic of Graph
—0<x<0 + - Increasing, concave downward
x=0 0 0 Undef. Relative maximum
0<x<l1 - - Decreasing, concave downward
x=1 -3 - 0 Point of inflection
1 <x<8 - + Decreasing, concave upward
x =38 —16 + Relative minimum
§ <x <00 + + Increasing, concave upward
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A polynomial function of even
degree must have at least one relative
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Figure 3.51
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Sketching the Graph of a Polynomial Function

e > See LarsonCalculus.com for an interactive version of this type of example.
Analyze and sketch the graph of
fx) = x* — 12x3 + 48x% — 64x.
Solution Begin by factoring to obtain
fx) = x* — 1203 + 48x> — 64x
= x(x — 4)3.

Then, using the factored form of f(x), you can perform the following analysis.

Domain: All real numbers
Range: [—27,0)
x-intercepts: (0, 0), (4,0)
y-intercept: (0, 0)
Vertical asymptotes: None
Horizontal asymptotes: None
Symmetry: None
End behavior: xLirpoo flx) = oo, Xllrglo flx) = o0

) =40 = D(x - 4)?

First derivative:

Second derivative:  f"(x) = 12(x — 4)(x — 2)
Critical numbers: x = 1,x =4
Possible points of inflection: x =2,x =4

Test intervals: (—0, 1), (1, 2), (2, 4), (4, o0)

The analysis of the graph of f is shown in the table, and the graph is shown in Figure
3.51(a). Using a computer algebra system such as Maple [see Figure 3.51(b)] can help
you verify your analysis.

fx) ) f(x) Characteristic of Graph
—o<x<1 - + Decreasing, concave upward
x=1 —-27 0 + Relative minimum
1<x<?2 + + Increasing, concave upward
x =2 —16 + 0 Point of inflection
2<x<4 + - Increasing, concave downward
x=4 0 0 0 Point of inflection
4 < x < o0 —+ + Increasing, concave upward

The fourth-degree polynomial function in Example 5 has one relative minimum
and no relative maxima. In general, a polynomial function of degree n can have at most
n — 1 relative extrema and at most n — 2 points of inflection. Moreover, polynomial
functions of even degree must have at least one relative extremum.

Remember from the Leading Coefficient Test described in Section P.3 that the
“end behavior” of the graph of a polynomial function is determined by its leading
coefficient and its degree. For instance, because the polynomial in Example 5 has a
positive leading coefficient, the graph rises to the right. Moreover, because the degree
is even, the graph also rises to the left.
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SVNIANN  Sketching the Graph of a Trigonometric Function
Analyze and sketch the graph of f(x) = (cos x)/(1 + sin x).

Solution Because the function has a period of 27, you can restrict the analysis of the
graph to any interval of length 27. For convenience, choose [— /2, 37/2].

Domain:

Range:
Period:

x-intercept:
y-intercept:
Vertical asymptotes:

Horizontal asymptotes:

Symmetry:

First derivative:

Second derivative:

Critical numbers:

Possible points of inflection:

Test intervals:

+
All real numbers except x = 3 > 4n7T
All real numbers
2

T
(2’ 0)

(0, 1)

S 4 See Remark bel
X 7 X ) See Remark below.
None
None

o 1
f) = 1+ sinx

vy Cos X
'@ (1 + sin x)?

None
T
X ==
2

5363
2°2)\2 2

The analysis of the graph of f on the interval [— /2, 37/2] is shown in the table, and
the graph is shown in Figure 3.52(a). Compare this with the graph generated by the
computer algebra system Maple in Figure 3.52(b).

£fx) ) (%) Characteristic of Graph
x = —g Undef. | Undef. | Undef. Vertical asymptote
7 s .
5 <x< > - + Decreasing, concave upward
s . . .
x=5 0 - 0 Point of inflection
4 3m .
5 <x< > - - Decreasing, concave downward
3n .
X= Undef. | Undef. | Undef. Vertical asymptote

By substituting —7m/2 or 37/2 into the function, you obtain the
indeterminate form 0/0, which you will study in Section 5.6. To determine that the
function has vertical asymptotes at these two values, rewrite f as

COoS x

(cos x)(1 — sinx)

&) =

1 +sinx (1 + sinx)(1 — sinx)

cos? x COS X

_ (cosx)(1 —sinx) 1 —sinx

In this form, it is clear that the graph of f has vertical asymptotes at x = — /2 and 37/2.
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3 Ll 6 ExerCIseS see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

[=]= E Analyzing the Graph of a Function In
CONCEPT CHECK % Exercises 9-36, analyze and sketch a graph of the
1. Analyzing the Graph of a Function Name Ol function. Label any intercepts, relative extrema,
several of the concepts you have learned that are useful ’ points of inflection, and asymptotes. Use a graphing
for analyzing the graph of a function. utility to verify your results.
2. Analyzing a Graph Explain how to create a table to 9. y— | 3 10,y =~
determine characteristics of a graph. What elements do - Y= x—2 - Y= 2+1
you include? X x— 4
11. y = 12. v =
3. Slant Asymptote Which type of function can have M S
a slant asymptote? How do you determine the equation of X+ 1 2
a slant asymptote? 13.y=7 14. y =
’ x> —4 9 — x?
4. Polynomial What are the maximum numbers of 2 241
relative extrema and points of inflection that a fifth-degree 15. y = 2+ 3 16. y = 2 —4
polynomial can have? Explain. ) 3
X —
y=3+ - . =
17. y =3 < 18. f(x) T
Matching In Exercises 5-8, match the graph of the function 32 4
with the graph of its derivative. [The graphs of the derivatives 19. f(x) = x + — 20. y = 2 +1
are labeled (a), (b), (¢), and (d).] ,
3x X
) y (b) y y=o 2. /0 =53
6T x2—6x+ 12 —x2—4x =7
\4: BT Wy=""13
N 3
N\ 25, y=— 26. y = ——
-6 -4-2 | 4 6 X2 —4 X2 — 4
4+ 27. y=xJ4 — x 28. g(x) = x/9 — x?
6T 29. y = 3x*3 — 2% 30. y=(x+ 1)2 = 3(x + 1)¥3
=2 —x — 3 = 13 =
© y ) y 3.y=2—-x—x 32.y (3 = 3x+2)
1 i1 33. y = 3x* + 443 3.y = —2x* + 3x?
T 2+ 35. =9 36. x>y =9
s 1+
— y > x E Analyzing the Graph of a Function In
-4 -2 - f2 4 -3-2-1 1 1 23 Exercises 37-44, analyze and sketch a graph of
-2 T the function over the given interval. Label any
4 3L intercepts, relative extrema, points of inflection,
and asymptotes. Use a graphing utility to verify
5. y 6. y your results.
3+ Function Interval
2T 37. f(x) = 2x — 4sinx 0<x<2nm
P e 38. f(x) = —x + 2cosx 0<x<2nm
IR 39. y = sinx — 15 sin 3x 0<x<2n
_ii 40. y = 2(x — 2) + cotx O<x<m
41. y = 2(csc x + sec x) 0<x<Z
7 y 8 y 2
3T 3T 42.y=sec2ﬂ—2tanﬂ—l —3<x<3
21 2+ 8 8
1 1+
%llva,x N T I 43. g(x) = xtan x —37”<x<37ﬂ
-3 an 3 3-2-1/1 1 2 3
N 1 44. g(x) = x cotx -2 < x < 2m
-3+ -3+
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F’p Analyzing the Graph of a Function Using Technology

In Exercises 45-50, use a computer algebra system to analyze
and graph the function. Identify any relative extrema, points
of inflection, and asymptotes.

46. f(x)=x+ﬁ
47. f(x)=\/%

4
48. f(x)=ﬁ
49.y=cosx—ic032x, 0<x<2nm
50. y = 2x — tanx, —%<x<%

Identifying Graphs In Exercises 51 and 52, the graphs of
f, f's and f” are shown on the same set of coordinate axes.
Identify each graph. Explain your reasoning. To print an
enlarged copy of the graph, go to MathGraphs.com.

51. y 52. y

Graphical Reasoning In Exercises 53-56, use
the graph of f’ to sketch a graph of f and the
graph of f”. To print an enlarged copy of the
graph, go to MathGraphs.com.

53. y 54. y
20 ,
16 !
12
— x 8
—4-3 4
— )
-8 —4 A» 4 8\ 12 16
55. y 56. y
3+ 3+ 5
2+ , 02—+
1+ % 1+
Arx —— ———>x
-9 -6 / 3 6 32<l/ 12 3
-2+ -+
-3+ -3+

(Submitted by Bill Fox, Moberly Area Community College,
Moberly, MO)

A 57

i s8.

. Graphical Reasoning Consider the function

cos? mx
,
I+ 1

(a) Use a computer algebra system to graph the function and
use the graph to approximate the critical numbers visually.

0<x <4

&)=

(b) Use a computer algebra system to find f’ and approximate
the critical numbers. Are the results the same as the visual
approximation in part (a)? Explain.

Graphical Reasoning Consider the function
f(x) = tan(sin 7x).

(a) Use a graphing utility to graph the function.

(b) Identify any symmetry of the graph.

(c) Is the function periodic? If so, what is the period?
(d) Identify any extrema on (—1, 1).

(e) Use a graphing utility to determine the concavity of the
graph on (0, 1).

EXPLORING CONCEPTS

59. Sketching a Graph Sketch a graph of a
differentiable function f that satisfies the following
conditions and has x = 2 as its only critical number.
f'(x) < Oforx <2
f'(x) > O0forx > 2

lim f(x) =6
lim /() = 6

60. Points of Inflection s it possible to sketch a graph
of a function that satisfies the conditions of Exercise 59
and has no points of inflection? Explain.

61. Using a Derivative Let f'(f) < 0 for all ¢ in the
interval (2, 8). Explain why f(3) > £(5).

62. Using a Derivative Letf(0) = 3and2 < f'(x) < 4
for all x in the interval [—5, 5]. Determine the greatest
and least possible values of f(2).

63. A Function and Its Derivative The graph of a
function f is shown below. To print an enlarged copy of
the graph, go to MathGraphs.com.

(a) Sketch f".
(b) Use the graph to estimate lim f(x) and lim f’(x).

(c) Explain the answers you gave in part (b).

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



64. ) HOW DO YOU SEE IT? The graph of f is

shown in the figure.

(a) For which values of x is f'(x) zero? Positive?
Negative? What do these values mean?

(b) For which values of x is f”(x) zero? Positive?
Negative? What do these values mean?

(c) On what open interval is f’ an increasing
function?

(d) For which value of x is f'(x) minimum? For this
value of x, how does the rate of change of f
compare with the rates of change of f for other
values of x? Explain.

PIvHorizontaI and Vertical Asymptotes In Exercises

65-68, use a graphing utility to graph the function. Use the
graph to determine whether it is possible for the graph of
a function to cross its horizontal asymptote. Do you think
it is possible for the graph of a function to cross its vertical
asymptote? Why or why not?

o Ax - 1)? 3t —5x+3
65. f() = -, 66. gx) ==
67. h(x) = SN 68. f(x) = C(’:jx

Plv Examining a Function In Exercises 69 and 70, use a

graphing utility to graph the function. Explain why there is
no vertical asymptote when a superficial examination of the
function may indicate that there should be one.

6 — 2x

2+ —
69. h(x) = 2= ¥Ax-2

x—1

70. g(x) =

Plv Slant Asymptote In Exercises 71-76, use a graphing

utility to graph the function and determine the slant asymptote
of the graph analytically. Zoom out repeatedly and describe
how the graph on the display appears to change. Why does
this occur?

x2—=3x—1 2x2 — 8x — 15
MW= TR =T e
23 -2+ +4

) = 5 T hx) =
X3 =32+ 2 x3 =22+ 2
75. f(x) = W 76. f(x) = —T

3.6 A Summary of Curve Sketching 217

77. Investigation Let P(x,, y,) be an arbitrary point on the
graph of f that f'(x,) # 0, as shown in the figure. Verify each
statement.

(a) The x-intercept of the tangent line is
X
(xo - J%, 0).
(b) The y-intercept of the tangent line is
(0, f(xg) = x0.f"(xo))-
(c) The x-intercept of the normal line is
(o + fx0)f (%), 0)-

(The normal line at a point is perpendicular to the tangent
line at the point.)

(d) The y-intercept of the normal line is

(0’ Yo f’&))'

f(xo)
(e) |BC| = f/(xo)

() /1 + [£'()
o et = [P

(@) |AB] = | f(x))f'(x)]
(h) |AP| = |f(xo)|\/1 + [fl(xo)]z

78. Graphical Reasoning Identify the real numbers x,, x;,
X,, X3, and x, in the figure such that each of the following is

true.

y
@ fx)=0
(b) f"(x) =0

(c) f'(x) does not exist.
(d) f has a relative maximum.

(e) f has a point of inflection.
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Think About It In Exercises 79-82, create a function whose
graph has the given characteristics. (There is more than one
correct answer.)

79. Vertical asymptote: x = 3
Horizontal asymptote: y = 0
80. Vertical asymptote: x = —5
Horizontal asymptote: None
81. Vertical asymptote: x = 3
Slant asymptote: y = 3x + 2
82. Vertical asymptote: x = 2
Slant asymptote: y = —x

True or False? In Exercises 83-86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If f'(x) > O for all real numbers x, then f increases without
bound.

84. If f”(x) < O for all real numbers x, then f decreases without
bound.

85. Every rational function has a slant asymptote.

86. Every polynomial function has an absolute maximum and an
absolute minimum on (— oo, ©0).

87. Graphical Reasoning The graph of the first derivative of
a function f on the interval [ —7, 5] is shown. Use the graph to
answer each question.

(a) On what interval(s) is f decreasing?
(b) On what interval(s) is the graph of f concave downward?
(c) At what x-value(s) does f have relative extrema?

(d) At what x-value(s) does the graph of f have a point of
inflection?

—8
> :
2 46 —16

Figure for 87 Figure for 88

88. Graphical Reasoning The graph of the first derivative of
a function f on the interval [ —4, 2] is shown. Use the graph to
answer each question.

(a) On what interval(s) is f increasing?
(b) On what interval(s) is the graph of f concave upward?
(c) At what x-value(s) does f have relative extrema?

(d) At what x-value(s) does the graph of f have a point of
inflection?

89. Graphical Reasoning Consider the function

ax

fl) = G-b7

Determine the effect on the graph of f as a and b are changed.
Consider cases where a and b are both positive or both
negative and cases where a and b have opposite signs.

90. Graphical Reasoning Consider the function
1
flx) = E(ax)2 —ax, a#0.

(a) Determine the changes (if any) in the intercepts, extrema,
and concavity of the graph of f when a is varied.

Plv(b) In the same viewing window, use a graphing utility to
graph the function for four different values of a.

Slant Asymptotes In Exercises 91 and 92, the graph of
the function has two slant asymptotes. Identify each slant
asymptote. Then graph the function and its asymptotes.

91. y = /4 + 1612 92. y = /x> + 6x
93. Investigation Consider the function

— zxn
x4+ 1

f&)

for nonnegative integer values of n.

(a) Discuss the relationship between the value of n and the
symmetry of the graph.

(b) For which values of n will the x-axis be the horizontal
asymptote?
(c) For which value of n will y =2 be the horizontal
asymptote?
(d) What is the asymptote of the graph when n = 5?
?dp’ (e) Use a graphing utility to graph f for the indicated values
of n in the table. Use the graph to determine the number

of extrema M and the number of inflection points N of the
graph.

PUTNAM EXAM CHALLENGE

94. Let f(x) be defined fora < x < b. Assuming appropriate
properties of continuity and derivability, prove for
a < x < bthat

&) = fla) f(b) ~ fla)
xX—a b—a 1.,
Py =5f (&),

where & is some number between a and b.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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3.7 Optimization Problems

Open box with square base:
S = x> + 4xh = 108
Figure 3.53

You can
verify your answer in Example 1
by using a graphing utility to
graph the volume function
B
V =27x e
Use a viewing window in which
0<x< /108 = 10.4 and
0 = y = 120, and use the
maximum or trace feature to
determine the value of x that
produces a maximum volume.

@ Solve applied minimum and maximum problems.

Applied Minimum and Maximum Problems

One of the most common applications of calculus involves the determination of
minimum and maximum values. Consider how frequently you hear or read terms such as
greatest profit, least cost, least time, greatest voltage, optimum size, least size, greatest
strength, and greatest distance. Before outlining a general problem-solving strategy for
such problems, consider the next example.

EXAMPLE 1 Finding Maximum Volume

A manufacturer wants to design an open box having a square base and a surface area
of 108 square inches, as shown in Figure 3.53. What dimensions will produce a box
with maximum volume?

Solution Because the box has a square base, its volume is
V = x2h. Primary equation

This equation is called the primary equation because it gives a formula for the
quantity to be optimized. The surface area of the box is
S = (area of base) + (area of four sides)
108 = x2 + 4xh. Secondary equation
Because V is to be maximized, you want to write V as a function of just one variable.

To do this, you can solve the equation x> + 4xh = 108 for % in terms of x to obtain
h = (108 — x?)/(4x). Substituting into the primary equation produces

V= x%*h Function of two variables
,(108 — x2 o
=X 47 Substitute for A.
X
x3
=27x — Z Function of one variable

Before finding which x-value will yield a maximum value of V, you should determine
the feasible domain. That is, what values of x make sense in this problem? You know
that V = 0. You also know that x must be nonnegative and that the area of the base
(A = x?) is at most 108. So, the feasible domain is

0=x= J108. Feasible domain
To maximize V, find its critical numbers on the interval (O, N 108).
dv 3x? S
— =27 — — Differentiate with respect to x.
dx 4
3x2 o
27 — T =0 Set derivative equal to 0.
3x%2 = 108 Simplify.
X = =*6 Critical numbers
So, the critical numbers are x = £6. You do not need to consider x = — 6 because it

is outside the domain. Evaluating V at the critical number x = 6 and at the endpoints
of the domain produces V(0) = 0, V(6) = 108, and V(‘/ 108) = (. So, V is maximum
when x = 6, and the dimensions of the box are 6 inches by 6 inches by 3 inches. |
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.« >

In Example 1, you should realize that there are infinitely many open boxes having
108 square inches of surface area. To begin solving the problem, you might ask
yourself which basic shape would seem to yield a maximum volume. Should the box
be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 3.54, to
determine whether you can get a better feeling for what the optimum dimensions should
be. Remember that you are not ready to begin solving a problem until you have clearly
identified what the problem is.

Example 1 illustrates the following guidelines for solving applied minimum and

Volume = 74;1l Volume =92 Volume = 103%

3
5)(5)(4?)

3
4><4><51

ol
3><3><81

Volume = 108 Volume = 88

6x6%3 Sx8x 12

Which box has the greatest volume?
Figure 3.54

maximum problems.

GUIDELINES FOR SOLVING APPLIED MINIMUM AND
MAXIMUM PROBLEMS

1.

Identify all given quantities and all quantities o be determined. If possible,
make a sketch.

. Write a primary equation for the quantity that is to be maximized

or minimized. (A review of several useful formulas from geometry is
presented on the formula card inside the back cover.)

. Reduce the primary equation to one having a single independent variable.

This may involve the use of secondary equations relating the independent
variables of the primary equation.

. Determine the feasible domain of the primary equation. That is, determine

the values for which the stated problem makes sense.

. Determine the desired maximum or minimum value by the calculus

techniques discussed in Sections 3.1 through 3.4.

oo oo« REMARI  For Step 5, recall that to determine the maximum or minimum value of
a continuous function f on a closed interval, you should compare the values of f at its

critical numbers with the values of f at the endpoints of the interval.
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The quantity to be minimized is
distance: d = /(x — 0)2 + (y — 2)%
Figure 3.55

1in. 1 in.

1.
121n.

The quantity to be minimized is area:
A=(x+3)(y+2).
Figure 3.56
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2 LS Finding Minimum Distance

e > See LarsonCalculus.com for an interactive version of this type of example.

Which points on the graph of y = 4 — x2 are closest to the point (0, 2)?

Solution Figure 3.55 shows that there are two points at a minimum distance from
the point (0, 2). The distance between the point (0, 2) and a point (x, y) on the graph of
y=4—x%is

d= \/(X =02+ (y — 27> Primary equation

Using the secondary equation y = 4 — x2, you can rewrite the primary equation as
d= X+ @ -2 -2y
Y v}
Because d is smallest when the expression inside the radical is smallest, you need only
find the critical numbers of f(x) = x* — 3x> + 4. Note that the domain of f is the

entire real number line. So, there are no endpoints of the domain to consider. Moreover,
the derivative of f

flx) = 4x° — 6x
= 2x(2x* — 3)

is zero when

3 3
x‘o’\/z"\/z'

Testing these critical numbers using the First Derivative Test verifies that x = 0 yields
a relative maximum, whereas both x = /3/2 and x = —/3/2 yield a minimum
distance. So, the closest points are (\/3/2, 5/2) and (— V3/2, 5/2).

Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and
bottom of the page are to be 1% inches, and the margins on the left and right are to be
1 inch (see Figure 3.56). What should the dimensions of the page be so that the least
amount of paper is used?

Solution Let A be the area to be minimized.

A=x+3)(y+2) Primary equation
The printed area inside the margins is

24 = xy. Secondary equation

Solving this equation for y produces y = 24/x. Substituting into the primary equation
produces

24 72
A=(x+ 3)(* + 2) =30+ 2x + —. Function of one variable
X X

Because x must be positive, you are interested only in values of A for x > 0. To find
the critical numbers, differentiate with respect to x

and note that the derivative is zero when x2 = 36, or x = *6. So, the critical numbers
are x = *6. You do not have to consider x = — 6 because it is outside the domain. The
First Derivative Test confirms that A is a minimum when x = 6. So, y = % = 4 and
the dimensions of the page should be x + 3 = 9 inches by y + 2 = 6 inches. |
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60

Minimum
0 X=9 ,

. Y=50,

45

J 30

You can confirm the minimum value

of W with a graphing utility.

Figure 3.58

Finding Minimum Length

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are to
be stayed by two wires, attached to a single stake, running from ground level to the top
of each post. Where should the stake be placed to use the least amount of wire?

Solution Let W be the wire length to be
minimized. Using Figure 3.57, you can write

W=y+z Primary equation

In this problem, rather than solving for y in
terms of z (or vice versa), you can solve for
both y and z in terms of a third variable x, as
shown in Figure 3.57. From the Pythagorean
Theorem, you obtain

—

X2+ 122 =y?
(30 — x)2 + 282 = 22 The quantity to be minimized is length.
o ] From the diagram, you can see that x
which implies that varies between 0 and 30.

y = \/m Figure 3.57
z = /x> — 60x + 1684,

So, you can rewrite the primary equation as
W=y+¢
= Jx2+ 144 + Jx2 — 60x + 1684, 0 < x < 30.

Differentiating W with respect to x yields

d_W _ X n x — 30
dc /X2 + 144 Jx® — 60x + 1684
By letting dW/dx = 0, you obtain
X x — 30
Va2 + 144 T /¥ 60x + 1684
X _ 30 — x
J2+ 144 /2 — 60x + 1684
xJ/x* — 60x + 1684 = (30 — x)/x* + 144
x2(x — 60x + 1684) = (30 — x)2(x2 + 144)
x* — 60x3 + 1684x% = x* — 60x° + 1044x% — 8640x + 129,600
640x> + 8640x — 129,600 = 0
320(x — 9)(2x + 45) = 0
x=9,—225.

Because x = —22.5 is not in the domain and
W(0) = 53.04, W(9) =50, and W(30) = 60.31

you can conclude that the wires should be staked at 9 feet from the 12-foot pole.

From Example 4, you can see that applied optimization
problems can involve a lot of algebra. If you have access to a graphing utility, you
can confirm that x = 9 yields a minimum value of W by graphing

W= Jx*+ 144 + /x> — 60x + 1684

. as shown in Figure 3.58.
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In each of the first four examples, the extreme value occurred at a critical number.
Although this happens often, remember that an extreme value can also occur at an
endpoint of an interval, as shown in Example 5.

EXAMPLE 5 An Endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area?

X Solution The total area (see Figure 3.59) is

o Avew a2 A = (area of square) + (area of circle)

A =2+ nr Primary equation

[

y
¥

Perimeter: 4x  Because the total length of wire is 4 feet, you obtain

i

({

4 = (perimeter of square) + (circumference of circle)

4 = 4x + 2nr. Secondary equation

r
* - - — -

2

4 feet

So, r = 2(1 — x)/m, and by substituting into the primary equation you have

Area: mtr

Circumference: 2nr

The quantity to be maximized is area:
A =x%+ ar
Figure 3.59

_ )2
24 4(1 — x)
m

1
= ;(ﬂxz + 4 — 8x + 4x?)

%[(n + 4)x* — 8x + 4.

The feasible domain is 0 < x < 1, restricted by the square’s perimeter. Because

Exploration % _2mt4x—8

What would the answer 4

be if Example 5 asked for the only critical number in (0, 1) is x = 4/(x + 4) = 0.56. So, using

the dimensions needed to A0) = 127, A(0.56) ~ 056, and A(1) = 1

enclose the minimum total

area? you can conclude that the maximum area occurs when x = 0. That is, all the wire is
used for the circle. |

Before doing the section exercises, review the primary equations developed in
Examples 1-5. As applications go, these five examples are fairly simple, and yet the
resulting primary equations are quite complicated.

3

V=27Ix— s Example 1
4
d= Jx*—-3x>*+4 Example 2
A =30+ 2x + 72 Example 3
X
W= x>+ 144 + /x> — 60x + 1684 Example 4
1
A= ;[(71’ + 4)x%2 — 8x + 4] Example 5

You must expect that real-life applications often involve equations that are at least as
complicated as these five. Remember that one of the main goals of this course is to
learn to use calculus to analyze equations that initially seem formidable.
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3.7 Exercises

see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK

1. Writing Inyour own words, describe primary equation,
secondary equation, and feasible domain.

2. Optimization Problems 1In your own words,
describe the guidelines for solving applied minimum and
maximum problems.

3. Numerical, Graphical, and Analytic Analysis Find
two positive numbers whose sum is 110 and whose product is
a maximum.

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to
guess the maximum product.

First Number, x | Second Number Product, P

10 110 — 10 10(110 — 10) = 1000

20 110 — 20 20(110 — 20) = 1800

(b) Write the product P as a function of x.

(¢) Use calculus to find the critical number of the function in
part (b). Then find the two numbers.

Pp (d) Use a graphing utility to graph the function in part (b) and
verify the solution from the graph.

4. Numerical, Graphical, and Analytic Analysis An
open box of maximum volume is to be made from a square
piece of material, 24 inches on a side, by cutting equal squares
from the corners and turning up the sides (see figure).

x:_IL _____________ 1|_

N i

S !

B I 1
—+ 24 —2x —
X

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to
guess the maximum volume.

Height, x | Length and Width Volume, V
1 24 — 2(1) 1[24 — 2(1)]> = 484
2 24 — 2(2) 2[24 — 2(2)]* = 800

(b) Write the volume V as a function of x.

(c) Use calculus to find the critical number of the function in
part (b). Then find the maximum volume.
PP’ (d) Use a graphing utility to graph the function in part (b) and
verify the maximum volume from the graph.

18.

19.

. Perimeter: 80 meters

.y=x%(0,3)

. Minimum Area

jj[/] Finding Numbers In Exercises 5-10, find
two positive numbers that satisfy the given
requirements.

The sum is S and the product is a maximum.

The product is 185 and the sum is a minimum.

The product is 147 and the sum of the first number plus three
times the second number is a minimum.

. The sum of the first number squared and the second number is

54 and the product is a maximum.

. The sum of the first number and twice the second number is

108 and the product is a maximum.

. The sum of the first number cubed and the second number is

500 and the product is a maximum.

'[{] Maximum Area In Exercises 11 and 12, find
H  the length and width of a rectangle that has the
given perimeter and a maximum area.

12. Perimeter: P units

[8] Minimum Perimeter In Exercises 13 and 14,
% find the length and width of a rectangle that has

the given area and a minimum perimeter.
[

Area: 49 square feet 14. Area: A square centimeters

[€] Minimum Distance In Exercises 15 and 16,
find the points on the graph of the function that are
closest to the given point.

16. y=x>—2, (0,—1)

A rectangular poster is to contain
648 square inches of print. The margins at the top and bottom
of the poster are to be 2 inches, and the margins on the left
and right are to be 1 inch. What should the dimensions of the
poster be so that the least amount of poster is used?

Minimum Area A rectangular page is to contain
36 square inches of print. The margins on each side are to be
1% inches. Find the dimensions of the page such that the least
amount of paper is used.

Minimum Length A farmer plans to fence a rectangular
pasture adjacent to a river (see figure). The pasture must
contain 405,000 square meters in order to provide enough
grass for the herd. No fencing is needed along the river. What
dimensions will require the least amount of fencing?
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20.

21.

22.

Maximum Volume A rectangular solid (with a square
base) has a surface area of 337.5 square centimeters. Find the
dimensions that will result in a solid with maximum volume.

Maximum Area A Norman window is constructed by
adjoining a semicircle to the top of an ordinary rectangular
window (see figure). Find the dimensions of a Norman
window of maximum area when the total perimeter is 16 feet.

— -
[ 1
;- -
[ ] [ T
1 — [T |
-
]
]
-

8

Maximum Area A rectangle is bounded by the x- and
y-axes and the graph of y = (6 — x)/2 (see figure). What
length and width should the rectangle have so that its area is
a maximum?

N
N 3
1,2
2T (x, y) 2 N2
1+ 1+
1"t (x, 0)
1 2 3 4 5 6 ! A N } X
4

-1+ T T

Figure for 22

23.

1 2 3
Figure for 23

Minimum Length and Minimum Area A right
triangle is formed in the first quadrant by the x- and y-axes and
a line through the point (1, 2) (see figure).

(a) Write the length L of the hypotenuse as a function of x.

F’F— (b) Use a graphing utility to approximate x graphically such

24,

that the length of the hypotenuse is a minimum.

(c) Find the vertices of the triangle such that its area is a
minimum.

Maximum Area Find the area of the largest isosceles
triangle that can be inscribed in a circle of radius 6 (see figure).

(a) Solve by writing the area as a function of 4.
(b) Solve by writing the area as a function of «a.

(c) Identify the type of triangle of maximum area.

Figure for 24

Figure for 25
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25. Maximum Area A rectangle is bounded by the x-axis and

the semicircle
y= /25— x*

(see figure). What length and width should the rectangle have
so that its area is a maximum?

. Maximum Area Find the dimensions of the largest

rectangle that can be inscribed in a semicircle of radius r (see
Exercise 25).

. Numerical, Graphical, and Analytic Analysis An

exercise room consists of a rectangle with a semicircle on each
end. A 200-meter running track runs around the outside of
the room.

(a) Draw afigure torepresent the problem. Let x and y represent
the length and width of the rectangle, respectively.

(b) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to
guess the maximum area of the rectangular region.

Length, x Width, y Area, xy
2 2
10 ;(100 - 10) (10);(100 — 10) = 573
2 2
20 ;(100 — 20) (20);(100 —20) = 1019

(c) Write the area A of the rectangular region as a function of x.

(d) Use calculus to find the critical number of the function in
part (c). Then find the maximum area and the dimensions
that yield the maximum area.

F’F— (e) Use a graphing utility to graph the function in part (c) and

verify the maximum area from the graph.

B 28. Numerical, Graphical, and Analytic Analysis A

right circular cylinder is designed to hold 22 cubic inches of a
soft drink (approximately 12 fluid ounces).

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

Radius, r Height Surface Area, S
22 22
0.2 W 271’(02)[02 + W] =~ 220.3
22 22
! — A04 + | =111
0.4 2(0.4)? 27(0 4)[04 ﬂ(0'4)2] 111.0

(b) Use a graphing utility to generate additional rows of the
table. Use the table to estimate the minimum surface area.

(c) Write the surface area S as a function of r.

(d) Use calculus to find the critical number of the function
in part (c). Then find the minimum surface area and the
dimensions that yield the minimum surface area.

(e) Use a graphing utility to graph the function in part (c) and
verify the minimum surface area from the graph.
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. Maximum Volume A rectangular package to be sent by

a postal service can have a maximum combined length and
girth (perimeter of a cross section) of 108 inches (see figure).
Find the dimensions of the package of maximum volume that
can be sent. (Assume the cross section is square.)

. Maximum Volume Rework Exercise 29 for a cylindrical

package. (The cross section is circular.)

EXPLORING CONCEPTS

31. Surface Area and Volume A shampoo bottle is
a right circular cylinder. Because the surface area of the
bottle does not change when it is squeezed, is it true that
the volume remains the same? Explain.

32. Area and Perimeter The perimeter of a rectangle
is 20 feet. Of all possible dimensions, the maximum
area is 25 square feet when its length and width are both
5 feet. Are there dimensions that yield a minimum area?

Explain.

33.

34.

35.

36.

37.

Minimum Surface Area A solid is formed by adjoining
two hemispheres to the ends of a right circular cylinder. The
total volume of the solid is 14 cubic centimeters. Find the
radius of the cylinder that produces the minimum surface area.

Minimum Cost  An industrial tank of the shape described
in Exercise 33 must have a volume of 4000 cubic feet.
The hemispherical ends cost twice as much per square foot
of surface area as the sides. Find the dimensions that will
minimize cost.

Minimum Area The sum of the perimeters of an
equilateral triangle and a square is 10. Find the dimensions of
the triangle and the square that produce a minimum total area.

Maximum Area Twenty feet of wire is to be used to form
two figures. In each of the following cases, how much wire
should be used for each figure so that the total enclosed area is
maximum?

(a) Equilateral triangle and square

(b) Square and regular pentagon

(c) Regular pentagon and regular hexagon
(d) Regular hexagon and circle

What can you conclude from this pattern? {Hint: The
area of a regular polygon with n sides of length x is
A = (n/4)[cot(n/n)]x2}

Beam Strength A wooden beam has a rectangular cross
section of height 4 and width w (see figure). The strength S of
the beam is directly proportional to the width and the square
of the height. What are the dimensions of the strongest beam
that can be cut from a round log of diameter 20 inches? (Hint:
S = kh®w, where k is the proportionality constant.)

Kanok Sulaiman/Shutterstock.com

ee¢ 39, Minimum Cost

y
\ w
©, h)
20
(-x, 0) x,0)
Figure for 37 Figure for 38

38. Mlinimum Length Two factories are located at the

coordinates (—x, 0) and (x, 0), and their power supply is at
(0, 1), as shown in the figure. Find y such that the total length
of power line from the power supply to the factories is a
minimum.

An offshore oil well is
2 kilometers off the
coast. The refinery is
4 kilometers down the
coast. Laying pipe in
the ocean is twice as
expensive as laying it
on land. What path
should the pipe follow
in order to minimize
the cost?

40. lllumination A light source is located over the center of a

41.

circular table of diameter 4 feet (see figure). Find the height &
of the light source such that the illumination / at the perimeter
of the table is maximum when

_ ksina
S2
where s is the slant height, « is the angle at which the light
strikes the table, and k is a constant.

Figure for 40

Figure for 41

Minimum Time A man is in a boat 2 miles from the
nearest point on the coast. He is traveling to a point Q, located
3 miles down the coast and 1 mile inland (see figure). He can
row at 2 miles per hour and walk at 4 miles per hour. Toward
what point on the coast should he row in order to reach point
Q in the least time?

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203




42. Minimum Time The conditions are the same as in
Exercise 41 except that the man can row at v, miles per hour
and walk at v, miles per hour. If 8, and 0, are the magnitudes
of the angles, show that the man will reach point Q in the least

time when
sinf, siné6,
Vi vy

43. Minimum Distance Sketch the graph of
f(x) =2 — 2sinx

on the interval [0, /2].

(a) Find the distance from the origin to the y-intercept and the
distance from the origin to the x-intercept.

(b) Write the distance d from the origin to a point on the graph
of f as a function of x.

(c) Use calculus to find the value of x that minimizes the
function d on the interval [0, 7/2]. What is the minimum
distance? Use a graphing utility to verify your results.

(Submitted by Tim Chapell, Penn Valley Community
College, Kansas City, MO)

44. Minimum Time When light waves traveling in a
transparent medium strike the surface of a second transparent
medium, they change direction. This change of direction is
called refracti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>